JP4211074B2 - Magnetic signal detector - Google Patents

Magnetic signal detector Download PDF

Info

Publication number
JP4211074B2
JP4211074B2 JP00562398A JP562398A JP4211074B2 JP 4211074 B2 JP4211074 B2 JP 4211074B2 JP 00562398 A JP00562398 A JP 00562398A JP 562398 A JP562398 A JP 562398A JP 4211074 B2 JP4211074 B2 JP 4211074B2
Authority
JP
Japan
Prior art keywords
operational amplifier
magnetoresistance
magnetoresistor
output terminal
terminal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00562398A
Other languages
Japanese (ja)
Other versions
JPH11202037A (en
Inventor
幸雄 堺
志津枝 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP00562398A priority Critical patent/JP4211074B2/en
Publication of JPH11202037A publication Critical patent/JPH11202037A/en
Application granted granted Critical
Publication of JP4211074B2 publication Critical patent/JP4211074B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Hall/Mr Elements (AREA)
  • Electronic Switches (AREA)
  • Telephone Function (AREA)
  • Measuring Magnetic Variables (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、携帯電話やコードレス電話やページャなどの移動体通信機器に利用される磁気信号検出装置に関する。
【0002】
【従来の技術】
従来、この種の磁気信号検出装置は図8に示す構成となっていた。図8において、11は第1の磁気抵抗、12は第2の磁気抵抗、13は第3の磁気抵抗、14は第4の磁気抵抗、15は第1の出力端子、16は第2の出力端子、17は電源端子、18は接地端子、20は演算増幅器、26は信号出力端子であり、磁界の強さによって変化する第1の磁気抵抗11、第2の磁気抵抗12、第3の磁気抵抗13、第4の磁気抵抗14へ電源端子17から流れる電流の変化により、第1の出力端子15と第2の出力端子16の直流電圧を直接的に演算増幅器20に入力し、磁気信号の検出を行っていた。
【0003】
【発明が解決しようとする課題】
しかしながら上述した従来技術の構成では、演算増幅器へ外乱ノイズが入力した場合、あるいは演算増幅器の入力オフセット電圧が温度変動した場合、あるいは電源電圧を間欠動作させた場合、磁気信号検出装置が誤動作するという課題があった。この磁気信号検出装置においては、耐ノイズ特性の向上、演算増幅器の入力オフセット電圧依存性の削減、電源電圧の間欠動作時における安定動作が要求されている。
【0004】
本発明は、第1の演算増幅器と第2の演算増幅器で構成した差動型演算増幅回路の入力端子を、コンデンサを介して接地することにより、磁気信号検出装置のコモンモードノイズをキャンセルして耐ノイズ特性を向上させるとともに、高周波的に低インピーダンス化して演算増幅器の入力オフセット電圧の変動による誤動作を防止させ、電源電圧の間欠動作時に安定動作を実現させることを目的とする。
【0005】
【課題を解決するための手段】
この課題を解決するために本発明による磁気信号検出装置は、抵抗ブリッジ回路を構成する第1の磁気抵抗と第2の磁気抵抗の接続点を第1の出力端子とするとともに第3の磁気抵抗と第4の磁気抵抗の接続点を第2の出力端子とし、前記第1の磁気抵抗と前記第4の磁気抵抗の接続点を電源端子とし、前記第2の磁気抵抗と前記第3の磁気抵抗の接続点を接地し、前記第1の出力端子を第1の演算増幅器に接続し、前記第2の出力端子を第2の演算増幅器に接続し、前記第1の演算増幅器の出力端子と前記第2の演算増幅器の出力端子とを前記第3の演算増幅器に接続し、電源端子を間欠動作させるとともに、前記第1および第3の磁気抵抗は、前記第2および第4の磁気抵抗より小さい抵抗値を有し、前記第1の演算増幅器の入力端子を第1のコンデンサを介して接地することを特徴とするものである。
【0006】
これにより磁気信号検出装置のコモンモードノイズをキャンセルして耐ノイズ特性が向上するとともに、演算増幅器の入力オフセット電圧変動による誤動作が防止でき、さらに高周波的に低インピーダンス化して電源電圧の間欠動作時に安定動作が可能となる。
【0007】
【発明の実施の形態】
本発明の請求項1に記載の発明は、抵抗ブリッジ回路を構成する第1の磁気抵抗と第2の磁気抵抗の接続点を第1の出力端子とするとともに第3の磁気抵抗と第4の磁気抵抗の接続点を第2の出力端子とし、前記第1の磁気抵抗と前記第4の磁気抵抗の接続点を電源端子とし、前記第2の磁気抵抗と前記第3の磁気抵抗の接続点を接地し、前記第1の出力端子を第1の演算増幅器に接続し、前記第2の出力端子を第2の演算増幅器に接続し、前記第1の演算増幅器の出力端子と前記第2の演算増幅器の出力端子とを前記第3の演算増幅器に接続し、電源端子を間欠動作させるとともに、前記第1および第3の磁気抵抗は、前記第2および第4の磁気抵抗より小さい抵抗値を有し、前記第1の演算増幅器の入力端子を第1のコンデンサを介して接地したものであり、コモンモードノイズがキャンセルされ、磁気信号検出装置の耐ノイズ特性を向上させるとともに、演算増幅器の入力オフセット電圧の変動による誤動作を防止し、高周波的に低インピーダンス化され、電源電圧の間欠動作時に誤動作のない安定動作が実現できるという作用を有する。
【0008】
請求項2記載の発明は、第1の磁気抵抗と第3の磁気抵抗を同方向に配置し、第2の磁気抵抗と第4の磁気抵抗を同方向に配置し、前記第1の磁気抵抗と前記第3の磁気抵抗の配置方向と前記第2の磁気抵抗と前記第4の磁気抵抗の配置方向が直角になるように構成した請求項1記載の磁気信号検出装置としたものであり、一定磁界に対し第1の出力端子と第2の出力端子の間の出力電圧を最大にするという作用を有する。
【0009】
請求項3記載の発明は、第1の磁気抵抗と第3の磁気抵抗は、同一の抵抗値を有し、第2の磁気抵抗と第4の磁気抵抗は、同一の抵抗値を有するように構成した請求項1記載の磁気信号検出装置としたものであり、無磁界時に磁気信号検出装置がチャタリングするのを防止するという作用を有する。
【0010】
本発明は、第1の演算増幅器の反転入力端子と第1の演算増幅器の出力端子の間に第1の固定抵抗を接続し、第2の演算増幅器の反転入力端子と第2の演算増幅器の出力端子の間に第2の固定抵抗を接続し、第1の演算増幅器の反転入力端子と第2の演算増幅器の反転入力端子の間に第3の固定抵抗を接続し、第1の固定抵抗と第2の固定抵抗は、同一の抵抗値を有し、第3の固定抵抗は、前記第1の固定抵抗と前記第2の固定抵抗より小さい抵抗値を有するように構成することにより、第1の演算増幅器と第2の演算増幅器で構成した差動型演算増幅回路の正利得により、磁気信号検出装置の耐ノイズ特性を向上させるという作用を有する。
【0011】
本発明は、第1の演算増幅器の反転入力端子と第1の演算増幅器の出力端子の間に第1の固定抵抗を接続し、第2の演算増幅器の反転入力端子と第2の演算増幅器の出力端子の間に第2の固定抵抗を接続し、第1の演算増幅器の反転入力端子と第2の演算増幅器の反転入力端子の間に第3の固定抵抗を接続し、第1の磁気抵抗と第2の磁気抵抗と第3の磁気抵抗と第4の磁気抵抗で構成した抵抗ブリッジを磁気抵抗素子とし、第1の演算増幅器と第2の演算増幅器と第3の演算増幅器と第1の固定抵抗と第2の固定抵抗と第3の固定抵抗で構成した回路ブロックを半導体集積装置とすることにより、磁気信号検出部分を単独で任意の場所に実装できるという作用を有する。
【0012】
本発明は、磁気抵抗素子と前記半導体集積装置との接続を多層基板の内層配線で接続することにより、出力電圧に外乱ノイズが重畳するのを防ぐという作用を有する。
【0013】
本発明は、前述の第1の演算増幅器と第2の演算増幅器と第3の演算増幅器と第1の固定抵抗と第2の固定抵抗と第3の固定抵抗で構成した半導体集積装置において、前記第1の演算増幅器の反転入力端子と前記第2の演算増幅器の反転入力端子との間に接地端子を設けることにより、第1の演算増幅器の非反転入力端子と第2の演算増幅器の非反転入力端子の分離特性を向上させ磁気信号検出装置の誤動作を防ぐという作用を有する。
【0014】
本発明は、磁気抵抗素子の電源端子と半導体集積装置の電源は共通の電源経路から供給するように構成することにより、間欠動作時でも、同一のレギュレータから電源を供給できるという作用を有する。
【0015】
以下、本発明の実施の形態について、図1から図7を用いて説明する。
【0016】
(実施の形態1)
図1は、本発明の第1の実施の形態による磁気信号検出装置を示す電気回路図である。第1の磁気抵抗11と第2の磁気抵抗12と第3の磁気抵抗13と第4の磁気抵抗14は、抵抗ブリッジ回路構成の磁気抵抗素子19としており、第1の磁気抵抗11と第4の磁気抵抗14の接続点は電源端子17とし、第2の磁気抵抗12と第3の磁気抵抗13の接続点は接地端子18としている。また、第1の磁気抵抗11と第2の磁気抵抗12の接続点を第1の出力端子15とし、第3の磁気抵抗13と第4の磁気抵抗14を第2の出力端子16としている。
【0017】
電源端子17より与えられる直流電圧により、磁気抵抗素子19に電流が流れ、第1の出力端子15には第1の磁気抵抗11に流れる電流の電圧降下分の直流電圧が発生し、第2の出力端子16には第4の磁気抵抗14に流れる電流の電圧降下分の直流電圧が発生する。なお、磁気抵抗素子19の電源端子17と接地端子18および第1の出力端子15と第2の出力端子16は、互いに対向するような配置であればよい。
【0018】
そして、この状態において、第1の出力端子15が第1の演算増幅器21の非反転入力端子に接続されており、第2の出力端子16が第2の演算増幅器22の非反転入力端子に接続されている。このように第1の出力端子15からの直流電圧信号を第1の演算増幅器21で比較し、第2の出力端子16からの直流電圧信号を第2の演算増幅器22で比較することにより、差動型で回路を動作させることが可能となり、周囲の温度環境の変動により第1の演算増幅器21と第2の演算増幅器22の内部オフセット電圧が変化しても第1の出力端子15からの直流電圧信号と第2の出力端子16からの直流電圧信号が相対的に変化しないようにしている。
【0019】
更に、第1の出力端子15が第1の演算増幅器21の非反転入力端子と第2の演算増幅器22の非反転入力端子にコモンモードノイズが入力しても、第1の演算増幅器21の出力端子及び第2の演算増幅器22の出力端子の間で互いにコモンモードノイズがキャンセルされ、結果として耐ノイズ特性の向上が図られる。
【0020】
第1の固定抵抗23は、第1の演算増幅器21の非反転入力端子と第1の演算増幅器21の出力端子の間に接続しており、第1の演算増幅器21を非反転直流増幅させている。また、第2の固定抵抗24は、第2の演算増幅器22の非反転入力端子と第2の演算増幅器22の出力端子の間に接続しており、第2の演算増幅器22を非反転直流増幅させている。また、第3の固定抵抗25は、第1の演算増幅器21の反転入力端子と第2の演算増幅器22の反転入力端子の間に接続しており、第1の演算増幅器21の反転入力端子と第2の演算増幅器22の反転入力端子の間の直流電位を共通にするために設けている。第3の演算増幅器20は、第1の演算増幅器21の直流電圧出力と第2の演算増幅器22の直流電圧出力を比較するために設けており第1の磁気抵抗11と第2の磁気抵抗12と第3の磁気抵抗13と第4の磁気抵抗14で検出した磁気信号を最終的に判別するコンパレータとして動作させている。
【0021】
なお、ここで、第1のコンデンサ27を第1の演算増幅器21の非反転入力端子と接地間に接続している。このように、第1の演算増幅器21の非反転入力端子の入力インピーダンスを第1のコンデンサ27で決定される周波数に対して高周波的に低インピーダンス化することにより、磁気信号検出の誤動作を防止し、電源端子17を間欠動作(パルス的動作)させても、安定に動作させることが可能となる。
【0022】
なお、第1のコンデンサ27は、第1の演算増幅器21の非反転入力端子付近と接地間に接続することが望ましく、場合によっては、第2の演算増幅器22の非反転入力端子付近と接地間に接続しても構わない。また、第1のコンデンサ27を第1の演算増幅器21の非反転入力端子付近と接地間および第2の演算増幅器22の非反転入力端子付近と接地間の両方に接続してもよいことを加えておく。更に、第1の演算増幅器21と第2の演算増幅器22と第3の演算増幅器20の電源を電源端子17と同じタイミングで間欠動作させても問題ないことを加えておく。
【0023】
次に、具体的な動作について、説明を加えておく。携帯電話を保持するカーアダプタ側には、磁石が設けられており、携帯電話側には、磁気抵抗素子19が設けられる。携帯電話をカーアダプタに装着するかもしくは近づけると、カーアダプタ側に設けられた磁石により携帯電話側の磁気抵抗素子19が反応し、第1の出力端子15と第2の出力端子16の直流電位が反転する。この信号は、第1の演算増幅器21と第2の演算増幅器22で直流増幅され、最終的に第3の演算増幅器20で判別される。この判別された信号により携帯電話のフック動作を自動的に動作させている。すなわち、携帯電話をカーアダプタに装着するかもしくは近づけた時には、オフフックとなるように制御する。逆に携帯電話をカーアダプタから着脱するかもしくは遠ざけるとオンフックするように制御すれば、自動フック動作が可能となる。
【0024】
(実施の形態2)
図2は、本発明の第2の実施の形態を示す磁気信号検出装置の上面配置図である。図2に示すように、第1の磁気抵抗11と第3の磁気抵抗13は、水平方向に配置し、第2の磁気抵抗12と第4の磁気抵抗14を垂直方向に配置している。そしてこの状態において、第1の磁気抵抗11と第2の磁気抵抗12と第3の磁気抵抗13と第4の磁気抵抗14が互いに隣りあう磁気抵抗に対し、90度傾いた方向となるように配置させている。
【0025】
このように配置させることにより、電源端子17と接地端子18の方向の磁界に対しては、対角位置にある第2の磁気抵抗12と第4の磁気抵抗14だけが反応するようになり、結果として第2の磁気抵抗12と第4の磁気抵抗14の抵抗値が変化し、第1の出力端子15と第2の出力端子16の直流電位が変化して、磁気信号を検出することが可能となる。
【0026】
このとき、第1の磁気抵抗11と第2の磁気抵抗12と第3の磁気抵抗13と第4の磁気抵抗14の抵抗材料は同一成分のもので構成するようにしており、抵抗材料の温度係数を揃えることで磁気信号検出装置の温度特性を向上させている。
【0027】
なお、必ずしも第1の磁気抵抗11と第2の磁気抵抗12と第3の磁気抵抗13と第4の磁気抵抗14の4つの磁気抵抗が、同一材料から構成されなければならないとは限らないことを加えておく。
【0028】
また、第1の磁気抵抗11と第3の磁気抵抗13は同じ抵抗値としており、第2の磁気抵抗12と第4の磁気抵抗14は同じ抵抗値とするとともに第1の磁気抵抗11と第3の磁気抵抗13の抵抗値より大きい抵抗値となるようにしている(つまり第1、第3の磁気抵抗11、13は第2、第4の磁気抵抗12、14の抵抗値よりも小さくなっている。)。このような関係に構成することにより磁気信号が無い状態における磁気信号検出装置のチャタリング防止を実現しており、磁気信号検出装置の安定動作が可能となる。
【0029】
なお、第1の磁気抵抗11と第3の磁気抵抗13は、第2の磁気抵抗12と第4の磁気抵抗14と比較して、大きい抵抗値としても構わない。
【0030】
また、第1の固定抵抗23と第2の固定抵抗24は同じ抵抗値としており、第3の固定抵抗25は、第1の固定抵抗23と第2の固定抵抗24より小さい抵抗値としている。この時、第3の固定抵抗25の抵抗値は、少なくとも、第1の固定抵抗23と第2の固定抵抗24の抵抗値と比較して、1/5より大きい抵抗値となるように設定しており、第1の演算増幅器21及び第2の演算増幅器22の出力が低下しないように配慮している。
【0031】
(実施の形態3)
図3は本発明の第3の実施の形態を示す磁気信号検出装置の上面配置図である。なお、第2の実施の形態と同一の構成の部分については、同一番号を付して詳細な説明を省略する。図に示すごとく、第1の磁気抵抗11と第2の磁気抵抗12と第3の磁気抵抗13と第4の磁気抵抗14による抵抗ブリッジ回路を磁気抵抗素子19として構成している。このように、構成することにより、磁気抵抗を検出する部分だけを独立させることができ、任意の場所に、この磁気抵抗素子19を配置させることが可能となる。
【0032】
また、第1の磁気抵抗11と第4の磁気抵抗14の接続点である電源端子17および第2の磁気抵抗12と第3の磁気抵抗13の接続点である接地端子18および第1の磁気抵抗11と第2の磁気抵抗12の接続点である第1の出力端子15および第3の磁気抵抗13と第4の磁気抵抗14の接続点である第2の出力端子16は、いずれも磁気抵抗素子19の4つの角に、それぞれの端子を設けており、互いの端子間距離が最大となるように構成している。この配置により、端子間の分離特性が向上でき、隣接する端子間での干渉を低減させている。
【0033】
(実施の形態4)
図4は本発明の第4の実施の形態を示す磁気信号検出装置の電気回路図である。なお、第1の実施の形態と同一の構成の部分については、同一番号を付して詳細な説明を省略する。図4に示すごとく、磁気抵抗素子19は、第1の磁気抵抗11と第2の磁気抵抗12と第3の磁気抵抗13と第4の磁気抵抗14による抵抗ブリッジ回路で構成しており、半導体集積装置29は、第1の演算増幅器21と第2の演算増幅器22と第3の演算増幅器20と第1の固定抵抗23と第2の固定抵抗24と第3の固定抵抗25で構成している。
【0034】
このように、磁気信号を検出する部分と出力信号を処理する部分とに分割することにより、磁気信号検出部を任意の位置に構成することができ、部品の実装自由度が向上するとともに、装置全体の実装効率改善が図られる。
【0035】
なお、第1の演算増幅器21と第2の演算増幅器22は、同一のプロセスで製造した半導体集積装置が望ましいが、第3の演算増幅器20については、この限りでないことを加えておく。
【0036】
また、図5に示すように磁気抵抗素子19の電源と半導体集積装置29の電源を共通電源40にすることにより、間欠動作時でも、同一のレギュレータから電源を供給することができる。
【0037】
(実施の形態5)
図6は、本発明の第5の実施の形態を示す磁気信号検出装置の実装配置図である。磁気抵抗素子19の第1の出力端子15は、第1のスルーホール31で多層基板の第1の内層パターン51に接続し、磁気抵抗素子19の第2の出力端子16は、第2のスルーホール32で多層基板の第2の内層パターン52に接続している。多層基板の第1の内層パターン51は、第3のスルーホール33で第1の演算増幅器21の非反転入力端子に接続しており、多層基板の第2の内層パターン52は、第4のスルーホール34で第2の演算増幅器22の非反転入力端子に接続している。このように構成することにより、第1の出力端子15と第2の出力端子16からの信号に外部からのノイズの影響を受けにくくすることが可能となる。
【0038】
図7では、更に第1の演算増幅器21の非反転入力端子と第2の演算増幅器22の非反転入力端子の間に第5のスルーホール30を設けており、この端子を接地させることで第1の演算増幅器21の非反転入力端子と第2の演算増幅器22の非反転入力端子の間の分離特性を向上させ、互いの干渉を削減するようにしている。
【0039】
【発明の効果】
以上のように本発明によれば、抵抗ブリッジ回路を構成する第1の磁気抵抗と第2の磁気抵抗の接続点を第1の出力端子とするとともに第3の磁気抵抗と第4の磁気抵抗の接続点を第2の出力端子とし、前記第1の磁気抵抗と前記第4の磁気抵抗の接続点を電源端子とし、前記第2の磁気抵抗と前記第3の磁気抵抗の接続点を接地し、前記第1の出力端子を第1の演算増幅器に接続し、前記第2の出力端子を第2の演算増幅器に接続し、前記第1の演算増幅器の出力端子と前記第2の演算増幅器の出力端子とを前記第3の演算増幅器に接続し、電源端子を間欠動作させるとともに、前記第1および第3の磁気抵抗は、前記第2および第4の磁気抵抗より小さい抵抗値を有し、前記第1の演算増幅器の入力端子を第1のコンデンサを介して接地したものであるので、コモンモードノイズがキャンセルされ、磁気信号検出装置の耐ノイズ特性が向上できるとともに、演算増幅器の入力オフセット電圧の変動による誤動作を防止でき、高周波的に低インピーダンス化され、電源電圧の間欠動作時に安定に動作させることが可能となり、磁気信号検出装置が誤動作するという課題を解決することができるという有利な効果が得られる。
【図面の簡単な説明】
【図1】 本発明の実施の形態1による磁気信号検出装置を示す電気回路図
【図2】 本発明の実施の形態2による磁気信号検出装置を示す上面配置図
【図3】 本発明の実施の形態3による磁気信号検出装置を示す上面配置図
【図4】 本発明の実施の形態4による磁気信号検出装置を示す電気回路図
【図5】 本発明の実施の形態4による磁気信号検出装置を示す電気回路図
【図6】 本発明の実施の形態5による磁気信号検出装置を示す実装配置図
【図7】 本発明の実施の形態5による磁気信号検出装置を示す実装配置図
【図8】 従来の磁気信号検出装置を示す電気回路図
【符号の説明】
11 第1の磁気抵抗
12 第2の磁気抵抗
13 第3の磁気抵抗
14 第4の磁気抵抗
15 第1の出力端子
16 第2の出力端子
17 電源端子
18 接地端子
19 磁気抵抗素子
20 第3の演算増幅器
21 第1の演算増幅器
22 第2の演算増幅器
23 第1の固定抵抗
24 第2の固定抵抗
25 第3の固定抵抗
26 信号出力端子
27 第1のコンデンサ
29 半導体集積装置
30 第5のスルーホール
31 第1のスルーホール
32 第2のスルーホール
33 第3のスルーホール
34 第4のスルーホール
51 第1の内層パターン
52 第2の内層パターン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a magnetic signal detection device used for mobile communication devices such as a mobile phone, a cordless phone, and a pager.
[0002]
[Prior art]
Conventionally, this type of magnetic signal detection apparatus has a configuration shown in FIG. In FIG. 8, 11 is a first magnetoresistance, 12 is a second magnetoresistance, 13 is a third magnetoresistance, 14 is a fourth magnetoresistance, 15 is a first output terminal, and 16 is a second output. A terminal 17, a power supply terminal 18, a ground terminal 18, an operational amplifier 20, and a signal output terminal 26, the first magnetoresistor 11, the second magnetoresistor 12, and the third magnetometer that change according to the strength of the magnetic field. Due to the change in the current flowing from the power supply terminal 17 to the resistor 13 and the fourth magnetoresistor 14, the DC voltage of the first output terminal 15 and the second output terminal 16 is directly input to the operational amplifier 20, and the magnetic signal We were detecting.
[0003]
[Problems to be solved by the invention]
However, in the configuration of the above-described prior art, the magnetic signal detection device malfunctions when disturbance noise is input to the operational amplifier, when the input offset voltage of the operational amplifier fluctuates in temperature, or when the power supply voltage is intermittently operated. There was a problem. This magnetic signal detection device is required to have improved noise resistance characteristics, reduced input offset voltage dependency of an operational amplifier, and stable operation during intermittent operation of a power supply voltage.
[0004]
The present invention cancels common mode noise of a magnetic signal detector by grounding the input terminal of a differential operational amplifier circuit composed of a first operational amplifier and a second operational amplifier through a capacitor. An object of the present invention is to improve noise resistance and reduce impedance at high frequencies to prevent malfunction due to fluctuations in the input offset voltage of an operational amplifier and to realize stable operation during intermittent operation of a power supply voltage.
[0005]
[Means for Solving the Problems]
In order to solve this problem, a magnetic signal detection device according to the present invention uses a connection point between a first magnetoresistor and a second magnetoresistor constituting a resistor bridge circuit as a first output terminal and a third magnetoresistor. And the fourth magnetoresistive connection point as a second output terminal, the first magnetic resistance and the fourth magnetic resistance connection point as a power supply terminal, and the second magnetic resistance and the third magnetic resistance. The connection point of the resistor is grounded, the first output terminal is connected to the first operational amplifier, the second output terminal is connected to the second operational amplifier, and the output terminal of the first operational amplifier The output terminal of the second operational amplifier is connected to the third operational amplifier, the power supply terminal is operated intermittently, and the first and third magnetoresistances are more effective than the second and fourth magnetoresistances. Having a small resistance value, the input terminal of the first operational amplifier being Through the first capacitor is characterized in that ground.
[0006]
This cancels the common mode noise of the magnetic signal detector and improves noise resistance, prevents malfunctions due to fluctuations in the input offset voltage of the operational amplifier , and lowers the impedance at high frequencies, making it stable during intermittent operation of the power supply voltage Operation is possible.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
According to the first aspect of the present invention, the connection point between the first magnetoresistor and the second magnetoresistor constituting the resistor bridge circuit is used as the first output terminal, and the third magnetoresistor and the fourth magnetoresistor are connected. The connection point of the magnetoresistor is the second output terminal, the connection point of the first magnetoresistor and the fourth magnetoresistor is the power supply terminal, and the connection point of the second magnetoresistor and the third magnetoresistor is The first output terminal is connected to the first operational amplifier, the second output terminal is connected to the second operational amplifier, the output terminal of the first operational amplifier and the second operational amplifier The output terminal of the operational amplifier is connected to the third operational amplifier, the power supply terminal is operated intermittently, and the first and third magnetoresistors have resistance values smaller than those of the second and fourth magnetoresistors. And having an input terminal of the first operational amplifier through a first capacitor Is obtained by land, common mode noise is canceled, thereby improving the noise immunity of the magnetic signal detection apparatus, and prevent malfunction due to fluctuation of the input offset voltage of the operational amplifier is a high frequency low impedance, supply voltage It is possible to realize stable operation without malfunction during intermittent operation.
[0008]
According to a second aspect of the present invention, the first magnetoresistance and the third magnetoresistance are arranged in the same direction, the second magnetoresistance and the fourth magnetoresistance are arranged in the same direction, and the first magnetoresistance And an arrangement direction of the third magnetoresistance and an arrangement direction of the second magnetoresistance and the fourth magnetoresistance are configured to be perpendicular to each other. This has the effect of maximizing the output voltage between the first output terminal and the second output terminal with respect to a constant magnetic field.
[0009]
According to a third aspect of the present invention, the first magnetic resistance and the third magnetic resistance have the same resistance value, and the second magnetic resistance and the fourth magnetic resistance have the same resistance value. The magnetic signal detection device according to claim 1 is configured and has an effect of preventing chattering of the magnetic signal detection device when there is no magnetic field.
[0010]
In the present invention, a first fixed resistor is connected between the inverting input terminal of the first operational amplifier and the output terminal of the first operational amplifier, and the inverting input terminal of the second operational amplifier and the second operational amplifier are connected to each other. A second fixed resistor is connected between the output terminals, a third fixed resistor is connected between the inverting input terminal of the first operational amplifier and the inverting input terminal of the second operational amplifier, and the first fixed resistor is connected. And the second fixed resistor have the same resistance value, and the third fixed resistor has a smaller resistance value than the first fixed resistor and the second fixed resistor. The positive gain of the differential operational amplifier circuit composed of one operational amplifier and the second operational amplifier has the effect of improving the noise resistance characteristics of the magnetic signal detector.
[0011]
In the present invention, a first fixed resistor is connected between the inverting input terminal of the first operational amplifier and the output terminal of the first operational amplifier, and the inverting input terminal of the second operational amplifier and the second operational amplifier are connected to each other. A second fixed resistor is connected between the output terminals, a third fixed resistor is connected between the inverting input terminal of the first operational amplifier and the inverting input terminal of the second operational amplifier, and the first magnetic resistance A resistance bridge composed of the first, second, third, and fourth magnetoresistors is used as the magnetoresistive element, and the first operational amplifier, the second operational amplifier, the third operational amplifier, By using a circuit block composed of the fixed resistor, the second fixed resistor, and the third fixed resistor as a semiconductor integrated device, the magnetic signal detecting portion can be mounted independently at an arbitrary location.
[0012]
The present invention has an effect of preventing disturbance noise from being superimposed on the output voltage by connecting the magnetoresistive element and the semiconductor integrated device by the inner layer wiring of the multilayer substrate.
[0013]
The present invention provides a semiconductor integrated device including the first operational amplifier, the second operational amplifier, the third operational amplifier, the first fixed resistor, the second fixed resistor, and the third fixed resistor. By providing a ground terminal between the inverting input terminal of the first operational amplifier and the inverting input terminal of the second operational amplifier, the non-inverting input terminal of the first operational amplifier and the non-inverting terminal of the second operational amplifier are provided. It has the effect of improving the separation characteristics of the input terminals and preventing malfunction of the magnetic signal detection device.
[0014]
According to the present invention, the power supply terminal of the magnetoresistive element and the power supply of the semiconductor integrated device are configured to be supplied from a common power supply path, so that the power can be supplied from the same regulator even during intermittent operation.
[0015]
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0016]
(Embodiment 1)
FIG. 1 is an electric circuit diagram showing a magnetic signal detection device according to a first embodiment of the present invention. The first magnetoresistor 11, the second magnetoresistor 12, the third magnetoresistor 13, and the fourth magnetoresistor 14 serve as a magnetoresistive element 19 having a resistance bridge circuit configuration. The connection point of the magnetic resistance 14 is a power supply terminal 17, and the connection point of the second magnetic resistance 12 and the third magnetic resistance 13 is a ground terminal 18. The connection point between the first magnetoresistor 11 and the second magnetoresistor 12 is used as the first output terminal 15, and the third magnetoresistor 13 and the fourth magnetoresistor 14 are used as the second output terminal 16.
[0017]
Due to the DC voltage applied from the power supply terminal 17, a current flows through the magnetoresistive element 19, a DC voltage corresponding to the voltage drop of the current flowing through the first magnetoresistor 11 is generated at the first output terminal 15, and the second A DC voltage corresponding to the voltage drop of the current flowing through the fourth magnetic resistor 14 is generated at the output terminal 16. The power supply terminal 17 and the ground terminal 18 and the first output terminal 15 and the second output terminal 16 of the magnetoresistive element 19 may be arranged so as to face each other.
[0018]
In this state, the first output terminal 15 is connected to the non-inverting input terminal of the first operational amplifier 21, and the second output terminal 16 is connected to the non-inverting input terminal of the second operational amplifier 22. Has been. In this way, the DC voltage signal from the first output terminal 15 is compared by the first operational amplifier 21, and the DC voltage signal from the second output terminal 16 is compared by the second operational amplifier 22. The circuit can be operated in a dynamic manner, and even if the internal offset voltages of the first operational amplifier 21 and the second operational amplifier 22 change due to fluctuations in the ambient temperature environment, the direct current from the first output terminal 15 The voltage signal and the DC voltage signal from the second output terminal 16 are prevented from relatively changing.
[0019]
Further, even if common mode noise is input to the non-inverting input terminal of the first operational amplifier 21 and the non-inverting input terminal of the second operational amplifier 22 through the first output terminal 15, the output of the first operational amplifier 21 is output. The common mode noise is canceled between the terminal and the output terminal of the second operational amplifier 22, and as a result, the noise resistance is improved.
[0020]
The first fixed resistor 23 is connected between the non-inverting input terminal of the first operational amplifier 21 and the output terminal of the first operational amplifier 21, and the first operational amplifier 21 is subjected to non-inverting DC amplification. Yes. The second fixed resistor 24 is connected between the non-inverting input terminal of the second operational amplifier 22 and the output terminal of the second operational amplifier 22, and the second operational amplifier 22 is non-inverting DC amplified. I am letting. The third fixed resistor 25 is connected between the inverting input terminal of the first operational amplifier 21 and the inverting input terminal of the second operational amplifier 22, and is connected to the inverting input terminal of the first operational amplifier 21. It is provided in order to make the DC potential between the inverting input terminals of the second operational amplifier 22 common. The third operational amplifier 20 is provided to compare the DC voltage output of the first operational amplifier 21 and the DC voltage output of the second operational amplifier 22, and the first magnetoresistor 11 and the second magnetoresistor 12. And the third magnetic resistance 13 and the fourth magnetic resistance 14 are operated as a comparator for finally discriminating the magnetic signals detected.
[0021]
Here, the first capacitor 27 is connected between the non-inverting input terminal of the first operational amplifier 21 and the ground. As described above, the input impedance of the non-inverting input terminal of the first operational amplifier 21 is lowered at a high frequency with respect to the frequency determined by the first capacitor 27, thereby preventing malfunction of magnetic signal detection. Even if the power supply terminal 17 is intermittently operated (pulse-like operation), it can be stably operated.
[0022]
The first capacitor 27 is preferably connected between the vicinity of the non-inverting input terminal of the first operational amplifier 21 and the ground, and in some cases, between the vicinity of the non-inverting input terminal of the second operational amplifier 22 and the ground. You may connect to. Further, the first capacitor 27 may be connected between both the vicinity of the non-inverting input terminal of the first operational amplifier 21 and the ground and between the vicinity of the non-inverting input terminal of the second operational amplifier 22 and the ground. Keep it. Further, it is added that there is no problem even if the power supplies of the first operational amplifier 21, the second operational amplifier 22, and the third operational amplifier 20 are intermittently operated at the same timing as the power supply terminal 17.
[0023]
Next, a specific operation will be described. A magnet is provided on the car adapter side that holds the mobile phone, and a magnetoresistive element 19 is provided on the mobile phone side. When the mobile phone is attached to or brought close to the car adapter, the magnetoresistive element 19 on the mobile phone side reacts with the magnet provided on the car adapter side, and the DC potential of the first output terminal 15 and the second output terminal 16 Is reversed. This signal is DC-amplified by the first operational amplifier 21 and the second operational amplifier 22 and finally discriminated by the third operational amplifier 20. The hooking operation of the mobile phone is automatically operated based on the determined signal. That is, when the mobile phone is attached to or brought close to the car adapter, it is controlled to be off-hook. On the other hand, if the mobile phone is controlled to be on-hook when it is attached to or detached from the car adapter, it can be automatically hooked.
[0024]
(Embodiment 2)
FIG. 2 is a top plan view of a magnetic signal detection device showing a second embodiment of the present invention. As shown in FIG. 2, the first magnetoresistor 11 and the third magnetoresistor 13 are arranged in the horizontal direction, and the second magnetoresistor 12 and the fourth magnetoresistor 14 are arranged in the vertical direction. In this state, the first magnetoresistor 11, the second magnetoresistor 12, the third magnetoresistor 13 and the fourth magnetoresistor 14 are inclined by 90 degrees with respect to the adjacent magnetoresistors. It is arranged.
[0025]
By arranging in this way, only the second magnetoresistor 12 and the fourth magnetoresistor 14 in the diagonal positions react to the magnetic field in the direction of the power supply terminal 17 and the ground terminal 18, As a result, the resistance values of the second magnetoresistor 12 and the fourth magnetoresistor 14 change, and the DC potentials of the first output terminal 15 and the second output terminal 16 change to detect a magnetic signal. It becomes possible.
[0026]
At this time, the first magnetoresistor 11, the second magnetoresistor 12, the third magnetoresistor 13 and the fourth magnetoresistor 14 are made of the same component, and the temperature of the resistor material The temperature characteristics of the magnetic signal detector are improved by aligning the coefficients.
[0027]
Note that the four magnetoresistances of the first magnetoresistance 11, the second magnetoresistance 12, the third magnetoresistance 13, and the fourth magnetoresistance 14 do not necessarily have to be made of the same material. Add.
[0028]
In addition, the first magnetoresistor 11 and the third magnetoresistor 13 have the same resistance value, the second magnetoresistor 12 and the fourth magnetoresistor 14 have the same resistance value, and the first magnetoresistor 11 and the first magnetoresistor 11 have the same resistance value. 3 (ie, the first and third magnetic resistances 11 and 13 are smaller than the resistance values of the second and fourth magnetic resistances 12 and 14). ing.). By configuring in such a relationship, chattering prevention of the magnetic signal detection device in a state where there is no magnetic signal is realized, and the magnetic signal detection device can be stably operated.
[0029]
The first magnetoresistor 11 and the third magnetoresistor 13 may have larger resistance values than the second magnetoresistor 12 and the fourth magnetoresistor 14.
[0030]
The first fixed resistor 23 and the second fixed resistor 24 have the same resistance value, and the third fixed resistor 25 has a smaller resistance value than the first fixed resistor 23 and the second fixed resistor 24. At this time, the resistance value of the third fixed resistor 25 is set so as to be at least greater than 1/5 of the resistance value of the first fixed resistor 23 and the second fixed resistor 24. Therefore, consideration is given so that the outputs of the first operational amplifier 21 and the second operational amplifier 22 do not decrease.
[0031]
(Embodiment 3)
FIG. 3 is a top plan view of a magnetic signal detection device showing a third embodiment of the present invention. In addition, about the part of the same structure as 2nd Embodiment, the same number is attached | subjected and detailed description is abbreviate | omitted. As shown in the drawing, a resistance bridge circuit composed of a first magnetoresistor 11, a second magnetoresistor 12, a third magnetoresistor 13, and a fourth magnetoresistor 14 is configured as a magnetoresistive element 19. Thus, by comprising, only the part which detects a magnetic resistance can be made independent, and it becomes possible to arrange this magnetoresistive element 19 in arbitrary places.
[0032]
Further, the power supply terminal 17 that is a connection point between the first magnetic resistance 11 and the fourth magnetic resistance 14 and the ground terminal 18 that is a connection point between the second magnetic resistance 12 and the third magnetic resistance 13 and the first magnetic resistance. The first output terminal 15 that is the connection point of the resistor 11 and the second magnetic resistor 12 and the second output terminal 16 that is the connection point of the third and fourth magnetic resistors 13 and 14 are both magnetic. Terminals are provided at the four corners of the resistance element 19 so that the distance between the terminals is maximized. With this arrangement, the separation characteristics between the terminals can be improved, and interference between adjacent terminals can be reduced.
[0033]
(Embodiment 4)
FIG. 4 is an electric circuit diagram of a magnetic signal detecting apparatus showing a fourth embodiment of the present invention. In addition, about the part of the structure same as 1st Embodiment, the same number is attached | subjected and detailed description is abbreviate | omitted. As shown in FIG. 4, the magnetoresistive element 19 is composed of a resistance bridge circuit composed of a first magnetoresistor 11, a second magnetoresistor 12, a third magnetoresistor 13, and a fourth magnetoresistor 14, and a semiconductor. The integrated device 29 includes a first operational amplifier 21, a second operational amplifier 22, a third operational amplifier 20, a first fixed resistor 23, a second fixed resistor 24, and a third fixed resistor 25. Yes.
[0034]
As described above, by dividing the magnetic signal detection part and the output signal processing part, the magnetic signal detection unit can be configured at an arbitrary position, and the degree of freedom for mounting the components is improved. The overall mounting efficiency can be improved.
[0035]
The first operational amplifier 21 and the second operational amplifier 22 are preferably semiconductor integrated devices manufactured by the same process, but the third operational amplifier 20 is not limited to this.
[0036]
Further, as shown in FIG. 5, by using the common power source 40 for the magnetoresistive element 19 and the semiconductor integrated device 29, it is possible to supply power from the same regulator even during intermittent operation.
[0037]
(Embodiment 5)
FIG. 6 is a mounting layout diagram of the magnetic signal detection device showing the fifth embodiment of the present invention. The first output terminal 15 of the magnetoresistive element 19 is connected to the first inner layer pattern 51 of the multilayer substrate through the first through hole 31, and the second output terminal 16 of the magnetoresistive element 19 is connected to the second through-hole 31. The holes 32 are connected to the second inner layer pattern 52 of the multilayer substrate. The first inner layer pattern 51 of the multilayer substrate is connected to the non-inverting input terminal of the first operational amplifier 21 through the third through hole 33, and the second inner layer pattern 52 of the multilayer substrate is connected to the fourth through hole. The hole 34 is connected to the non-inverting input terminal of the second operational amplifier 22. With this configuration, it is possible to make the signals from the first output terminal 15 and the second output terminal 16 less susceptible to external noise.
[0038]
In FIG. 7, a fifth through-hole 30 is further provided between the non-inverting input terminal of the first operational amplifier 21 and the non-inverting input terminal of the second operational amplifier 22, and the terminal is grounded by grounding this terminal. The isolation characteristic between the non-inverting input terminal of the first operational amplifier 21 and the non-inverting input terminal of the second operational amplifier 22 is improved, and mutual interference is reduced.
[0039]
【The invention's effect】
As described above, according to the present invention, the connection point between the first magnetoresistance and the second magnetoresistance constituting the resistance bridge circuit is used as the first output terminal, and the third magnetoresistance and the fourth magnetoresistance are used. Is the second output terminal, the connection point of the first magnetoresistor and the fourth magnetoresistor is the power supply terminal, and the connection point of the second magnetoresistor and the third magnetoresistor is grounded. The first output terminal is connected to a first operational amplifier, the second output terminal is connected to a second operational amplifier, and the output terminal of the first operational amplifier and the second operational amplifier Are connected to the third operational amplifier, the power supply terminal is intermittently operated, and the first and third magnetoresistances have smaller resistance values than the second and fourth magnetoresistances. The input terminal of the first operational amplifier is grounded through the first capacitor. Since those were, common mode noise is canceled, it is possible to improve noise characteristics of the magnetic signal detection apparatus, can prevent malfunction due to fluctuation of the input offset voltage of the operational amplifier is a high frequency low impedance, supply voltage It is possible to stably operate during the intermittent operation, and an advantageous effect that the problem that the magnetic signal detection device malfunctions can be solved.
[Brief description of the drawings]
FIG. 1 is an electric circuit diagram showing a magnetic signal detection device according to a first embodiment of the present invention. FIG. 2 is a top plan view showing a magnetic signal detection device according to a second embodiment of the present invention. FIG. 4 is an electrical circuit diagram showing a magnetic signal detection device according to a fourth embodiment of the present invention. FIG. 5 is a magnetic signal detection device according to a fourth embodiment of the present invention. FIG. 6 is a mounting layout diagram showing a magnetic signal detection device according to a fifth embodiment of the present invention. FIG. 7 is a mounting layout diagram showing a magnetic signal detection device according to a fifth embodiment of the present invention. ] Electrical circuit diagram showing a conventional magnetic signal detector [Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 1st magnetoresistance 12 2nd magnetoresistance 13 3rd magnetoresistance 14 4th magnetoresistance 15 1st output terminal 16 2nd output terminal 17 Power supply terminal 18 Ground terminal 19 Magnetoresistance element 20 3rd Operational amplifier 21 First operational amplifier 22 Second operational amplifier 23 First fixed resistor 24 Second fixed resistor 25 Third fixed resistor 26 Signal output terminal 27 First capacitor 29 Semiconductor integrated device 30 Fifth through Hole 31 First through hole 32 Second through hole 33 Third through hole 34 Fourth through hole 51 First inner layer pattern 52 Second inner layer pattern

Claims (3)

抵抗ブリッジ回路を構成する第1の磁気抵抗と第2の磁気抵抗の接続点を第1の出力端子とするとともに第3の磁気抵抗と第4の磁気抵抗の接続点を第2の出力端子とし、前記第1の磁気抵抗と前記第4の磁気抵抗の接続点を電源端子とし、前記第2の磁気抵抗と前記第3の磁気抵抗の接続点を接地し、前記第1の出力端子を第1の演算増幅器に接続し、前記第2の出力端子を第2の演算増幅器に接続し、前記第1の演算増幅器の出力端子と前記第2の演算増幅器の出力端子とを前記第3の演算増幅器に接続し、
前記電源端子を間欠動作させるとともに、
前記第1および第3の磁気抵抗は、前記第2および第4の磁気抵抗より小さい抵抗値を有し、
前記第1の演算増幅器の入力端子を第1のコンデンサを介して接地することを特徴とした磁気信号検出装置。
The connection point between the first magnetoresistor and the second magnetoresistor constituting the resistor bridge circuit is used as the first output terminal, and the connection point between the third magnetoresistor and the fourth magnetoresistor is used as the second output terminal. The connection point between the first magnetoresistance and the fourth magnetoresistance is a power supply terminal, the connection point between the second magnetoresistance and the third magnetoresistance is grounded, and the first output terminal is the first output terminal. The second operational amplifier is connected to the second operational amplifier, and the output terminal of the first operational amplifier and the output terminal of the second operational amplifier are connected to the third operational amplifier. Connected to the amplifier,
While intermittently operating the power terminal,
The first and third magnetoresistances have a smaller resistance value than the second and fourth magnetoresistances,
A magnetic signal detection apparatus characterized in that an input terminal of the first operational amplifier is grounded via a first capacitor.
第1の磁気抵抗と第3の磁気抵抗を同方向に配置し、第2の磁気抵抗と第4の磁気抵抗を同方向に配置し、前記第1の磁気抵抗と前記第3の磁気抵抗の配置方向と前記第2の磁気抵抗と前記第4の磁気抵抗の配置方向が直角になるように構成した請求項1記載の磁気信号検出装置。  The first magnetoresistance and the third magnetoresistance are arranged in the same direction, the second magnetoresistance and the fourth magnetoresistance are arranged in the same direction, and the first magnetoresistance and the third magnetoresistance are arranged in the same direction. The magnetic signal detection device according to claim 1, wherein an arrangement direction, the second magnetic resistance, and the fourth magnetic resistance are arranged at right angles. 第1の磁気抵抗と第3の磁気抵抗は、同一の抵抗値を有し、第2の磁気抵抗と第4の磁気抵抗は、同一の抵抗値を有するように構成した請求項1記載の磁気信号検出装置。  2. The magnetism according to claim 1, wherein the first magnetoresistance and the third magnetoresistance have the same resistance value, and the second magnetoresistance and the fourth magnetoresistance have the same resistance value. Signal detection device.
JP00562398A 1998-01-14 1998-01-14 Magnetic signal detector Expired - Fee Related JP4211074B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00562398A JP4211074B2 (en) 1998-01-14 1998-01-14 Magnetic signal detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00562398A JP4211074B2 (en) 1998-01-14 1998-01-14 Magnetic signal detector

Publications (2)

Publication Number Publication Date
JPH11202037A JPH11202037A (en) 1999-07-30
JP4211074B2 true JP4211074B2 (en) 2009-01-21

Family

ID=11616301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00562398A Expired - Fee Related JP4211074B2 (en) 1998-01-14 1998-01-14 Magnetic signal detector

Country Status (1)

Country Link
JP (1) JP4211074B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4131475B2 (en) * 2004-11-12 2008-08-13 三菱電機株式会社 Electronic control unit
JP2012073034A (en) * 2010-09-27 2012-04-12 Panasonic Electric Works Co Ltd Power measuring device and power measuring method
WO2013150896A1 (en) * 2012-04-04 2013-10-10 株式会社村田製作所 Magnetic sensing device and bill validator
JP2018146280A (en) 2017-03-02 2018-09-20 Tdk株式会社 Magnetic sensor
KR102071249B1 (en) * 2017-04-14 2020-04-01 주식회사 지니틱스 A device for detecting lens position by correcting output voltage of a hall sensor

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02236184A (en) * 1989-03-09 1990-09-19 Daifuku Co Ltd Magnet sensor
JPH04252026A (en) * 1991-01-28 1992-09-08 Nec Corp Manufacture of semiconductor device
JP2789952B2 (en) * 1992-07-21 1998-08-27 株式会社村田製作所 Magnetic sensor module
JPH07263771A (en) * 1994-03-22 1995-10-13 Honda Motor Co Ltd Hole sensor integrated circuit
JPH0888423A (en) * 1994-09-19 1996-04-02 Asahi Chem Ind Co Ltd Magnetic sensor
JPH0943327A (en) * 1995-08-03 1997-02-14 Nec Corp Magneto-resistive current sensor
JPH09281157A (en) * 1996-04-12 1997-10-31 Hokuriku Electric Ind Co Ltd Signal processing circuit for sensor

Also Published As

Publication number Publication date
JPH11202037A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
EP1965217B1 (en) High bandwidth open-loop current sensor
US7612553B2 (en) Current sensor having sandwiched magnetic permeability layer
US8692546B2 (en) Circuits and methods for generating a diagnostic mode of operation in a magnetic field sensor
US7642768B1 (en) Current sensor having field screening arrangement including electrical conductors sandwiching magnetic permeability layer
US20040155644A1 (en) Integrated sensor
CN110456289B (en) Magnetic field sensor device
US20040207035A1 (en) Semiconductor device and magneto-resistive sensor integration
US20220317210A1 (en) Current sensor, magnetic sensor and circuit
US20080190203A1 (en) Signal Amplifying Circuit and Acceleration Sensor Having the Same
US8941378B2 (en) Magnetic sensor
US11366141B1 (en) Multipath wide bandwidth current sensor
JP4211074B2 (en) Magnetic signal detector
WO2018212131A1 (en) Magnetic sensor
JPS63191069A (en) Current detector
WO2004005950A1 (en) Ac-coupled sensor signal conditioning circuit
JP2007103556A (en) Hall element device and hall element circuit using it
US20040124835A1 (en) Miniaturized magnetic impedance sensor with an IC chip having an electrode near a magnetic impedance element
JP2789952B2 (en) Magnetic sensor module
CN115980639A (en) Magnetic resistance sensor
JP7344382B2 (en) Monitoring device for detecting power line errors for control equipment
JPH06216432A (en) Magnetic flux density detector
US11408945B2 (en) Magnetic field sensor with stacked transducers and capacitive summing amplifier
US20220349962A1 (en) Magnetic sensor and current sensor including magneto-resistance element
CN115993560A (en) Magnetic sensor
US7755352B1 (en) Built-in testing and transient avoidance for magnetic sensors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081020

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees