JP4210645B2 - Rotating anti-cathode X-ray tube and X-ray generator - Google Patents

Rotating anti-cathode X-ray tube and X-ray generator Download PDF

Info

Publication number
JP4210645B2
JP4210645B2 JP2004369816A JP2004369816A JP4210645B2 JP 4210645 B2 JP4210645 B2 JP 4210645B2 JP 2004369816 A JP2004369816 A JP 2004369816A JP 2004369816 A JP2004369816 A JP 2004369816A JP 4210645 B2 JP4210645 B2 JP 4210645B2
Authority
JP
Japan
Prior art keywords
cathode
rotating
passage
ray tube
separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004369816A
Other languages
Japanese (ja)
Other versions
JP2006179240A (en
Inventor
政隆 坂田
友弘 茶木
勝 栗林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Corp filed Critical Rigaku Corp
Priority to JP2004369816A priority Critical patent/JP4210645B2/en
Priority to DE602005015284T priority patent/DE602005015284D1/en
Priority to EP05027757A priority patent/EP1675152B1/en
Publication of JP2006179240A publication Critical patent/JP2006179240A/en
Application granted granted Critical
Publication of JP4210645B2 publication Critical patent/JP4210645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • H01J35/105Cooling of rotating anodes, e.g. heat emitting layers or structures
    • H01J35/106Active cooling, e.g. fluid flow, heat pipes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1204Cooling of the anode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1225Cooling characterised by method
    • H01J2235/1262Circulating fluids
    • H01J2235/127Control of flow
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/12Cooling
    • H01J2235/1225Cooling characterised by method
    • H01J2235/1262Circulating fluids
    • H01J2235/1283Circulating fluids in conjunction with extended surfaces (e.g. fins or ridges)

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • X-Ray Techniques (AREA)

Description

本発明は、回転対陰極の内部の冷媒通路に配置されたセパレータに特徴のある回転対陰極X線管に関し,また,そのような回転対陰極X線管を備えるX線発生装置に関する。 The present invention relates to a rotating anode X-ray tube characterized by the separator disposed in the refrigerant passage of the internal rotating anode, also relates to the X-ray generating equipment comprising such a rotating anode X-ray tube.

回転対陰極X線管の回転対陰極の内部には冷却水通路が形成されて,この冷却水通路内に冷却水を流して回転対陰極を冷却している。図13は従来の回転対陰極の縦断面図(回転中心線を含む平面で切断した断面図)である。回転対陰極10の内部には冷却水通路12が形成されていて,この冷却水通路12内にセパレータ14が配置されている。回転対陰極10が回転するときに,セパレータ14は静止している。回転対陰極10の外周面は,X線発生材料からなるターゲット部材で構成されている。ターゲット部材の外周面に電子ビーム16が照射されると,電子ビーム照射領域18からX線が発生する。回転対陰極10の内面(冷却水通路の表面)のうち,電子ビーム照射領域18の裏側の部分が最も冷却を要する部分であり,これを被冷却面20と呼ぶことにする。セパレータ14の表面のうち,被冷却面20に対面する部分を接近表面22と呼ぶことにする。回転対陰極10の内面とセパレータ14の表面との間の距離は,被冷却面20と接近表面22との間(これを接近通路と呼ぶことにする)で最も狭くなっている。この接近通路における,回転対陰極10の内面とセパレータ14の表面との間の距離を接近距離Gとすると,この接近距離Gは1.5mm程度に設定される。接近距離Gをこのように狭くすることで,被冷却面20を冷却する能力を高めている。   A cooling water passage is formed in the rotating counter cathode of the rotating cathode X-ray tube, and the rotating counter cathode is cooled by flowing cooling water into the cooling water passage. FIG. 13 is a longitudinal sectional view of a conventional rotating anti-cathode (a sectional view cut along a plane including the rotation center line). A cooling water passage 12 is formed inside the rotating counter cathode 10, and a separator 14 is disposed in the cooling water passage 12. When the rotating counter cathode 10 rotates, the separator 14 is stationary. The outer peripheral surface of the rotating counter cathode 10 is composed of a target member made of an X-ray generating material. When the electron beam 16 is irradiated on the outer peripheral surface of the target member, X-rays are generated from the electron beam irradiation region 18. Of the inner surface of the rotating counter cathode 10 (the surface of the cooling water passage), the portion on the back side of the electron beam irradiation region 18 is the portion that requires the most cooling, and this will be referred to as the cooled surface 20. Of the surface of the separator 14, a portion facing the surface to be cooled 20 is referred to as an approach surface 22. The distance between the inner surface of the rotating anti-cathode 10 and the surface of the separator 14 is the smallest between the cooled surface 20 and the approaching surface 22 (hereinafter referred to as the approaching passage). If the distance between the inner surface of the rotating cathode 10 and the surface of the separator 14 in this approach path is the approach distance G, this approach distance G is set to about 1.5 mm. By narrowing the approach distance G in this way, the ability to cool the cooled surface 20 is enhanced.

ノーマルフォーカスと呼ばれる焦点サイズでは,電子ビーム16の軸方向長さ(回転対陰極の回転軸線の方向における長さ)L1は,例えば,約10mmである。電子ビーム16の周方向長さ(回転対陰極の外周面の周方向における長さであり,図13の紙面に垂直な方向の長さ)は,例えば,約1mmである。したがって,このときの電子ビーム16の断面サイズは約10mm×1mmであり,これは電子ビーム照射領域18のサイズに等しい。この電子ビーム照射領域18の裏側の被冷却面20を十分に冷却するには,接近表面22の軸方向長さL2は,上述のL1よりも長くするのが好ましい。例えば,L2は約15mmである。この回転対陰極は6000rpm程度の回転速度で回転させて用いる。このようなセパレータを有する回転対陰極は,例えば,次の特許文献1に開示されている。
特開2000−251810号公報
In the focus size called normal focus, the axial length (length in the direction of the rotation axis of the rotating cathode) L1 of the electron beam 16 is, for example, about 10 mm. The circumferential length of the electron beam 16 (the length in the circumferential direction of the outer peripheral surface of the rotating cathode is the length in the direction perpendicular to the paper surface of FIG. 13) is, for example, about 1 mm. Therefore, the cross-sectional size of the electron beam 16 at this time is about 10 mm × 1 mm, which is equal to the size of the electron beam irradiation region 18. In order to sufficiently cool the surface 20 to be cooled on the back side of the electron beam irradiation region 18, the axial length L2 of the approaching surface 22 is preferably longer than the above-described L1. For example, L2 is about 15 mm. The rotating counter cathode is used after being rotated at a rotation speed of about 6000 rpm. A rotating counter cathode having such a separator is disclosed in, for example, the following Patent Document 1.
JP 2000-251810 A

図13に示した従来の回転対陰極において,ファインフォーカスと呼ばれる微小な焦点サイズを用いることがある。図14はファインフォーカスにした場合の図13と同様の縦断面図である。電子ビーム16は細くなり,その断面サイズは,例えば,約1mm×0.1mmである。すなわち,電子ビーム16の軸方向長さL1が約1mmであり,周方向長さが約0.1mmである。このとき,電子ビーム照射領域18の軸方向長さもL1に等しく,約1mmである。従来は,このファインフォーカスにおいても,ノーマルフォーカスの場合と同じセパレータ14をそのまま用いていた。   In the conventional rotating anti-cathode shown in FIG. 13, a fine focus size called fine focus may be used. FIG. 14 is a longitudinal sectional view similar to FIG. 13 in the case of fine focus. The electron beam 16 becomes thinner, and its cross-sectional size is, for example, about 1 mm × 0.1 mm. That is, the axial length L1 of the electron beam 16 is about 1 mm, and the circumferential length is about 0.1 mm. At this time, the axial length of the electron beam irradiation region 18 is also equal to L1 and is about 1 mm. Conventionally, in this fine focus, the same separator 14 as in the normal focus is used as it is.

図14において,ファインフォーカスであって,かつ,強度の強いX線ビームを得るためには,電子ビーム16のエネルギーを高くする必要がある。具体的には,X線管に投入するX線発生用電力(管電圧と管電流との積に依存する)を大きくする必要がある。そして,X線発生用電力を大きくした場合には,電子ビーム照射領域18を,より強力に冷却する必要がある。冷却能力を高める方法のひとつとして,回転対陰極の回転速度を上げる方法がある。回転速度を上げると,回転対陰極の外周面上の同一の領域が電子ビームに照射され続ける時間が短くなり,電子ビーム照射領域が高熱で溶ける前に,その高熱部分が電子ビームから外れることになる。本発明は,回転速度を上げることで,ファインフォーカスのX線ビームの強度を上げることに関連している。   In FIG. 14, in order to obtain an X-ray beam with fine focus and high intensity, the energy of the electron beam 16 needs to be increased. Specifically, it is necessary to increase the X-ray generation power (which depends on the product of the tube voltage and the tube current) to be input to the X-ray tube. When the X-ray generation power is increased, the electron beam irradiation region 18 needs to be cooled more powerfully. One way to increase the cooling capacity is to increase the rotating speed of the rotating cathode. When the rotation speed is increased, the time during which the same region on the outer peripheral surface of the rotating cathode is continuously irradiated with the electron beam is shortened, and before the electron beam irradiation region melts with high heat, the high heat part is removed from the electron beam. Become. The present invention relates to increasing the intensity of a fine focus X-ray beam by increasing the rotational speed.

図14に示す従来の回転対陰極において,回転対陰極の回転速度を6000rpmから,例えば,9000rpmに上昇させると,次のような問題が生じる。回転する回転対陰極10と,静止するセパレータ14との間には,冷却水が存在するので,冷却水の粘性抵抗が,回転対陰極10を回転させる電動モータの負荷として働く。回転対陰極10とセパレータ14とが最も接近しているところが,セパレータ14の接近表面22のところであり,この部分での冷却水の粘性抵抗が回転負荷に大きく影響する。接近距離Gは1.5mm程度に狭くなっていて,かつ,接近表面22の軸方向長さL2は約15mmと長いので,回転速度を上げる際には,この部分での回転負荷の増大が問題になる。回転負荷が増えると,回転駆動源としての電動モータの投入電力を大きくする必要がある。また,モータドライバの容量も大きなものに交換する必要がある。   In the conventional rotating anti-cathode shown in FIG. 14, if the rotating speed of the rotating anti-cathode is increased from 6000 rpm to, for example, 9000 rpm, the following problem occurs. Since cooling water exists between the rotating rotating cathode 10 and the stationary separator 14, the viscous resistance of the cooling water acts as a load for the electric motor that rotates the rotating cathode 10. The place where the rotating counter cathode 10 and the separator 14 are closest to each other is the approaching surface 22 of the separator 14, and the viscous resistance of the cooling water in this portion greatly affects the rotating load. The approach distance G is narrowed to about 1.5 mm, and the axial length L2 of the approach surface 22 is as long as about 15 mm. Therefore, when the rotational speed is increased, an increase in rotational load at this portion is a problem. become. When the rotational load increases, it is necessary to increase the input power of the electric motor as the rotational drive source. Also, it is necessary to replace the motor driver with a larger one.

本発明は上述の問題点を解決するためになされたものであり,その目的は,高速回転をしても回転駆動源の負荷がそれほど大きくならないような回転対陰極X線管を提供することにある。また,本発明の別の目的は,そのような回転対陰極X線管を備えるX線発生装置を提供することにある。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a rotating anti-cathode X-ray tube in which the load of the rotating drive source does not increase so much even when rotating at high speed. is there. Another object of the present invention, Ru near to provide an X-ray generator comprising such a rotating anode X-ray tube.

本発明の回転対陰極X線管は,回転対陰極と冷媒通路とセパレータとを備えている。回転対陰極は,X線発生材料で構成された円筒状のターゲット部材を備えていて,使用時の回転速度が9000rpmである。冷媒通路は回転対陰極の内部に形成されていて,冷媒通路内の冷媒は,ターゲット部材の外周面上の電子線照射領域の裏側に存在する被冷却面に沿って流れるようになっている。冷媒は,典型的には冷却水であるが,その他の冷却用液体を用いてもよい。セパレータは,冷媒通路内に配置されていて静止している。このセパレータは前記被冷却面に対面する接近表面を備えている。セパレータは,前記冷媒通路を流入通路と流出通路とに分割するものであり,流入通路内の冷媒は,被冷却面と接近表面との間の接近通路に向かって流れる。流出通路内の冷媒は,接近通路から遠ざかるように流れる。接近表面から被冷却面までの距離は1.5mmである。円筒状のターゲット部材の外周面の軸方向長さは43mmである。すなわち,ファインフォーカス専用の,軸方向長さが特に短くされたような回転対陰極ではなくて,ノーマルフォーカスも可能な,軸方向長さが比較的長い回転対陰極を使うことができる。これに対して,セパレータの接近表面の軸方向長さは2mmである。ファインフォーカスの電子ビーム照射領域を想定すると,接近表面の軸方向長さを2mmにしても冷却能力は十分である。このように,接近表面の軸方向長さを短くすることで,回転対陰極を高速で回転させても回転駆動源の負荷をそれほど大きくしなくても済む。回転駆動源として電動モータを使う場合は,そのモータドライバの容量を大きなものに変える必要がない。 The rotating counter-cathode X-ray tube of the present invention includes a rotating counter-cathode, a refrigerant passage, and a separator. The rotating counter cathode includes a cylindrical target member made of an X-ray generating material and has a rotation speed of 9000 rpm when in use. The refrigerant passage is formed inside the rotating counter cathode, and the refrigerant in the refrigerant passage flows along the surface to be cooled that exists on the back side of the electron beam irradiation region on the outer peripheral surface of the target member. The coolant is typically cooling water, but other cooling liquids may be used. The separator is disposed in the refrigerant passage and is stationary. This separator has an approach surface facing the surface to be cooled. The separator divides the refrigerant passage into an inflow passage and an outflow passage, and the refrigerant in the inflow passage flows toward the approach passage between the cooled surface and the approach surface. The refrigerant in the outflow passage flows away from the approach passage. The distance from the approaching surface to the surface to be cooled is 1.5 mm. The axial length of the outer peripheral surface of the cylindrical target member is 43 mm. That is, it is possible to use a rotating counter cathode having a relatively long axial length and capable of normal focusing, instead of a rotating cathode having a particularly short axial length for fine focusing. In contrast, the axial length of the proximal surface of the separator Ru 2mm der. Assuming a fine focus electron beam irradiation region, the cooling capacity is sufficient even if the axial length of the approaching surface is 2 mm . Thus, by shortening the axial length of the approaching surface, it is not necessary to increase the load of the rotary drive source so much even if the rotating anti-cathode is rotated at a high speed. When an electric motor is used as a rotational drive source, it is not necessary to change the capacity of the motor driver to a large one.

本発明の回転対陰極X線管はファインフォーカスの強力なX線ビームを発生させるのに適している。ファインフォーカスの電子ビーム照射領域のサイズは,3mm×0.3mm程度が上限であり,その軸方向長さは3mm以下である。より好ましくは,ファインフォーカスの電子ビーム照射領域のサイズは,1mm×0.1mm,またはそれ以下(例えば,0.7mm×0.07mm,)であり,その軸方向長さは1mm以下である。   The rotating anti-cathode X-ray tube of the present invention is suitable for generating a powerful X-ray beam with fine focus. The upper limit of the size of the fine focus electron beam irradiation region is about 3 mm × 0.3 mm, and its axial length is 3 mm or less. More preferably, the size of the fine focus electron beam irradiation region is 1 mm × 0.1 mm or less (for example, 0.7 mm × 0.07 mm), and its axial length is 1 mm or less.

セパレータは,例えば,円板部と,この円板部の外周につながっている傾斜部とを備えることができる。傾斜部は切頭円錐の形状をしていて,この傾斜部の半径方向の外端における外周面を前記接近表面とすることができる。   The separator can include, for example, a disk part and an inclined part connected to the outer periphery of the disk part. The inclined portion has a truncated cone shape, and the outer peripheral surface at the radially outer end of the inclined portion can be the approaching surface.

本発明に係るX線発生装置は,上述のような回転対陰極X線管と,回転対陰極X線管の冷媒通路に冷媒を供給する冷媒供給装置と,回転対陰極X線管に管電圧と管電流を供給する高圧電源とを備えている。 An X-ray generator according to the present invention includes a rotating anti-cathode X-ray tube as described above, a refrigerant supply device that supplies refrigerant to the refrigerant passage of the rotating anti-cathode X-ray tube, and a tube voltage applied to the rotating anti-cathode X-ray tube. and that have a high-voltage power supply for supplying the tube current.

本発明の回転対陰極X線管は,セパレータの接近表面の軸方向長さを短くしたので,回転速度をより高速にする場合に,回転駆動源の負荷をそれほど大きくしなくても済むという効果がある。   In the rotating anti-cathode X-ray tube of the present invention, since the axial length of the approaching surface of the separator is shortened, the effect of not having to increase the load of the rotating drive source so much when the rotating speed is increased. There is.

以下,図面を参照して本発明の実施例を詳しく説明する。図1は本発明の回転対陰極X線管の一実施例の要部の断面図(回転対陰極の回転中心線を含む平面で切断した断面図)である。回転対陰極X線管は真空容器24と,その内部に収容された回転対陰極10及び電子銃26を備えている。電子銃26と回転対陰極10の間に高圧電源から高電圧を印加することで,電子銃26から電子ビーム16を発生させることができる。この電子ビーム16を,円筒状の回転対陰極10(ターゲット部材)の外周面に照射することで,X線が発生する。回転対陰極10は対陰極組立体28に属しており,この対陰極組立体28を真空容器24に取り付けることで,回転対陰極10を真空容器24の内部空間の所定の位置に配置することができる。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a cross-sectional view (a cross-sectional view taken along a plane including a rotation center line of a rotating anti-cathode) of an embodiment of the rotating anti-cathode X-ray tube of the present invention. The rotating counter-cathode X-ray tube includes a vacuum vessel 24 and a rotating counter-cathode 10 and an electron gun 26 housed therein. By applying a high voltage from a high voltage power source between the electron gun 26 and the rotating counter cathode 10, the electron beam 16 can be generated from the electron gun 26. X-rays are generated by irradiating the outer peripheral surface of the cylindrical rotating counter cathode 10 (target member) with the electron beam 16. The rotating anti-cathode 10 belongs to the counter-cathode assembly 28, and the counter-cathode assembly 28 is attached to the vacuum vessel 24 so that the rotating anti-cathode 10 can be arranged at a predetermined position in the internal space of the vacuum vessel 24. it can.

対陰極組立体28はケーシング30を備えている。このケーシング30のフランジ32は真空容器24に気密に取り付けることができる。回転対陰極10には回転シャフト34が固定されている。回転シャフト34の外周面とケーシング30の内壁の間には,回転真空シールのための磁性流体シール装置36と,回転シャフト34を回転可能に支持する転がり軸受38,40と,回転シャフト34からケーシング30に電流を逃がす電気ブラシ42と,冷却水を回転シールするメカニカルシール44が配置されている。ケーシング30の内壁にはダイレクトモータのステータ46が固定されている。一方,回転シャフト34の外周面にはダイレクトモータのロータ48が固定されている。このダイレクトモータの働きにより,回転シャフト34が回転し,その結果,回転対陰極10が回転する。   The counter cathode assembly 28 includes a casing 30. The flange 32 of the casing 30 can be attached to the vacuum vessel 24 in an airtight manner. A rotating shaft 34 is fixed to the rotating counter cathode 10. Between the outer peripheral surface of the rotating shaft 34 and the inner wall of the casing 30, a magnetic fluid sealing device 36 for rotating vacuum sealing, rolling bearings 38 and 40 that rotatably support the rotating shaft 34, and the casing from the rotating shaft 34 to the casing. An electric brush 42 for releasing electric current and a mechanical seal 44 for rotating and sealing the cooling water are arranged. A stator 46 of a direct motor is fixed to the inner wall of the casing 30. On the other hand, a rotor 48 of a direct motor is fixed to the outer peripheral surface of the rotary shaft 34. Due to the action of the direct motor, the rotating shaft 34 rotates, and as a result, the rotating counter cathode 10 rotates.

図2は回転対陰極10の一部を拡大して示した断面図である。回転対陰極10の内部には第1の冷却水通路50が形成されている。この第1の冷却水通路50は,セパレータ52によって,第1の流入通路56と第1の流出通路54に分かれている。一方,回転シャフト34の内部には第2の冷却水通路58が形成されている。この第2の冷却水通路58も,仕切りパイプ60によって,外側の第2の流入通路64と,内側の第2の流出通路62に分かれている。セパレータ52は仕切りパイプ60に固定されていて,図1に示すように,仕切りパイプ60の根元(図1の右端)はケーシング30に固定されている。回転対陰極10と回転シャフト34は回転するが,その内部のセパレータ14と仕切りパイプ60は静止している。図2において,第1の流入通路56は第2の流入通路64に連通しており,第1の流出通路54は第2の流出通路62に連通している。図1に示すように,ケーシング30には冷却水入口68と冷却水出口66が形成されている。冷却水入口68には入口用配管ニップル72が取り付けられ,冷却水出口66には出口用配管ニップル70が取り付けられる。冷却水入口68に入った冷却水は,第2の流入通路64(図2を参照)を通って第1の流入通路56に入り,回転対陰極10を内面から冷却する。戻り側の冷却水は,第1の流出通路54と第2の流出通路62(図2を参照)を通って,冷却水出口66から出て行く。   FIG. 2 is an enlarged cross-sectional view of a part of the rotating counter cathode 10. A first cooling water passage 50 is formed in the rotating counter cathode 10. The first cooling water passage 50 is divided into a first inflow passage 56 and a first outflow passage 54 by a separator 52. On the other hand, a second cooling water passage 58 is formed inside the rotary shaft 34. The second cooling water passage 58 is also divided into an outer second inflow passage 64 and an inner second outflow passage 62 by a partition pipe 60. The separator 52 is fixed to the partition pipe 60, and as shown in FIG. 1, the root (right end in FIG. 1) of the partition pipe 60 is fixed to the casing 30. The rotating counter cathode 10 and the rotating shaft 34 rotate, but the separator 14 and the partition pipe 60 inside thereof are stationary. In FIG. 2, the first inflow passage 56 communicates with the second inflow passage 64, and the first outflow passage 54 communicates with the second outflow passage 62. As shown in FIG. 1, a cooling water inlet 68 and a cooling water outlet 66 are formed in the casing 30. An inlet piping nipple 72 is attached to the cooling water inlet 68, and an outlet piping nipple 70 is attached to the cooling water outlet 66. The cooling water that has entered the cooling water inlet 68 passes through the second inflow passage 64 (see FIG. 2) and enters the first inflow passage 56 to cool the rotating counter cathode 10 from the inner surface. The return side cooling water exits from the cooling water outlet 66 through the first outflow passage 54 and the second outflow passage 62 (see FIG. 2).

図2において,セパレータ52は円板部74と傾斜部76と羽根78からなる。図3はセパレータ52の正面図であり,図4はセパレータ52の一部を切り欠いて示した斜視図である。図2乃至図4を参照して説明すると,円板部74の中央には冷却水が通る貫通孔80が形成されていて,この貫通孔80のところで円板部74が仕切りパイプ60に接合されている。円板部74の外周は傾斜部76につながっている。傾斜部76は,図4に明瞭に示すように,切頭円錐の形状をしている。回転対陰極の回転中心線で切断した断面において,傾斜部76は,図2に示すように,回転対陰極の軸方向に対して角度θだけ傾斜している。この実施例ではθは30度である。傾斜部76の半径方向の外端における外周面が接近表面82となる。接近表面82は円筒面であり,その軸方向長さL2は2mmである。羽根78は,図3に示すように,放射状に4個,円板部74に取り付けられている。   In FIG. 2, the separator 52 includes a disc portion 74, an inclined portion 76, and a blade 78. FIG. 3 is a front view of the separator 52, and FIG. 4 is a perspective view in which a part of the separator 52 is cut away. Referring to FIGS. 2 to 4, a through hole 80 through which cooling water passes is formed at the center of the disc portion 74, and the disc portion 74 is joined to the partition pipe 60 at the through hole 80. ing. The outer periphery of the disc part 74 is connected to the inclined part 76. The inclined portion 76 has a truncated cone shape as clearly shown in FIG. In the cross section taken along the rotation center line of the rotating anti-cathode, the inclined portion 76 is inclined by an angle θ with respect to the axial direction of the rotating anti-cathode as shown in FIG. In this embodiment, θ is 30 degrees. The outer peripheral surface at the outer end in the radial direction of the inclined portion 76 becomes the approach surface 82. The approach surface 82 is a cylindrical surface, and its axial length L2 is 2 mm. As shown in FIG. 3, four blades 78 are attached to the disk portion 74 in a radial manner.

図2において,この回転対陰極10は,カップ状の第1部材84と,回転シャフト34と一体に形成された第2部材86とで構成されている。第1部材84は,その全体が,ターゲット部材(例えば,銅)でできている。第1部材84は第2部材86にねじ部88で結合している。第1部材84と第2部材86の結合部分ではOリング90によって冷却水がシールされている。第1部材84と第2部材86とを組み合わせることで第1の冷却水通路50が形成される。第1部材84の外周面にはファインフォーカスの電子ビーム16が照射される。この電子ビーム16の断面サイズは,この実施例では,約1mm×0.1mmである。すなわち,電子ビーム16の軸方向長さが約1mmであり,周方向長さが約0.1mmである。このとき,電子ビーム照射領域18の軸方向長さL1は約1mmとなる。このような焦点サイズのときに,図2の左方向に取り出し角6度でX線ビームを取り出すと,約0.1mm×0.1mmのポイントフォーカスのX線源となる。   In FIG. 2, the rotating anti-cathode 10 includes a cup-shaped first member 84 and a second member 86 formed integrally with the rotating shaft 34. The entire first member 84 is made of a target member (for example, copper). The first member 84 is coupled to the second member 86 by a screw portion 88. Cooling water is sealed by an O-ring 90 at the joint between the first member 84 and the second member 86. The first cooling water passage 50 is formed by combining the first member 84 and the second member 86. The outer peripheral surface of the first member 84 is irradiated with the fine focus electron beam 16. The sectional size of the electron beam 16 is about 1 mm × 0.1 mm in this embodiment. That is, the axial length of the electron beam 16 is about 1 mm, and the circumferential length is about 0.1 mm. At this time, the axial length L1 of the electron beam irradiation region 18 is about 1 mm. When the X-ray beam is extracted at an extraction angle of 6 degrees in the left direction in FIG. 2 at such a focal size, a point focus X-ray source of about 0.1 mm × 0.1 mm is obtained.

回転対陰極10の外径は100mmであり,軸方向の長さL3は約43mmである。この回転対陰極10は,セパレータを変更するだけで,ノーマルフォーカス用の回転対陰極としても使えるようになっているので,ファインフォーカス専用に作られた回転対陰極と比較して,長さL3が,通常の回転対陰極と同程度に,長くなっている。   The outer diameter of the rotating cathode 10 is 100 mm, and the axial length L3 is about 43 mm. Since this rotating anti-cathode 10 can be used as a rotating anti-cathode for normal focus only by changing the separator, the length L3 is smaller than that of a rotating anti-cathode made exclusively for fine focus. , It is as long as a normal rotating anti-cathode.

第1部材84の円筒状の部分のうち,電子ビーム照射領域18の裏側の内面が,被冷却面92(冷却水で特に冷却すべき面)となる。この被冷却面92とセパレータの接近表面82との間の接近距離Gは約1.5mmである。被冷却面92と接近表面82の間の通路を接近通路93と呼ぶことにすると,この接近通路93を境として第1の冷却水通路50が第1の流入通路56と第1の流出通路54に分割されている。図5はセパレータの接近表面82の付近を示す断面図である。第1の流入通路56では,接近通路93に向かって冷却水94が流れ,第1の流出通路54では,接近通路93から遠ざかるように冷却水94が流れる。接近通路93では冷却水の通り道が狭くなっているので,この部分で流速が速くなり,被冷却面92は十分な冷却能力をもって冷却される。そして,接近表面82の軸方向長さは2mmと短くなっているので,接近通路93における冷却水の粘性抵抗に起因する回転負荷は,従来のセパレータを使う場合と比較して小さくなり,回転速度を例えば9000rpmに上昇させても,モータに投入する電力は従来技術ほどには増加しない。接近表面82の軸方向長さがこのように短いセパレータを使っても十分な冷却能力があることについては,回転速度9000rpmで,管電圧40kV,管電流30mAとして,ファインフォーカスの強力な電子ビームを照射してX線を発生させたときに,ターゲット部材の表面の荒れが生じないことによって確認した。   Of the cylindrical portion of the first member 84, the inner surface on the back side of the electron beam irradiation region 18 is a cooled surface 92 (a surface to be cooled with cooling water). The approach distance G between the cooled surface 92 and the approach surface 82 of the separator is about 1.5 mm. When the passage between the cooled surface 92 and the approach surface 82 is referred to as an approach passage 93, the first cooling water passage 50 is divided into the first inflow passage 56 and the first outflow passage 54 with the approach passage 93 as a boundary. It is divided into FIG. 5 is a cross-sectional view showing the vicinity of the approaching surface 82 of the separator. In the first inflow passage 56, the cooling water 94 flows toward the approach passage 93, and in the first outflow passage 54, the cooling water 94 flows away from the approach passage 93. Since the passage of the cooling water is narrow in the approach passage 93, the flow velocity is increased in this portion, and the cooled surface 92 is cooled with a sufficient cooling capacity. Since the axial length of the approaching surface 82 is as short as 2 mm, the rotational load due to the viscous resistance of the cooling water in the approaching passage 93 is smaller than when using a conventional separator, and the rotational speed is reduced. For example, even if the power is increased to 9000 rpm, the electric power supplied to the motor does not increase as much as in the prior art. With regard to the fact that the separator having a short axial length of the approach surface 82 has sufficient cooling capacity, a powerful electron beam with a fine focus is used at a rotation speed of 9000 rpm, a tube voltage of 40 kV, and a tube current of 30 mA. This was confirmed by the fact that the surface of the target member was not roughened when X-rays were generated by irradiation.

図6はセパレータの第1の変更例を示しており,図5と同様の断面図である。図7は図6に示すセパレータの,図4と同様の斜視図である。図6において,このセパレータ52aは,円板部74の外周に円筒部96がつながっていて,この円筒部96の軸方向の端部に,半径方向の外側に突き出す突出部98が形成されている。この突出部98の外周面が接近表面82aとなっている。この接近表面82aの軸方向長さL2は2mmである。接近通路93aでの接近距離Gは約1.5mmである。円筒部96に対する接近表面82aの突き出し量は約2mmである。   FIG. 6 shows a first modification of the separator and is a cross-sectional view similar to FIG. FIG. 7 is a perspective view similar to FIG. 4 of the separator shown in FIG. In FIG. 6, the separator 52 a has a cylindrical portion 96 connected to the outer periphery of the disc portion 74, and a protruding portion 98 protruding outward in the radial direction is formed at the axial end of the cylindrical portion 96. . An outer peripheral surface of the projecting portion 98 is an approach surface 82a. The axial length L2 of the approach surface 82a is 2 mm. The approach distance G in the approach passage 93a is about 1.5 mm. The protruding amount of the approach surface 82a with respect to the cylindrical portion 96 is about 2 mm.

図8はセパレータの第2の変更例を示しており,図4と同様の斜視図である。このセパレータ52bは,断面図で見ると図6と同様であるが,接近表面82bが三角形状の凹凸を周方向に繰り返すような形状になっている。接近表面82bの山の頂上と被冷却面との距離が約1.5mmである。山の頂上から谷の底部までの半径方向に計った高さは約2mmである。   FIG. 8 shows a second modification of the separator, and is a perspective view similar to FIG. The separator 52b is similar to FIG. 6 when viewed in a cross-sectional view, but the approach surface 82b is shaped to repeat triangular irregularities in the circumferential direction. The distance between the top of the mountain of the approaching surface 82b and the surface to be cooled is about 1.5 mm. The height measured in the radial direction from the top of the mountain to the bottom of the valley is about 2 mm.

図9はセパレータの第3の変更例を示しており,図5と同様の断面図である。図10は図9に示すセパレータの,図4と同様の斜視図である。このセパレータ52cは,円板部74の外周に円筒部96がつながっていて,この円筒部96の軸方向の端部に,半径方向の外側に突き出す,断面が三角形の突出部100が形成されている。三角形の突出部100の頂点と被冷却面92との距離は約1.5mmである。三角形の突出部100の半径方向の高さは約2mmである。この突出部100の斜面のうち,被冷却面92からの距離が所定値D(例えば,3mm)以内にある領域が,接近表面として機能する。被冷却面92からの距離がD以上に離れると,被冷却面92を十分に冷却するための役割が薄れる。被冷却面92からの距離がDのところで計った,突出部100の軸方向長さL2は2mmである。   FIG. 9 shows a third modification of the separator and is a cross-sectional view similar to FIG. FIG. 10 is a perspective view of the separator shown in FIG. 9 similar to FIG. The separator 52c has a cylindrical portion 96 connected to the outer periphery of the disc portion 74, and a protruding portion 100 having a triangular cross section is formed at the axial end of the cylindrical portion 96 and protrudes outward in the radial direction. Yes. The distance between the apex of the triangular protrusion 100 and the cooled surface 92 is about 1.5 mm. The radial height of the triangular protrusion 100 is about 2 mm. Of the slope of the protrusion 100, a region whose distance from the cooled surface 92 is within a predetermined value D (for example, 3 mm) functions as an approaching surface. When the distance from the surface to be cooled 92 is more than D, the role for sufficiently cooling the surface to be cooled 92 is diminished. The axial length L2 of the protrusion 100, measured at a distance D from the surface to be cooled 92, is 2 mm.

次に,本発明の回転対陰極X線管のモータ負荷についての実験結果を説明する。図11は,図2に示すセパレータ52を有する回転対陰極X線管(本発明)と,図13に示すセパレータ14を有する回転対陰極X線管(従来例)についてのモータ負荷の実験結果のグラフである。ただし,いずれのセパレータも,羽根78(図4を参照)を取り外したものを用いた。グラフの横軸は回転対陰極の回転速度である。縦軸は回転シャフト34に直結されたダイレクトモータの巻線に流れる電流である。ファインフォーカスのX線ビームのX線強度を高めることを主眼として,回転速度を9000rpmまで上昇させることを想定した実験である。回転速度9000rpmを得るために,従来例では,モータ電流は13.1Aを要した。これに対して,本発明では,モータ電流は9.3Aで済んだ。今回使用したモータの場合,モータ電流が約9Aのときは,電力は約800Wである。従来例と本発明とでは,セパレータの形状が異なるだけなので,本発明において,セパレータ52の接近表面82(図2)の軸方向長さL2を短くしたことで,モータの負荷がかなり軽くなったことが分かる。   Next, experimental results on the motor load of the rotating cathode X-ray tube of the present invention will be described. FIG. 11 shows the experimental results of the motor load for the rotating anti-cathode X-ray tube (invention) having the separator 52 shown in FIG. 2 and the rotating anti-cathode X-ray tube (conventional example) having the separator 14 shown in FIG. It is a graph. However, each separator used what removed the blade | wing 78 (refer FIG. 4). The horizontal axis of the graph represents the rotational speed of the rotating cathode. The vertical axis represents the current flowing in the winding of the direct motor directly connected to the rotary shaft 34. This is an experiment assuming that the rotational speed is increased to 9000 rpm, with the main aim of increasing the X-ray intensity of the fine focus X-ray beam. In order to obtain a rotational speed of 9000 rpm, in the conventional example, the motor current required 13.1A. On the other hand, in the present invention, the motor current is only 9.3 A. In the case of the motor used this time, when the motor current is about 9A, the power is about 800W. Since the conventional example and the present invention differ only in the shape of the separator, in the present invention, the axial length L2 of the approaching surface 82 (FIG. 2) of the separator 52 is shortened, so that the load on the motor is considerably reduced. I understand that.

図12は図11における本発明の方の実験データを得たときの冷却水の水圧のグラフである。実際の回転対陰極X線管でも,この程度の供給圧力で使用することになる。   FIG. 12 is a graph of the water pressure of the cooling water when the experimental data of the present invention in FIG. 11 is obtained. Even an actual rotating anti-cathode X-ray tube is used at such a supply pressure.

本発明の回転対陰極X線管はファインフォーカスの電子ビームを照射することを想定しているが,図13に示すセパレータに交換すれば,ノーマルフォーカス(例えば,約10mm×1mmの焦点サイズ)の電子ビームを照射することにも使える。さらに,X線発生用の投入電力によっては,セパレータを図2に示したもののままにしてノーマルフォーカスで使うことも可能である。ノーマルフォーカスでは,単位面積あたりの電子ビームエネルギーがそれほど大きくないので,電子ビーム照射領域の軸方向長さよりも短い接近表面であっても,冷却能力が十分であることが多いからである。   The rotating anti-cathode X-ray tube of the present invention is assumed to irradiate a fine focus electron beam. However, if it is replaced with the separator shown in FIG. 13, normal focus (for example, focus size of about 10 mm × 1 mm) is obtained. It can also be used to irradiate an electron beam. Furthermore, depending on the input power for generating X-rays, the separator can be used as in the normal focus with the one shown in FIG. This is because, in normal focus, the electron beam energy per unit area is not so large, and therefore the cooling capacity is often sufficient even for an approach surface that is shorter than the axial length of the electron beam irradiation region.

図15は本発明の回転対陰極X線管を備えたX線発生装置の構成図である。このX線発生装置は,回転対陰極X線管102と高圧電源104と冷媒供給装置106を備えている。高圧電源104は,回転対陰極X線管102の電子銃の陰極フィラメント108と回転対陰極10(接地電位である)との間に管電圧Eを印加して,管電流Iを流すものである。陰極フィラメント108には回転対陰極10に対して負の高電圧(例えば,マイナス60kV)が印加される。陰極フィラメント108からは回転対陰極10の外周面に対して電子ビーム16が照射され,その照射領域からX線110が発生する。   FIG. 15 is a block diagram of an X-ray generator provided with a rotating anti-cathode X-ray tube of the present invention. The X-ray generator includes a rotating anti-cathode X-ray tube 102, a high voltage power source 104, and a refrigerant supply device 106. The high-voltage power source 104 applies a tube voltage E between the cathode filament 108 of the electron gun of the rotating anti-cathode X-ray tube 102 and the rotating anti-cathode 10 (which is at the ground potential) and causes the tube current I to flow. . A negative high voltage (for example, minus 60 kV) is applied to the cathode filament 108 relative to the rotating cathode 10. The cathode filament 108 irradiates the outer peripheral surface of the rotating cathode 10 with the electron beam 16, and X-rays 110 are generated from the irradiated region.

冷媒供給装置106からは回転対陰極X線管102の入口用配管ニップル72に対して冷却水112が供給される。回転対陰極10を冷却して戻ってきた冷却水114(温度が上昇している)は,出口用配管ニップル74から出てくるが,この戻り冷却水114は,そのまま排水してもよいし,冷媒供給装置106で冷却して再循環して利用してもよい。   Cooling water 112 is supplied from the refrigerant supply device 106 to the inlet pipe nipple 72 of the rotating anti-cathode X-ray tube 102. Cooling water 114 (temperature rising) that has returned after cooling the rotating counter-cathode 10 comes out from the outlet pipe nipple 74, but this return cooling water 114 may be drained as it is, The refrigerant may be cooled and recirculated by the refrigerant supply device 106.

本発明の回転対陰極X線管の一実施例の要部の断面図である。It is sectional drawing of the principal part of one Example of the rotation anti-cathode X-ray tube of this invention. 回転対陰極の一部を拡大して示した断面図である。It is sectional drawing which expanded and showed a part of rotation counter cathode. セパレータの正面図である。It is a front view of a separator. セパレータの一部を切り欠いて示した斜視図である。It is the perspective view which notched and showed a part of separator. セパレータの接近表面の付近を示す断面図である。It is sectional drawing which shows the vicinity of the approach surface of a separator. セパレータの第1の変更例を示しており,図5と同様の断面図である。FIG. 6 shows a first modification of the separator, and is a cross-sectional view similar to FIG. 図6に示すセパレータの,図4と同様の斜視図である。It is a perspective view similar to FIG. 4 of the separator shown in FIG. セパレータの第2の変更例を示しており,図4と同様の斜視図である。FIG. 5 is a perspective view similar to FIG. 4, showing a second modification of the separator. セパレータの第3の変更例を示しており,図5と同様の断面図である。FIG. 10 shows a third modification of the separator, and is a cross-sectional view similar to FIG. 図10は図9に示すセパレータの,図4と同様の斜視図である。FIG. 10 is a perspective view of the separator shown in FIG. 9 similar to FIG. 図2に示すセパレータを有する回転対陰極X線管(本発明)と,図14に示すセパレータを有する回転対陰極X線管(従来例)についてのモータ負荷の実験結果のグラフである。It is a graph of the experimental result of the motor load about the rotation anti-cathode X-ray tube (this invention) which has a separator shown in FIG. 2, and the rotation anti-cathode X-ray tube (conventional example) which has a separator shown in FIG. 図11における本発明の方の実験データを得たときの冷却水の水圧のグラフである。It is a graph of the water pressure of the cooling water when obtaining the experimental data of the direction of the present invention in FIG. 従来の回転対陰極の縦断面図である。It is a longitudinal cross-sectional view of the conventional rotating counter cathode. ファインフォーカスにした場合の図13と同様の縦断面図である。It is the same longitudinal cross-sectional view as FIG. 13 at the time of setting it as a fine focus. 本発明の回転対陰極X線管を備えたX線発生装置の構成図である。It is a block diagram of the X-ray generator provided with the rotation anti-cathode X-ray tube of this invention.

符号の説明Explanation of symbols

10 回転対陰極
16 電子ビーム
18 電子ビーム照射領域
20 被冷却面
22 接近表面
50 第1の冷却水通路
52 セパレータ
54 第1の流出通路
56 第1の流入通路
58 第2の冷却水通路
60 仕切りパイプ
62 第2の流出通路
64 第2の流入通路
74 円板部
76 傾斜部
82 接近表面
84 第1部材
86 第2部材
92 被冷却面
93 接近通路
94 冷却水
102 回転対陰極X線管
104 高圧電源
106 冷媒供給装置
108 陰極フィラメント
110 X線
112 冷却水
L1 電子ビームの軸方向長さ
L2 接近表面の軸方向長さ
L3 回転対陰極の軸方向長さ
G 被冷却面と接近表面との間の接近距離
DESCRIPTION OF SYMBOLS 10 Rotating anti-cathode 16 Electron beam 18 Electron beam irradiation area | region 20 Cooled surface 22 Approaching surface 50 1st cooling water path 52 Separator 54 1st outflow path 56 1st inflow path 58 2nd cooling water path 60 Partition pipe 62 second outflow passage 64 second inflow passage 74 disc portion 76 inclined portion 82 approach surface 84 first member 86 second member 92 surface to be cooled 93 approach passage 94 cooling water 102 rotating cathode X-ray tube 104 high voltage power source 106 Refrigerant supply device 108 Cathode filament 110 X-ray 112 Cooling water L1 Axial length of electron beam L2 Axial length of approaching surface L3 Axial length of rotating counter-cathode G Approach between cooled surface and approaching surface distance

Claims (4)

次の構成を備える回転対陰極X線管。
(ア)X線発生材料で構成された円筒状のターゲット部材を備える回転対陰極であって,前記円筒状のターゲット部材の外周面の軸方向長さが43mmであり,使用時の回転速度が9000rpmである回転対陰極。
(イ)前記回転対陰極の内部に形成された冷媒通路であって,前記ターゲット部材の外周面上の電子線照射領域の裏側に存在する被冷却面に沿って冷媒が流れるように構成された冷媒通路。
(ウ)前記冷媒通路内に配置されていて静止しているセパレータであって,前記被冷却面に対面していて前記被冷却面までの距離が1.5mmの接近表面を備えていて,前記被冷却面と前記接近表面との間の接近通路に向かって冷媒が流れる流入通路と前記接近通路から遠ざかるように冷媒が流れる流出通路とに前記冷媒通路を分割し,前記接近表面の軸方向長さが2mmであるセパレータ。
A rotating anti-cathode X-ray tube having the following configuration.
(A) A rotating anti-cathode comprising a cylindrical target member made of an X-ray generating material, the axial length of the outer peripheral surface of the cylindrical target member is 43 mm, and the rotational speed during use is A rotating counter cathode that is 9000 rpm.
(B) A refrigerant passage formed inside the rotating counter cathode, wherein the refrigerant flows along a surface to be cooled that exists on the back side of the electron beam irradiation region on the outer peripheral surface of the target member. Refrigerant passage.
(C) a separator which is disposed in the refrigerant passage and is stationary, and is provided with an approaching surface facing the cooled surface and having a distance to the cooled surface of 1.5 mm , The refrigerant passage is divided into an inflow passage through which the refrigerant flows toward the approach passage between the surface to be cooled and the approach surface and an outflow passage through which the coolant flows away from the access passage, and the axial length of the access surface is divided. Separator whose length is 2 mm .
請求項1に記載の回転対陰極X線管において,前記ターゲット部材の外周面はファインフォーカスの電子ビームを照射されることを特徴とする回転対陰極X線管。   The rotating anti-cathode X-ray tube according to claim 1, wherein the outer peripheral surface of the target member is irradiated with a fine focus electron beam. 請求項1または2に記載の回転対陰極X線管において,前記セパレータは,円板部と,前記円板部の外周につながっている傾斜部とを備えていて,前記傾斜部は切頭円錐の形状をしていて,前記傾斜部の半径方向の外端における外周面が前記接近表面であることを特徴とする回転対陰極X線管。   3. The rotating anti-cathode X-ray tube according to claim 1, wherein the separator includes a disc portion and an inclined portion connected to an outer periphery of the disc portion, and the inclined portion is a truncated cone. A rotating anti-cathode X-ray tube characterized in that the outer peripheral surface at the radially outer end of the inclined portion is the approaching surface. 次の構成を備えるX線発生装置。
(ア)請求項1から3までのいずれか1項に記載の回転対陰極X線管。
(イ)前記回転対陰極X線管の冷媒通路に冷媒を供給する冷媒供給装置。
(ウ)前記回転対陰極X線管に管電圧と管電流を供給する高圧電源。
An X-ray generator having the following configuration.
(A) The rotating counter-cathode X-ray tube according to any one of claims 1 to 3.
(A) A refrigerant supply device that supplies a refrigerant to the refrigerant passage of the rotating cathode X-ray tube.
(C) A high voltage power source for supplying a tube voltage and a tube current to the rotating cathode X-ray tube.
JP2004369816A 2004-12-21 2004-12-21 Rotating anti-cathode X-ray tube and X-ray generator Active JP4210645B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004369816A JP4210645B2 (en) 2004-12-21 2004-12-21 Rotating anti-cathode X-ray tube and X-ray generator
DE602005015284T DE602005015284D1 (en) 2004-12-21 2005-12-19 X-ray tube with rotary anode
EP05027757A EP1675152B1 (en) 2004-12-21 2005-12-19 Rotating anode x-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004369816A JP4210645B2 (en) 2004-12-21 2004-12-21 Rotating anti-cathode X-ray tube and X-ray generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008005268A Division JP4629739B2 (en) 2008-01-15 2008-01-15 How to use a rotating anti-cathode X-ray tube

Publications (2)

Publication Number Publication Date
JP2006179240A JP2006179240A (en) 2006-07-06
JP4210645B2 true JP4210645B2 (en) 2009-01-21

Family

ID=35632344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004369816A Active JP4210645B2 (en) 2004-12-21 2004-12-21 Rotating anti-cathode X-ray tube and X-ray generator

Country Status (3)

Country Link
EP (1) EP1675152B1 (en)
JP (1) JP4210645B2 (en)
DE (1) DE602005015284D1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124039A (en) * 2008-01-15 2008-05-29 Rigaku Corp Operation method of rotation anticathode x-ray tube

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4814744B2 (en) * 2006-09-26 2011-11-16 ブルカー・エイエックスエス株式会社 Rotating anti-cathode X-ray tube and X-ray generator
US7508916B2 (en) * 2006-12-08 2009-03-24 General Electric Company Convectively cooled x-ray tube target and method of making same
ITBO20080147A1 (en) * 2008-03-05 2009-09-06 Micronica S R L RADIOLOGICAL EQUIPMENT
JP6863834B2 (en) * 2017-06-26 2021-04-21 キヤノン電子管デバイス株式会社 X-ray tube device
JP6960153B2 (en) 2017-09-05 2021-11-05 株式会社リガク X-ray generator
US20220249047A1 (en) * 2019-05-15 2022-08-11 Robert G. Zamenhof Technology for contrast-enhanced mammography
CN111243924B (en) * 2020-01-14 2022-10-25 中国电子科技集团公司第三十八研究所 Rotating target mechanism for ray source
JP2022050211A (en) * 2020-09-17 2022-03-30 東京エレクトロン株式会社 Rotary mechanism and substrate processing device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4622687A (en) * 1981-04-02 1986-11-11 Arthur H. Iversen Liquid cooled anode x-ray tubes
US4523327A (en) * 1983-01-05 1985-06-11 The United States Of America As Represented By The Secretary Of The Air Force Multi-color X-ray line source
JPS61259446A (en) * 1985-05-13 1986-11-17 Fujitsu Ltd Rotary anode x-ray generator
US4945562A (en) * 1989-04-24 1990-07-31 General Electric Company X-ray target cooling
JPH03171541A (en) * 1989-11-29 1991-07-25 Rigaku Corp Cooling method and device of target for x-ray generator
JP3659508B2 (en) * 1994-01-28 2005-06-15 株式会社リガク Rotating anti-cathode X-ray generator
JPH08106870A (en) * 1994-09-30 1996-04-23 Rigaku Corp Rotating pair cathode assembly of x-ray tube
JP2000251810A (en) * 1999-03-02 2000-09-14 Rigaku Corp Target for x-ray tube

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008124039A (en) * 2008-01-15 2008-05-29 Rigaku Corp Operation method of rotation anticathode x-ray tube
JP4629739B2 (en) * 2008-01-15 2011-02-09 株式会社リガク How to use a rotating anti-cathode X-ray tube

Also Published As

Publication number Publication date
DE602005015284D1 (en) 2009-08-20
JP2006179240A (en) 2006-07-06
EP1675152A2 (en) 2006-06-28
EP1675152B1 (en) 2009-07-08
EP1675152A3 (en) 2008-05-21

Similar Documents

Publication Publication Date Title
EP1675152B1 (en) Rotating anode x-ray tube
US4405876A (en) Liquid cooled anode x-ray tubes
JP5259406B2 (en) Rotating anode X-ray tube
JPH0340348A (en) X-ray target colling method
JP2007109659A (en) X-ray device
JP5709251B2 (en) Rotating wheel electrode for gas discharge light source with wheel cover for high power operation
US6426998B1 (en) X-ray radiator with rotating bulb tube with exteriorly profiled anode to improve cooling
JP2000003799A (en) Cooling of x-ray device
JP4629739B2 (en) How to use a rotating anti-cathode X-ray tube
US11869742B2 (en) X-ray source with rotating liquid-metal target
JP4238245B2 (en) X-ray generation method and X-ray generation apparatus
US7174001B2 (en) Integrated fluid pump for use in an x-ray tube
US8428222B2 (en) X-ray tube target and method of repairing a damaged x-ray tube target
JP5022072B2 (en) X-ray tube cooling assembly
JP2010262784A (en) X-ray tube, and x-ray tube device
WO2015186409A1 (en) Rotating anode x-ray tube
US10892134B2 (en) X-ray generator
JP5257607B2 (en) Envelope rotating X-ray tube device
CN110199373B (en) High power X-ray source and method of operation
JP2007066900A (en) Rotating envelope radiator
JP6652197B2 (en) X-ray tube
JP4814744B2 (en) Rotating anti-cathode X-ray tube and X-ray generator
JP4206329B2 (en) X-ray tube
JP3148273B2 (en) Rotating anti-cathode X-ray generator
JP5022124B2 (en) Rotating anti-cathode X-ray generator and X-ray generation method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070327

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4210645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250