JP4210147B2 - Method of hydroforming high strength steel - Google Patents

Method of hydroforming high strength steel Download PDF

Info

Publication number
JP4210147B2
JP4210147B2 JP2003127948A JP2003127948A JP4210147B2 JP 4210147 B2 JP4210147 B2 JP 4210147B2 JP 2003127948 A JP2003127948 A JP 2003127948A JP 2003127948 A JP2003127948 A JP 2003127948A JP 4210147 B2 JP4210147 B2 JP 4210147B2
Authority
JP
Japan
Prior art keywords
steel material
strength steel
hydroforming
temperature
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003127948A
Other languages
Japanese (ja)
Other versions
JP2004330230A (en
Inventor
浩一 佐藤
逸朗 弘重
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2003127948A priority Critical patent/JP4210147B2/en
Publication of JP2004330230A publication Critical patent/JP2004330230A/en
Application granted granted Critical
Publication of JP4210147B2 publication Critical patent/JP4210147B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高強度鋼材のハイドロフォーム加工方法に関するものである。
【0002】
【従来の技術】
【特許文献1】
特開2002−126826号公報
【特許文献2】
特開2002−126827号公報
【特許文献3】
特開2002−69584号公報
【0003】
特許文献1,2に示されるように、鋼管などの鋼材を金型内部にセットして内部に加工液を満たし、その圧力を必要な値に制御することによって、あるいはそれに加えて端面に軸押しを加えることによって鋼材を所望形状に膨出成形する方法が、ハイドロフォーム加工方法として知られている。特に近年、自動車生産プロセスへのハイドロフォーム加工方法が普及しつつある。
【0004】
しかし自動車用フレームなどに用いられる高強度鋼材については、成形性の問題からハイドロフォーム加工方法はあまり用いられていない。すなわち、一般に引張強度が590MPaを超える材料は延性が低いため、プレス加工などの塑性加工においても所望の形状まで成形できず、破断する傾向が強い。鋼管のハイドロフォームにおいても、その前工程における曲げ加工やプレス加工で大きな歪を付与されるため、高強度鋼管を用いる場合にはハイドロフォーム加工中に割れが発生し易い。このため特許文献3に示されるように材料自体の開発も行われているものの、高強度鋼材のハイドロフォーム加工は困難とされてきた。
【0005】
【発明が解決しようとする課題】
本発明は上記の課題を解決し、引張強度が590MPaを超えるような高強度鋼材についても従来よりも加工限界を高め、成形性よくハイドロフォーム加工を行うことができる高強度鋼材のハイドロフォーム加工方法を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記の課題を解決するためになされた本発明は、2.5%以上の残留オーステナイト相を有する高強度鋼材の、最大応力点におけるオーステナイト相の残留率が60〜90%となる温度範囲を予備引張り試験により求めておき、前記高強度鋼材を予備引張り試験により求めた前記温度範囲に保持しながらハイドロフォームすることを特徴とするものである。なお、高強度鋼材として、C: 0.05〜0.3%、Si:0.5〜3.0%、Mn:0.2〜2.5%、残部がFe及び不可避的不純物からなる鋼材を用いることが好ましく、鋼材の温度を加工液の温度により制御することが好ましい。
【0007】
【発明の実施の形態】
一般に、高強度鋼材の残留オーステナイト相は加工中にマルテンサイト変態(加工誘起変態:TRIP)を生じ、これとともに強度と硬度が増加することが知られている。しかし、このマルテンサイト変態のタイミングは加工温度と加工量によって変化するため、従来は加工中にそのタイミングを制御することが難しく、成り行き任せとなっている。
【0008】
例えば高強度鋼材の引張り試験においては、図1の応力―歪曲線に示すように最大応力点までは試験片全体の一様伸びが生じ、更に引張りを与えると一部に局所的なくびれが発生して破断に至る。そしてその破断までの最大変形量は一様伸び量+くびれ部分の変形量であり、高強度鋼材は低強度鋼材よりも一様伸び量が小さいから、上述したように高強度鋼材は低強度鋼材よりも最大変形量が小さくなる。
【0009】
この場合には、マルテンサイト変態のタイミング制御は行われていない。しかし、図1中に記入したように最大応力点まではマルテンサイト変態を抑制しながら一様伸びを生じさせ、その後にマルテンサイト変態を生じさせるようにすれば、局所的なくびれを生ずる部位が図2に示すように順次移動し、破断までの最大変形量を大幅に増加させることができる。すなわち、局所的なくびれを生じた部位はマルテンサイト変態により硬化しそれ以上の伸びが抑制されるが、続いて隣接する部位で局所的なくびれとマルテンサイト変態とが発生し、破断までに鋼材全体がマルテンサイト変態するとともに、各部位の伸びが加算された大きな一様伸びを達成できることとなる。なお、加工後の残留マルテンサイトは20%以下であることが好ましい。
【0010】
しかも、プレス成形のような通常の塑性加工では加工が瞬時に行われるためマルテンサイト変態のタイミング制御が不可能であるのに対し、ハイドロフォーム加工方法では鋼材は常に加工液と接触しながらある程度の時間をかけて加工が進行する。従って加工中における高強度鋼材のマルテンサイト変態の制御が可能である。本発明は上記の知見に基づいてなされたものであり、加工中の最大応力点においてもなお、高強度鋼材中のオーステナイト相が加工開始時の60〜90%残留するように、鋼材温度を制御する。
【0011】
用いる高強度鋼材は、質量%でC: 0.05〜0.3%、Si:0.5〜3.0%、Mn:0.2〜2.5%、残部がFe及び不可避的不純物からなる鋼材が好ましい。また管状試験片による引張強度と伸びの積が15000(MPa・%)以上であり、体積%で2.5%以上の残留オーステナイト相を有する鋼材が好ましい。成形開始時の残留オーステナイト相が2.5%未満であると、残留オーステナイト相のマルテンサイト変態を利用した本発明の効果が不十分となる。
【0012】
最大応力点における残留オーステナイト相の残留率が60〜90%となる温度は鋼材によって異なるため、実用的には予備引張り試験によりその温度を求め、ハイドロフォーム加工用いる加工液の温度をその温度域に制御するものとする。加工液の温度と加工中の鋼材の温度はほぼ等しいと考えられるからである。しかし金型温度を制御することも可能である。なお、前記した特許文献2,3には高温バルジ成形方法が記載されているが、本発明の温度域はこれよりも低温であり、実際には加工液を冷却することとなる。
【0013】
このようにして鋼材温度を制御し、最大応力点におけるオーステナイト相の残留率が60〜90%となるようにしてハイドロフォーム加工を行えば、最大応力点を過ぎた後もなお局部的なマルテンサイト変態と伸び(変形)とが順次進行し、各部位の伸びが加算された大きな一様伸びを得ることができる。しかもマルテンサイト変態に伴い強度・硬度は一段と増加するため、引張強度が590MPaを超える高強度鋼材を割れを発生させることなくハイドロフォーム加工することが可能となる。
【0014】
【実施例】
(実施例1)
質量%でC: 0.15%、Si:1.5%、Mn: 1.5%、P:0.005%、S:0.005%、残部がFe及び不可避的不純物からなり、引張強度が780MPa級の残留オーステナイト鋼材からJIS3号試験片を作成し、温度を30℃、60℃、90℃の一定温度に保持しながら水中引張試験を行った。試験片に2%歪、5%歪、10%歪、15%歪、破断後の各歪量を加え、残留オーステナイト量を測定した。残留オーステナイト量の測定はX線測定機により、X線の回折現象を利用して行った。その結果を図3に示す。
【0015】
各試験片の引張試験結果を表1に示す。この鋼材は加工温度が60℃のときに伸びが最大となったので、最適加工温度は60℃と推定される。また上記の鋼材をロール成形し、電縫溶接により直径60.5mm、板厚1.2mmのハイドロフォーム用素管を製造し、常温大気中、30℃、60℃、90℃の各温度条件で液圧拡管試験(自由バルジ試験)を行って最大拡管率(素管の直径Dからの変化率)を測定した。その結果を表1に記した。最大拡管率は60℃で最大となり、最適加工温度が60℃であることが確認された。
【0016】
【表1】

Figure 0004210147
【0017】
(実施例2)
この実施例では、加工温度を30℃と設定して、それに適した材料成分と熱処理条件とを探索した。表2に各条件を示した。材料中のPは全て0.005%、Sは全て0.002%である。なお熱処理は全て鋼材を850℃に保持した後、表中の冷却速度V(℃/sec)で表中の保持温度T(℃)まで急冷し、その温度Tに保持する方法とした。残留オーステナイト量から各素管の最大拡管率を予測することができ、表2中ではcの鋼管が最適である。なお表中の残留オーステナイト量はいずれも初期値に対する比、拡管率は素管径に対する比である。
【0018】
【表2】
Figure 0004210147
【0019】
【発明の効果】
以上に説明したように、本発明によれば従来は成形性が悪いためにハイドロフォーム加工を行うことが困難であった引張強度が590MPaを超えるような高強度鋼材についても、成形性よくハイドロフォーム加工を行うことが可能となった。また通常の加工可能温度域において残留オーステナイト量が本発明の条件を満たすように材料成分や熱処理条件を制御した高強度残留オーステナイト鋼を製造すれば、通常のハイドロフォーム加工方法の成形性を高めることができる。よって本発明は高強度鋼材のハイドロフォーム加工方法として、実用的価値の高いものである。
【図面の簡単な説明】
【図1】高強度鋼材の引張試験による応力―歪曲線である。
【図2】本発明における鋼材の変形過程の説明図である。
【図3】実施例における加工温度と残留オーステナイト量との関係を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for hydroforming a high strength steel material.
[0002]
[Prior art]
[Patent Document 1]
Japanese Patent Laid-Open No. 2002-126826 [Patent Document 2]
Japanese Patent Laid-Open No. 2002-126827 [Patent Document 3]
JP 2002-69584 A
As shown in Patent Documents 1 and 2, by setting a steel material such as a steel pipe inside the mold and filling the working fluid inside, and controlling the pressure to a required value, or in addition to that, the shaft is pushed onto the end face A method of bulging and forming a steel material into a desired shape by adding slag is known as a hydroforming method. Particularly in recent years, hydroform processing methods for automobile production processes are becoming widespread.
[0004]
However, hydroforming methods are not often used for high-strength steel materials used in automobile frames and the like due to the problem of formability. That is, since a material having a tensile strength exceeding 590 MPa generally has low ductility, it cannot be formed into a desired shape even in plastic working such as press working and has a strong tendency to break. Even in the hydroforming of a steel pipe, since a large strain is imparted by bending or pressing in the preceding process, cracks are likely to occur during hydroforming when a high-strength steel pipe is used. For this reason, although the material itself has been developed as shown in Patent Document 3, it has been difficult to hydroform a high-strength steel material.
[0005]
[Problems to be solved by the invention]
The present invention solves the above-described problems, and a high-strength steel material hydroforming method that can increase the working limit of conventional high-strength steel materials having a tensile strength exceeding 590 MPa and can perform hydroforming with good formability. Is intended to provide.
[0006]
[Means for Solving the Problems]
The present invention, which has been made to solve the above-mentioned problems, provides a preliminary temperature range in which a high-strength steel material having a retained austenite phase of 2.5% or more has an austenite phase residual rate of 60 to 90% at the maximum stress point. It is obtained by a tensile test and hydroformed while maintaining the high-strength steel material in the temperature range obtained by a preliminary tensile test . As the high-strength steel material, C: 0.05-0.3%, Si: 0.5-3.0%, Mn: 0.2-2.5%, the steel material consisting of Fe and unavoidable impurities as the balance is preferably used, and the temperature of the steel material is adjusted to the working fluid. It is preferable to control the temperature.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
In general, it is known that the retained austenite phase of a high-strength steel material causes martensitic transformation (processing-induced transformation: TRIP) during processing, and the strength and hardness increase with this. However, since the timing of this martensitic transformation varies depending on the processing temperature and the processing amount, it has conventionally been difficult to control the timing during processing, and it has been left to success.
[0008]
For example, in a tensile test of high-strength steel, uniform elongation of the entire specimen occurs up to the maximum stress point as shown in the stress-strain curve in Fig. 1, and local necking occurs in part when tension is applied. To break. The maximum deformation amount until the break is the uniform elongation amount + the deformation amount of the constricted portion. Since the high strength steel material has a smaller uniform elongation amount than the low strength steel material, as described above, the high strength steel material is a low strength steel material. The maximum deformation amount becomes smaller.
[0009]
In this case, the martensitic transformation timing control is not performed. However, as shown in FIG. 1, if the uniform elongation is generated while suppressing the martensitic transformation up to the maximum stress point, and then the martensitic transformation is generated thereafter, the site causing the local necking is obtained. As shown in FIG. 2, the maximum amount of deformation until breakage can be greatly increased by sequentially moving. In other words, the site where local necking occurred is hardened by martensite transformation and further elongation is suppressed, but subsequently, local necking and martensite transformation occur in the adjacent site, and the steel material is broken before breaking. As a whole, martensitic transformation is achieved, and a large uniform elongation in which the elongation of each part is added can be achieved. In addition, it is preferable that the residual martensite after a process is 20% or less.
[0010]
Moreover, in normal plastic working such as press forming, the processing is performed instantaneously, so the timing control of the martensite transformation is impossible, whereas in the hydroforming method, the steel is always in contact with the working fluid to some extent. Processing takes time. Therefore, it is possible to control the martensitic transformation of the high-strength steel during processing. The present invention has been made based on the above knowledge, and the steel material temperature is controlled so that the austenite phase in the high-strength steel material remains at 60 to 90% at the start of processing even at the maximum stress point during processing. To do.
[0011]
The high-strength steel material used is preferably a steel material consisting of C: 0.05 to 0.3%, Si: 0.5 to 3.0%, Mn: 0.2 to 2.5%, and the balance of Fe and inevitable impurities in mass%. Further, a steel material having a product of tensile strength and elongation by a tubular test piece of 15000 (MPa ·%) or more and having a retained austenite phase of 2.5% or more by volume% is preferable. When the retained austenite phase at the start of molding is less than 2.5%, the effect of the present invention utilizing the martensitic transformation of the retained austenite phase becomes insufficient.
[0012]
Since the temperature at which the residual ratio of the retained austenite phase at the maximum stress point is 60 to 90% differs depending on the steel material, the temperature is practically obtained by a preliminary tensile test, and the temperature of the working fluid used for hydroforming is within that temperature range. Shall be controlled . This is because the temperature of the working fluid and the temperature of the steel material being processed are considered to be approximately equal. However, it is also possible to control the mold temperature. In addition, although the above-mentioned patent documents 2 and 3 describe the high-temperature bulge forming method, the temperature range of the present invention is lower than this, and the working fluid is actually cooled.
[0013]
By controlling the steel temperature in this way and performing hydroforming so that the residual ratio of the austenite phase at the maximum stress point is 60 to 90%, even after passing the maximum stress point, local martensite. Transformation and elongation (deformation) proceed sequentially, and a large uniform elongation in which the elongation of each part is added can be obtained. Moreover, since the strength and hardness are further increased with the martensitic transformation, it becomes possible to hydroform the high strength steel material having a tensile strength exceeding 590 MPa without causing cracks.
[0014]
【Example】
Example 1
Mass% C: 0.15%, Si: 1.5%, Mn: 1.5%, P: 0.005%, S: 0.005%, the balance is Fe and inevitable impurities, and tensile strength is 780MPa class residual austenitic steel JIS3 A test piece was prepared, and an underwater tensile test was performed while maintaining the temperature at a constant temperature of 30 ° C, 60 ° C, and 90 ° C. The 2% strain, 5% strain, 10% strain, 15% strain and each strain after fracture were added to the test piece, and the amount of retained austenite was measured. The amount of retained austenite was measured using an X-ray diffraction phenomenon with an X-ray measuring machine. The result is shown in FIG.
[0015]
Table 1 shows the tensile test results of each test piece. Since this steel material had the largest elongation when the processing temperature was 60 ° C, the optimum processing temperature was estimated to be 60 ° C. In addition, the above steel materials are roll-formed, and hydroforming blanks with a diameter of 60.5 mm and a plate thickness of 1.2 mm are manufactured by electro-welding, and the hydraulic pressure is maintained at 30 ° C, 60 ° C, and 90 ° C in normal temperature air. A tube expansion test (free bulge test) was performed to measure the maximum tube expansion rate (rate of change from the diameter D of the raw tube). The results are shown in Table 1. It was confirmed that the maximum tube expansion rate reached its maximum at 60 ° C, and the optimum processing temperature was 60 ° C.
[0016]
[Table 1]
Figure 0004210147
[0017]
(Example 2)
In this example, the processing temperature was set to 30 ° C., and suitable material components and heat treatment conditions were searched for. Table 2 shows each condition. All P in the material is 0.005%, and all S is 0.002%. In all the heat treatments, the steel material was held at 850 ° C., then rapidly cooled to the holding temperature T (° C.) in the table at the cooling rate V (° C./sec) in the table, and held at that temperature T. The maximum expansion rate of each raw pipe can be predicted from the amount of retained austenite. In Table 2, the steel pipe c is optimal. In the table, the amount of retained austenite is the ratio to the initial value, and the tube expansion ratio is the ratio to the raw tube diameter.
[0018]
[Table 2]
Figure 0004210147
[0019]
【The invention's effect】
As described above, according to the present invention, high-form steel with high formability can be obtained even for high-strength steel materials having a tensile strength exceeding 590 MPa, which has been difficult to perform hydroforming due to poor formability. It became possible to perform processing. In addition, if high strength retained austenitic steel is produced in which the material composition and heat treatment conditions are controlled so that the amount of retained austenite satisfies the conditions of the present invention in the normal workable temperature range, the formability of the ordinary hydroform processing method can be improved. Can do. Therefore, the present invention has high practical value as a hydroforming method for high strength steel materials.
[Brief description of the drawings]
FIG. 1 is a stress-strain curve of a high strength steel material by a tensile test.
FIG. 2 is an explanatory view of a deformation process of a steel material in the present invention.
FIG. 3 is a graph showing the relationship between the processing temperature and the amount of retained austenite in Examples.

Claims (3)

2.5%以上の残留オーステナイト相を有する高強度鋼材の、最大応力点におけるオーステナイト相の残留率が60〜90%となる温度範囲を予備引張り試験により求めておき、前記高強度鋼材を予備引張り試験により求めた前記温度範囲に保持しながらハイドロフォームすることを特徴とする高強度鋼材のハイドロフォーム加工方法。A temperature range in which the residual ratio of the austenite phase at the maximum stress point of the high-strength steel material having a residual austenite phase of 2.5% or more is 60 to 90% is obtained by a preliminary tensile test, and the high-strength steel material is pre-tensed. A method of hydroforming a high-strength steel material, characterized in that the hydroforming is performed while maintaining the temperature range obtained by a test . 高強度鋼材として、As high-strength steel C: 0.05C: 0.05 ~ 0.30.3 %、%, Si:0.5Si: 0.5 ~ 3.03.0 %、%, Mn:0.2Mn: 0.2 ~ 2.52.5 %、残部が%, The rest FeFe 及び不可避的不純物からなる鋼材を用いる請求項1記載の高強度鋼材のハイドロフォーム加工方法。The method for hydroforming a high-strength steel material according to claim 1, wherein the steel material is made of steel and unavoidable impurities. 鋼材の温度を加工液の温度により制御する請求項1記載の高強度鋼材のハイドロフォーム加工方法。The method for hydroforming a high-strength steel material according to claim 1, wherein the temperature of the steel material is controlled by the temperature of the working fluid.
JP2003127948A 2003-05-06 2003-05-06 Method of hydroforming high strength steel Expired - Fee Related JP4210147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003127948A JP4210147B2 (en) 2003-05-06 2003-05-06 Method of hydroforming high strength steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003127948A JP4210147B2 (en) 2003-05-06 2003-05-06 Method of hydroforming high strength steel

Publications (2)

Publication Number Publication Date
JP2004330230A JP2004330230A (en) 2004-11-25
JP4210147B2 true JP4210147B2 (en) 2009-01-14

Family

ID=33504279

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003127948A Expired - Fee Related JP4210147B2 (en) 2003-05-06 2003-05-06 Method of hydroforming high strength steel

Country Status (1)

Country Link
JP (1) JP4210147B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104284742A (en) * 2012-05-17 2015-01-14 新日铁住金株式会社 Plastic working method and plastic working device for metal material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2530179B1 (en) 2010-01-26 2018-11-14 Nippon Steel & Sumitomo Metal Corporation High-strength cold-rolled steel sheet, and process for production thereof
TWI509080B (en) * 2012-05-16 2015-11-21 Nippon Steel & Sumitomo Metal Corp Deformation processing method and deformation processing apparatus for metallic material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104284742A (en) * 2012-05-17 2015-01-14 新日铁住金株式会社 Plastic working method and plastic working device for metal material
CN104284742B (en) * 2012-05-17 2016-05-25 新日铁住金株式会社 The plastic processing method of metal material and plastic working device

Also Published As

Publication number Publication date
JP2004330230A (en) 2004-11-25

Similar Documents

Publication Publication Date Title
JP4833835B2 (en) Steel pipe with small expression of bauschinger effect and manufacturing method thereof
JP5142141B2 (en) Hot-rolled steel sheets for hydroforming, steel pipes for hydroforming, and methods for producing them
JP4824145B1 (en) Automotive undercarriage parts excellent in low cycle fatigue characteristics and manufacturing method thereof
EP2562272B1 (en) Method for producing steel product or steel component having excellent mechanical properties, steel product produced by the method and use of steel pipe made of strain hardened steel
CN106906340B (en) A kind of fine grain heat treatment method
JP4770922B2 (en) Steel pipe for airbag and manufacturing method thereof
AU2021202437A1 (en) Steel product and method of producing the product
JP4210147B2 (en) Method of hydroforming high strength steel
WO2020090149A1 (en) Steel for bolts, and method for manufacturing same
Thanakijkasem et al. Effect of bright annealing on stainless steel 304 formability in tube hydroforming
JP2011052307A (en) Method for manufacturing steel tube for steel tower
JP5020690B2 (en) High strength steel pipe for machine structure and manufacturing method thereof
JP2003105441A (en) METHOD FOR MANUFACTURING SEAMLESS TUBE OF 13 Cr MARTENSITIC STAINLESS STEEL HAVING HIGH STRENGTH AND HIGH TOUGHNESS
KR20100057823A (en) Steel for producing machine components formed from solid stock
JP5187151B2 (en) Thick steel plate excellent in bending workability by linear heating and its manufacturing method
JPH09111342A (en) Production of low yield ratio steel pipe
EP2327806B1 (en) Method for manufacturing high-strength metal wire rod
JP2010125511A (en) Roll die for cold pilger rolling mill, and method for manufacturing the same
JP2001288513A (en) Steel for bolt, bolt using the same and its production method
JP2004351445A (en) Hydroforming method
JP4430222B2 (en) Manufacturing method of welded steel pipe with excellent formability
Jian et al. Properties of a 304 Austenitic stainless steel hot strip by TMCP
JP3591467B2 (en) Carbon steel for machine structural use with excellent cold forgeability, hardenability and scale peelability
JP2002363686A (en) High strength steel sheet for steel pipe and production method therefor
WO2009087944A1 (en) Steel plate exhibiting excellent bendability by line heating and process for production of the plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081017

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081024

R151 Written notification of patent or utility model registration

Ref document number: 4210147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees