JP4208764B2 - Automatic irrigation method and automatic irrigation apparatus therefor - Google Patents

Automatic irrigation method and automatic irrigation apparatus therefor Download PDF

Info

Publication number
JP4208764B2
JP4208764B2 JP2004147895A JP2004147895A JP4208764B2 JP 4208764 B2 JP4208764 B2 JP 4208764B2 JP 2004147895 A JP2004147895 A JP 2004147895A JP 2004147895 A JP2004147895 A JP 2004147895A JP 4208764 B2 JP4208764 B2 JP 4208764B2
Authority
JP
Japan
Prior art keywords
plant
irrigation
water
moisture
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004147895A
Other languages
Japanese (ja)
Other versions
JP2005328715A (en
Inventor
興一 山田
伸英 高橋
逸雄 山浦
征雄 矢嶋
京子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2004147895A priority Critical patent/JP4208764B2/en
Publication of JP2005328715A publication Critical patent/JP2005328715A/en
Application granted granted Critical
Publication of JP4208764B2 publication Critical patent/JP4208764B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

この出願の発明は、自動潅水方法及びそのための自動潅水装置に関するものである。さらに詳しくは、この出願の発明は、水分センサによって植物の水分状態を検知して自動的に潅水を行う方法とそのための潅水装置に関するものである。   The invention of this application relates to an automatic irrigation method and an automatic irrigation apparatus therefor. More specifically, the invention of this application relates to a method for automatically irrigating by detecting a moisture state of a plant by a moisture sensor and an irrigation apparatus therefor.

近年、産業活動が活発になり、温室効果ガスが大量に排出された結果、気温が上昇する地球温暖化が環境問題として取り上げられており、地球温暖化防止のため緑化支援技術の一つとして、自動潅水技術が注目されている。   In recent years, industrial activities have become active, and as a result of the large amount of greenhouse gas emissions, global warming, where the temperature rises, has been taken up as an environmental issue. As one of the greening support technologies to prevent global warming, Automatic irrigation technology is drawing attention.

植物が光合成を行い生育して行くためには、水が必要不可欠である。植物の生育する土壌に適度な水分があれば問題ないが水分が不足すると旱魃となり、その度合いが進むと植物は枯死する。これを防ぐためには、土壌の乾燥状況に応じて適度な潅水を行う必要がある。一般に潅水のタイミングは最近の気象状況、土壌の乾焼状態、地上部の植物の活性具合、葉の萎れ状況等を人が観察し判断する。植物への潅水タイミングが著しく遅れると、いくら水を与えても蘇生せず枯死する事態が起こる。このため、従来より、人手や電力を必要とせずに植物に自動的に潅水する装置やその方法が提案されている。たとえば植木鉢を載置し得る水溜容器と、水溜容器内に収容されるか通水管で連結して水溜容器外に設置される自動潅水装置とからなり、自動潅水装置は、水供給源に直結の給水管が接続されるノズルと、フロートとよりなり、水溜容器の水位が所定の高さになったときにフロートの浮力によってノズルの出水口が閉塞される植物栽培装置が提案されている(たとえば、特許文献1参照)。また、自動潅水方法としては、潅水対象の植物とは別にその植物とほぼ同じ条件で水消費量測定用の植物を栽培し、この水消費量測定用の植物が前記水槽から水を自然吸水して消費するようにし、この水槽の水量の減少に応じて、水槽に水を補給するとともに、潅水対象の植物にもその補給水量に応じた水量の潅水を行う方法が提案されている(たとえが、特許文献2参照)。   Water is indispensable for plants to grow by photosynthesis. If the soil in which the plant grows has adequate moisture, there is no problem, but if the moisture is insufficient, it will become drought, and the plant will die if the degree of moisture progresses. In order to prevent this, it is necessary to perform moderate irrigation depending on the dryness of the soil. In general, the timing of irrigation is determined by human observation and judgment of recent weather conditions, soil dry-burning conditions, plant activity on the ground, leaf wilting conditions, and the like. If the timing of irrigation to the plant is significantly delayed, no matter how much water is given, it will die without being revived. For this reason, conventionally, an apparatus and a method for automatically irrigating a plant without requiring manual labor or electric power have been proposed. For example, it consists of a water reservoir that can hold flower pots and an automatic irrigation device that is housed in the water reservoir or connected by a water pipe and installed outside the water reservoir. The automatic irrigation device is directly connected to the water supply source. There has been proposed a plant cultivation apparatus that includes a nozzle to which a water supply pipe is connected and a float, and the water outlet of the nozzle is blocked by the buoyancy of the float when the water level of the water reservoir reaches a predetermined height (for example, , See Patent Document 1). As an automatic irrigation method, a plant for measuring water consumption is cultivated under substantially the same conditions as the irrigation target plant, and the water consumption measuring plant naturally absorbs water from the tank. A method has been proposed in which water is supplied to the aquarium according to the decrease in the amount of water in the aquarium, and the irrigated plant is also irrigated with the amount of water corresponding to the amount of the replenished water (for example, , See Patent Document 2).

しかしながら、上記の植物栽培装置や自動潅水方法によれば、水溜容器や水槽の水位変化を検知して給水されるものであるため、潅水用の水が常時豊富に準備できるところでは有効であるが、砂漠等の乾燥地で水資源が乏しいところでは頻繁に水を与えることは困難であり、タンク等に溜めた水は極力節約しなければならず、植物にこれ以上水を与えないと枯れてしまう極限状態の直前で潅水するようにすることが望まれている。   However, according to the plant cultivation apparatus and the automatic irrigation method described above, since water is supplied by detecting a change in the water level of the water storage container or tank, it is effective where water for irrigation can always be prepared abundantly. In dry areas such as deserts, where water resources are scarce, it is difficult to supply water frequently, and the water stored in tanks must be saved as much as possible, and if water is not supplied to plants, it will wither. It is desired to irrigate immediately before the extreme state.

植物の水分欠乏状態は突如としてやってくるわけではなく、降水のない期間が長く続くと土壌の水分量が徐々に少なくなり、やがて植物にとって極限状態となる。この極限状態になるためには必ず土壌の水分不足が先行する。そこで、土壌の水分を土壌水分計などで定量的に検知して潅水する方法が考えられる。しかし、検知された値が植物にとって本当に限界なのか否かの判断は難しい。たとえば、土壌水分計によって測定している地中の場所が植物の根周辺の水分量をよく表しているものであるかどうかは分らない。特に、砂漠等の乾燥地では地表近くの土壌水分と植物の根の主要部分がある深さの土壌水分とではかなり違うので、土壌水分計の測定深度が浅い場合は明らかに大きな誤差が出る。測定深度を適切にすればよいが、植物の根の主要部分の深さは対象植物によって様々なので一律に深さを決めることができなという問題があった。   The water deficiency state of the plant does not come suddenly. If the period without precipitation continues for a long time, the amount of water in the soil gradually decreases, and eventually it becomes an extreme state for the plant. In order to reach this extreme state, there is always a shortage of moisture in the soil. Therefore, a method of irrigating by quantitatively detecting soil moisture with a soil moisture meter or the like can be considered. However, it is difficult to determine whether the detected value is really a limit for plants. For example, it is not known whether the ground location measured by a soil moisture meter is a good representation of the amount of moisture around the roots of the plant. In particular, in dry areas such as deserts, there is a considerable difference between soil moisture near the surface and soil moisture at a depth where the main part of plant roots is present. Although the measurement depth should be appropriate, there is a problem that the depth of the main part of the plant root varies depending on the target plant, and the depth cannot be determined uniformly.

これまで、植物の旱魃時の極限状態を知る方法としては、植物の水分状態を表すパラメータのひとつである葉の水ポテンシャルを測定し、その植物に固有な水ポテンシャルの極限値を測定することが知られている。その測定方法にはプレッシャーチャンバ−法やサイクロメータ法が一般的に用いられている。しかしながら、いずれの測定方法も葉柄または葉の一部を切除する必要があり、部分的とはいえ破壊的であり、また測定に時間と手間が掛かるなどの問題があった。また、水ポテンシャルの極限値も植物の種類によって異なるので、適用植物についてそれぞれを知る必要があった。
特開平10−113081号公報 特開平10−000040号公報
Until now, the method of knowing the extreme state of a plant during drought has been to measure the water potential of the leaf, which is one of the parameters representing the moisture state of the plant, and to measure the extreme value of the water potential inherent to that plant. Are known. A pressure chamber method or a cyclometer method is generally used as the measurement method. However, each measurement method requires excision of a petiole or a part of a leaf, which is partially but destructive, and takes time and labor for measurement. In addition, the limit value of water potential varies depending on the type of plant, so it was necessary to know each of the applicable plants.
Japanese Patent Laid-Open No. 10-113081 JP 10-000040 A

そこで、この出願の発明は、以上の通りの背景から、砂漠等の乾燥地において水資源が乏しい場所でも有効な、植物の水ポテンシャルを直接測定することなく極限の水分状態を知り、かつ人手を介さずに自動的に潅水のタイミングを判断し、潅水を行うことのできる自動潅水方法およびそのための自動潅水装置を提供することを課題としている。   Therefore, the invention of this application is based on the background as described above, and is effective even in a dry land such as a desert where water resources are scarce. It is an object of the present invention to provide an automatic irrigation method and an automatic irrigation device therefor that can automatically determine the timing of irrigation without intervention and perform irrigation.

この出願は、上記の課題を解決するものとして、第1には大地に根ざした植物の植物組織の電気インピーダンス、又は植物の部位の電気容量を測定して水分状態を検知し、その水分状態に応じて潅水することを特徴とする自動潅水方法を提供する。
第2には、さらに、大地と植物の根の間の接地インピーダンスを測定して水分状態を検知し、その水分状態に応じて潅水することを特徴とする自動潅水方法を提供する。
In order to solve the above-mentioned problem, this application first detects the moisture state by measuring the electrical impedance of the plant tissue of the plant rooted in the earth or the electrical capacitance of the plant part. An automatic irrigation method characterized by irrigating in response.
Secondly, an automatic irrigation method is provided, wherein the ground impedance between the ground and the root of the plant is measured to detect the water state, and watering is performed according to the water state.

また、この出願の発明は、第には、測定部と潅水制御部と潅水部とを備えた大地に根ざした植物に潅水するための装置であって、測定部は、植物組織の電気インピーダンスを測定する1以上の植物組織水分センサ、又は植物の部位の電気容量を測定する1以上の植物水分センサを有し、潅水制御部は、前記測定部で測定された電気インピーダンス、電気容量から植物の水分状態が検知され、その水分状態に応じて植物への潅水が制御されて、潅水部にて潅水が行われることを特徴とする自動潅水装置を提供する。
第4には、測定部は、さらに、大地と植物の根の間の接地インピーダンスを測定する1以上の水分センサを有し、潅水制御部ではこの接地インピーダンスから検知される水分状態に応じて植物への潅水が制御され、潅水部にて潅水が行われることを特徴とする自動潅水装置を提供する。
The invention of this application, the third, a device for irrigation to plants rooted in earth and a watering unit and the measurement unit and the irrigation control unit, the measuring unit, the electrical impedance of plant tissue the have one or more plant tissues moisture sensor for measuring, or one or more plant moisture sensor for measuring the electrical capacitance of the site of the plant, irrigation control unit, electrical impedance measured by the measuring unit, from the electrical capacitance Provided is an automatic irrigation apparatus characterized in that a water state of a plant is detected, watering to the plant is controlled according to the water state, and watering is performed in a watering unit.
Fourth, the measurement unit further includes one or more moisture sensors that measure the ground impedance between the ground and the root of the plant, and the irrigation control unit is configured to control the plant according to the moisture state detected from the ground impedance. There is provided an automatic irrigation apparatus characterized in that irrigation is controlled and irrigation is performed in an irrigation unit.

この出願の発明によれば、砂漠等の乾燥地において水資源が乏しい場所でも有効な、植物の水ポテンシャルを直接測定することなく、インビボ直接測定によって植物の水分状態を知り、かつ人手を介さずに自動的に潅水のタイミングを判断し、潅水を行うことのできる。   According to the invention of this application, it is effective even in a dry land such as a desert where water resources are scarce. It is possible to automatically determine the timing of irrigation and perform irrigation.

この出願の発明は、上記のとおりの特徴をもつものであるが、以下、さらに詳しく発明の実施の形態について説明する。   The invention of this application has the characteristics as described above, and the embodiments of the invention will be described in more detail below.

この出願の発明は、大地に根ざした植物の植物組織の電気インピーダンス、大地と植物の根の間の接地インピーダンスおよび植物の部位の電気容量のうち少なくともいずれかを測定して水分状態を検知し、その水分状態に応じて潅水する方法とそのための自動潅水装置に関するものである。   The invention of this application detects the moisture state by measuring at least one of the electrical impedance of the plant tissue of the plant rooted in the ground, the ground impedance between the ground and the root of the plant, and the electrical capacitance of the plant part, The present invention relates to a method of irrigation according to the moisture state and an automatic irrigation apparatus for the method.

図1は、この出願の発明の自動潅水装置の一実施形態を模式的に示した図であり、大地に根ざした植物の植物組織の電気インピーダンスを測定部で測定して、潅水制御部(9)で植物の水分状態を検知し、その水分状態に応じて、潅水部(11)で自動的に潅水する自動潅水装置である。図1では、植物の一例として樹木(1)を例示しているが、樹木以外に草木や野菜等の植物であってもよい。   FIG. 1 is a diagram schematically showing an embodiment of the automatic irrigation apparatus of the invention of this application. The electrical impedance of the plant tissue of the plant rooted in the ground is measured by the measurement unit, and the irrigation control unit (9 ) Is an automatic irrigation device that detects the moisture state of the plant and automatically irrigates the irrigation unit (11) according to the moisture state. In FIG. 1, a tree (1) is illustrated as an example of a plant, but plants such as plants and vegetables may be used in addition to trees.

植物の水分状態は、水ポテンシャルから知ることができるが、これを直接測定しなくてもこれと関係がある植物組織の電気インピーダンスを測定すれば、水ポテンシャルに代行させることができる。すなわち、この出願の発明は、水ポテンシャルと関係ある植物組織の電気インピーダンスを植物からの水分センサ信号とみなし、これによって自動潅水のタイミングを決めるものである。   The water state of a plant can be known from the water potential, but it can be substituted for the water potential by measuring the electrical impedance of the plant tissue related to this even if it is not directly measured. That is, the invention of this application regards the electrical impedance of the plant tissue related to the water potential as a moisture sensor signal from the plant, thereby determining the timing of automatic irrigation.

植物組織の電気インピーダンスの最も簡単な等価回路は抵抗Rと容量Cの並列回路で示される。抵抗Rは、主として細胞外組織を流れる電流が関与するところの抵抗である。容量Cは、細胞の内と外の境界を司る膜によって形成される量である。細胞の生きていることの証拠は、この膜による容量の存在である。細胞の活性が高ければ、膜はよく機能し、必然的に容量は大きいものとなる。活性が落ちれば、膜機能は低下し、容量は減少する。もし細胞が死ねば、もはや細胞の内と外を区別する境界はなくなるので容量は消失し、植物組織のインピーダンスは抵抗のみとなる。また、抵抗は組織全体が乾燥すれば水分が少なくなり電気伝導性は悪くなるので、極めて高い値となる。   The simplest equivalent circuit of the electrical impedance of plant tissue is shown by a parallel circuit of a resistor R and a capacitor C. The resistance R is a resistance where a current flowing mainly through an extracellular tissue is involved. The capacity C is an amount formed by a membrane that controls the inner and outer boundaries of the cell. Evidence that the cell is alive is the presence of this membrane capacity. If the activity of the cells is high, the membrane functions well and inevitably has a large capacity. If activity decreases, membrane function decreases and capacity decreases. If the cell dies, there is no longer a boundary between the inside and the outside of the cell, so the capacity disappears and the impedance of the plant tissue is only resistance. In addition, the resistance becomes a very high value because the moisture becomes less and the electrical conductivity becomes worse if the entire tissue is dried.

図2に植物組織の電気インピーダンスを測定するための測定回路を示す。植物の茎や幹、枝などの電気インピーダンスを測定したい植物組織部(6)に図のような4つの電極を取り付けて、通電用第1電極(2)と通電用第2電極(5)の間に交流電源(7)によって交流電流Iを流し、電圧測定用第1電極(3)と電圧測定用第2電極(4)の間に生じる電圧Vを測定する。さらに、交流電流Iに対する電圧Vの位相θを測定すれば、電圧測定用第1電極(3)と電圧測定用第2電極(4)の間の植物組織の電気インピーダンスZは、Z=lVl/lIl(cosθ+j・sinθ)で表される。このようにして電気インピーダンスを測定する方法は4電極法と呼ばれているが(または4端子法、または4探針法とも呼ばれる)、この方法は測定のための電極と植物組織部(6)の接触界面で生じるインピ−ダンスおよび測定リード線の影響を受けないで植物組織部(6)の電気インピ−ダンスが測定できることから、一般的に用いられている方法であり、この原理に基づいたインピーダンス測定器はLCRメータ、またはインピーダンスメータとして入手できる。生体が測定対象の場合、測定リード線と生体との結合は電極によって行うが、生体には水分があり、その水分は電解質なので、電極を長期間取り付けたままで使用するには、化学的に安定な金属材料が考慮される。このような金属材料としては、たとえば白金や、安価なステンレスが好適に用いられる。電極の形状としては、植物組織に適当な深さまで刺入することから、茎、幹および枝が細いものに対しては針状の電極、太いものに対しては太さに応じた釘状の電極が適宜選定される。   FIG. 2 shows a measurement circuit for measuring the electrical impedance of the plant tissue. Attach four electrodes as shown in the figure to the plant tissue part (6) where you want to measure the electrical impedance of plant stems, trunks, branches, etc., and connect the first electrode for energization (2) and the second electrode for energization (5). An AC current I is passed between them by an AC power source (7), and a voltage V generated between the first electrode for voltage measurement (3) and the second electrode for voltage measurement (4) is measured. Furthermore, if the phase θ of the voltage V with respect to the alternating current I is measured, the electrical impedance Z of the plant tissue between the first electrode for voltage measurement (3) and the second electrode for voltage measurement (4) is Z = lVl / It is expressed as lIl (cos θ + j · sin θ). The method for measuring the electrical impedance in this way is called the four-electrode method (or the four-terminal method or the four-probe method), and this method uses the electrode for measurement and the plant tissue part (6). This is a generally used method because the electrical impedance of the plant tissue part (6) can be measured without being affected by the impedance generated at the contact interface and the measurement lead wire, and based on this principle. The impedance measuring instrument is available as an LCR meter or an impedance meter. When the living body is the measurement target, the measurement lead wire and the living body are coupled by the electrode, but the living body has moisture, and the moisture is an electrolyte, so it is chemically stable to use it with the electrode attached for a long time. Metal materials are considered. As such a metal material, for example, platinum or inexpensive stainless steel is preferably used. As for the shape of the electrode, it is inserted into the plant tissue to an appropriate depth, so that the needle, the stem, and the branches are thin for needles, and the thick one is nail-shaped according to the thickness. The electrode is appropriately selected.

上述のインピーダンス測定から、並列等価回路で示した抵抗Rと電気容量Cが求まるので、植物組織の水分量変化に対するこれらの値がどのように変化するかをインビトロ実験によって示す。測定対象は、植林によく用いられる木本植物であるユ−カリ(Eucalyptus camaldulensis)とし、西オーストラリアの乾燥地で採取された種から、バーミキュライトを培地としてポット内で育てられた苗を用いた。複数の苗から木部化していない緑色の茎部(直径約3mm)を長さ15cmほど切除し、中央部分の3cmを測定部位とした。測定結果から得られた切り枝の相対含水率と電気容量及び抵抗との関係を示したグラフをそれぞれ図3と図4に示す。ここで、相対含水率とは飽和状態での含水量に対する含水量の比である。図に示した4つの試料のうち、葉つきのもの以外は葉を落とした茎のみの試料である。   Since the resistance R and the capacitance C shown in the parallel equivalent circuit are obtained from the impedance measurement described above, how these values change with respect to the change in the moisture content of the plant tissue is shown by an in vitro experiment. The measurement object was Eucalyptus camaldulenis, a woody plant often used for afforestation, and seedlings grown in pots using vermiculite as a medium from seeds collected in dry land in Western Australia were used. A green stem portion (diameter: about 3 mm) which is not made into a xylem from a plurality of seedlings was excised about 15 cm in length, and 3 cm in the central portion was taken as a measurement site. The graphs showing the relationship between the relative moisture content of the cut branches obtained from the measurement results, the electric capacity, and the resistance are shown in FIGS. 3 and 4, respectively. Here, the relative water content is the ratio of the water content to the water content in the saturated state. Of the four samples shown in the figure, except for those with leaves, only the stems with the leaves dropped are samples.

図3から、飴和状態(相対含水率1(kg/kg))の電気容量はどの試料もほぼ等しく約500pFであった。相対含水率が0.6(kg/kg)より低下すると徐々に電気容量も低下し始め、相対含水率が0.4(kg/kg)以下になると急激に電気容量が低下した。電気容量の低下の仕方には個体差が見られるが、どの試料も相対含水率が0.2(kg/kg)付近で容量がゼロとなった。   From FIG. 3, the electric capacity in the kneaded state (relative water content 1 (kg / kg)) was approximately equal to about 500 pF for all samples. When the relative water content decreased from 0.6 (kg / kg), the electric capacity began to decrease gradually, and when the relative water content became 0.4 (kg / kg) or less, the electric capacity decreased rapidly. Although there are individual differences in the method of decreasing the electric capacity, the capacity of all the samples became zero when the relative water content was around 0.2 (kg / kg).

一方、図4から、抵抗については、相対含水率が0.4(kg/kg)以上の範囲では相対含水率の低下に伴う抵抗の増大は緩やかであり、また、どの試料もほぼ等しい傾向を示した。相対含水率が0.4(kg/kg)よりも低下すると抵抗は急激に増大し始め、相対含水率が0.2(kg/kg)付近では1MΩ以上に達した。これらの関係から、相対含水率が0.4(kg/kg)より低下すると植物の活性は劇的に変化し、相対含水率が約0.2(kg/kg)で完全に活性を失い、枯死に至ると考えられる。別の個体の葉柄試料で測定した相対含水率と水ポテンシャルの関係から、相対含水率0.4(kg/kg)及び0.2(kg/kg)は、それぞれ−5MPa,−9MPaの水ポテンシャルに相当すると推定された。また、葉がついている場合でも、相対含水率と抵抗及び電気容量の間の関係は葉を除いたものとほぼ等しいことが確認された。このように植物組織の電気容量や抵抗と相対含水率または水ポテンシャルを関係付けることにより、インピーダンス測定から植物の水分状態を推測することが可能になる。   On the other hand, as shown in FIG. 4, with respect to the resistance, when the relative moisture content is in the range of 0.4 (kg / kg) or more, the increase in resistance accompanying the decrease in the relative moisture content is moderate, and all the samples tend to be almost equal. Indicated. When the relative moisture content decreased below 0.4 (kg / kg), the resistance began to increase rapidly, and reached 1 MΩ or more in the vicinity of the relative moisture content of 0.2 (kg / kg). From these relationships, when the relative water content falls below 0.4 (kg / kg), the activity of the plant changes dramatically, and when the relative water content is about 0.2 (kg / kg), the activity is completely lost. It is thought that it will die. Based on the relationship between the relative water content and water potential measured with the petiole samples of other individuals, the relative water content of 0.4 (kg / kg) and 0.2 (kg / kg) is the water potential of -5 MPa and -9 MPa, respectively. It was estimated that In addition, even when leaves were attached, it was confirmed that the relationship between relative moisture content, resistance, and capacitance was almost the same as that without leaves. In this way, by associating the electrical capacity or resistance of the plant tissue with the relative water content or water potential, it becomes possible to infer the moisture state of the plant from the impedance measurement.

このように、図1では植物組織の電気インピーダンスを測定するための測定部である4つの電極もった植物組織水分センサ(8)を樹木(1)の任意の箇所、たとえば幹の下部、上部、枝に取り付けて植物組織の電気インピーダンスを測定する。多くの植物において、旱魃時の水分量の減少は、根から距離の離れた部分から始まるので、樹木(1)の何箇所かにそれぞれ植物組織水分センサ(8)を取り付けて植物組織の電気インピーダンスを測定することで樹木(8)全体の水分量を把握でき潅水のタイミングの判断を確実にすることができる。   As described above, in FIG. 1, a plant tissue moisture sensor (8) having four electrodes, which is a measurement unit for measuring the electrical impedance of plant tissue, is placed at an arbitrary position on the tree (1), for example, at the lower part, upper part of the trunk, Attached to a branch, the electrical impedance of the plant tissue is measured. In many plants, the decrease in water content during drought begins at a distance away from the root. Therefore, the plant tissue moisture sensor (8) is attached to several points of the tree (1), and the electrical impedance of the plant tissue is set. By measuring the amount of water in the entire tree (8), the timing of irrigation can be reliably determined.

潅水制御部(9)は、たとえばSW部(91)と検出部(92)と潅水判断部(93)から構成されており、複数個の植物組織水分センサ(8)からのリードはSW部(91)にて一定時間ごとに切り替えられ、検出部(92)でそれぞれの植物組織水分センサ(8)から植物組織の電気インピーダンスが検出される。潅水判断部(93)では、電気インピーダンスと植物の相対含水率の関係から、電気インピーダンスの値に応じて注水バルブ(10)が開閉するように設定される。このため、植物組織の電気インピーダンスの検出結果から潅水のタイミングが判断され、植物の相対含水率が低い場合には、注水バルブ(10)が開かれて、潅水部(11)である貯水タンク(111)からの水が潅漑チューブ(112)に導かれ、樹木(1)の根元で点滴灌漑または散水される。   The irrigation control unit (9) is composed of, for example, an SW unit (91), a detection unit (92), and an irrigation determination unit (93), and leads from the plurality of plant tissue moisture sensors (8) are SW units ( 91), and the electrical impedance of the plant tissue is detected from each plant tissue moisture sensor (8) by the detection unit (92). In the irrigation determination unit (93), the water injection valve (10) is set to open and close according to the value of the electrical impedance from the relationship between the electrical impedance and the relative moisture content of the plant. For this reason, the timing of irrigation is judged from the detection result of the electrical impedance of the plant tissue, and when the relative moisture content of the plant is low, the water injection valve (10) is opened, and the water storage tank ( 111) is led to an irrigation tube (112) and drip irrigated or sprinkled at the root of the tree (1).

図5には、この出願の発明の別の自動潅水装置の一実施形態を模式的に示した図である。この図5によれば、植物の植物組織の電気インピーダンスを測定するための植物組織水分センサ(8)以外に、大地と植物の根の間の接地インピーダンスを測定する水分センサ(12)が測定部として取り付けられている。   FIG. 5 is a diagram schematically showing an embodiment of another automatic irrigation apparatus of the invention of this application. According to FIG. 5, in addition to the plant tissue moisture sensor (8) for measuring the electrical impedance of the plant tissue of the plant, the moisture sensor (12) for measuring the ground impedance between the ground and the plant root is a measuring unit. It is attached as.

一般に接地金属物体の接地インピーダンスZは、Z=ρ・f(形状、寸法)で表される。ここで、ρは大地の電気的性質を表す大地比抵抗であり、ρの大小は土壌の含水量によって左右される。fは接地金属物体の形状と寸法で定まる関数である。植物の根の接地インピーダンスについては、関数fの中に根の組織インピーダンスがさらに入ってくるが、ρとfの積には変わりない。すなわち、植物の根の接地インピーダンスを測定すると、根の組織インピーダンスとともに大地の乾湿に関する情報も得ることができる。このことから、植物の根の接地インピーダンスを植物自身のセンサシグナルとして捕らえることができるため、上述したような土壌水分計を用いて土壌水分を測る方法の不都合を解決することができる。   In general, the ground impedance Z of a ground metal object is represented by Z = ρ · f (shape, dimension). Here, ρ is the earth resistivity representing the electrical properties of the earth, and the magnitude of ρ depends on the moisture content of the soil. f is a function determined by the shape and size of the ground metal object. Regarding the plant ground impedance, the root tissue impedance further enters the function f, but the product of ρ and f does not change. That is, when the ground impedance of the root of the plant is measured, information on dryness and wetness of the ground can be obtained together with the tissue impedance of the root. From this, since the ground impedance of the root of the plant can be captured as the sensor signal of the plant itself, the disadvantage of the method of measuring soil moisture using the soil moisture meter as described above can be solved.

植物の根の接地インピーダンス測定方法は、本発明者らによって植物の根の接地抵抗測定方法として提案されている(特開平11−332377号公報、特開2003−245015号公報参照)。これらの方法によれば、植物組織の電気インピーダンスの測定の場合と同じように電極抵抗の影響を無くすために4電極法が適用される。   The method for measuring the ground impedance of a plant root has been proposed by the present inventors as a method for measuring the ground resistance of a plant root (see Japanese Patent Application Laid-Open Nos. 11-332377 and 2003-245015). According to these methods, the four-electrode method is applied in order to eliminate the influence of electrode resistance as in the case of measuring the electrical impedance of plant tissue.

ここで、図5に示したように、第1補助電極C、第1電極T、第2電極E、第2補助電極Pの4つの電極からなる水分センサ(12)が用いられる。地面に打ち込んだ第1補助電極Cと樹木(1)に取り付けた第1電極Tまたは第2電極Eの間に交流電流を流し、もう1つの第2補助電極Pと樹木(1)に取り付けた第2電極Eまたは第1電極Tとの間の電圧を測定する。第1補助電極Cの接地位置は接地インピーダンス測定法の条件を満たすように、通常は樹木(1)から10m以上離し、第2補助電極Pは樹木(1)と第1補助電極Cとの中間とする。水分センサ(12)からの植物の根の接地インピーダンスの測定には植物組織の電気インピ−ダンスの測定の時と同じ検出部(92)が利用できるので、図5のようにSW部(91)に切り替え部分を追加すればよい。   Here, as shown in FIG. 5, a moisture sensor (12) including four electrodes of the first auxiliary electrode C, the first electrode T, the second electrode E, and the second auxiliary electrode P is used. An alternating current was passed between the first auxiliary electrode C driven into the ground and the first electrode T or the second electrode E attached to the tree (1), and attached to the other second auxiliary electrode P and the tree (1). The voltage between the second electrode E or the first electrode T is measured. The ground position of the first auxiliary electrode C is usually separated from the tree (1) by 10 m or more so as to satisfy the ground impedance measurement method, and the second auxiliary electrode P is intermediate between the tree (1) and the first auxiliary electrode C. And Since the same detection unit (92) as that for measuring the electrical impedance of the plant tissue can be used to measure the ground impedance of the plant root from the moisture sensor (12), the SW unit (91) as shown in FIG. A switching part may be added to.

このように、植物の地下部における根の接地インピーダンスと、地上部の植物組織の電気インピーダンスを組み合わせることで、精度よく潅水タイミングを決定することができる。さらに、植物が生育する場所での土壌の乾湿情報を組み合わせることで、より精度を高めることができる。もちろん、植物の地下部における根の接地インピーダンスのみの測定でも、精度よく潅水タイミングを決定することができる。   Thus, the irrigation timing can be determined with high accuracy by combining the ground impedance of the root in the underground part of the plant and the electrical impedance of the plant tissue in the ground part. Furthermore, the accuracy can be further improved by combining the wet and dry information on the soil where the plant grows. Of course, the irrigation timing can be determined with high accuracy by measuring only the ground impedance of the root in the underground part of the plant.

また、植物の水分状態を知るセンサとして、また電極を刺入しないで非浸襲的に行うセンサとしてコンデンサの原理に基づき、主として容量変化を観測できる植物水分センサ(13)を用いてもよい。このセンサによれば、この出願の発明の主要部分に対して補助的な手段、または簡易的な水分状態を知るためのセンサとして利用することができる。平行平板型のコンデンサの容量はε・(S/d)で表される。ここで、εとはコンデンサの極板間に充填された物質(植物の茎、幹、葉等)の誘電率、Sは極板の面積、dは電極板間の距離である。水の誘電率は空気より80倍近く以上大きいので、コンデンサの電極板の間にある水分量の変化はコンデンサの電気容量変化から知ることができる。平行平板型は、葉の水分量変化の検出に有効である。コンデンサの型が平行平板型でなくとも同じような原理で図6に示すような円筒形をなした茎・幹・枝(14)に対しても適用できる。二つの電極板(15)と対象物である茎・幹・枝(14)の問には絶縁シート(16)を挿入する。これは、対象物が葉の場合でも同様に電極板と葉の間に絶縁シート(16)を挿入する。測定装置へのリード線の結線は原理的には4電極法によっており、実際には図6のように電極板との接続部分で通電用第1リード(17)と電圧測定用第1リード(18)を結線する。もう1つの電極板では電圧測定用第2リード(19)と通電用第2リード(20)を結線する。通電用第1リード(17)、電圧測定用第1リード(18)、電圧測定用第2リード(19)、通電用第2リード(20)の4本のリード線は図2に示した通電用第1電極(2)、電圧測定用第1電極(3)、通電用第2電極(4)、電圧測定用第2電極(5)のそれぞれ対応する。こうすることによって、測定器からコンデンサまでのリード線の抵抗やインダクタンスの影響は4電極法の原理により除去することができ、電気容量のみの測定が可能となる。植物組織には抵抗成分もあるので、これらはコンデンサの誘電損失として扱うことができる。植物の何箇所かにそれぞれ植物水分センサ(13)を取り付けて植物の電気容量を測定することで、植物全体の水分量を把握でき潅水のタイミングの判断を確実にすることができる。また、上述の植物組織水分センサ(8)と水分センサ(12)を組み合わせて使用することで、さらに精度よく潅水タイミングを決定することができる。   Further, a plant moisture sensor (13) capable of mainly observing a change in capacitance based on the principle of a capacitor may be used as a sensor for knowing the moisture state of a plant and a sensor that performs non-invasively without inserting an electrode. According to this sensor, it can be used as an auxiliary means for the main part of the invention of this application or as a sensor for knowing a simple moisture state. The capacitance of the parallel plate type capacitor is represented by ε · (S / d). Here, ε is the dielectric constant of a substance (plant stem, trunk, leaf, etc.) filled between the electrode plates of the capacitor, S is the area of the electrode plate, and d is the distance between the electrode plates. Since the dielectric constant of water is nearly 80 times greater than that of air, the change in the amount of moisture between the capacitor electrode plates can be known from the change in the capacitance of the capacitor. The parallel plate type is effective for detecting a change in the moisture content of the leaves. Even if the type of the capacitor is not a parallel plate type, it can be applied to a cylindrical stem / stem / branch (14) as shown in FIG. An insulating sheet (16) is inserted between the two electrode plates (15) and the object stems, trunks, and branches (14). In the same manner, even when the object is a leaf, the insulating sheet (16) is inserted between the electrode plate and the leaf. In principle, the connection of the lead wire to the measuring device is based on the four-electrode method. Actually, as shown in FIG. 6, the first lead for energization (17) and the first lead for voltage measurement ( Connect 18). In the other electrode plate, the second lead for voltage measurement (19) and the second lead for energization (20) are connected. The four lead wires of the first lead for energization (17), the first lead for voltage measurement (18), the second lead for voltage measurement (19), and the second lead for energization (20) are shown in FIG. The first electrode (2) for voltage measurement, the first electrode for voltage measurement (3), the second electrode for conduction (4), and the second electrode for voltage measurement (5) correspond to each. By doing so, the influence of the resistance and inductance of the lead wire from the measuring instrument to the capacitor can be eliminated by the principle of the four-electrode method, and only the electric capacity can be measured. Since plant tissue also has resistance components, these can be treated as dielectric loss of capacitors. By attaching the plant moisture sensor (13) to each part of the plant and measuring the electrical capacity of the plant, the moisture content of the whole plant can be grasped and the timing of irrigation can be assured. In addition, by using the plant tissue moisture sensor (8) and the moisture sensor (12) in combination, the irrigation timing can be determined with higher accuracy.

図7は、この出願の発明のさらに別の一実施形態を模式的に示した図である。この図7によれば、対象とする植林地あるいは既存の森林に対し、点滴潅漑ないしは散水設備を既存の技術によって施す。潅水部(11)である水資源としては貯水タンク(111)を利用するが、貯水タンク(111)へ給水は、概地域で行われている一般的な方法で可能である。たとえば、雨水の貯水や風車によって井戸から水を汲み上げる、または給水ラインがある場所ではこの利用などいろいろな態様が考えられる。潅水タイミングは、植物組織水分センサ(8)、水分センサ(12)、植物水分センサ(13)を取り付けて、潅水制御部(9)にて、植物組織の電気インピーダンス、根の接地インピーダンス、植物の幹、枝、葉の電気容量を測定して、樹木(1)自身の水分量に関する情報を詳細に分析し、これ以上水分が欠乏すると枯死に至る限界寸前で注水バルブ(10)を開いて潅水を実施する。1本の樹木(1)ないしは必要に応じて複数本の樹木(1)から得た情報により総合的に判断する。この装置は一度セットすれば、メンテナンス以外には無人で自動化されるので、砂漠や半乾燥地など人の居住地域から離れた場所での実施に適している。なお、図7では樹木(1)への実施例を示したが、樹木(1)を農作物などに代えれば、これらの旱魃にも適用できる。   FIG. 7 is a diagram schematically showing still another embodiment of the invention of this application. According to FIG. 7, drip irrigation or watering equipment is applied to a target plantation or existing forest using existing technology. The water tank (111) is used as the water resource that is the irrigation unit (11), and water can be supplied to the water storage tank (111) by a general method performed in a general area. For example, various modes such as pumping up water from a well by storing rainwater or a windmill, or using this in a place where there is a water supply line can be considered. The irrigation timing is determined by attaching the plant tissue moisture sensor (8), moisture sensor (12), and plant moisture sensor (13), and the irrigation controller (9) uses the electrical impedance of the plant tissue, the ground impedance of the root, Measure the electrical capacity of the trunk, branches and leaves, analyze the detailed information on the moisture content of the tree (1) itself, and open the irrigation valve (10) just before the limit that would lead to death if water is deficient any more. To implement. A comprehensive judgment is made based on information obtained from one tree (1) or a plurality of trees (1) as necessary. Once set, this device is automated and unattended except for maintenance, so it is suitable for implementation in places away from people's residential areas such as deserts and semi-arid areas. In addition, although the Example to a tree (1) was shown in FIG. 7, if a tree (1) is replaced with agricultural products etc., it can apply also to these fences.

さらに、近年先進的には作物の施設内(ハウス)栽培がとみに普及しつつあり、旱魃の問題よりはかかる栽培においてあらゆる作物の性質に応じた栽培方法とその水分制御方法の検討が実用段階で必要になってきている。たとえば、トマト栽培においては、糖度の高いトマトを生産するために、水を多量に与えるのではなく、むしろ少なくして栽培が行われている。すなわち、水分ストレスを適度に与えることによって、糖度の高いトマトを生産する方法が行われている。しかし、適量な水分量の判断については、植物自身から電気的に直接情報を得ているのではなく、経験的な判断に頼っているのが現状である。本願の発明の自動潅水方法を適用すれば、植物組織の電気インピーダンス、大地と植物の根の間の接地インピーダンス、茎、葉などの植物の部位の電気容量の測定値をもとに総合的に判断して、適量な水分量を精度よく制御することができる。   Furthermore, in recent years, in-house (house) cultivation of crops has become increasingly popular in recent years, and rather than the problem of drought, the cultivation method according to the properties of all crops and the water control method for such cultivation have been studied at the practical stage. It is becoming necessary. For example, in tomato cultivation, in order to produce tomatoes having a high sugar content, cultivation is carried out with rather less water supplied. That is, a method of producing tomatoes having a high sugar content by appropriately applying water stress has been performed. However, the current situation is that the determination of an appropriate amount of water does not directly obtain information directly from the plant itself but relies on empirical determination. If the automatic irrigation method of the present invention is applied, comprehensively based on the measured values of the electrical impedance of the plant tissue, the ground impedance between the ground and the root of the plant, the electrical capacity of the plant parts such as stems and leaves. Judging, it is possible to accurately control an appropriate amount of water.

以上は一例であるが、農業上の応用性については、以下のように考えられる。農作物全般において植物(作物)と水分の関係は切り離せない関係にある。栽培法とその管理法(生長・開花・着果調節、花芽形成・分化、着色、肥大等)や土壌・栽培環境の制御(光波長・温度・湿度制御等)、収穫目標物の熟度の把握、加工・品質管理法(貯蔵・食感・成分・味覚・鮮度保持等)には生体水分制御方法の確立が必要で、生体(作物)自身の水分量を把握でき潅水できる自動潅水装置の開発により、これからの農作物の付加価値をさらに増大させる他、安全性の高い食料生産に寄与する部分が大きい。考えられる具体的な対象作物は、花卉・花木類、野菜類、果樹類、草類、穀物類あらゆる有用植物である。   The above is an example, but the agricultural applicability is considered as follows. There is an inseparable relationship between plants (crop) and water in all crops. Cultivation method and its management method (growth / flowering / fruit adjustment, flower bud formation / differentiation, coloring, enlargement, etc.), soil / cultivation environment control (light wavelength, temperature, humidity control, etc.), harvest target maturity It is necessary to establish biological moisture control methods for grasping, processing and quality control methods (storage, texture, ingredients, taste, freshness maintenance, etc.). In addition to further increasing the added value of future crops through development, there is a large part contributing to safe food production. Specific target crops that can be considered are all useful plants such as flowers, flowering trees, vegetables, fruit trees, grasses, and cereals.

この出願の発明の自動潅水装置の一実施形態を模式的に示した図である。It is the figure which showed typically one Embodiment of the automatic watering apparatus of invention of this application. 植物組織の電気インピーダンスを測定するための測定回路である。It is a measurement circuit for measuring the electrical impedance of plant tissue. 幹の相対含水量に対する電気容量の関係を示したグラフである。It is the graph which showed the relationship of the electrical capacity with respect to the relative water content of a trunk. 幹の相対含水量に対する抵抗の関係を示したグラフである。It is the graph which showed the relationship of the resistance with respect to the relative water content of a trunk. この出願の発明の別の自動潅水装置の一実施形態を模式的に示した図である。It is the figure which showed typically one Embodiment of another automatic irrigation apparatus of invention of this application. この出願の発明の植物水分センサを説明するための図である。It is a figure for demonstrating the plant moisture sensor of invention of this application. この出願の発明のさらに別の一実施形態を模式的に示した図である。It is the figure which showed typically another one Embodiment of invention of this application.

符号の説明Explanation of symbols

1 樹木
2 通電用第1電極
3 電圧測定用第1電極
4 電圧測定用第2電極
5 通電用第2電極
6 植物組織部
7 交流電源
8 植物組織水分センサ
9 潅水制御部
91 SW部
92 検出部
93 潅水判断部
10 注水バルブ
11 潅水部
111 貯水タンク
112 灌漑チューブ
12 水分センサ
13 植物水分センサ
14 茎・幹・枝
15 電極板
16 絶縁シート
17 通電用第1リード
18 電圧測定用第1リード
19 電圧測定用第2リード
20 通電用第2リード
DESCRIPTION OF SYMBOLS 1 Tree 2 1st electrode for electricity supply 3 1st electrode for voltage measurement 4 2nd electrode for voltage measurement 5 2nd electrode for electricity supply 6 Plant tissue part 7 AC power supply 8 Plant tissue moisture sensor 9 Irrigation control part 91 SW part 92 Detection part 93 Irrigation judgment unit 10 Irrigation valve 11 Irrigation unit 111 Water storage tank 112 Irrigation tube 12 Moisture sensor 13 Plant moisture sensor 14 Stem / stem / branch 15 Electrode plate 16 Insulating sheet 17 First lead for energization 18 First lead for voltage measurement 19 Voltage Second lead for measurement 20 Second lead for energization

Claims (4)

大地に根ざした植物の植物組織の電気インピーダンス、又は植物の部位の電気容量を測定して水分状態を検知し、その水分状態に応じて潅水することを特徴とする自動潅水方法。 An automatic irrigation method characterized by detecting a water state by measuring an electrical impedance of a plant tissue of a plant rooted in the ground or an electric capacity of a plant part, and irrigating according to the water state. さらに、大地と植物の根の間の接地インピーダンスを測定して水分状態を検知し、その水分状態に応じて潅水することを特徴とする請求項1に記載の自動潅水方法。The automatic irrigation method according to claim 1, further comprising the step of measuring a ground impedance between the ground and the root of the plant to detect a water state and irrigating according to the water state. 測定部と潅水制御部と潅水部とを備えた大地に根ざした植物に潅水するための装置であって、測定部は、植物組織の電気インピーダンスを測定する1以上の植物組織水分センサ、又は植物の部位の電気容量を測定する1以上の植物水分センサを有し、潅水制御部は、前記測定部で測定された電気インピーダンス、電気容量から植物の水分状態が検知され、その水分状態に応じて植物への潅水が制御されて、潅水部にて潅水が行われることを特徴とする自動潅水装置。An apparatus for irrigating a plant rooted in the earth, comprising a measurement unit, a irrigation control unit, and a irrigation unit, wherein the measurement unit measures one or more plant tissue moisture sensors for measuring the electrical impedance of the plant tissue, or a plant The irrigation control unit detects the moisture state of the plant from the electrical impedance and the electrical capacitance measured by the measurement unit, and according to the moisture state. An automatic irrigation apparatus characterized in that irrigation to a plant is controlled and irrigation is performed in an irrigation unit. 測定部は、さらに、大地と植物の根の間の接地インピーダンスを測定する1以上の水分センサを有し、潅水制御部ではこの接地インピーダンスから検知される水分状態に応じて植物への潅水が制御され、潅水部にて潅水が行われることを特徴とする請求項3に記載の自動潅水装置。The measurement unit further includes one or more moisture sensors that measure the ground impedance between the ground and the plant root, and the irrigation control unit controls irrigation to the plant according to the moisture state detected from the ground impedance. 4. The automatic irrigation apparatus according to claim 3, wherein the irrigation unit performs irrigation.
JP2004147895A 2004-05-18 2004-05-18 Automatic irrigation method and automatic irrigation apparatus therefor Expired - Fee Related JP4208764B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004147895A JP4208764B2 (en) 2004-05-18 2004-05-18 Automatic irrigation method and automatic irrigation apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004147895A JP4208764B2 (en) 2004-05-18 2004-05-18 Automatic irrigation method and automatic irrigation apparatus therefor

Publications (2)

Publication Number Publication Date
JP2005328715A JP2005328715A (en) 2005-12-02
JP4208764B2 true JP4208764B2 (en) 2009-01-14

Family

ID=35483767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004147895A Expired - Fee Related JP4208764B2 (en) 2004-05-18 2004-05-18 Automatic irrigation method and automatic irrigation apparatus therefor

Country Status (1)

Country Link
JP (1) JP4208764B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5999595B2 (en) * 2011-09-16 2016-09-28 国立研究開発法人農業・食品産業技術総合研究機構 Irrigation control device and irrigation control method
CN103630656B (en) * 2013-12-18 2015-03-11 江苏大学 Method for quantitatively detecting drought resistance of plants
AU2014372103B2 (en) * 2013-12-23 2019-02-21 Saturas Ltd Device for measuring water potential in plant tissue
JP7390655B2 (en) * 2020-02-18 2023-12-04 学校法人立命館 Plant growing system, controller, plant growing method, and computer program
KR102397375B1 (en) * 2021-10-28 2022-05-12 애프터레인 주식회사 Integrated plant management system using artificial intelligence
KR102542767B1 (en) * 2022-04-06 2023-06-14 애프터레인 주식회사 Method of processsing plant bio impedance and server performing thereof
CN115014893A (en) * 2022-05-30 2022-09-06 湖南省林业科学院 Method for judging water shortage of gardenia
CN115299322B (en) * 2022-07-02 2023-05-19 中国建筑一局(集团)有限公司 Drip irrigation water saving system and water saving method

Also Published As

Publication number Publication date
JP2005328715A (en) 2005-12-02

Similar Documents

Publication Publication Date Title
Rienth et al. State-of-the-art of tools and methods to assess vine water status
Munitz et al. Water consumption, crop coefficient and leaf area relations of a Vitis vinifera cv.'Cabernet Sauvignon'vineyard
Ferreira et al. Crop and stress coefficients in rainfed and deficit irrigation vineyards using sap flow techniques
Collins et al. Partial rootzone drying and deficit irrigation increase stomatal sensitivity to vapour pressure deficit in anisohydric grapevines
US10188051B2 (en) Method for controlling irrigation
Flumignan et al. Evapotranspiration components and dual crop coefficients of coffee trees during crop production
Juhász et al. Water consumption of sweet cherry trees estimated by sap flow measurement
Bonada et al. Impact of low rainfall during dormancy on vine productivity and development
Vagulabranan et al. Automatic irrigation system on sensing soil moisture content
Johnson et al. Weighing lysimeters aid study of water relations in tree and vine crops
JP6306384B2 (en) Method for controlling irrigation supply in plant cultivation and controller thereof
JP4208764B2 (en) Automatic irrigation method and automatic irrigation apparatus therefor
Mota et al. Relating plant and soil water content to encourage smart watering in chestnut trees
Batista et al. Production of automatically watered lettuce with a low cost controller
Deb et al. Estimating midday leaf and stem water potentials of mature pecan trees from soil water content and climatic parameters
Gallardo et al. Response of stem diameter variations to water stress in greenhouse-grown vegetable crops
Nassif et al. The role of decoupling factor on sugarcane crop water use under tropical conditions
Van Zyl Interrelationships among soil water regime, irrigation and water stress in the grapevine (Vitis vinifera L.)
Kim et al. Design and testing of an autonomous irrigation controller for precision water management of greenhouse crops
JP4003863B2 (en) A facility horticultural automatic irrigation controller featuring small volume high frequency irrigation
RU78033U1 (en) SYSTEM OF AUTOMATIC IRRIGATION OF PLANTS FOR HOUSING
Kišš et al. Effect of SAP FLOW at optimization irrigation
CN206713684U (en) It is a kind of can automatic wet control Tea planting irrigation rig
Jensen et al. Water relations and abscisic acid in pot-grown strawberry plants under limited irrigation
O'Connell et al. Pear water relations under partial rootzone drying

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees