JP5257607B2 - Envelope rotating X-ray tube device - Google Patents

Envelope rotating X-ray tube device Download PDF

Info

Publication number
JP5257607B2
JP5257607B2 JP2009038818A JP2009038818A JP5257607B2 JP 5257607 B2 JP5257607 B2 JP 5257607B2 JP 2009038818 A JP2009038818 A JP 2009038818A JP 2009038818 A JP2009038818 A JP 2009038818A JP 5257607 B2 JP5257607 B2 JP 5257607B2
Authority
JP
Japan
Prior art keywords
envelope
exposed surface
tube container
insulating gas
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009038818A
Other languages
Japanese (ja)
Other versions
JP2010198744A (en
Inventor
辰也 吉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2009038818A priority Critical patent/JP5257607B2/en
Publication of JP2010198744A publication Critical patent/JP2010198744A/en
Application granted granted Critical
Publication of JP5257607B2 publication Critical patent/JP5257607B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • X-Ray Techniques (AREA)

Description

本発明は、医療診断用のX線管装置に関し、特に外囲器回転型X線管装置に関する。   The present invention relates to an X-ray tube apparatus for medical diagnosis, and more particularly to an envelope rotating X-ray tube apparatus.

従来の外囲器回転型X線管装置として、例えば、X線照射器ハウジング(以下、管容器と称する)内に金属製真空容器(以下、外囲器と称する)が回転可能に支持され、外囲器の外側面にある陽極板(以下、陽極と称する)が冷却油等の液状冷却材によって冷却される構造の外囲器回転型X線管装置が知られている。この装置においては、この外囲器の下側に、冷却油を収容する開放貯蔵槽と、冷却油を搬送する搬送ポンプとが備えられ、この搬送ポンプによって、冷却油が開放貯蔵槽から陽極へ強制的に供給されるとともに管容器内で循環せしめられることにより、陽極が冷却される構造となっている。(例えば特許文献1参照)   As a conventional envelope rotation type X-ray tube device, for example, a metal vacuum vessel (hereinafter referred to as an envelope) is rotatably supported in an X-ray irradiator housing (hereinafter referred to as a tube vessel), 2. Description of the Related Art An envelope rotating X-ray tube apparatus having a structure in which an anode plate (hereinafter referred to as an anode) on an outer surface of an envelope is cooled by a liquid coolant such as cooling oil is known. In this apparatus, an open storage tank for storing the cooling oil and a transport pump for transporting the cooling oil are provided below the envelope, and the cooling oil is transferred from the open storage tank to the anode by the transport pump. The anode is cooled by being forcibly supplied and circulated in the tube container. (For example, see Patent Document 1)

特表2003−515877号Special table 2003-515877

しかしながら、この従来技術においては、冷却油中において外囲器を高速回転させるため、冷却油と外囲器の間に生じる大きな粘性抵抗によって回転するモータに負荷がかかるので、結果として、外囲器を回転させるモータの大トルク化に伴う大型化、重量化およびコストアップが問題となっていた。また、冷却油を管容器内で強制的に循環させるために、開放貯蔵槽および搬送ポンプが必要となるので、外囲器回転型X線管装置の小型化、軽量化が困難であった。
したがって、本発明の課題は、小型化、軽量化が可能な外囲器回転型X線管装置を提供することにある。
However, in this prior art, since the envelope is rotated at a high speed in the cooling oil, a load is applied to the rotating motor due to a large viscous resistance generated between the cooling oil and the envelope. The increase in size, weight, and cost associated with the increase in torque of the motor that rotates the motor have been problems. Further, since an open storage tank and a transfer pump are required to forcibly circulate the cooling oil in the tube container, it has been difficult to reduce the size and weight of the envelope rotating X-ray tube device.
Therefore, the subject of this invention is providing the envelope rotation type | mold X-ray tube apparatus which can be reduced in size and weight.

上記課題を解決するため、本発明は、管容器と、前記管容器に収容された外囲器と、前記外囲器内に対向配置された陰極および陽極と、前記陰極および前記陽極を結ぶ直線に沿って前記外囲器の両外側にのびる回転軸と、前記管容器に設けられて前記回転軸を支持する軸受けと、前記回転軸を回転させる駆動装置と、前記管容器内における前記外囲器の外側空間に充填された絶縁ガスとを備えた外囲器回転型X線管装置において、前記陽極における前記陰極と反対側の面が前記管容器内に露出し、前記陽極の露出面または前記管容器の内面またはそれら両方に設けられ、前記外囲器の回転に伴って、前記管容器内において、前記露出面に沿って当該露出面の回転中心から動径方向外向きの第1の流れと、当該露出面から離れた場所から前記回転軸方向に沿って当該露出面の回転中心に向かう第2の流れとを含む前記絶縁ガスの循環流を強制的に形成する絶縁ガス強制循環手段を備えたことを特徴とする外囲器回転型X線管装置を提供する。   In order to solve the above-described problems, the present invention provides a tube container, an envelope accommodated in the tube container, a cathode and an anode disposed opposite to each other in the envelope, and a straight line connecting the cathode and the anode. A rotating shaft extending to both outer sides of the envelope along the outer periphery, a bearing provided on the tube container to support the rotating shaft, a driving device for rotating the rotating shaft, and the enclosure in the tube container In an envelope rotating X-ray tube device comprising an insulating gas filled in the outer space of the vessel, the surface of the anode opposite to the cathode is exposed in the tube container, and the exposed surface of the anode or The first inner surface provided on the inner surface of the tube container or both of them, and radially outward from the rotation center of the exposed surface along the exposed surface in the tube container as the envelope rotates. From the flow and away from the exposed surface. An envelope rotating type comprising an insulating gas forced circulation means for forcibly forming a circulating flow of the insulating gas including a second flow toward the rotation center of the exposed surface along the axial direction. An x-ray tube apparatus is provided.

上記構成において、好ましくは、前記絶縁ガス強制循環手段が、前記露出面に突設されて、当該露出面の回転中心から動径方向にのびる少なくとも1つ以上の羽根を有する。さらに好ましくは、前記絶縁ガス強制循環手段が、前記露出面に対向して当該露出面から所定間隔をあけて配置され、中央に前記回転軸が通される開口部を有する仕切り板と、前記管容器の内面に設けられ、前記仕切り板を支持する仕切り板支持手段とを有し、前記外囲器が回転するとき、前記第1の流れが前記仕切り板と前記露出面との間隙から出て行く一方、前記第2の流れが前記開口部から前記間隙中に進入するように構成する。   In the above configuration, preferably, the insulating gas forced circulation means has at least one or more blades protruding from the exposed surface and extending in the radial direction from the rotation center of the exposed surface. More preferably, the insulating gas forced circulation means is disposed at a predetermined interval from the exposed surface so as to face the exposed surface, and has a partition plate having an opening through which the rotating shaft passes, and the tube Partition plate supporting means provided on the inner surface of the container and supporting the partition plate, and when the envelope rotates, the first flow comes out of a gap between the partition plate and the exposed surface. On the other hand, the second flow is configured to enter the gap from the opening.

上記構成において、また好ましくは、前記管容器の外側に設けられて、前記循環流の一部を取り込んで前記管容器内に排出するバイパス流路と、前記バイパス流路の途中に設けられた前記絶縁ガス冷却装置とをさらに備えるように構成する。   In the above-described configuration, preferably, the bypass channel is provided outside the tube container, takes a part of the circulation flow and discharges it into the tube container, and the bypass channel is provided in the middle of the bypass channel. An insulating gas cooling device is further provided.

本発明によれば、冷却油の代わりに粘性の小さな絶縁ガスを用いて、絶縁ガスと外囲器の間の粘性抵抗を小さくしたので、モータの大トルク化が不要となり、モータの小型化、軽量化およびコストダウンが可能になる。また、絶縁ガス強制循環手段によって、外囲器が回転する間に、管容器内において、陽極の露出面に沿ってこの露出面の回転中心から動径方向外向きの第1の流れと、この露出面から離れた場所から回転軸に沿って露出面の回転中心に向かう第2の流れを形成して、絶縁ガスを強制的に循環させるように構成したので、陽極を効率よく冷却することが可能になる。   According to the present invention, since the viscous resistance between the insulating gas and the envelope is reduced by using an insulating gas having a low viscosity instead of the cooling oil, it is not necessary to increase the torque of the motor, and the motor can be downsized. Weight reduction and cost reduction are possible. In addition, while the envelope is rotated by the insulating gas forced circulation means, a first flow radially outward from the rotation center of the exposed surface along the exposed surface of the anode in the tube container, Since the second flow is formed from the place away from the exposed surface along the rotation axis toward the rotation center of the exposed surface to circulate the insulating gas forcibly, the anode can be efficiently cooled. It becomes possible.

ここで、絶縁ガス強制循環手段として、好ましくは、羽根を備えることにより、外囲器の回転力をより効率よく絶縁ガスの循環流に伝達することができ、さらに、管容器内に固定された仕切り板によって、絶縁ガスの第1の流れおよび第2の流れを整流するようにしたので、陽極をより効率よく冷却することが可能になる。   Here, as the insulating gas forced circulation means, preferably, by providing a blade, the rotational force of the envelope can be more efficiently transmitted to the circulating flow of the insulating gas, and is further fixed in the tube container. Since the first flow and the second flow of the insulating gas are rectified by the partition plate, the anode can be cooled more efficiently.

また、管容器の外側にバイパス経路および絶縁ガス冷却装置を備えて、循環流の一部をバイパス流路に取り込んで絶縁ガス冷却装置で冷却して再び管容器内に排出するように構成したので、管容器内の絶縁ガスを効率よく循環させて冷却することが可能になる。   In addition, since the bypass passage and the insulating gas cooling device are provided outside the tube container, a part of the circulation flow is taken into the bypass flow path, cooled by the insulating gas cooling device, and discharged again into the tube container. The insulating gas in the tube container can be efficiently circulated and cooled.

本発明の1実施例による外囲器回転型X線管装置の概略構成を示す側断面図である。1 is a side sectional view showing a schematic configuration of an envelope rotating X-ray tube device according to one embodiment of the present invention. 図1の矢印線X―X’に沿った断面図である。FIG. 2 is a cross-sectional view taken along an arrow line X-X ′ in FIG. 1.

以下、添付図面を参照して本発明の好ましい実施例について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings.

(実施例)
図1は、本発明の1実施例による外囲器回転型X線管装置の概略構成を示す側断面図であり、図2は、図1の矢印線X―X’に沿った断面図である。
(Example)
FIG. 1 is a side sectional view showing a schematic configuration of an envelope rotating X-ray tube apparatus according to one embodiment of the present invention, and FIG. 2 is a sectional view taken along an arrow line XX ′ in FIG. is there.

図1および図2に示すように、この外囲器回転型X線管装置1は、管容器2と、この管容器2に収容された外囲器3とから構成されている。
外囲器3は、その内部に対向配置された陰極4および陽極5を有している。また、陽極5における陰極4と反対側の面6は管容器2内に露出している。外囲器3は、金属やセラミックから形成される公知のものが用いられ、外囲器3における陰極4側の面は、例えばセラミックなどの絶縁材料からなることが好ましい。陽極5は、後述する電子衝突により高温となるため、例えばタングステンやモリブデン等の高融点金属からなる。
外囲器3の両外側には、回転軸7a、7bが陰極4および陽極5を結ぶ直線に沿ってのびている。回転軸7a、7bは、管容器2内に設けられて軸受け8a、8bを軸支している。軸受け8a、8bは、管容器2内に設けられた仕切り壁9a、9bに取り付けられている。回転軸7bにおける管容器2から外側に突出した端部には、この回転軸7bを回転させるモータ(駆動装置)10が設けられている。
ここで、仕切り壁9a、9bのそれぞれ外側の軸受け8a、8b近傍には、フランジ11a、11bが設けられている。フランジ11a、11bの上面には、それぞれ管容器2内に一部が挿入されて固設されたソケット12a、12bから高電圧線13a、13bを介して電気接続されたストップリング14a、14bが固定されている。ストップリング14a、14bは、それぞれ回転軸7a、7bを介して、陰極4および陽極5に高電圧を印加する。フランジ11a、11b、ソケット12a、12b、高電圧線13a、13bおよびストップリング14a、14bは、仕切り壁9a、9bによって外囲器3と分離されている。
管容器2内には、偏向コイル15が外囲器3の凹部分を挟んで対向配置されている。また、管容器2には、X線窓16が設けられている。
また、例えば六フッ化硫黄(SF)からなる絶縁ガス17が、管容器2内における外囲器3の外側空間に充填されている。
As shown in FIGS. 1 and 2, the envelope rotary X-ray tube apparatus 1 includes a tube container 2 and an envelope 3 accommodated in the tube container 2.
The envelope 3 has a cathode 4 and an anode 5 which are disposed so as to face each other. The surface 6 of the anode 5 opposite to the cathode 4 is exposed in the tube container 2. The envelope 3 is made of a known material made of metal or ceramic, and the surface of the envelope 3 on the cathode 4 side is preferably made of an insulating material such as ceramic. The anode 5 is made of a high melting point metal such as tungsten or molybdenum because it becomes high temperature due to electron collision described later.
On both outer sides of the envelope 3, rotating shafts 7 a and 7 b extend along a straight line connecting the cathode 4 and the anode 5. The rotary shafts 7a and 7b are provided in the tube container 2 and support the bearings 8a and 8b. The bearings 8 a and 8 b are attached to partition walls 9 a and 9 b provided in the tube container 2. A motor (driving device) 10 that rotates the rotating shaft 7b is provided at an end of the rotating shaft 7b that protrudes outward from the tube container 2.
Here, flanges 11a and 11b are provided in the vicinity of the outer bearings 8a and 8b of the partition walls 9a and 9b, respectively. Stop rings 14a and 14b, which are electrically connected via high voltage wires 13a and 13b from sockets 12a and 12b that are partially inserted and fixed in the tube container 2, are fixed to the upper surfaces of the flanges 11a and 11b. Has been. The stop rings 14a and 14b apply a high voltage to the cathode 4 and the anode 5 through the rotation shafts 7a and 7b, respectively. The flanges 11a and 11b, the sockets 12a and 12b, the high voltage lines 13a and 13b, and the stop rings 14a and 14b are separated from the envelope 3 by the partition walls 9a and 9b.
A deflection coil 15 is disposed in the tube container 2 so as to face the concave portion of the envelope 3. The tube container 2 is provided with an X-ray window 16.
In addition, an insulating gas 17 made of, for example, sulfur hexafluoride (SF 6 ) is filled in the outer space of the envelope 3 in the tube container 2.

この外囲器回転型X線管装置1は、後述する絶縁ガス強制循環手段として、羽根18、仕切り板19および仕切り板支持手段20を備える。
羽根18は、陽極5の露出面6に突設されるとともにこの露出面6の回転中心から動径方向にのびている。仕切り板19は、露出面6に対向して露出面6から所定間隔をあけて配置されている。仕切り板19の中央には開口部21が形成されており、回転軸7bがこの開口部21に通されている。仕切り板支持手段20は、概ね円筒形状であって管容器2の内面に設けられるようになっており、一端側20aが仕切り壁9bに固定されるとともに他端開口20bが露出面6側に対向している。そして、仕切り板支持手段20は、仕切り板19が仕切り板支持手段20の内部に嵌め込まれて、仕切り板19の外周面が仕切り板支持手段20の内周面に接合される。また、仕切り板支持手段20は、他端開口20bの縁の一部に切り欠き状の開口20cを有し、当該切り欠き状の開口20cが後述するバイパス流路22の入口22aに対向している。ここで、切り欠き状の開口20cの深さは、他端開口20bの縁と仕切り板19間の距離より短いことが好ましい。
The envelope rotary X-ray tube apparatus 1 includes blades 18, a partition plate 19, and a partition plate support unit 20 as an insulating gas forced circulation unit to be described later.
The blade 18 projects from the exposed surface 6 of the anode 5 and extends from the center of rotation of the exposed surface 6 in the radial direction. The partition plate 19 is disposed at a predetermined interval from the exposed surface 6 so as to face the exposed surface 6. An opening 21 is formed at the center of the partition plate 19, and the rotating shaft 7 b is passed through the opening 21. The partition plate support means 20 has a substantially cylindrical shape and is provided on the inner surface of the tube container 2. One end side 20 a is fixed to the partition wall 9 b and the other end opening 20 b faces the exposed surface 6 side. doing. In the partition plate support means 20, the partition plate 19 is fitted into the partition plate support means 20, and the outer peripheral surface of the partition plate 19 is joined to the inner peripheral surface of the partition plate support means 20. Further, the partition plate support means 20 has a notch-shaped opening 20c at a part of the edge of the other end opening 20b, and the notch-shaped opening 20c faces an inlet 22a of a bypass channel 22 described later. Yes. Here, the depth of the notch-shaped opening 20 c is preferably shorter than the distance between the edge of the other end opening 20 b and the partition plate 19.

また、この外囲器回転型X線管装置1は、管容器2の外側に設けられたバイパス流路22と、バイパス流路22の途中に設けられた絶縁ガス冷却装置としてのラジエータ23および冷却ファン24を備えている。バイパス流路22は、その両端が管容器2に接続されており、絶縁ガス17の一部25が切り欠き状の開口20cおよび入口22aを通ってバイパス流路20に取り込まれ、出口22bを通って再び管容器2内に戻されるようになっている。冷却ファン24は、ラジエータ23近傍に設置されてラジエータ23を冷却する。   The envelope rotary X-ray tube apparatus 1 includes a bypass channel 22 provided outside the tube container 2, a radiator 23 serving as an insulating gas cooling device provided in the middle of the bypass channel 22, and cooling. A fan 24 is provided. Both ends of the bypass channel 22 are connected to the tube container 2, and a part 25 of the insulating gas 17 is taken into the bypass channel 20 through the notch-shaped opening 20 c and the inlet 22 a and passes through the outlet 22 b. Then, it is returned to the tube container 2 again. The cooling fan 24 is installed in the vicinity of the radiator 23 and cools the radiator 23.

次に、この外囲器回転型X線管装置1の動作について簡単に説明する。   Next, the operation of the envelope rotating X-ray tube apparatus 1 will be briefly described.

モータ10を駆動させて外囲器3を高速回転させながら、陰極4のフィラメント(図示せず)を加熱するとともに陰極4と陽極5の間に直流高電圧を印加する。これによって、陰極4のフィラメントで生成された電子が、高電圧によって加速され、偏向コイル15によって進路変更されて陽極5に衝突する。この陽極5への電子衝突により、陽極5からX線が放出されて、X線窓16を通って管容器2外部へ照射される。なお、外囲器3を回転させるのは、陽極5の特定箇所のみに電子衝突が集中して、特定箇所が加熱されるのを防止するためである。
外囲器3の回転に伴って、管容器2内において、露出面6に沿ってこの露出面6の回転中心から動径方向外向きの第1の流れ26と、露出面6から離れた場所から回転軸7b方向に沿ってこの露出面6の回転中心に向かう第2の流れ27とが形成され、絶縁ガス17の循環流が強制的に形成される。第1の流れ26は、羽根18の回転によって仕切り板19と露出面6との間隙から出て行く一方、第2の流れ27は、開口部21から間隙中に進入する。これによって、加熱された陽極5が冷却される。
さらに、絶縁ガス17の循環流の一部25が、切り欠き状の開口20cおよび入口22aを通ってバイパス流路22に取り込まれて、ラジエータ23および冷却ファン24で冷却されて、出口22bを通って再び管容器2内に排出される。これによって、管容器2内の絶縁ガス17が循環および冷却せしめられる。
While driving the motor 10 to rotate the envelope 3 at a high speed, the filament (not shown) of the cathode 4 is heated and a DC high voltage is applied between the cathode 4 and the anode 5. As a result, electrons generated by the filament of the cathode 4 are accelerated by a high voltage, changed in path by the deflection coil 15 and collide with the anode 5. Due to the electron collision with the anode 5, X-rays are emitted from the anode 5 and irradiated to the outside of the tube container 2 through the X-ray window 16. The reason why the envelope 3 is rotated is to prevent the electron collision from concentrating only on a specific portion of the anode 5 and heating the specific portion.
Along with the rotation of the envelope 3, the first flow 26 radially outward from the rotation center of the exposed surface 6 along the exposed surface 6 along the exposed surface 6, and a place away from the exposed surface 6. A second flow 27 is formed along the direction of the rotation axis 7b toward the rotation center of the exposed surface 6, and a circulation flow of the insulating gas 17 is forcibly formed. The first flow 26 exits from the gap between the partition plate 19 and the exposed surface 6 by the rotation of the blades 18, while the second flow 27 enters the gap from the opening 21. Thereby, the heated anode 5 is cooled.
Further, a part 25 of the circulating flow of the insulating gas 17 is taken into the bypass passage 22 through the notch-shaped opening 20c and the inlet 22a, cooled by the radiator 23 and the cooling fan 24, and passed through the outlet 22b. Then, it is discharged again into the tube container 2. As a result, the insulating gas 17 in the tube container 2 is circulated and cooled.

本発明の外囲器回転型X線管装置によれば、冷却油の代わりに粘性の小さな絶縁ガスを用いて、絶縁ガスと外囲器の間の粘性抵抗を小さくしたので、モータの負荷が従来よりも大きく軽減され、モータの小型化、軽量化およびコストダウンが可能になる。また、絶縁ガス強制循環手段によって、外囲器が回転する間に、第1の流れおよび第2の流れを形成して、絶縁ガスを強制的に循環させるとともに、循環流の一部をバイパス流路に取り込んで絶縁ガス冷却装置で冷却して再び管容器内に排出するように構成したので、管容器内の絶縁ガスを効率よく循環させて冷却することが可能になる。   According to the envelope rotating type X-ray tube device of the present invention, since the viscous resistance between the insulating gas and the envelope is reduced by using a low viscosity insulating gas instead of the cooling oil, the load on the motor is reduced. It is greatly reduced compared to the prior art, and the motor can be reduced in size, weight and cost. Further, the insulating gas forced circulation means forms a first flow and a second flow while the envelope rotates, forcibly circulating the insulating gas, and bypassing a part of the circulation flow. Since it is configured to take in the passage, cool with the insulating gas cooling device, and discharge again into the tube container, the insulating gas in the tube container can be efficiently circulated and cooled.

本発明の構成は、上述の実施例に限定されるものではない。例えば、上述の実施例では、絶縁ガス強制循環手段は、羽根、仕切り板および仕切り板支持手段から構成されているが、外囲器の回転力に伴って管容器内で絶縁ガスを循環せしめるものであれば、これらが省略され、または他の新たな構造物が設けられてもよい。本願の特許請求の範囲の構成において、様々な変形例およびその改良例を創作することが可能である。   The configuration of the present invention is not limited to the above-described embodiment. For example, in the above-described embodiment, the insulating gas forced circulation means is composed of the blades, the partition plate and the partition plate support means, but circulates the insulating gas in the tube container in accordance with the rotational force of the envelope. If so, these may be omitted or other new structures may be provided. Various modifications and improvements can be made in the structure of the claims of the present application.

1 外囲器回転型X線管装置
2 管容器
3 外囲器
4 陰極
5 陽極
6 陽極の露出面
7a、7b 回転軸
8a、8b 軸受け
9a、9b 仕切り壁
10 モータ(駆動装置)
11a、11b フランジ
12a、12b ソケット
13a、13b 高電圧線
14a、14b ストップリング
15 偏向コイル
16 X線窓
17 絶縁ガス
18 羽根
19 仕切り板
20 仕切り板支持手段
20a 一端側
20b 他端開口
20c 切り欠き状の開口
21 開口部
22 バイパス流路
22a 入口
22b 出口
23 ラジエータ(絶縁ガス冷却装置)
24 冷却ファン
25 循環流の一部
26 第1の流れ
27 第2の流れ
DESCRIPTION OF SYMBOLS 1 Envelope rotation type X-ray tube apparatus 2 Tube container 3 Envelope 4 Cathode 5 Anode 6 Exposed surface 7a, 7b Rotating shaft 8a, 8b Bearing 9a, 9b Partition wall 10 Motor (driving device)
11a, 11b Flange 12a, 12b Sockets 13a, 13b High voltage wires 14a, 14b Stop ring 15 Deflection coil 16 X-ray window 17 Insulating gas 18 Blade 19 Partition plate 20 Partition plate support means 20a One end side 20b Other end opening 20c Notch shape Opening 21 Opening 22 Bypass flow path 22a Inlet 22b Outlet 23 Radiator (insulating gas cooling device)
24 Cooling fan 25 Part of circulating flow 26 First flow 27 Second flow

Claims (4)

管容器と、前記管容器に収容された外囲器と、前記外囲器内に対向配置された陰極および陽極と、前記陰極および前記陽極を結ぶ直線に沿って前記外囲器の両外側にのびる回転軸と、前記管容器に設けられて前記回転軸を支持する軸受けと、前記回転軸を回転させる駆動装置と、前記管容器内における前記外囲器の外側空間に充填された絶縁ガスとを備えた外囲器回転型X線管装置において、
前記陽極における前記陰極と反対側の面が前記管容器内に露出し、
前記陽極の露出面または前記管容器の内面またはそれら両方に設けられ、前記外囲器の回転に伴って、前記管容器内において、前記露出面に沿って当該露出面の回転中心から動径方向外向きの第1の流れと、当該露出面から離れた場所から前記回転軸方向に沿って当該露出面の回転中心に向かう第2の流れとを含む前記絶縁ガスの循環流を強制的に形成する絶縁ガス強制循環手段を備えたことを特徴とする外囲器回転型X線管装置。
A tube container, an envelope housed in the tube container, a cathode and an anode disposed opposite to each other in the envelope, and on both outer sides of the envelope along a straight line connecting the cathode and the anode A rotating shaft that extends, a bearing that is provided in the tube container and supports the rotating shaft, a drive device that rotates the rotating shaft, and an insulating gas that fills an outer space of the envelope in the tube container In an envelope rotation type X-ray tube device comprising:
A surface of the anode opposite to the cathode is exposed in the tube container;
Provided on the exposed surface of the anode and / or the inner surface of the tube container, and in the radial direction from the rotation center of the exposed surface along the exposed surface in the tube container as the envelope rotates. A circulating flow of the insulating gas is forcibly formed including an outward first flow and a second flow from the location away from the exposed surface toward the rotation center of the exposed surface along the rotation axis direction. An envelope rotating type X-ray tube device comprising an insulating gas forced circulation means for performing the operation.
前記絶縁ガス強制循環手段が、前記露出面に突設されて、当該露出面の回転中心から動径方向にのびる少なくとも1つ以上の羽根を有することを特徴とする請求項1に記載の外囲器回転型X線管装置。   2. The enclosure according to claim 1, wherein the insulating gas forced circulation means has at least one blade that protrudes from the exposed surface and extends in a radial direction from a rotation center of the exposed surface. Rotating X-ray tube device. 前記絶縁ガス強制循環手段が、さらに、前記露出面に対向して当該露出面から所定間隔をあけて配置され、中央に前記回転軸が通される開口部を有する仕切り板と、前記管容器の内面に設けられ、前記仕切り板を支持する仕切り板支持手段とを有し、
前記外囲器が回転するとき、前記第1の流れが前記仕切り板と前記露出面との間隙から出て行く一方、前記第2の流れが前記開口部から前記間隙中に進入することを特徴とする請求項2に記載の外囲器回転型X線管装置。
The insulating gas forced circulation means is further disposed at a predetermined interval from the exposed surface so as to face the exposed surface, and a partition plate having an opening through which the rotating shaft passes, and the tube container. Partition plate support means provided on the inner surface and supporting the partition plate;
When the envelope rotates, the first flow exits from the gap between the partition plate and the exposed surface, while the second flow enters the gap from the opening. The envelope rotating X-ray tube apparatus according to claim 2.
前記管容器の外側に設けられて、前記循環流の一部を取り込んで前記管容器内に排出するバイパス流路と、前記バイパス流路の途中に設けられた前記絶縁ガス冷却装置とをさらに備えたことを特徴とする請求項1〜3のいずれかに記載の外囲器回転型X線管装置。   A bypass passage provided outside the tube vessel for taking a part of the circulation flow and discharging it into the tube vessel; and the insulating gas cooling device provided in the middle of the bypass passage. The envelope rotation type X-ray tube device according to any one of claims 1 to 3.
JP2009038818A 2009-02-23 2009-02-23 Envelope rotating X-ray tube device Expired - Fee Related JP5257607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009038818A JP5257607B2 (en) 2009-02-23 2009-02-23 Envelope rotating X-ray tube device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009038818A JP5257607B2 (en) 2009-02-23 2009-02-23 Envelope rotating X-ray tube device

Publications (2)

Publication Number Publication Date
JP2010198744A JP2010198744A (en) 2010-09-09
JP5257607B2 true JP5257607B2 (en) 2013-08-07

Family

ID=42823301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009038818A Expired - Fee Related JP5257607B2 (en) 2009-02-23 2009-02-23 Envelope rotating X-ray tube device

Country Status (1)

Country Link
JP (1) JP5257607B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5880727B2 (en) * 2012-10-22 2016-03-09 株式会社島津製作所 X-ray tube device
US10896798B2 (en) 2016-08-01 2021-01-19 Koninklijke Philips N.V. X-ray unit
DE102017002210A1 (en) * 2017-03-08 2018-09-13 Heuft Systemtechnik Gmbh Cooling device for X-ray generators
CN112233958B (en) * 2020-10-19 2024-03-29 上海科颐维电子科技有限公司 Heat radiation protection device for X-ray tube heat radiation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3148273B2 (en) * 1991-04-02 2001-03-19 理学電機株式会社 Rotating anti-cathode X-ray generator
DE19631899A1 (en) * 1996-08-07 1998-02-12 Siemens Ag X=ray tube
DE19843649C2 (en) * 1998-09-23 2000-08-24 Siemens Ag Low-cost X-ray tube
DE19851853C1 (en) * 1998-11-10 2000-06-08 Siemens Ag Rotary piston X=ray emitter
DE19956491C2 (en) * 1999-11-24 2001-09-27 Siemens Ag X-ray tube with forced-cooled anode
JP2008027852A (en) * 2006-07-25 2008-02-07 Shimadzu Corp Envelope rotating x-ray tube device

Also Published As

Publication number Publication date
JP2010198744A (en) 2010-09-09

Similar Documents

Publication Publication Date Title
US6430260B1 (en) X-ray tube anode cooling device and systems incorporating same
JP5259406B2 (en) Rotating anode X-ray tube
US7443957B2 (en) X-ray apparatus with a cooling device through which cooling fluid flows
JP5257607B2 (en) Envelope rotating X-ray tube device
JP2008147188A (en) Convection cooling type x-ray tube target and its manufacturing method
JP2003515877A (en) X-ray irradiator with forced cooling rotary anode
JP2007035634A (en) Rotating anode radiator
JP2006179482A (en) Cooled radiation emitting device
JP6168901B2 (en) X-ray tube device and air-cooling mechanism of X-ray tube device
US4734927A (en) Equipped force-convection housing unit for a rotating-anode X-ray tube
US7174001B2 (en) Integrated fluid pump for use in an x-ray tube
US7025502B2 (en) Apparatus with a rotationally driven body in a fluid-filled housing
JP5022072B2 (en) X-ray tube cooling assembly
EP4131324A1 (en) Sliding bearing unit and rotary anode type x-ray tube
JP4309290B2 (en) Liquid metal heat pipe structure for X-ray targets
CN113948357B (en) X-ray source device comprising an anode for generating X-rays
JP6996896B2 (en) Cooling system
JP2008027852A (en) Envelope rotating x-ray tube device
JP2010103046A (en) Rotating anode x-ray tube
JP2007066900A (en) Rotating envelope radiator
JP4814744B2 (en) Rotating anti-cathode X-ray tube and X-ray generator
JP2009021182A (en) X-ray tube apparatus
JP6558908B2 (en) Target mount for X-ray generator and X-ray generator provided with the same
JP2022017875A (en) Rotary anode type x-ray tube device and x-ray imaging system
JP3148273B2 (en) Rotating anti-cathode X-ray generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110524

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130409

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5257607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees