JP4212188B2 - Redundant system and standby device switching method in redundant system - Google Patents

Redundant system and standby device switching method in redundant system Download PDF

Info

Publication number
JP4212188B2
JP4212188B2 JP18843999A JP18843999A JP4212188B2 JP 4212188 B2 JP4212188 B2 JP 4212188B2 JP 18843999 A JP18843999 A JP 18843999A JP 18843999 A JP18843999 A JP 18843999A JP 4212188 B2 JP4212188 B2 JP 4212188B2
Authority
JP
Japan
Prior art keywords
transmission
rack
standby
unit
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18843999A
Other languages
Japanese (ja)
Other versions
JP2001014004A (en
Inventor
正幸 平本
照男 堺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Signal Co Ltd
Original Assignee
Nippon Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Signal Co Ltd filed Critical Nippon Signal Co Ltd
Priority to JP18843999A priority Critical patent/JP4212188B2/en
Publication of JP2001014004A publication Critical patent/JP2001014004A/en
Application granted granted Critical
Publication of JP4212188B2 publication Critical patent/JP4212188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)
  • Safety Devices In Control Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、所定の処理機能を有する主系機器に故障等が発生した場合に同種の処理機能を有する待機系機器に切り替え可能な冗長系システムに関し、特に、自動列車制御装置(ATC)等の高信頼性及び高安全性が要求されるシステムに組み込まれる冗長系システムに関する。
【0002】
【従来の技術】
従来、列車の速度を自動的に制御するために、自動列車制御装置(ATC:Automatic Train Control)が用いられている。ATCは、ATC地上装置とATC車上装置を有し、ATC地上装置から送信される列車制御用信号や速度情報をATC車上装置が受信し、この列車制御用信号や速度情報等に基づき、列車の速度を自動的に制御し、列車が制限速度を越えた場合には自動的にブレーキをかけたり、制限速度以下となった場合には自動的にブレーキを緩めたりさせるシステムである。
【0003】
ATCは、列車の運行に直接的に関係するため、高い信頼性と安全性が要求される。このため、ATCを構成する各種機器は、フェイル・セイフの観点から、待機二重系と呼ばれる構成となっている。
【0004】
図2は、従来のATCにおける送信装置の構成を示す概略ブロック図である。図2に示すように、このATC送信装置20は、送信架1´と2´を有している。送信架1´は、論理部B1と、N個(N:自然数)の主系の送信部b11〜b1Nと、2個の待機系の予備送信部rb11及びrb12と、切替部D1を備えている。また、送信架2´は、論理部B2と、N個(N:自然数)の主系の送信部b21〜b2Nと、2個の待機系の予備送信部rb21及びrb22と、切替部D2を備えている。
【0005】
上記のATC送信装置20の送信架1´において、論理部B1は、各軌道回路に送出する所定の列車制御用信号を生成し、この列車制御用信号は、送信部b11〜b1Nと待機系の予備送信部rb11及びrb12からなる二重系送信部に入力されるようになっている。また、上記のATC送信装置20の送信架2´において、論理部B2は、各軌道回路に送出する所定の列車制御用信号を生成し、この列車制御用信号は、送信部b21〜b2Nと待機系の予備送信部rb21及びrb22からなる二重系送信部に入力されるようになっている。
【0006】
各送信部b11〜b1N及びb21〜b2N、各予備送信部rb11〜rb22は、図示しないフィルタ回路、変調回路、増幅回路等を有する同一の構成を有している。
【0007】
送信架1´の第1段の送信部b11は、第11の軌道回路(図示せず)に所定の列車制御用信号を送出可能に構成されている。以下、同様にして、送信架1´の第N段の送信部b1Nは、第1Nの軌道回路(図示せず)に所定の列車制御用信号を送出可能に構成されている。
【0008】
また、送信架2´の第1段の送信部b21は、第21の軌道回路(図示せず)に所定の列車制御用信号を送出可能に構成されている。以下、同様にして、送信架2´の第N段の送信部b2Nは、第2Nの軌道回路(図示せず)に所定の列車制御用信号を送出可能に構成されている。
【0009】
送信架1´の各送信部b11〜b1Nと予備送信部rb11、rb12は、切替部D1と、送信架内結線F11、F12によって接続されている。また、切替部D1は、内部に切替スイッチS7及びS8を備えており、論理部B1の制御により、予備送信部rb11又はrb12の出力を、各送信部b11〜b1Nのいずれの側にも切り替えられ、各送信部b11〜b1Nのかわりに、対応する第11〜第1Nの軌道回路に所定の列車制御用信号を送出できるように構成されている。
【0010】
また、送信架2´の各送信部b21〜b2Nと予備送信部rb21、rb22は、切替部D2と、送信架内結線F21、F22によって接続されている。また、切替部D2は、内部に切替スイッチS9及びS10を備えており、論理部B2の制御により、予備送信部rb21又はrb22の出力を、各送信部b21〜b2Nのいずれの側にも切り替えられ、各送信部b21〜b2Nのかわりに、対応する第21〜第2Nの軌道回路に所定の列車制御用信号を送出できるように構成されている。
【0011】
このような構成により、上記のATC送信装置20においては、送信架1´の送信部b11〜b1Nのうちのいずれか1つが故障しても、送信架1´内の予備送信部rb11又はrb12に切り替えることにより、支障なく各軌道回路に所定の列車制御用信号を送出することでき、ATC装置全体の高信頼性及び高安全性が維持されている。以下、このようなシステムを、「冗長系システム」という。
【0012】
また、上記のATC送信装置20においては、さらに、送信架1´の送信部b11〜b1Nのうちの2つが故障しても、送信架1´内の予備送信部rb11及びrb12に切り替えることにより、支障なく各軌道回路に所定の列車制御用信号を送出することでき、ATC装置全体の高信頼性及び高安全性を維持することができる。送信架2´についても同様である。
【0013】
【発明が解決しようとする課題】
しかしながら、上記した従来の冗長系システムにおいては、図2に示すように、ある送信架(例えば1´)の送信部のうち、3個の送信部(例えばb11、b13、b14)が同時に故障した場合には、3個の故障送信部のうちの2個までは予備送信部(例えばrb11及びrb12)に切り替えることにより対処できるが、残りの1個の故障送信部については、軌道回路に所定の列車制御用信号を送出することができなくなり、システムダウンとなり、列車の運行に支障をきたしてしまう、という問題があった。
【0014】
本発明は上記の問題を解決するためになされたものであり、本発明の解決しようとする課題は、システムダウンを起こしにくい冗長系システム、及びこの冗長系システムにおける待機系機器の切替方法を提供することにある。
【0015】
【課題を解決するための手段】
上記課題を解決するため、本発明に係る冗長系システムは、同種の所定の処理機能を持つN個(N:自然数)の主系機器を集約収納するものである機能架を複数個備えるとともに、前記主系機器のそれぞれの処理状態を検出する処理状態検出手段と、前記各機能架毎にK個(K:自然数)設けられ前記主系機器と同種の所定の処理機能を有する待機系機器と、前記処理状態検出手段によりいずれかの前記機能架内の前記主系機器の処理状態について異常が検出された場合には、前記異常が検出された主系機器を、当該異常が検出された主系機器が属する機能架である異常架内の未使用の待機系機器のうちのいずれかに切り替え、前記異常架内に未使用の待機系機器が存在しない場合には、前記異常架以外の機能架内の未使用の待機系機器のうちのいずれかに切り替える切替手段と、を備えることを特徴とする。
【0016】
また、待機系機器のみを集約収納するものである待機架を更に配備し、前記切替手段は、前記処理状態検出手段により前記主系機器の処理状態について異常が検出された場合には、前記異常が検出された主系機器を、前記待機架内における未使用の待機系機器のいずれかに切り替え可能な構成としてもよい。
【0017】
また、本発明に係る冗長系システムにおける待機系機器の切替方法は、同種の所定の処理機能を持つN個(N:自然数)の主系機器を集約収納するものである機能架を複数個設けるとともに、前記主系機器のそれぞれの処理状態を検出する処理状態検出手段を設け、前記各機能架毎に前記主系機器と同種の所定の処理機能を有する待機系機器をK個(K:自然数)設け、前記処理状態検出手段により前記主系機器の処理状態について異常が検出された場合には、切替手段により、前記異常が検出された主系機器を、当該異常が検出された主系機器が属する機能架である異常架内の未使用の待機系機器のうちのいずれかに切り替え、前記異常架内に未使用の待機系機器が存在しない場合には、前記異常架以外の機能架内の未使用の待機系機器のうちのいずれかに切り替えることを特徴とする。
【0018】
【発明の実施の形態】
以下、本発明に係る冗長系システムの実施形態について、図面を参照しながら説明を行う。
【0019】
図1は、本発明に係る冗長系システムの一実施形態であるATC送信装置の構成を示す概略ブロック図である。
【0020】
図1に示すように、冗長系システムであるATC送信装置10は、機能架である送信架1及び2を有している。送信架1は、論理部A1と、N個(N:自然数)の主系機器である送信部a11〜a1Nと、2個の待機系機器である予備送信部ra11及びra12と、切替部C1を備えている。また、送信架2は、論理部A2と、N個(N:自然数)の主系機器である送信部a21〜a2Nと、2個の待機系機器である予備送信部ra21及びra22と、切替部C2を備えている。
【0021】
送信架1内の切替部C1内には、切替スイッチS1、S2、S3が設けられている。切替スイッチS1の一方の側は予備送信部ra11に接続され、切替スイッチS1の他方の側は、送信架内結線E11により送信部a11〜a1Nのいずれかに接続されている。また、切替スイッチS2の一方の側は予備送信部ra12に接続され、切替スイッチS2の他方の側は、送信架内結線E12により送信部a11〜a1Nのいずれかに接続されている。
【0022】
また、切替スイッチS3の一方の側は送信架1の予備送信部ra11に接続され、切替スイッチS3の他方の側は、送信架間結線G1により送信架2の送信部a21〜a2Nに接続されている。
【0023】
また、送信架2内の切替部C2内には、切替スイッチS4、S5、S6が設けられている。切替スイッチS4の一方の側は予備送信部ra21に接続され、切替スイッチS4の他方の側は、送信架内結線E21により送信部a21〜a2Nのいずれかに接続されている。また、切替スイッチS5の一方の側は予備送信部ra22に接続され、切替スイッチS5の他方の側は、送信架内結線E22により送信部a21〜a2Nのいずれかに接続されている。
【0024】
また、切替スイッチS6の一方の側は送信架2の予備送信部ra21に接続され、切替スイッチS6の他方の側は、送信架間結線G2により送信架1の送信部a11〜a1Nに接続されている。
【0025】
送信架1において、論理部A1は、図示しない接続線により、切替部C1内の各切替スイッチS1〜S3とそれぞれ接続されている。また、送信架2において、論理部A2は、図示しない接続線により、切替部C2内の各切替スイッチS4〜S6とそれぞれ接続されている。また、各送信架1、2内の論理部A1、A2は、論理部回線Hで相互に接続されている。
【0026】
ここに、論理部A1及びA2と、論理部回線Hは、処理状態検出手段を構成している。また、論理部A1及びA2と、論理部回線Hと、切替部C1及びC2と、送信架間結線G1及びG2は、切替手段を構成している。
【0027】
上記のATC送信装置10の送信架1において、論理部A1は、各軌道回路に送出する所定の列車制御用信号を生成し、この列車制御用信号は、送信部a11〜a1Nと待機系の予備送信部ra11及びra12からなる二重系送信部に入力されるようになっている。また、上記のATC送信装置10の送信架2において、論理部A2は、各軌道回路に送出する所定の列車制御用信号を生成し、この列車制御用信号は、送信部a21〜a2Nと待機系の予備送信部ra21及びra22からなる二重系送信部に入力されるようになっている。
【0028】
各送信部a11〜a1N及びa21〜a2N、各予備送信部ra11〜ra22は、図示しないフィルタ回路、変調回路、増幅回路等を有する同一の構成を有している。
【0029】
送信架1の第1段の送信部a11は、第11の軌道回路(図示せず)に所定の列車制御用信号を送出可能に構成されている。以下、同様にして、送信架1の第N段の送信部a1Nは、第1Nの軌道回路(図示せず)に所定の列車制御用信号を送出可能に構成されている。
【0030】
また、送信架2の第1段の送信部a21は、第21の軌道回路(図示せず)に所定の列車制御用信号を送出可能に構成されている。以下、同様にして、送信架2の第N段の送信部a2Nは、第2Nの軌道回路(図示せず)に所定の列車制御用信号を送出可能に構成されている。
【0031】
送信架1の各送信部a11〜a1Nと予備送信部ra11、ra12は、切替部C1と、送信架内結線E11、E12によって接続されている。また、切替部C1は、内部に切替スイッチS1及びS2を備えており、論理部A1の制御により、予備送信部ra11又はra12の出力を、各送信部a11〜a1Nのいずれの側にも切り替えられ、各送信部a11〜a1Nのかわりに、対応する第11〜第1Nの軌道回路に所定の列車制御用信号を送出できるように構成されている。
【0032】
また、送信架2の各送信部a21〜a2Nと予備送信部ra21、ra22は、切替部C2と、送信架内結線E21、E22によって接続されている。また、切替部C2は、内部に切替スイッチS4及びS5を備えており、論理部A2の制御により、予備送信部ra21又はra22の出力を、各送信部a21〜a2Nのいずれの側にも切り替えられ、各送信部a21〜a2Nのかわりに、対応する第21〜第2Nの軌道回路に所定の列車制御用信号を送出できるように構成されている。
【0033】
これらについては、図2に示した従来のATC送信装置20と同様である。本実施形態のATC送信装置10では、さらに、送信架1の予備送信部ra11が、切替部C1の切替スイッチS3と、送信架間結線G1によって、送信架2の各送信部a21〜a2Nに接続されている。このため、論理部A1及びA2の連携制御により、予備送信部ra11の出力は、送信架2内の各送信部a21〜a2Nのいずれの側にも切り替えられ、各送信部a21〜a2Nのかわりに、対応する第21〜第2Nの軌道回路に所定の列車制御用信号を送出できるように構成されている。
【0034】
また、本実施形態のATC送信装置10では、送信架2の予備送信部ra21が、切替部C2の切替スイッチS6と、送信架間結線G2によって、送信架1の各送信部a11〜a1Nに接続されている。このため、論理部A1及びA2の連携制御により、予備送信部ra21の出力は、送信架1内の各送信部a11〜a1Nのいずれの側にも切り替えられ、各送信部a11〜a1Nのかわりに、対応する第11〜第1Nの軌道回路に所定の列車制御用信号を送出できるように構成されている。
【0035】
上記のような構成により、本実施形態のATC送信装置10においては、送信架1の送信部a11〜a1Nのうちのいずれか1つが故障しても、送信架1内の予備送信部ra11又はra12に切り替えることにより、支障なく各軌道回路に所定の列車制御用信号を送出することでき、ATC装置全体の高信頼性及び高安全性が維持されている。送信架2についても同様である。
【0036】
また、同様に、送信架1の送信部a11〜a1Nのうちの2つが故障しても、送信架1内の予備送信部ra11及びra12に切り替えることにより、支障なく各軌道回路に所定の列車制御用信号を送出することでき、ATC装置全体の高信頼性及び高安全性を維持することができる。送信架2についても同様である。
【0037】
さらに、本実施形態のATC送信装置10においては、送信架1の送信部のうち、3個の送信部(例えばa11、a13、a14)が同時に故障した場合には、3個の故障送信部のうちの2個までは、論理部A1の制御に基き切替部C1が送信架1内の予備送信部(例えばra11及びra12)に切り替えることにより対処する。そして、残りの1個の故障送信部については、論理部A1及びA2の連携制御に基き切替部C2内のスイッチS6が送信架2内の予備送信部ra21に切り替える。これにより、故障送信部のかわりに、対応する第11〜第1Nの軌道回路に所定の列車制御用信号を送出でき、システムダウンを防止することができる。
【0038】
送信架2についても同様であり、送信架2の送信部のうち、3個の送信部が同時に故障した場合には、3個の故障送信部のうちの2個までは、論理部A2の制御に基き切替部C2が送信架2内の予備送信部(例えばra21及びra22)に切り替えることにより対処する。そして、残りの1個の故障送信部については、論理部A1及びA2の連携制御に基き切替部C1内のスイッチS3が送信架1内の予備送信部ra11に切り替える。これにより、故障送信部のかわりに、対応する第21〜第2Nの軌道回路に所定の列車制御用信号を送出でき、システムダウンを防止することができる。
【0039】
図示はしていないが、送信架2の切替部C2に他の切替スイッチを設け、この切替スイッチの一方の側に送信架2の予備送信部ra22を接続し、この切替スイッチの他方の側に、他の送信架間結線(図示せず)により送信架1の送信部a11〜a1Nを接続し、この切替スイッチを論理部A1、A2で制御するように構成すれば、送信架1の送信部のうち、4個の送信部が同時に故障した場合でも、4個の故障送信部のうちの2個までは、論理部A1の制御に基き切替部C1が送信架1内の予備送信部(例えばra11及びra12)に切り替えることにより対処し、残りの2個の故障送信部については、論理部A1及びA2の連携制御に基き切替部C2内のスイッチS6と切替部C2内の他の切替スイッチ(図示せず)が送信架2内の予備送信部ra21及びra22に切り替える。これにより、故障送信部のかわりに、対応する第11〜第1Nの軌道回路に所定の列車制御用信号を送出でき、システムダウンを防止することができる。
【0040】
また、送信架2の送信部a21〜a2Nの故障についても同様であり、図示はしていないが、送信架1の切替部C1に他の切替スイッチを設け、この切替スイッチの一方の側に送信架1の予備送信部ra12を接続し、この切替スイッチの他方の側に、他の送信架間結線(図示せず)により送信架2の送信部a21〜a2Nを接続し、この切替スイッチを論理部A1、A2で制御するように構成すれば、送信架2の送信部のうち、4個の送信部が同時に故障した場合でも、4個の故障送信部のうちの2個までは、論理部A2の制御に基き切替部C2が送信架2内の予備送信部(例えばra21及びra22)に切り替えることにより対処し、残りの2個の故障送信部については、論理部A1及びA2の連携制御に基き切替部C1内のスイッチS3と切替部C1内の他の切替スイッチ(図示せず)が送信架1内の予備送信部ra11及びra12に切り替える。これにより、故障送信部のかわりに、対応する第21〜第2Nの軌道回路に所定の列車制御用信号を送出でき、システムダウンを防止することができる。
【0041】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【0042】
例えば、上記実施形態においては、主系機器(例えば送信部a11等)を有する機能架(例えば送信架1等)の個数が2個の場合を例に挙げて説明したが、本発明はこの例には限定されず、機能架は複数個備える構成であればよい。
【0043】
また、上記実施形態においては、待機系機器(例えば予備送信部ra11等)の個数が各機能架(例えば送信架1等)ごとに2個の場合を例に挙げて説明したが、本発明はこの例には限定されず、他の構成、例えば、各機能架ごとに1個の場合でもよい。この場合には、機能架の個数をM個(M:2以上の自然数)とすると、システム全体では、待機系機器の総数はM個となる。また、各機能架ごとに3個以上の自然数Kの場合でもよい。この場合には、機能架の個数をM個(M:2以上の自然数)とすると、システム全体では、待機系機器の総数は(K×M)個となる。また、各機能架ごとに所定個数の待機系機器を備えるとともに、待機系機器のみを配備した機能架(待機架)も併せて設けてもよい。
【0044】
また、上記実施形態においては、冗長系システムとしてATCにおける送信装置を例に挙げて説明したが、本発明はこの例には限定されず、他の冗長系システム、例えば、TD(列車位置検知装置)における送信装置、ATS(Automatic Train Stop:自動列車停止装置)における送信装置等であってもよい。ATSは、列車が停止信号機に接近しているのに運転士がこれを無視したり看過又は誤認して正常に停車しない場合などに、ATS地上装置から送信される制御信号により、ATS車上装置が車両の運転室内で警報ベルや警報ブザーを鳴動させて運転士に注意を喚起したり、自動的にブレーキを作動させて列車を停止信号機の手前で強制的に停車させる装置である。
【0045】
また、主系機器及び待機系機器の処理機能についても、本発明は上記各実施形態における例である送信機能には限定されず、他の処理機能、例えば、受信機能、フィルタ機能、変調機能、増幅機能、信号変換機能、信号解読機能、演算処理機能、記憶機能、各種入力機能、各種出力機能等、あるいはこれらの適宜の組み合わせであってもよい。
【0046】
要は、同種の所定の処理機能を持つN個(N:自然数)の主系機器を有する機能架を複数個備え、主系機器と同種の所定の処理機能を有し各機能架毎に設けられる待機系機器を備え、主系機器の処理状態について異常が検出された場合には、異常が検出された主系機器を、異常の主系機器が属する機能架である異常架内の未使用の待機系機器のうちのいずれかに切り替え、異常架内に未使用の待機系機器が存在しない場合には、異常架以外の機能架内の未使用の待機系機器のうちのいずれかに切り替えるように構成された冗長系システムであれば、どのようなものであってもよいのである。
【0048】
また、上記実施形態においては、主系機器の処理状態の異常の例として故障を例に挙げて説明したが、本発明はこの例には限定されず、他の種類の異常であってもよい。
【0049】
また、上記実施形態においては、切替部が、待機系機器へ切り替えて接続する切替スイッチを備える例について説明したが、本発明はこの例には限定されず、他の構成、例えば切替部をコンピュータにより構成し、切り替え動作をソフトウェアによって行うように構成してもよい。
【0050】
【発明の効果】
以上に説明したように、本発明によれば、N個(N:自然数)の主系機器を集約収納する機能架を複数個備え、各機能架毎に主系機器と同種の処理機能を有する待機系機器を設け、主系機器の処理状態に異常が検出された場合に、異常が検出された主系機器を、異常の主系機器が属する機能架内の未使用の待機系機器のいずれかに切り替え、未使用の待機系機器が存在しない場合には、他の機能架内の未使用の待機系機器のいずれかに切り替えるように構成したので、従来に比べてシステムダウンが起こりにくい、という利点を有している。
【図面の簡単な説明】
【図1】本発明に係る冗長系システムの一実施形態であるATC送信装置の構成を示す概略ブロック図である。
【図2】従来の冗長系システムの一例であるATC送信装置の構成を示す概略ブロック図である。
【符号の説明】
10 ATC送信装置
20 ATC送信装置
A1、A2 論理部
a11〜a1N 送信部
B1、B2 論理部
b11〜b1N 送信部
C1、C2 切替部
D1、D2 切替部
E11〜E22 送信架内結線
F11〜F22 送信架内結線
G1、G2 送信架間結線
H 論理部回線
ra11〜rb22 予備送信部
S1〜S10 切替スイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a redundant system that can be switched to a standby system device having the same type of processing function when a failure or the like occurs in a main system device having a predetermined processing function, and in particular, an automatic train control device (ATC) or the like. The present invention relates to a redundant system incorporated in a system that requires high reliability and high safety.
[0002]
[Prior art]
Conventionally, an automatic train control device (ATC: Automatic Train Control) is used to automatically control the speed of a train. The ATC has an ATC ground device and an ATC on-board device. The ATC on-board device receives a train control signal and speed information transmitted from the ATC ground device, and based on the train control signal and speed information, It is a system that automatically controls the speed of the train and automatically applies the brake when the train exceeds the speed limit, and automatically releases the brake when the speed falls below the speed limit.
[0003]
Since ATC is directly related to train operation, high reliability and safety are required. For this reason, various devices constituting the ATC have a configuration called a standby duplex system from the viewpoint of fail-safe.
[0004]
FIG. 2 is a schematic block diagram showing a configuration of a transmission apparatus in the conventional ATC. As shown in FIG. 2, the ATC transmission device 20 includes transmission racks 1 ′ and 2 ′. The transmission rack 1 'includes a logic unit B1, N (N: natural number) main transmission units b11 to b1N, two standby standby transmission units rb11 and rb12, and a switching unit D1. . The transmission rack 2 'includes a logic unit B2, N (N: natural number) main transmission units b21 to b2N, two standby standby transmission units rb21 and rb22, and a switching unit D2. ing.
[0005]
In the transmission rack 1 ′ of the ATC transmission device 20, the logic unit B1 generates a predetermined train control signal to be sent to each track circuit. The train control signal is transmitted between the transmission units b11 to b1N and the standby system. The information is input to a duplex transmission unit composed of spare transmission units rb11 and rb12. Further, in the transmission rack 2 ′ of the ATC transmission device 20 described above, the logic unit B2 generates a predetermined train control signal to be sent to each track circuit, and this train control signal is on standby with the transmission units b21 to b2N. The signal is input to a duplex transmission unit including the system standby transmission units rb21 and rb22.
[0006]
Each of the transmitters b11 to b1N and b21 to b2N and each of the spare transmitters rb11 to rb22 has the same configuration including a filter circuit, a modulation circuit, an amplifier circuit, and the like (not shown).
[0007]
The first-stage transmission unit b11 of the transmission rack 1 ′ is configured to be able to send a predetermined train control signal to an eleventh track circuit (not shown). Hereinafter, similarly, the N-th stage transmission unit b1N of the transmission rack 1 ′ is configured to be able to send a predetermined train control signal to a 1N-th track circuit (not shown).
[0008]
Further, the first-stage transmission unit b21 of the transmission rack 2 'is configured to be able to send a predetermined train control signal to a twenty-first track circuit (not shown). Similarly, the N-th stage transmission unit b2N of the transmission rack 2 'is configured to be able to send a predetermined train control signal to a 2N-th track circuit (not shown).
[0009]
The transmission units b11 to b1N and the spare transmission units rb11 and rb12 of the transmission rack 1 ′ are connected to the switching unit D1 by transmission line connections F11 and F12. Further, the switching unit D1 includes changeover switches S7 and S8, and the output of the standby transmission unit rb11 or rb12 can be switched to either side of each of the transmission units b11 to b1N by the control of the logic unit B1. Instead of the transmission units b11 to b1N, a predetermined train control signal can be sent to the corresponding 11th to 1N track circuits.
[0010]
Further, each of the transmission units b21 to b2N of the transmission rack 2 ′ and the spare transmission units rb21 and rb22 are connected to the switching unit D2 via transmission rack connections F21 and F22. Further, the switching unit D2 includes changeover switches S9 and S10, and the output of the spare transmission unit rb21 or rb22 can be switched to either side of each of the transmission units b21 to b2N by the control of the logic unit B2. Instead of the transmission parts b21 to b2N, a predetermined train control signal can be sent to the corresponding 21st to 2Nth track circuits.
[0011]
With such a configuration, in the ATC transmission apparatus 20 described above, even if any one of the transmission units b11 to b1N of the transmission rack 1 ′ fails, the spare transmission unit rb11 or rb12 in the transmission rack 1 ′ by switching can deliver a predetermined train control signal to the track circuit without any problem, high reliability and high safety of the entire ATC system is maintained. Hereinafter, such a system is referred to as a “redundant system”.
[0012]
Further, in the ATC transmission device 20 described above, even if two of the transmission units b11 to b1N of the transmission rack 1 ′ fail, by switching to the spare transmission units rb11 and rb12 in the transmission rack 1 ′, can send a predetermined train control signal to without hindrance each track circuit, it is possible to maintain the high reliability and high safety of the entire ATC system. The same applies to the transmission rack 2 '.
[0013]
[Problems to be solved by the invention]
However, in the above-described conventional redundant system, as shown in FIG. 2, among the transmission units of a certain transmission rack (for example, 1 ′), three transmission units (for example, b11, b13, and b14) failed at the same time. In this case, up to two of the three fault transmitters can be dealt with by switching to the spare transmitters (for example, rb11 and rb12). There was a problem that the train control signal could not be transmitted, the system was down, and the train operation was hindered.
[0014]
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and the problem to be solved by the present invention is to provide a redundant system that is unlikely to cause a system down, and a method for switching standby devices in the redundant system. There is to do.
[0015]
[Means for Solving the Problems]
In order to solve the above problems, a redundant system according to the present invention includes a plurality of functional racks that collectively store N (N: natural number) main devices having a predetermined processing function of the same type, a processing state detection means for detecting the respective processing status of the main system equipment, K number the each function call (K: natural number) provided waits that having a predetermined processing function of the main system equipment and the same type When an abnormality is detected in the processing state of the main device in any one of the functional racks by the system device and the processing state detection means, the abnormality is detected in the main device in which the abnormality is detected. If there is no unused standby system device in the abnormal rack that is switched to one of the unused standby system equipment in the abnormal rack that is the functional rack to which the main unit is attached, the abnormal rack Other unused standby devices in the functional rack Characterized by comprising a switching means for switching to either.
[0016]
In addition, a standby rack that collects and stores only standby system devices is further provided, and the switching unit detects the abnormality when the processing state detection unit detects an abnormality in the processing state of the main unit device. It may be configured such that the main system device in which is detected can be switched to any unused standby system device in the standby rack.
[0017]
In the redundant system switching method in the redundant system according to the present invention, a plurality of functional racks that collectively store N (N: natural number) main system equipment having a predetermined processing function of the same type are provided. And a processing state detecting means for detecting each processing state of the main device, and K standby devices having a predetermined processing function of the same type as the main device for each functional rack (K: natural number). And when the abnormality is detected in the processing state of the main device by the processing state detection means, the main device in which the abnormality is detected is selected by the switching means as the main device in which the abnormality is detected. Switch to one of the unused standby system devices in the abnormal rack that is the functional rack to which the unit belongs, and if there is no unused standby system device in the abnormal rack, the functional rack other than the abnormal rack Of unused standby equipment Chino and switches to either.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a redundant system according to the present invention will be described with reference to the drawings.
[0019]
FIG. 1 is a schematic block diagram showing a configuration of an ATC transmission apparatus which is an embodiment of a redundant system according to the present invention.
[0020]
As shown in FIG. 1, an ATC transmission apparatus 10 that is a redundant system has transmission racks 1 and 2 that are functional racks. The transmission rack 1 includes a logical unit A1, N (N: natural number) transmission units a11 to a1N that are main devices, two standby transmission devices ra11 and ra12, and a switching unit C1. I have. The transmission rack 2 includes a logical unit A2, N (N: natural number) transmission units a21 to a2N that are main devices, two standby transmission devices ra21 and ra22, and a switching unit. C2 is provided.
[0021]
In the switching unit C1 in the transmission rack 1, changeover switches S1, S2, and S3 are provided. One side of the changeover switch S1 is connected to the spare transmission unit ra11, and the other side of the changeover switch S1 is connected to any one of the transmission units a11 to a1N by the transmission rack connection E11. Further, one side of the changeover switch S2 is connected to the spare transmission unit ra12, and the other side of the changeover switch S2 is connected to any one of the transmission units a11 to a1N by the transmission rack connection E12.
[0022]
Further, one side of the changeover switch S3 is connected to the spare transmission unit ra11 of the transmission rack 1, and the other side of the changeover switch S3 is connected to the transmission parts a21 to a2N of the transmission rack 2 by the transmission rack connection G1. Yes.
[0023]
In addition, changeover switches S4, S5, and S6 are provided in the switching unit C2 in the transmission rack 2. One side of the changeover switch S4 is connected to the spare transmission unit ra21, and the other side of the changeover switch S4 is connected to one of the transmission units a21 to a2N by the transmission rack connection E21. Further, one side of the changeover switch S5 is connected to the spare transmission unit ra22, and the other side of the changeover switch S5 is connected to any one of the transmission units a21 to a2N by the transmission rack connection E22.
[0024]
Further, one side of the changeover switch S6 is connected to the spare transmission part ra21 of the transmission rack 2, and the other side of the changeover switch S6 is connected to the transmission parts a11 to a1N of the transmission rack 1 by the transmission rack connection G2. Yes.
[0025]
In the transmission rack 1, the logic unit A1 is connected to each of the switches S1 to S3 in the switching unit C1 by a connection line (not shown). Further, in the transmission rack 2, the logic unit A2 is connected to each of the changeover switches S4 to S6 in the switching unit C2 by a connection line (not shown). The logic units A1 and A2 in the transmission racks 1 and 2 are connected to each other by a logic unit line H.
[0026]
Here, the logic units A1 and A2 and the logic unit line H constitute processing state detection means. Further, the logic units A1 and A2, the logic unit line H, the switching units C1 and C2, and the inter-transmission connections G1 and G2 constitute a switching unit.
[0027]
In the transmission rack 1 of the ATC transmission device 10 described above, the logic unit A1 generates a predetermined train control signal to be sent to each track circuit, and the train control signal is used as a spare for the transmission units a11 to a1N and the standby system. The signal is input to a duplex transmission unit composed of the transmission units ra11 and ra12. Further, in the transmission rack 2 of the ATC transmission device 10 described above, the logic unit A2 generates a predetermined train control signal to be sent to each track circuit, and the train control signal is transmitted to the transmission units a21 to a2N and the standby system. Are input to a duplex transmission unit comprising the preliminary transmission units ra21 and ra22.
[0028]
Each of the transmitters a11 to a1N and a21 to a2N and each of the spare transmitters ra11 to ra22 has the same configuration including a filter circuit, a modulation circuit, an amplifier circuit, and the like (not shown).
[0029]
The first-stage transmission unit a11 of the transmission rack 1 is configured to be able to send a predetermined train control signal to an eleventh track circuit (not shown). Hereinafter, similarly, the N-th stage transmission unit a1N of the transmission rack 1 is configured to be able to send a predetermined train control signal to a first N track circuit (not shown).
[0030]
Further, the first-stage transmission unit a21 of the transmission rack 2 is configured to be able to send a predetermined train control signal to a twenty-first track circuit (not shown). Hereinafter, similarly, the N-th stage transmission unit a2N of the transmission rack 2 is configured to be able to send a predetermined train control signal to a 2N-th track circuit (not shown).
[0031]
The transmission units a11 to a1N and the spare transmission units ra11 and ra12 of the transmission rack 1 are connected to the switching unit C1 by transmission line connections E11 and E12. The switching unit C1 includes switching switches S1 and S2, and the output of the standby transmission unit ra11 or ra12 can be switched to either side of the transmission units a11 to a1N by the control of the logic unit A1. Instead of the transmitters a11 to a1N, a predetermined train control signal can be sent to the corresponding 11th to 1N track circuits.
[0032]
Further, the transmission units a21 to a2N of the transmission rack 2 and the spare transmission units ra21 and ra22 are connected to the switching unit C2 by transmission line connections E21 and E22. Further, the switching unit C2 includes changeover switches S4 and S5, and the output of the standby transmission unit ra21 or ra22 can be switched to either side of each of the transmission units a21 to a2N by the control of the logic unit A2. Instead of the transmitters a21 to a2N, a predetermined train control signal can be sent to the corresponding 21st to 2Nth track circuits.
[0033]
These are the same as those of the conventional ATC transmitter 20 shown in FIG. In the ATC transmission device 10 of the present embodiment, the spare transmission unit ra11 of the transmission rack 1 is further connected to the transmission units a21 to a2N of the transmission rack 2 by the changeover switch S3 of the switching unit C1 and the transmission rack connection G1. Has been. For this reason, by the cooperative control of the logic units A1 and A2, the output of the standby transmission unit ra11 is switched to either side of the transmission units a21 to a2N in the transmission rack 2, and instead of the transmission units a21 to a2N. A predetermined train control signal can be sent to the corresponding 21st to 2Nth track circuits.
[0034]
Further, in the ATC transmission apparatus 10 of the present embodiment, the standby transmission unit ra21 of the transmission rack 2 is connected to the transmission units a11 to a1N of the transmission rack 1 by the changeover switch S6 of the switching unit C2 and the transmission rack connection G2. Has been. For this reason, by the cooperation control of the logic units A1 and A2, the output of the spare transmission unit ra21 is switched to either side of each of the transmission units a11 to a1N in the transmission rack 1, and instead of each of the transmission units a11 to a1N. A predetermined train control signal can be sent to the corresponding 11th to 1Nth track circuits.
[0035]
With the configuration as described above, in the ATC transmission device 10 of the present embodiment, even if any one of the transmission units a11 to a1N of the transmission rack 1 fails, the spare transmission units ra11 or ra12 in the transmission rack 1 By switching to, a predetermined train control signal can be sent to each track circuit without hindrance, and the high reliability and high safety of the entire ATC device are maintained. The same applies to the transmission rack 2.
[0036]
Similarly, even if two of the transmission units a11 to a1N of the transmission rack 1 fail, by switching to the preliminary transmission units ra11 and ra12 in the transmission rack 1, predetermined train control can be performed on each track circuit without any trouble. Can be transmitted and the high reliability and safety of the entire ATC device can be maintained. The same applies to the transmission rack 2.
[0037]
Furthermore, in the ATC transmitter 10 of the present embodiment, when three transmitters (for example, a11, a13, a14) out of the transmitters of the transmission rack 1 fail at the same time, the three fault transmitters Up to two of them are dealt with by the switching unit C1 switching to a spare transmission unit (for example, ra11 and ra12) in the transmission rack 1 based on the control of the logic unit A1. And about the remaining one failure transmission part, switch S6 in the switch part C2 switches to the spare transmission part ra21 in the transmission rack 2 based on cooperation control of logic part A1 and A2. Thereby, instead of the failure transmitter, a predetermined train control signal can be sent to the corresponding 11th to 1N track circuits, and the system can be prevented from being down.
[0038]
The same applies to the transmission rack 2, and when three transmission sections of the transmission section 2 transmit at the same time, up to two of the three failed transmission sections are controlled by the logic section A2. This is dealt with by the switching unit C2 switching to the spare transmission unit (for example, ra21 and ra22) in the transmission rack 2 based on the above. And about the remaining one failure transmission part, switch S3 in the switch part C1 switches to the spare transmission part ra11 in the transmission rack 1 based on cooperation control of logic part A1 and A2. Thereby, a predetermined train control signal can be sent to the corresponding 21st to 2N track circuits instead of the failure transmission unit, and system down can be prevented.
[0039]
Although not shown, another changeover switch is provided in the switching part C2 of the transmission rack 2, the spare transmission part ra22 of the transmission rack 2 is connected to one side of this changeover switch, and the other side of this changeover switch is connected. If the transmission units a11 to a1N of the transmission rack 1 are connected by another connection between the transmission racks (not shown), and this changeover switch is controlled by the logic units A1 and A2, the transmission section of the transmission rack 1 Of these, even when four transmitters fail at the same time, up to two of the four fault transmitters are switched by the switching unit C1 based on the control of the logic unit A1 (for example, spare transmission units (for example, The remaining two fault transmitters are dealt with by switching to ra11 and ra12), and the switch S6 in the switching unit C2 and other changeover switches in the switching unit C2 (based on the cooperative control of the logic units A1 and A2) (Not shown) Switches to the transmission unit ra21 and Ra22. Thereby, instead of the failure transmitter, a predetermined train control signal can be sent to the corresponding 11th to 1N track circuits, and the system can be prevented from being down.
[0040]
The same applies to the failure of the transmission units a21 to a2N of the transmission rack 2, and although not shown, another switching switch is provided in the switching unit C1 of the transmission rack 1, and transmission is performed on one side of the switching switch. The spare transmission unit ra12 of the rack 1 is connected, and the transmission units a21 to a2N of the transmission rack 2 are connected to the other side of the switch by other connection between the transmission racks (not shown). If the units A1 and A2 are configured to control, even if four transmitters of the transmission unit of the transmission rack 2 fail at the same time, up to two of the four faulty transmitters are logical units. Based on the control of A2, the switching unit C2 handles this by switching to the spare transmission unit (for example, ra21 and ra22) in the transmission rack 2, and for the remaining two fault transmission units, the logical units A1 and A2 are linked to each other. Switch in the base switching unit C1 Another selector switch in the 3 and the switching unit C1 (not shown) is switched to the spare transmission unit ra11 and ra12 in the transmission rack 1. Thereby, a predetermined train control signal can be sent to the corresponding 21st to 2N track circuits instead of the failure transmission unit, and system down can be prevented.
[0041]
The present invention is not limited to the above embodiment. The above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
[0042]
For example, in the above-described embodiment, the case where the number of functional racks (for example, the transmission rack 1 and the like) having the main device (for example, the transmission unit a11) is two has been described as an example. However, the present invention is not limited to this .
[0043]
In the above-described embodiment, the case where the number of standby devices (for example, the spare transmission unit ra11) is two for each functional rack (for example, the transmission rack 1) has been described as an example. The present invention is not limited to this example, and other configurations, for example, one for each functional rack may be used. In this case, if the number of functional racks is M (M: a natural number of 2 or more ), the total number of standby devices in the entire system is M. Further, the number of natural numbers K may be three or more for each functional rack. In this case, if the number of functional racks is M (M: a natural number of 2 or more ), the total number of standby devices in the entire system is (K × M). Also provided with a standby equipment a predetermined number for each function call, but it may also be provided in combination a function call you deploy only standby equipment (waiting call).
[0044]
In the above embodiment, the ATC transmission device has been described as an example of a redundant system. However, the present invention is not limited to this example, and other redundant systems such as a TD (train position detection device). ), A transmission device in ATS (Automatic Train Stop), and the like. The ATS is based on a control signal transmitted from the ATS ground device in the case where the driver is ignoring or overlooking or misidentifying the train but the train is approaching the stop signal. Is a device that alerts the driver by ringing an alarm bell or buzzer in the cab of the vehicle or forcing the brake to stop before the stop signal.
[0045]
Further, the processing functions of the main device and the standby device are not limited to the transmission function that is an example in each of the above embodiments, and other processing functions such as a reception function, a filter function, a modulation function, An amplification function, a signal conversion function, a signal decoding function, an arithmetic processing function, a storage function, various input functions, various output functions, etc., or an appropriate combination thereof may be used.
[0046]
In short, N pieces having a predetermined processing function of the same type: comprises a plurality of function call having a main system equipment (N is a natural number), have a predetermined processing functions of the main system equipment and the same type is provided for each function call If an abnormality is detected in the processing status of the main unit, the main unit in which the abnormality is detected is not used in the abnormal rack that is the functional rack to which the abnormal main unit belongs. Switch to one of the standby devices in the list, and if there is no unused standby device in the abnormal rack, switch to one of the unused standby devices in the functional rack other than the abnormal rack Any redundant system configured as described above may be used.
[0048]
Further, in the above embodiment, the failure has been described as an example of the abnormality in the processing state of the main device, but the present invention is not limited to this example, and may be another type of abnormality. .
[0049]
Further, in the above-described embodiment, the example in which the switching unit includes the selector switch that switches to and connects to the standby device has been described. However, the present invention is not limited to this example, and other configurations, for example, the switching unit may be a computer. The switching operation may be performed by software.
[0050]
【The invention's effect】
As described above, according to the present invention, a plurality of functional racks that collectively store N (N: natural number) main equipment are provided, and each functional rack has the same type of processing function as the main equipment. If a standby device is installed and an abnormality is detected in the processing status of the main device , the main device in which the abnormality has been detected is any unused standby device in the functional rack to which the abnormal main device belongs. When there is no unused standby system device, it is configured to switch to any unused standby system device in another functional rack, so the system is less likely to be down compared to the conventional system. Has the advantage.
[Brief description of the drawings]
FIG. 1 is a schematic block diagram showing a configuration of an ATC transmission apparatus which is an embodiment of a redundant system according to the present invention.
FIG. 2 is a schematic block diagram showing a configuration of an ATC transmission apparatus which is an example of a conventional redundant system.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ATC transmitter 20 ATC transmitter A1, A2 Logic part a11-a1N Transmitter B1, B2 Logic part b11-b1N Transmitter C1, C2 switching part D1, D2 switching part E11-E22 Transmission rack connection F11-F22 Transmission rack Internal connection G1, G2 Transmission overhead connection H Logic part line ra11-rb22 Backup transmission part S1-S10 changeover switch

Claims (3)

同種の所定の処理機能を持つN個(N:自然数)の主系機器を集約収納するものである機能架を複数個備えるとともに、
前記主系機器のそれぞれの処理状態を検出する処理状態検出手段と、
前記各機能架毎にK個(K:自然数)設けられ前記主系機器と同種の所定の処理機能を有する待機系機器と、
前記処理状態検出手段によりいずれかの前記機能架内の前記主系機器の処理状態について異常が検出された場合には、前記異常が検出された主系機器を、当該異常が検出された主系機器が属する機能架である異常架内の未使用の待機系機器のうちのいずれかに切り替え、前記異常架内に未使用の待機系機器が存在しない場合には、前記異常架以外の機能架内の未使用の待機系機器のうちのいずれかに切り替える切替手段と、
を備えることを特徴とする冗長系システム。
In addition to having a plurality of functional racks that collectively store N (N: natural number) main devices having a predetermined processing function of the same type,
Processing state detection means for detecting the processing state of each of the main devices;
Said K for each function call: a standby system devices that have a predetermined processing function of the main system equipment and the same type (K is a natural number) are provided,
When an abnormality is detected in the processing state of the main unit in any one of the functional racks by the processing state detection unit, the main unit in which the abnormality is detected is set as the main unit in which the abnormality is detected. Switch to one of the unused standby equipment in the abnormal rack that is the functional rack to which the equipment belongs, and if there is no unused standby equipment in the abnormal rack, the functional rack other than the abnormal rack Switching means for switching to one of the unused standby devices in
A redundant system characterized by comprising:
請求項1記載の冗長系システムにおいて、
前記待機系機器のみを集約収納するものである待機架を更に配備し
前記切替手段は、前記処理状態検出手段により前記主系機器の処理状態について異常が検出された場合には、前記異常が検出された主系機器を、前記待機架内における未使用の待機系機器のいずれかに切り替え可能としたことを特徴とする冗長系システム。
The redundant system according to claim 1,
Further deploying a standby rack that collects and stores only the standby system devices ,
When the processing state detection unit detects an abnormality in the processing state of the main unit, the switching unit replaces the main unit in which the abnormality is detected with an unused standby unit in the standby rack. A redundant system characterized in that it can be switched to any of the above.
同種の所定の処理機能を持つN個(N:自然数)の主系機器を集約収納するものである機能架を複数個設けるとともに、
前記主系機器のそれぞれの処理状態を検出する処理状態検出手段を設け、
前記各機能架毎に前記主系機器と同種の所定の処理機能を有する待機系機器をK個(K:自然数)設け、
前記処理状態検出手段により前記主系機器の処理状態について異常が検出された場合には、切替手段により、前記異常が検出された主系機器を、当該異常が検出された主系機器が属する機能架である異常架内の未使用の待機系機器のうちのいずれかに切り替え、前記異常架内に未使用の待機系機器が存在しない場合には、前記異常架以外の機能架内の未使用の待機系機器のうちのいずれかに切り替えることを特徴とする冗長系システムにおける待機系機器の切替方法。
In addition to providing a plurality of functional racks that collectively store N (N: natural number) main devices having a predetermined processing function of the same type,
Provided with a processing state detection means for detecting the processing state of each of the main equipment,
K standby devices (K: natural number) having a predetermined processing function of the same type as the main device are provided for each functional rack ,
When an abnormality is detected in the processing state of the main device by the processing state detection means, the function to which the main device from which the abnormality is detected belongs to the main device from which the abnormality has been detected by the switching means. Switch to one of the unused standby system equipment in the abnormal rack that is a rack, and if there is no unused standby system equipment in the abnormal rack, unused in the functional rack other than the abnormal rack A standby system switching method in a redundant system, characterized by switching to any one of the standby system equipments.
JP18843999A 1999-07-02 1999-07-02 Redundant system and standby device switching method in redundant system Expired - Fee Related JP4212188B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18843999A JP4212188B2 (en) 1999-07-02 1999-07-02 Redundant system and standby device switching method in redundant system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18843999A JP4212188B2 (en) 1999-07-02 1999-07-02 Redundant system and standby device switching method in redundant system

Publications (2)

Publication Number Publication Date
JP2001014004A JP2001014004A (en) 2001-01-19
JP4212188B2 true JP4212188B2 (en) 2009-01-21

Family

ID=16223709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18843999A Expired - Fee Related JP4212188B2 (en) 1999-07-02 1999-07-02 Redundant system and standby device switching method in redundant system

Country Status (1)

Country Link
JP (1) JP4212188B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104176094A (en) * 2013-12-23 2014-12-03 北京思维鑫科信息技术有限公司 Control unit for train running monitoring vehicle-mounted system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6462496B2 (en) * 2015-06-03 2019-01-30 株式会社日立製作所 Train control detection transceiver

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104176094A (en) * 2013-12-23 2014-12-03 北京思维鑫科信息技术有限公司 Control unit for train running monitoring vehicle-mounted system

Also Published As

Publication number Publication date
JP2001014004A (en) 2001-01-19

Similar Documents

Publication Publication Date Title
US4984240A (en) Distributed switching architecture for communication module redundancy
EP0494695B1 (en) Loop mode transmission system with bus mode backup and a method of maintaining continuity thereof
JP2922004B2 (en) Multiplex transmission equipment
JP4212188B2 (en) Redundant system and standby device switching method in redundant system
CN112307696B (en) 100% reliability parallel structure without output conflict
JP2002077311A (en) Method and apparatus for system change-over based on fault level of duplex apparatus
JPH045300B2 (en)
JP3605294B2 (en) Switch device
JP2000035801A (en) Redundant system device and switching method of standby system unit in the same
JP2626484B2 (en) System switching test method
JPS58215145A (en) Loop form data transmission system
JP2713134B2 (en) Automatic system selection method and communication system therefor
JPS58139862A (en) Controller for operation of train
JP2786050B2 (en) Redundant configuration of voice storage module
JPH04362823A (en) Data transmission control system
JPS62183237A (en) Digital transmission line network
JPH0453331A (en) Loop processing system for bus type network
JPS61112451A (en) Station duplex system of data highway
JPS62252244A (en) Dividing system for circuit of line switching device
JPH0279519A (en) Line switching circuit in transmission line system
JP2005014783A (en) Signal security system
JPS62140155A (en) Automatic switching circuit for data bus of device
JPH04345340A (en) Multiplex transmission controller
JPS6148249A (en) Line switching device
JPH01241239A (en) Transmission line control system in duplicated annular network

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080602

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081028

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees