JP4209070B2 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP4209070B2
JP4209070B2 JP2000151763A JP2000151763A JP4209070B2 JP 4209070 B2 JP4209070 B2 JP 4209070B2 JP 2000151763 A JP2000151763 A JP 2000151763A JP 2000151763 A JP2000151763 A JP 2000151763A JP 4209070 B2 JP4209070 B2 JP 4209070B2
Authority
JP
Japan
Prior art keywords
current detection
detection resistor
semiconductor device
electrode terminal
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000151763A
Other languages
Japanese (ja)
Other versions
JP2001332678A (en
Inventor
太志 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000151763A priority Critical patent/JP4209070B2/en
Publication of JP2001332678A publication Critical patent/JP2001332678A/en
Application granted granted Critical
Publication of JP4209070B2 publication Critical patent/JP4209070B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01007Nitrogen [N]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01015Phosphorus [P]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19043Component type being a resistor

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Wire Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、絶縁ケース内に電流検出用抵抗器を備えた電力用半導体装置(パワーモジュール)の改良に関するものである。
【0002】
【従来の技術】
図6は、従来の電力用半導体装置の平面図であり、図7は、図6のVII−VII断面図であり、図8は、従来の電力用半導体装置を構成する基板部であり、図9は、図8のIX−IX断面図である。
【0003】
従来より、パワートランジスタ等の電力用半導体素子を過電流から保護すべく、その電力用半導体素子とともに過電流検出回路を備えた電力用半導体装置が知られている。その電力用半導体装置1は、図6に示すように、基板部2の上面(部品が実装される面)側に、電極端子P,N1,N2がインサート形成されてなるインサートケース3が配設されている。そして、インサートケース3内は樹脂4で封止されている。
【0004】
基板部2は、図8に示すように、放熱および絶縁の機能等を有し少なくともその一方の面に配線パターンが形成されてなる絶縁放熱基板6を有している。そして、この絶縁放熱基板6上には、外部負荷を駆動するためのパワートランジスタ等の電力用半導体素子7と、電力用半導体素子7が介装される外部負荷駆動のための母線電流路(図示せず)に流れる母線電流を検出する電流検出用抵抗器8と、IC(集積回路)で構成され母線電流が所定の値以上になると電力用半導体素子7をオフするコントロール部9が配設されている。
【0005】
それら電力用半導体素子7、電流検出用抵抗器8、コントロール部9等の実装部品は、絶縁放熱基板6の配線パターンとは半田で接合されている。また、図6に示すように、電力用半導体素子7、電極端子P,N1,N2及び一部の配線パターンは、アルミボンディングワイヤ(以下アルミワイヤという)10a,10b,10c,10dを介して相互に接続されている。
【0006】
電流検出用抵抗器8の抵抗値は、顧客が要求する保護電流値、即ち顧客が決めた電力用半導体素子7に流れる許容電流の上限、に応じて決定される。即ち、その保護電流値の電流が通れた際に電流検出用抵抗器8に生じる電圧降下が、後述するコントロール部9に設定されるしきい値となるように選定される。
【0007】
コントロール部9には、電力用半導体素子7を過電流から保護するためのしきい値が予め設定されている。即ち、コントロール部9は、電流検出用抵抗器8の電圧降下がそのしきい値以上になると、電力用半導体素子7をオフさせる。
【0008】
【発明が解決しようとする課題】
しかしながら、上記の電力用半導体装置1では、電流検出用抵抗器8に大きな母線電流が流れるため、電力損失を減らすために抵抗値を小さくすると、電流検出用抵抗器8そのものが大きくなり、絶縁放熱基板6上において大きな領域を必要とし、電力用半導体装置1の小型化を妨げるという問題が生じる。
【0009】
更に、各顧客から要求される保護電流値に応じて電流検出用抵抗器8を入れ替える必要があるため、手間及びコストがかかるという問題もある。
【0010】
更に、電流検出用抵抗器8は絶縁放熱基板6の配線パターンに半田により接続されており、その配線パターンに接続されたアルミワイヤ10dを介して電流検出用抵抗器8の電圧降下がコントロール部9に入力されるため、半田の接続状態によりコントロール部9に入力される電圧にばらつきが生じ、実際に生じている電圧降下が正確にコントロール部9に入力されないという接続上の信頼性の問題もある。
【0011】
そこで、この発明の課題は、接続上の信頼性を確実なものとするとともに、構造を簡素化し且つ小型化して安価な半導体装置を提供することにある。
【0012】
【課題を解決するための手段】
上記課題を解決するためには、この請求項1に記載の発明は、電力用半導体素子が実装された基板と、前記基板に対する封止空間を形成する絶縁ケースと、前記絶縁ケースに挿入支持され前記電力用半導体素子を流れる電流を検出する電流検出用抵抗と、を備え、前記電流検出用抵抗は、帯板状に形成され、その一端側にワイヤ接続部が形成され、その他端側に電極端子部が形成され、当該電流検出用抵抗の一方の長辺が前記絶縁ケースの周壁の内側から露出すると共に前記電極端子部の先端部が前記周壁の上端面から突出する様に前記周壁に挿入され、露出された前記長辺における前記ワイヤ接続部と前記電極端子部との間の部分において、2つの電流検出用のボンディングワイヤが通電方向に沿って互いに間隔を空けて接続される半導体装置である。
【0013】
請求項2の発明は、前記電流検出用抵抗は、前記絶縁ケースに挿入支持された電極端子と一体的に形成される半導体装置である。
【0014】
請求項3の発明は、前記電流検出用抵抗は、該電流検出用抵抗に直接に接続されたボンディングワイヤを介して接続対象に接続される電力用半導体装置である。
【0015】
請求項4の発明は、前記電流検出用抵抗に前記ボンディングワイヤの接続位置を規定する凸部を複数形成することで、前記ボンディングワイヤの前記電流検出用抵抗に対する接続位置変更自在にする半導体装置である。
【0016】
【発明の実施の形態】
以下、本発明の第1実施形態を図1ないし図5に基づいて説明する。図1は、本発明の第1実施形態に係る半導体装置の平面図であり、図2は、図1のII-II断面図であり、図3は、第1実施形態に係る半導体装置の要部の平面図であり、図4は、図3のIV-IV断面図であり、図5は、第1実施形態に係る半導体装置の回路の腰部を説明する図である。
【0017】
この実施形態に係る半導体装置1Aは、外部負荷を駆動するためのパワートランジスタ等の電力用半導体素子7とともにその電力用半導体素子7を過電流から保護する回路が備えられたものであり、図1に示すように、回路部品が実装された絶縁放熱基板6に、当該基板6に対する封止空間を形成するインサートケース3Aが取り付けられて構成される。
【0018】
インサートケース3Aは、図1及び図2に示すように、絶縁性の樹脂により周壁14を有する例えば矩形の枠体に形成される。そして、その周壁14内に、少なくとも電極端子一体型電流検出抵抗15と電極端子Pとがインサート形成されて構成される。また、インサートケース3Aの開放した下面は絶縁放熱基板6が嵌合するように形成されている。
【0019】
電極端子一体型電流検出抵抗15は、図3及び図4に示すように、例えば帯板状の抵抗部(電流検出用抵抗)16と、この抵抗部16の長手方向の例えば両端側(図では一方の長辺17の両端側)にそれぞれ電極端子部N1,N2が立設されて形成される。これら抵抗部16及び電極端子部N1,N2は同一部材により一体的に形成される。
【0020】
そして、電極端子一体型電流検出抵抗15は、図1及び図2に示すように、その抵抗部16の他方の長辺19をインサートケース3Aの周壁14の内側から露出させるとともに、その電極端子部N1,N2の先端部が周壁14の上端面14aから突出されるように周壁14内に挿入されて支持される。
【0021】
この露出された抵抗部16の長辺19のうち、例えば電極端子部N2側の領域19Lは、電極端子部N2を電力用半導体素子7に接続すべくアルミワイヤ10eが接続されるワイヤ接続部(以後、ワイヤ接続部19Lという)を形成する。そして、例えば抵抗部16の長辺19のうちワイヤ接続部19L以外の領域19Rが、実質的な電流検出用抵抗として用いられる。この領域19Rには、電流検出用のアルミワイヤ10f,10gの接続位置を規定する凸部20が複数形成されている。
【0022】
なお、この実施形態では、図3を参照して、抵抗部16には、ワイヤ接続部19Lから電流がへ入力される。その入力された電流は、抵抗部16を長手方向に通電して電極端子部N1から外部へ出力される。従って、例えば凸部20f,20gに電流検出用のアルミワイヤ10f,10gを接続した場合には(図1参照)、抵抗部16のうち、その凸部20f,20g間で区切られる部分が実質的な電流検出用抵抗として機能し、その部分に生じる電圧降下がアルミワイヤ10f,10gを介して後述するようにコントロール部9へ出力される。実質的な電流検出用抵抗の大きさを変更する場合は、図1に示すように、アルミワイヤ10gの接続位置を例えば点線で図示したアルミワイヤ10hの接続位置へ変更する、つまり2本のアルミワイヤ10f,10gの接続位置の間隔を変更することで、電流電検出用抵抗の大きさの変更が行える。
【0023】
電極端子Pは、図1及び図4に示すように、断面L形状に形成されており、その垂直部22の先端を周壁14から露出させるとともに、ワイヤ接続部を形成する水平部23(以後ワイヤ接続部23とする)の先端を周壁の内側から露出させるように周壁14内に埋設される。
【0024】
絶縁放熱基板6は、図1に示すように、放熱および絶縁の機能等を有し、少なくともその一方の面に配線パターンが形成されている。絶縁放熱基板6には、少なくとも、上述の電力用半導体素子7と、IC(集積回路)で構成されたコントロール部9とが実装されている。そして、絶縁放熱基板6は、半導体素子7等が実装された面を、インサートケース3Aの開口下面に嵌合して配設される。そして、図2に示すように、絶縁放熱基板6がインサートケース3Aに配設された状態で、インサートケース3A内には、封止のための樹脂4が充填される。
【0025】
電力用半導体素子7は、図1及び図5に示すように、そのコレクタを図示されない絶縁放熱基板6上の配線パターン及びアルミワイヤ10aを介して電極端子Pのワイヤ接続部23に接続し、そのベースを図示されない絶縁放熱基板6上の配線パターンを介してコントロール部9に接続し、そのエミッタをアルミワイヤ10eを介して電極端子一体型電流検出抵抗15のワイヤ接続部19L(図3参照)に接続する。電極端子Pから半導体素子7を介して電極端子N1に外部負荷を駆動するための母線電流が流れ、その母線電流が電極端子一体型電流検出抵抗15の抵抗部16にも流れる。
【0026】
コントロール部9には、半導体素子7を過電流から保護するためのしきい値が予め設定されている。即ち、コントロール部9は、上述した電流検出用のアルミワイヤ10f,10gを介して入力される電極端子一体型電流検出抵抗15の抵抗部16での電圧降下がそのしきい値以上になると、エラー信号を出し、電力用半導体素子7をオフさせる。これにより電力用半導体素子7に保護電流値以上の電流が流れることが防止される。
【0027】
以上のように構成された半導体装置1Aによれば、電流検出用の抵抗部16がインサートケース3Aに挿入支持されているため、従来装置のように、高価な絶縁放熱基板6上に電流検出用抵抗器8を配置する領域を確保する必要がなくなり、その分絶縁放熱基板6を小型化でき、これにより半導体装置1Aのシュリンク化が図れるとともにコストの削減が図れる。
【0028】
更に、半導体装置1Aでは、電極端子N1,N2と抵抗部16とが一体的に形成されているため、従来装置のように電極端子N1,N2と電流検出用抵抗器8とをアルミワイヤ10c等で接続する必要が無くなり、その分のコストが削減できるとともに構造の簡素化を図ることができる。
【0029】
更に、半導体装置1Aでは、抵抗部16に直接に電流検出用のアルミワイヤ10f,10gを接続し、従来のように絶縁放熱基板6に対する電流検出用抵抗器8の半田付けを介さないため、半田付けの状態によって検出される電圧降下にばらつきの生じることが防止されて接続上の信頼性を高めることができる。
【0030】
更に、半導体装置1Aでは、電極端子部N1,N2と抵抗部16とが同一部材により形成されているため、従来装置のように電極端子N1,N2と電流検出用抵抗器8とが別部材で構成されるよりもコストを抑えることができる。
【0031】
更に、電流検出用のアルミワイヤ10f,10gの接続位置が変更自在であるため、抵抗部16の抵抗値を簡単に変更できる。
【0032】
【発明の効果】
請求項1に記載の発明によれば、電流検出用抵抗がインサートケースに挿入支持されているため、基板を小型化でき、これにより電力用半導体装置のシュリンク化が図れるとともにコストの削減が図れる。
【0033】
請求項2に記載の発明によれば、電極端子と電流検出用抵抗とが一体的に形成されているため、従来のように電極端子と電流検出用抵抗とをボンディングワイヤで接続する必要が無くなり、その分のコストが削減できるとともに構造の簡素化を図ることができる。
【0034】
請求項3に記載の発明によれば、電流検出用抵抗に直接に電流検出用のボンディングワイヤを接続し、従来のように半田付けを介さないため、半田付けの状態によって検出される電圧降下にばらつきの生じることが防止されて接続上の信頼性を高めることができる。
【0035】
請求項4に記載の発明によれば、前記電流検出用抵抗に前記ボンディングワイヤの接続位置を規定する凸部を複数形成することで、前記ボンディングワイヤの前記電流検出用抵抗に対する接続位置変更自在にするため、各顧客から要求される保護電流値に応じて電流検出用の抵抗を個々に入れ替える必要が無くなり、その手間及びコストの削減ができる。
【図面の簡単な説明】
【図1】この発明の第1実施形態に係る電力用半導体装置の平面図である。
【図2】図1のII-II断面図である。
【図3】この発明の第1実施形態に係る電力用半導体装置に用いられる電極端子一体型電流検出抵抗の平面図である。
【図4】図3のIV-IV断面図である。
【図5】この発明の第1実施形態に係る回路の腰部を説明する図である。
【図6】従来の電力用半導体装置の平面図である。
【図7】図6のVII−VII断面図である。
【図8】従来の電力用半導体装置を構成する基板部を示す図である。
【図9】図8のIX−IX断面図である。
【符号の説明】
1A 電力用半導体装置、2 基板部、3A インサートケース、4 樹脂、6 絶縁放熱基板、7 電力用半導体素子、9 コントロール部、10a,10e,10f,10g,10h アルミワイヤ、14 周壁、15 電極端子一体型電流検出抵抗、16 抵抗部、P 電極端子、N1,N2 電極端子部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a power semiconductor device (power module) including a current detection resistor in an insulating case.
[0002]
[Prior art]
6 is a plan view of a conventional power semiconductor device, FIG. 7 is a cross-sectional view taken along the line VII-VII in FIG. 6, and FIG. 8 is a substrate portion constituting the conventional power semiconductor device. 9 is a cross-sectional view taken along the line IX-IX in FIG.
[0003]
2. Description of the Related Art Conventionally, there is known a power semiconductor device including an overcurrent detection circuit together with the power semiconductor element in order to protect the power semiconductor element such as a power transistor from overcurrent. In the power semiconductor device 1, as shown in FIG. 6, an insert case 3 in which electrode terminals P, N 1, and N 2 are formed on the upper surface (surface on which components are mounted) side of the substrate portion 2 is disposed. Has been. The insert case 3 is sealed with a resin 4.
[0004]
As shown in FIG. 8, the substrate portion 2 has an insulating heat radiating substrate 6 having a heat radiating and insulating function and the like and having a wiring pattern formed on at least one surface thereof. On the insulating heat dissipation substrate 6, a power semiconductor element 7 such as a power transistor for driving an external load and a bus current path for driving the external load in which the power semiconductor element 7 is interposed (see FIG. A current detection resistor 8 for detecting a bus current flowing through the IC (integrated circuit) and a control unit 9 configured to turn off the power semiconductor element 7 when the bus current exceeds a predetermined value are provided. ing.
[0005]
The mounting components such as the power semiconductor element 7, the current detection resistor 8, and the control unit 9 are joined to the wiring pattern of the insulating heat dissipation substrate 6 by soldering. As shown in FIG. 6, the power semiconductor element 7, the electrode terminals P, N1, N2, and some of the wiring patterns are mutually connected via aluminum bonding wires (hereinafter referred to as aluminum wires) 10a, 10b, 10c, 10d. It is connected to the.
[0006]
The resistance value of the current detection resistor 8 is determined according to the protection current value required by the customer, that is, the upper limit of the allowable current flowing through the power semiconductor element 7 determined by the customer. That is, the voltage drop generated in the current detection resistor 8 when the current of the protection current value passes is selected to be a threshold value set in the control unit 9 described later.
[0007]
The control unit 9 is preset with a threshold value for protecting the power semiconductor element 7 from overcurrent. That is, the control unit 9 turns off the power semiconductor element 7 when the voltage drop of the current detection resistor 8 exceeds the threshold value.
[0008]
[Problems to be solved by the invention]
However, in the power semiconductor device 1 described above, since a large bus current flows through the current detection resistor 8, if the resistance value is decreased to reduce power loss, the current detection resistor 8 itself increases and insulation heat dissipation. A problem arises in that a large area is required on the substrate 6, which prevents miniaturization of the power semiconductor device 1.
[0009]
Furthermore, since it is necessary to replace the current detection resistor 8 according to the protection current value required by each customer, there is also a problem that it takes time and cost.
[0010]
Further, the current detection resistor 8 is connected to the wiring pattern of the insulating heat dissipation substrate 6 by soldering, and the voltage drop of the current detection resistor 8 is controlled by the control unit 9 via the aluminum wire 10d connected to the wiring pattern. Therefore, the voltage input to the control unit 9 varies depending on the connection state of the solder, and there is a connection reliability problem that the actually generated voltage drop is not input to the control unit 9 accurately. .
[0011]
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an inexpensive semiconductor device that ensures reliability in connection, simplifies the structure, and reduces the size.
[0012]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 includes a substrate on which a power semiconductor element is mounted, an insulating case that forms a sealing space for the substrate, and an insertion case supported by the insulating case. A current detecting resistor for detecting a current flowing through the power semiconductor element , wherein the current detecting resistor is formed in a strip shape, a wire connection portion is formed on one end side thereof, and an electrode is formed on the other end side. A terminal portion is formed, and one long side of the current detection resistor is exposed from the inside of the peripheral wall of the insulating case, and inserted into the peripheral wall so that the tip of the electrode terminal portion protrudes from the upper end surface of the peripheral wall It is, in part between the wire connecting portion in the exposed the long side and the electrode terminal portions, semiconductors two bonding wires for current detection Ru are connected together and spaced apart from each other along the flowing direction It is the location.
[0013]
The invention according to claim 2 is a semiconductor device in which the current detection resistor is integrally formed with an electrode terminal inserted and supported in the insulating case.
[0014]
The invention according to claim 3 is the power semiconductor device in which the current detection resistor is connected to a connection target via a bonding wire directly connected to the current detection resistor.
[0015]
According to a fourth aspect of the present invention, there is provided a semiconductor device capable of changing a connection position of the bonding wire with respect to the current detection resistor by forming a plurality of protrusions defining the connection position of the bonding wire in the current detection resistor. It is.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1 is a plan view of the semiconductor device according to the first embodiment of the present invention, FIG. 2 is a sectional view taken along the line II-II of FIG. 1, and FIG. 3 is a schematic diagram of the semiconductor device according to the first embodiment. 4 is a cross-sectional view taken along the line IV-IV in FIG. 3, and FIG. 5 is a diagram for explaining a waist portion of the circuit of the semiconductor device according to the first embodiment.
[0017]
A semiconductor device 1A according to this embodiment includes a power semiconductor element 7 such as a power transistor for driving an external load and a circuit for protecting the power semiconductor element 7 from an overcurrent. As shown in FIG. 3, an insert case 3A that forms a sealed space for the substrate 6 is attached to an insulating heat dissipation substrate 6 on which circuit components are mounted.
[0018]
As shown in FIGS. 1 and 2, the insert case 3A is formed of, for example, a rectangular frame having a peripheral wall 14 with an insulating resin. Then, at least the electrode terminal integrated current detection resistor 15 and the electrode terminal P are inserted into the peripheral wall 14 and configured. Further, the open lower surface of the insert case 3A is formed so that the insulating heat radiating substrate 6 is fitted.
[0019]
As shown in FIGS. 3 and 4, the electrode terminal integrated current detection resistor 15 includes, for example, a strip-shaped resistor portion (current detection resistor) 16 and, for example, both end sides in the longitudinal direction of the resistor portion 16 (in the drawing, Electrode terminal portions N1 and N2 are formed upright on both ends of one long side 17, respectively. The resistor portion 16 and the electrode terminal portions N1 and N2 are integrally formed of the same member.
[0020]
As shown in FIGS. 1 and 2, the electrode terminal integrated current detection resistor 15 exposes the other long side 19 of the resistor portion 16 from the inner side of the peripheral wall 14 of the insert case 3A, and the electrode terminal portion. The front ends of N1 and N2 are inserted into the peripheral wall 14 and supported so as to protrude from the upper end surface 14a of the peripheral wall 14.
[0021]
Of the exposed long side 19 of the resistor portion 16, for example, a region 19L on the electrode terminal portion N2 side is a wire connecting portion (to which the aluminum wire 10e is connected in order to connect the electrode terminal portion N2 to the power semiconductor element 7). Hereinafter, the wire connection portion 19L) is formed. For example, the region 19R other than the wire connection portion 19L in the long side 19 of the resistance portion 16 is used as a substantial current detection resistor. In this region 19R, a plurality of convex portions 20 that define the connection positions of the current detecting aluminum wires 10f, 10g are formed.
[0022]
In this embodiment, referring to FIG. 3, a current is input to the resistance portion 16 from the wire connection portion 19 </ b> L. The input current is passed through the resistance portion 16 in the longitudinal direction and output from the electrode terminal portion N1 to the outside. Therefore, for example, when the current detection aluminum wires 10f and 10g are connected to the projections 20f and 20g (see FIG. 1), the portion of the resistance portion 16 that is partitioned between the projections 20f and 20g is substantially The voltage drop generated in that portion is output to the control unit 9 through the aluminum wires 10f and 10g as described later. In the case of changing the substantial size of the current detection resistor, as shown in FIG. 1, the connection position of the aluminum wire 10g is changed to the connection position of the aluminum wire 10h illustrated by a dotted line, that is, two aluminum By changing the interval between the connection positions of the wires 10f and 10g, the size of the current-electricity detection resistor can be changed.
[0023]
As shown in FIGS. 1 and 4, the electrode terminal P has an L-shaped cross section, and exposes the tip of the vertical portion 22 from the peripheral wall 14 and also forms a horizontal portion 23 (hereinafter referred to as a wire) that forms a wire connection portion. It is embedded in the peripheral wall 14 so that the tip of the connection portion 23 is exposed from the inside of the peripheral wall.
[0024]
As shown in FIG. 1, the insulating heat dissipation substrate 6 has functions of heat dissipation and insulation, and a wiring pattern is formed on at least one surface thereof. At least the above-described power semiconductor element 7 and a control unit 9 composed of an IC (integrated circuit) are mounted on the insulating heat dissipation substrate 6. The insulating heat radiating substrate 6 is disposed by fitting the surface on which the semiconductor element 7 and the like are mounted to the lower surface of the opening of the insert case 3A. As shown in FIG. 2, the resin 4 for sealing is filled in the insert case 3 </ b> A in a state where the insulating heat dissipation substrate 6 is disposed in the insert case 3 </ b> A.
[0025]
As shown in FIGS. 1 and 5, the power semiconductor element 7 has its collector connected to the wire connection portion 23 of the electrode terminal P via a wiring pattern on the insulating heat dissipation substrate 6 (not shown) and the aluminum wire 10a. The base is connected to the control unit 9 through a wiring pattern on the insulating heat dissipation substrate 6 (not shown), and the emitter thereof is connected to the wire connection unit 19L (see FIG. 3) of the electrode terminal integrated current detection resistor 15 through the aluminum wire 10e. Connecting. A bus current for driving an external load flows from the electrode terminal P to the electrode terminal N <b> 1 through the semiconductor element 7, and the bus current also flows to the resistance portion 16 of the electrode terminal integrated current detection resistor 15.
[0026]
The control unit 9 is preset with a threshold value for protecting the semiconductor element 7 from overcurrent. That is, when the voltage drop at the resistance portion 16 of the electrode terminal integrated current detection resistor 15 input through the above-described current detection aluminum wires 10f and 10g becomes equal to or greater than the threshold value, the control portion 9 generates an error. A signal is output and the power semiconductor element 7 is turned off. Thereby, it is possible to prevent the current exceeding the protection current value from flowing through the power semiconductor element 7.
[0027]
According to the semiconductor device 1A configured as described above, since the current detection resistor 16 is inserted and supported in the insert case 3A, the current detection is provided on the expensive insulating heat dissipation substrate 6 as in the conventional device. It is no longer necessary to secure a region for placing the resistor 8, and the insulating heat dissipation substrate 6 can be reduced in size accordingly. As a result, the semiconductor device 1A can be shrunk and the cost can be reduced.
[0028]
Further, in the semiconductor device 1A, since the electrode terminals N1, N2 and the resistor portion 16 are integrally formed, the electrode terminals N1, N2 and the current detection resistor 8 are connected to the aluminum wire 10c or the like as in the conventional device. This eliminates the need for connection, thereby reducing the cost and simplifying the structure.
[0029]
Furthermore, in the semiconductor device 1A, the current detection aluminum wires 10f and 10g are directly connected to the resistance portion 16, and the current detection resistor 8 is not soldered to the insulating heat radiating substrate 6 as in the prior art. Variations in the voltage drop detected depending on the attached state can be prevented and connection reliability can be improved.
[0030]
Furthermore, in the semiconductor device 1A, since the electrode terminal portions N1, N2 and the resistor portion 16 are formed of the same member, the electrode terminals N1, N2 and the current detection resistor 8 are separate members as in the conventional device. Cost can be suppressed rather than being configured.
[0031]
Furthermore, since the connection positions of the aluminum wires 10f and 10g for current detection can be changed, the resistance value of the resistance portion 16 can be easily changed.
[0032]
【The invention's effect】
According to the first aspect of the present invention, since the current detection resistor is inserted and supported in the insert case, the substrate can be reduced in size, whereby the power semiconductor device can be shrunk and the cost can be reduced.
[0033]
According to the second aspect of the present invention, since the electrode terminal and the current detection resistor are integrally formed, there is no need to connect the electrode terminal and the current detection resistor with a bonding wire as in the prior art. Therefore, the cost can be reduced and the structure can be simplified.
[0034]
According to the third aspect of the present invention, since the current detection bonding wire is directly connected to the current detection resistor and soldering is not performed as in the conventional case, the voltage drop detected by the soldering state is reduced. Variations can be prevented and connection reliability can be improved.
[0035]
According to the invention described in claim 4, the convex portions defining the connecting position of the bonding wire to said current detecting resistor by forming a plurality, freely change the connection position relative to the current detecting resistor of the bonding wire for, it is not necessary to replace the resistor for current detection individually in accordance with the protection current value requested by each customer can reduce the labor and cost.
[Brief description of the drawings]
FIG. 1 is a plan view of a power semiconductor device according to a first embodiment of the present invention.
2 is a cross-sectional view taken along the line II-II in FIG.
FIG. 3 is a plan view of an electrode terminal integrated current detection resistor used in the power semiconductor device according to the first embodiment of the present invention;
4 is a cross-sectional view taken along the line IV-IV in FIG. 3;
FIG. 5 is a diagram for explaining a waist portion of a circuit according to the first embodiment of the present invention.
FIG. 6 is a plan view of a conventional power semiconductor device.
7 is a cross-sectional view taken along the line VII-VII of FIG.
FIG. 8 is a diagram showing a substrate portion constituting a conventional power semiconductor device.
9 is a cross-sectional view taken along the line IX-IX in FIG.
[Explanation of symbols]
1A power semiconductor device, 2 substrate part, 3A insert case, 4 resin, 6 insulating heat dissipation substrate, 7 power semiconductor element, 9 control part, 10a, 10e, 10f, 10g, 10h aluminum wire, 14 peripheral wall, 15 electrode terminal Integrated current detection resistor, 16 resistor section, P electrode terminal, N1, N2 electrode terminal section.

Claims (4)

電力用半導体素子が実装された基板と、
前記基板に対する封止空間を形成する絶縁ケースと、
前記絶縁ケースに挿入支持され前記電力用半導体素子を流れる電流を検出する電流検出用抵抗と、
を備え
前記電流検出用抵抗は、
帯板状に形成され、その一端側にワイヤ接続部が形成され、その他端側に電極端子部が形成され、当該電流検出用抵抗の一方の長辺が前記絶縁ケースの周壁の内側から露出すると共に前記電極端子部の先端部が前記周壁の上端面から突出する様に前記周壁に挿入され、露出された前記長辺における前記ワイヤ接続部と前記電極端子部との間の部分において、2つの電流検出用のボンディングワイヤが通電方向に沿って互いに間隔を空けて接続されることを特徴とする半導体装置。
A substrate on which a power semiconductor element is mounted;
An insulating case forming a sealed space for the substrate;
A current detection resistor for detecting a current flowing through the power semiconductor element inserted and supported in the insulating case;
Equipped with a,
The current detection resistor is:
It is formed in a strip shape, a wire connection portion is formed on one end side thereof, an electrode terminal portion is formed on the other end side, and one long side of the current detection resistor is exposed from the inside of the peripheral wall of the insulating case. In addition, in the portion between the wire connecting portion and the electrode terminal portion on the long side that is inserted into the peripheral wall so that the tip end portion of the electrode terminal portion protrudes from the upper end surface of the peripheral wall and exposed, the semiconductor device bonding wire for current detection is characterized Rukoto are connected together and spaced apart from each other along the current direction.
前記電流検出用抵抗は、前記絶縁ケースに挿入支持された電極端子と一体的に形成されることを特徴とする請求項1に記載の半導体装置。  The semiconductor device according to claim 1, wherein the current detection resistor is formed integrally with an electrode terminal inserted and supported in the insulating case. 前記電流検出用抵抗は、該電流検出用抵抗に直接に接続されたボンディングワイヤを介して接続対象に接続されることを特徴とする請求項1又は請求項2に記載の半導体装置。  The semiconductor device according to claim 1, wherein the current detection resistor is connected to a connection target through a bonding wire directly connected to the current detection resistor. 前記電流検出用抵抗に前記ボンディングワイヤの接続位置を規定する凸部を複数形成することで、前記ボンディングワイヤの前記電流検出用抵抗に対する接続位置変更自在にすることを特徴とする請求項3に記載の半導体装置。 A convex portion which defines the connection position of the bonding wire to said current detecting resistor by forming a plurality, in claim 3, characterized in that the freely change the connection position relative to the current detecting resistor of the bonding wire The semiconductor device described.
JP2000151763A 2000-05-23 2000-05-23 Semiconductor device Expired - Lifetime JP4209070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000151763A JP4209070B2 (en) 2000-05-23 2000-05-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000151763A JP4209070B2 (en) 2000-05-23 2000-05-23 Semiconductor device

Publications (2)

Publication Number Publication Date
JP2001332678A JP2001332678A (en) 2001-11-30
JP4209070B2 true JP4209070B2 (en) 2009-01-14

Family

ID=18657266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000151763A Expired - Lifetime JP4209070B2 (en) 2000-05-23 2000-05-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JP4209070B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101430831B1 (en) 2012-11-28 2014-08-18 주식회사 케이이씨 Power Module

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH072013B2 (en) * 1990-06-29 1995-01-11 三洋電機株式会社 Switching power supply
JP3476612B2 (en) * 1995-12-21 2003-12-10 三菱電機株式会社 Semiconductor device
JP3557340B2 (en) * 1998-03-04 2004-08-25 株式会社東芝 Semiconductor stack
JPH11330355A (en) * 1998-05-12 1999-11-30 Shibaura Mechatronics Corp Wiring method of inverter ic board
JP3674333B2 (en) * 1998-09-11 2005-07-20 株式会社日立製作所 Power semiconductor module and electric motor drive system using the same

Also Published As

Publication number Publication date
JP2001332678A (en) 2001-11-30

Similar Documents

Publication Publication Date Title
US5847436A (en) Bipolar transistor having integrated thermistor shunt
US6560115B1 (en) Combination structure of electronic equipment
JP5169353B2 (en) Power module
JP2001153017A (en) Ignition device of internal combustion engine
JP2850606B2 (en) Transistor module
JP4040838B2 (en) Power semiconductor device
KR100436352B1 (en) Power semiconductor device
US7256489B2 (en) Semiconductor apparatus
JP4209070B2 (en) Semiconductor device
JP3352820B2 (en) Power transistor abnormal heat protection device
JPH07170723A (en) Semiconductor stack
US6232654B1 (en) Semiconductor module
JP2004241579A (en) Semiconductor device
WO2018096573A1 (en) Semiconductor module
JP5494165B2 (en) Overcurrent detection composite element and overcurrent interruption device provided with overcurrent detection composite element
JP2011139568A (en) Circuit structure body and electric junction box
JP3998444B2 (en) Electronic component mounting structure
JP2006054245A (en) Semiconductor device
JP2514963Y2 (en) Fuse with diode
JP3203157B2 (en) Hybrid integrated circuit device
JP2023094166A (en) Output voltage detection device of switching element
JP6733218B2 (en) Protective device, semiconductor device, and manufacturing method
JPH05251632A (en) Semiconductor device
JP2023094167A (en) Output voltage detection device of switching element
JPH06267601A (en) Control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080728

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081021

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081022

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4209070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term