JP4208486B2 - Temperature measuring device - Google Patents

Temperature measuring device Download PDF

Info

Publication number
JP4208486B2
JP4208486B2 JP2002155288A JP2002155288A JP4208486B2 JP 4208486 B2 JP4208486 B2 JP 4208486B2 JP 2002155288 A JP2002155288 A JP 2002155288A JP 2002155288 A JP2002155288 A JP 2002155288A JP 4208486 B2 JP4208486 B2 JP 4208486B2
Authority
JP
Japan
Prior art keywords
wiring
switch
wire
voltage
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002155288A
Other languages
Japanese (ja)
Other versions
JP2003344180A (en
Inventor
千春 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2002155288A priority Critical patent/JP4208486B2/en
Publication of JP2003344180A publication Critical patent/JP2003344180A/en
Application granted granted Critical
Publication of JP4208486B2 publication Critical patent/JP4208486B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、センサとして測温抵抗体を用いる温度測定装置に関し、さらに詳しく言えば、測温抵抗体の接続方法を検出して、測定回路を3線式,4線式のいずれかに切り替える温度測定装置に関するものである。
【0002】
【従来の技術】
測温抵抗体(例えば、白金抵抗素子)を用いて被測定物の温度を測定する場合における測温抵抗体の接続方法として、多くの場合、3線式と4線式のいずれかが採用されている。図2に3線式の測定回路を示し、図3に4線式の測定回路を示す。
【0003】
図2の3線式の測定回路の場合、第1および第2定電流源11,12と電圧計21とが用いられる。第1定電流源11は、第1配線11aと第2配線11bを介して測温抵抗体R1の一端R1a側と他端R1b側とに接続される。
【0004】
電圧計21は、測温抵抗体R1に発生した電圧を測定する。そのため、3線式の測定回路においては、電圧計21の一方の入力端子は第1配線11aを利用して測温抵抗体R1の一端R1a側に接続され、その他方の入力端子は第3配線21aを介して測温抵抗体R1の他端R1b側に接続される。
【0005】
第2定電流源12は、いわば配線抵抗補償用の電流源で、第2配線11bと第3配線21aとの間に接続され、第1定電流源11と同一の電流Iを測温抵抗体R1の他端R1b側に向けて供給する。これにより、第1配線11a,第3配線21aおよび測温抵抗体R1の各々に等しい電流Iが流される。
【0006】
図3の4線式の測定回路においては、第1定電流源11と電圧計21とを使用し、第2定電流源12は用いない。原理は4端子測定法であり、第1定電流源11から第1配線11aおよび第2配線11bを介して定電流Iを測温抵抗体R1に流し、第3配線21aおよび第4配線21bを介して測温抵抗体R1の両端間電圧を電圧計21にて測定する。いずれの方式においても、電圧計21にて測定された電圧は、最終的に温度測定値に換算される。
【0007】
【発明が解決しようとする課題】
3線式を採用するか、4線式を採用するかはユーザーの選択によるが、測温抵抗体の仕様によって決められる場合もある。例えば、手持ちの温度測定装置が3線式であれば、3線式用の測温抵抗体しか使用することができないことになり、測温抵抗体の選択幅が狭められてしまう。
【0008】
したがって、本発明の課題は、1台の温度測定装置で、3線式,4線式のいずれの測定回路も選択可能であり、しかもその測温抵抗体の接続の仕方に応じて自動的に測定回路が切り替えられるようにすることにある。
【0009】
【課題を解決するための手段】
上記課題を解決するため、本発明は、センサとして測温抵抗体(R1)を用い、上記測温抵抗体(R1)に対する配線の接続の仕方に応じて3線式もしくは4線式のいずれかの測定回路が自動的に選択される温度測定装置において、3線式,4線式のいずれの場合でも上記測温抵抗体(R1)の一端側(R1a)に接続される第1配線(11a)および上記測温抵抗体(R1)の他端側(R1b)に接続される第2配線(11b)を有する第1定電流源(11)と、3線式,4線式のいずれの場合でも上記測温抵抗体(R1)の他端側(R1b)に接続される第3配線(21a)および4線式の場合にのみ上記測温抵抗体(R1)の一端側(R1a)に接続される第4配線(21b)を有する電圧測定手段(21)と、上記第1配線(11a)と上記第4配線(21b)との間に接続された第1スイッチ(SW1)と、上記第2配線(11b)と上記第3配線(21a)との間に第2スイッチ(SW2)を介して接続された上記第1定電流源(11)と同一の電流を出力する配線抵抗補償用の第2定電流源(12)と、上記第4配線(21b)内に設けられた第3スイッチ(SW3)と、上記第3スイッチ(SW3)よりも上記測温抵抗体(R1)側寄りの配線部分で上記第4配線(21b)と接地との間に接続された電圧検出抵抗(R2)と、コンパレータ(31)を含み上記電圧検出抵抗(R2)による検出電圧(VR2)とあらかじめ設定されている基準電圧(V)とを比較して上記第1ないし第3スイッチ(SW1〜SW3)をオンオフ制御するスイッチ制御手段とを備え、上記スイッチ制御手段は、上記検出電圧(VR2)が上記基準電圧(V)よりも低いときには、上記第1スイッチ(SW1)と上記第2スイッチ(SW2)をともにオンとし、上記第3スイッチ(SW3)をオフとするとともに、上記第1定電流源(11)および上記第2定電流源(12)を動作させて上記3線式測定回路を構成し、上記検出電圧(VR2)が上記基準電圧(V)よりも高いときには、上記第1スイッチ(SW1)と上記第2スイッチ(SW2)をともにオフとし、上記第3スイッチ(SW3)をオンとするとともに、上記第1定電流源(11)を動作させて上記4線式測定回路を構成することを特徴としている。
【0010】
本発明の温度測定装置に、第1,第2および第3配線を介して測温抵抗体を3線式として接続すると、第4配線は使用されないことになるので、電圧検出抵抗には電圧が発生しない。これにより、スイッチ制御手段は第1および第2スイッチをオンとし、第3スイッチをオフとして内部の測定回路を3線式対応とする。
【0011】
これに対して、第1,第2,第3および第4配線を介して測温抵抗体を4線式として接続すると、第1定電流源からの定電流の一部が電圧検出抵抗に流れ、電圧検出抵抗に電圧が発生する。この電圧が基準電圧より高い場合、スイッチ制御手段は第1および第2スイッチをオフとし、第3スイッチをオンとして内部の測定回路を4線式対応とする。
【0012】
本発明の好ましい態様によれば、電圧検出抵抗の抵抗値は測温抵抗体の測定値(抵抗値)に対して影響しないような大きな抵抗値とされる。また、基準電圧も測温抵抗体に生ずる電圧よりも低い電圧値に設定される。
【0013】
【発明の実施の形態】
次に、図1により、本発明の実施形態について説明する。なお、この実施形態において、先の図2および図3で説明した従来例と同一もしくは同一と見なされてよい構成要素にはそれと同一の参照符号を用いている。
【0014】
この温度測定装置も、先に説明した従来例と同じく、基本的な構成として、第1および第2の定電流源11,12と、一つの電圧計(電圧測定手段)21とを備えている。
【0015】
第1定電流源11は、測温抵抗体R1の一端R1a側に接続される第1配線11aと、測温抵抗体R1の他端R1b側に接続される第2配線11bとを有している。この第1配線11aと第2配線11bは、3線式,4線式のいずれの場合でも測温抵抗体R1に接続される。
【0016】
電圧計21も、測温抵抗体R1の他端R1b側に接続される第3配線21aと、測温抵抗体R1の一端R1a側に接続される第4配線21bの2本の配線を有しているが、第3配線21aが3線式,4線式のいずれの場合でも測温抵抗体R1の他端R1b側に接続されるのに対して、第4配線21bは4線式の場合にのみ測温抵抗体R1の一端R1a側に接続される。
【0017】
本発明において、第1配線11aと第4配線21bとの間には、第1スイッチSW1が接続されている。また、第2配線11bと第3配線21aとの間に、第2定電流源12が接続されるが、この接続回路内には第2スイッチSW2が入れられている。第2定電流源12は、先の図2で説明したように、第1定電流源11と同一の電流を測温抵抗体R1の他端R1b側に向けて流す。
【0018】
第4配線21b内には、第3スイッチSW3が設けられている。また、第4配線21bと接地との間には、電圧検出抵抗R2が接続されている。なお、この電圧検出抵抗R2の接続部は、第3スイッチSW3よりも測温抵抗体R1側寄りである。
【0019】
本発明は、上記各スイッチSW1〜SW3を制御するスイッチ制御手段を備えている。図1には、そのスイッチ制御手段に含まれるコンパレータ31が示されており、コンパレータ31の一方の入力端子には基準電圧Vが入力され、他方の入力端子は電圧検出抵抗R2と接続されている。
【0020】
次に、コンパレータ31の動作について説明する。ユーザーが3線式を採用して、測温抵抗体R1の一端R1a側を第1配線11aに接続し、その他端R1b側に第2配線11bと第3配線21aとを接続して、各定電流源11,12を動作させたとする。
【0021】
この場合、第4配線21bは測温抵抗体R1から切り離されているため、電圧検出抵抗R2には電流が流れない。したがって、電圧検出抵抗R2の接続部の電位VR2は接地電位(0V)で、VR2<Vであるため、コンパレータ31の出力により、第1および第2スイッチSW1,SW2がオンとされ、第3スイッチSW3がオフとされる。これにより、図2で説明した3線式の測定回路が構成される。
【0022】
これに対して、ユーザーが4線式を採用して、測温抵抗体R1の一端R1a側に第1配線11aと第4配線21bとを接続し、その他端R1b側に第2配線11bと第3配線21aとを接続して、第1および第2定電流源11,12を動作させたとする。
【0023】
この場合には、第1定電流源11からの電流の一部が電圧検出抵抗R2を通って接地に流れるため、電圧検出抵抗R2の接続部の電位VR2が上昇する。この例では、このときの電位VR2が基準電圧Vよりも高くなるように電圧検出抵抗R2の抵抗値が設定されている。
【0024】
これにより、VR2>Vとなりコンパレータ31の出力が反転し、第1および第2スイッチSW1,SW2がオフで、第3スイッチSW3がオンとされ、図3で説明した4線式の測定回路が構成される。
【0025】
なお、電圧検出抵抗R2の抵抗値は、第1定電流源11から流れ込む電流および基準電圧Vなどとの関係から相対的に決められるが、測温抵抗体R1の測定値(抵抗値)に対して影響しないような大きな抵抗値であることが好ましい。
【0026】
一例として、測温抵抗体R1が白金抵抗素子で0℃における抵抗値が100Ωで、最高測定温度300℃,分解能0.1℃であるとすると、電圧検出抵抗R2の抵抗値は2MΩ程度であることが好ましい。
【0027】
なお、これより最高測定温度を高くする場合もしくは分解能を細かくする場合には、電圧検出抵抗R2の抵抗値はもっと大きな値にする必要がある。また、基準電圧Vも測温抵抗体R1に生ずる電圧よりも低い電圧値に設定されることが好ましい。
【0028】
【発明の効果】
以上説明したように、本発明によれば、測温抵抗体が3線式仕様,4線式仕様のいずれであっても対応することができるばかりでなく、ユーザーが採用する接続の仕方によって、3線式の測定回路もしくは4線式の測定回路が自動的に構成されるため、ユーザーにとって安心して使用することができる温度測定装置が提供される。
【図面の簡単な説明】
【図1】本発明による温度測定装置の実施形態を示す回路構成図。
【図2】第1従来例としての3線式測定回路を示す回路構成図。
【図3】第2従来例としての4線式測定回路を示す回路構成図。
【符号の説明】
11 第1定電流源
11a 第1配線
11b 第2配線
12 第2定電流源
21 電圧計
21a 第3配線
21b 第4配線
31 コンパレータ
R1 測温抵抗体
R2 電圧検出抵抗
SW1〜SW3 スイッチ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a temperature measuring device using a resistance temperature detector as a sensor, and more specifically, a temperature at which a connection circuit of a resistance temperature detector is detected and a measurement circuit is switched to either a three-wire type or a four-wire type. The present invention relates to a measuring device.
[0002]
[Prior art]
In many cases, one of the three-wire type and the four-wire type is adopted as a method of connecting the resistance temperature detector when measuring the temperature of the object to be measured using a resistance temperature detector (for example, a platinum resistance element). ing. FIG. 2 shows a three-wire measuring circuit, and FIG. 3 shows a four-wire measuring circuit.
[0003]
In the case of the three-wire measurement circuit of FIG. 2, the first and second constant current sources 11 and 12 and the voltmeter 21 are used. The first constant current source 11 is connected to one end R1a side and the other end R1b side of the resistance temperature detector R1 via the first wiring 11a and the second wiring 11b.
[0004]
The voltmeter 21 measures the voltage generated in the resistance temperature detector R1. Therefore, in the three-wire measurement circuit, one input terminal of the voltmeter 21 is connected to one end R1a side of the resistance temperature detector R1 using the first wiring 11a, and the other input terminal is the third wiring. It is connected to the other end R1b side of the resistance temperature detector R1 through 21a.
[0005]
The second constant current source 12 is, so to speak, a resistance source for wiring resistance, and is connected between the second wiring 11b and the third wiring 21a, and the same current I as the first constant current source 11 is applied to the resistance temperature detector. Supply toward the other end R1b side of R1. Thereby, an equal current I flows through each of the first wiring 11a, the third wiring 21a, and the resistance temperature detector R1.
[0006]
In the four-wire measurement circuit of FIG. 3, the first constant current source 11 and the voltmeter 21 are used, and the second constant current source 12 is not used. The principle is a four-terminal measurement method, in which a constant current I is passed from the first constant current source 11 through the first wiring 11a and the second wiring 11b to the resistance temperature detector R1, and the third wiring 21a and the fourth wiring 21b are connected. The voltage between both ends of the resistance temperature detector R1 is measured by the voltmeter 21. In either method, the voltage measured by the voltmeter 21 is finally converted into a temperature measurement value.
[0007]
[Problems to be solved by the invention]
Whether to adopt the 3-wire type or the 4-wire type depends on the user's choice, but may be determined by the specifications of the resistance temperature detector. For example, if the temperature measuring device on hand is a three-wire type, only a three-wire temperature measuring resistor can be used, and the selection range of the temperature measuring resistor is narrowed.
[0008]
Accordingly, an object of the present invention is to select either a 3-wire type or a 4-wire type measurement circuit with a single temperature measuring device, and automatically according to the connection of the resistance temperature detector. The measurement circuit is to be switched.
[0009]
[Means for Solving the Problems]
In order to solve the above problems, the present invention uses a resistance temperature detector (R1) as a sensor, and is either a three-wire type or a four-wire type depending on how the wiring is connected to the resistance temperature detector (R1) . of Te temperature measuring device odor measurement circuit is automatically selected, 3-wire, a first wiring connected to one end of said measuring resistor either case of 4-wire (R1) (R1a) ( 11a) and a first constant current source (11) having a second wiring (11b) connected to the other end side (R1b) of the resistance temperature detector (R1) , and any of a 3-wire type and a 4-wire type even if the other end of the resistance temperature detector (R1) to one end of the third wiring is connected to the (R1b) the RTD only if (21a) and 4-wire (R1) (R1a) the fourth wiring and the voltage measuring means having (21b) (21), said first wiring connected (11a Through the above-described fourth wiring and the first switch connected between (21b) (SW1), a second switch (SW2) between said second wiring (11b) and the third wiring (21a) A second constant current source (12) for wiring resistance compensation that outputs the same current as that of the first constant current source (11) connected to each other, and a third switch provided in the fourth wiring (21b) (SW3) and a voltage detection resistor (R2) connected between the fourth wiring (21b) and the ground at a wiring portion closer to the resistance temperature detector (R1 ) than the third switch (SW3 ). The first to third switches (SW1 to SW3) are compared by comparing the voltage (VR2) detected by the voltage detection resistor (R2) including the comparator (31) with a preset reference voltage (V). and a switch control means for on-off control When the detection voltage (VR2) is lower than the reference voltage (V), the switch control means turns on both the first switch (SW1) and the second switch (SW2), and the third switch (SW3 ) Is turned off, and the first constant current source (11) and the second constant current source (12) are operated to configure the three-wire measurement circuit, and the detection voltage (VR2) is the reference voltage. When higher than (V), both the first switch (SW1) and the second switch (SW2) are turned off, the third switch (SW3) is turned on, and the first constant current source (11) And the above-described four-wire measuring circuit is configured .
[0010]
When the resistance temperature detector is connected as a three-wire type to the temperature measuring device of the present invention via the first, second, and third wirings, the fourth wiring is not used. Does not occur. Thereby, the switch control means turns on the first and second switches, turns off the third switch, and makes the internal measurement circuit correspond to the three-wire system.
[0011]
On the other hand, when the resistance temperature detector is connected as a four-wire type via the first, second, third and fourth wirings, a part of the constant current from the first constant current source flows to the voltage detection resistor. A voltage is generated in the voltage detection resistor. When this voltage is higher than the reference voltage, the switch control means turns off the first and second switches and turns on the third switch to make the internal measurement circuit compatible with the four-wire system.
[0012]
According to a preferred aspect of the present invention, the resistance value of the voltage detection resistor is set to a large resistance value that does not affect the measured value (resistance value) of the resistance temperature detector. The reference voltage is also set to a voltage value lower than the voltage generated in the resistance temperature detector.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Next, an embodiment of the present invention will be described with reference to FIG. In this embodiment, the same reference numerals are used for the components that may be regarded as the same as or the same as those in the conventional example described in FIGS.
[0014]
This temperature measuring device also includes first and second constant current sources 11 and 12 and one voltmeter (voltage measuring means) 21 as a basic configuration, as in the conventional example described above. .
[0015]
The first constant current source 11 includes a first wiring 11a connected to one end R1a side of the resistance temperature detector R1, and a second wiring 11b connected to the other end R1b side of the resistance temperature detector R1. Yes. The first wiring 11a and the second wiring 11b are connected to the resistance temperature detector R1 in either of the three-wire system and the four-wire system.
[0016]
The voltmeter 21 also has two wires, a third wire 21a connected to the other end R1b side of the resistance temperature detector R1 and a fourth wire 21b connected to the one end R1a side of the temperature measurement resistor R1. However, the third wiring 21a is connected to the other end R1b of the resistance temperature detector R1 regardless of whether the third wiring 21a is a three-wire type or a four-wire type, whereas the fourth wiring 21b is a four-wire type. Only to one end R1a side of the resistance temperature detector R1.
[0017]
In the present invention, the first switch SW1 is connected between the first wiring 11a and the fourth wiring 21b. The second constant current source 12 is connected between the second wiring 11b and the third wiring 21a. The second switch SW2 is inserted in this connection circuit. As described with reference to FIG. 2, the second constant current source 12 allows the same current as the first constant current source 11 to flow toward the other end R1b of the resistance temperature detector R1.
[0018]
A third switch SW3 is provided in the fourth wiring 21b. Further, a voltage detection resistor R2 is connected between the fourth wiring 21b and the ground. The connecting portion of the voltage detection resistor R2 is closer to the temperature measuring resistor R1 than the third switch SW3.
[0019]
The present invention includes switch control means for controlling the switches SW1 to SW3. FIG. 1 shows a comparator 31 included in the switch control means. A reference voltage V is input to one input terminal of the comparator 31, and the other input terminal is connected to a voltage detection resistor R2. .
[0020]
Next, the operation of the comparator 31 will be described. The user adopts a three-wire system, one end R1a side of the resistance temperature detector R1 is connected to the first wiring 11a, the second wiring 11b and the third wiring 21a are connected to the other end R1b side, Assume that the current sources 11 and 12 are operated.
[0021]
In this case, since the fourth wiring 21b is disconnected from the resistance temperature detector R1, no current flows through the voltage detection resistor R2. Therefore, since the potential VR2 of the connection portion of the voltage detection resistor R2 is the ground potential (0V) and VR2 <V, the first and second switches SW1 and SW2 are turned on by the output of the comparator 31, and the third switch SW3 is turned off. Thereby, the three-wire measuring circuit described in FIG. 2 is configured.
[0022]
On the other hand, the user adopts a four-wire system, and connects the first wiring 11a and the fourth wiring 21b to one end R1a side of the resistance temperature detector R1, and the second wiring 11b and the second wiring to the other end R1b side. It is assumed that the first and second constant current sources 11 and 12 are operated by connecting the three wirings 21a.
[0023]
In this case, since a part of the current from the first constant current source 11 flows to the ground through the voltage detection resistor R2, the potential VR2 of the connection portion of the voltage detection resistor R2 rises. In this example, the resistance value of the voltage detection resistor R2 is set so that the potential VR2 at this time is higher than the reference voltage V.
[0024]
As a result, VR2> V is established, the output of the comparator 31 is inverted, the first and second switches SW1 and SW2 are turned off, and the third switch SW3 is turned on, and the four-wire measurement circuit described in FIG. 3 is configured. Is done.
[0025]
The resistance value of the voltage detection resistor R2 is relatively determined from the relationship between the current flowing from the first constant current source 11 and the reference voltage V, etc., but with respect to the measured value (resistance value) of the resistance temperature detector R1. It is preferable that the resistance value is large enough not to be affected.
[0026]
As an example, assuming that the resistance temperature detector R1 is a platinum resistance element having a resistance value of 100Ω at 0 ° C., a maximum measurement temperature of 300 ° C., and a resolution of 0.1 ° C., the resistance value of the voltage detection resistor R2 is about 2 MΩ. It is preferable.
[0027]
When the maximum measurement temperature is higher than this or when the resolution is made finer, the resistance value of the voltage detection resistor R2 needs to be a larger value. The reference voltage V is preferably set to a voltage value lower than the voltage generated in the resistance temperature detector R1.
[0028]
【The invention's effect】
As described above, according to the present invention, not only can the resistance temperature detector be in either the 3-wire specification or the 4-wire specification, but depending on the connection method adopted by the user, Since a 3-wire measurement circuit or a 4-wire measurement circuit is automatically configured, a temperature measurement device that can be used with confidence for the user is provided.
[Brief description of the drawings]
FIG. 1 is a circuit configuration diagram showing an embodiment of a temperature measuring device according to the present invention.
FIG. 2 is a circuit configuration diagram showing a three-wire measuring circuit as a first conventional example.
FIG. 3 is a circuit configuration diagram showing a four-wire measuring circuit as a second conventional example.
[Explanation of symbols]
11 1st constant current source 11a 1st wiring 11b 2nd wiring 12 2nd constant current source 21 Voltmeter 21a 3rd wiring 21b 4th wiring 31 Comparator R1 Resistance thermometer R2 Voltage detection resistance SW1-SW3 switch

Claims (3)

センサとして測温抵抗体(R1)を用い、上記測温抵抗体(R1)に対する配線の接続の仕方に応じて3線式もしくは4線式のいずれかの測定回路が自動的に選択される温度測定装置において、
3線式,4線式のいずれの場合でも上記測温抵抗体(R1)の一端側(R1a)に接続される第1配線(11a)および上記測温抵抗体(R1)の他端側(R1b)に接続される第2配線(11b)を有する第1定電流源(11)と、
3線式,4線式のいずれの場合でも上記測温抵抗体(R1)の他端側(R1b)に接続される第3配線(21a)および4線式の場合にのみ上記測温抵抗体(R1)の一端側(R1a)に接続される第4配線(21b)を有する電圧測定手段(21)と、
上記第1配線(11a)と上記第4配線(21b)との間に接続された第1スイッチ(SW1)と、
上記第2配線(11b)と上記第3配線(21a)との間に第2スイッチ(SW2)を介して接続された上記第1定電流源(11)と同一の電流を出力する配線抵抗補償用の第2定電流源(12)と、
上記第4配線(21b)内に設けられた第3スイッチ(SW3)と、上記第3スイッチ(SW3)よりも上記測温抵抗体(R1)側寄りの配線部分で上記第4配線(21b)と接地との間に接続された電圧検出抵抗(R2)と、
コンパレータ(31)を含み上記電圧検出抵抗(R2)による検出電圧(VR2)とあらかじめ設定されている基準電圧(V)とを比較して上記第1ないし第3スイッチ(SW1〜SW3)をオンオフ制御するスイッチ制御手段とを備え
上記スイッチ制御手段は、上記検出電圧(VR2)が上記基準電圧(V)よりも低いときには、上記第1スイッチ(SW1)と上記第2スイッチ(SW2)をともにオンとし、上記第3スイッチ(SW3)をオフとするとともに、上記第1定電流源(11)および上記第2定電流源(12)を動作させて上記3線式測定回路を構成し、
上記検出電圧(VR2)が上記基準電圧(V)よりも高いときには、上記第1スイッチ(SW1)と上記第2スイッチ(SW2)をともにオフとし、上記第3スイッチ(SW3)をオンとするとともに、上記第1定電流源(11)を動作させて上記4線式測定回路を構成することを特徴とする温度測定装置。
A temperature measuring resistor (R1) is used as a sensor, and either a 3-wire or 4-wire measuring circuit is automatically selected depending on how the wiring is connected to the temperature measuring resistor (R1). measuring device smell Te,
3-wire, the other end of the one end side of the RTD any case of 4-wire (R1) the first wiring is connected to the (R1a) (11a) and the resistance temperature detector (R1) ( A first constant current source (11) having a second wiring (11b) connected to R1b) ;
In either case of the 3-wire type or the 4-wire type, the temperature measuring resistor is used only in the case of the third wiring (21a) connected to the other end side (R1b) of the temperature measuring resistor (R1 ) and the 4-wire type. Voltage measuring means (21) having a fourth wiring (21b) connected to one end side (R1a ) of (R1) ;
A first switch (SW1) connected between the first wiring (11a) and the fourth wiring (21b) ;
Wiring resistance compensation for outputting the same current as the first constant current source (11) connected via the second switch (SW2) between the second wiring (11b) and the third wiring (21a) A second constant current source (12) for
The fourth wiring and the third switch provided in (21b) (SW3), the third the RTD than switch (SW3) (R1) side near the wiring portion in the fourth wiring (21b) A voltage detection resistor (R2) connected between the ground and the ground;
On / off control of the first to third switches (SW1 to SW3) is performed by comparing a voltage (VR2) detected by the voltage detection resistor (R2) including a comparator (31) with a preset reference voltage (V). and a switch control means for,
When the detection voltage (VR2) is lower than the reference voltage (V), the switch control means turns on both the first switch (SW1) and the second switch (SW2), and the third switch (SW3 ) Is turned off and the first constant current source (11) and the second constant current source (12) are operated to configure the three-wire measurement circuit,
When the detection voltage (VR2) is higher than the reference voltage (V), both the first switch (SW1) and the second switch (SW2) are turned off, and the third switch (SW3) is turned on. The temperature measuring device is characterized in that the first constant current source (11) is operated to constitute the four-wire measuring circuit .
上記電圧検出抵抗(R2)の抵抗値が、上記測温抵抗体(R1)の測定値に対して影響しないような大きな抵抗値である請求項1に記載の温度測定装置。The temperature measuring device according to claim 1, wherein the resistance value of the voltage detection resistor (R2) is a large resistance value that does not affect the measured value of the resistance temperature detector (R1) . 上記基準電圧(V)が、上記測温抵抗体(R1)に生ずる電圧よりも低い電圧値に設定される請求項1または2に記載の温度測定装置。The temperature measuring device according to claim 1 or 2, wherein the reference voltage (V) is set to a voltage value lower than a voltage generated in the resistance temperature detector (R1) .
JP2002155288A 2002-05-29 2002-05-29 Temperature measuring device Expired - Fee Related JP4208486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002155288A JP4208486B2 (en) 2002-05-29 2002-05-29 Temperature measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002155288A JP4208486B2 (en) 2002-05-29 2002-05-29 Temperature measuring device

Publications (2)

Publication Number Publication Date
JP2003344180A JP2003344180A (en) 2003-12-03
JP4208486B2 true JP4208486B2 (en) 2009-01-14

Family

ID=29771847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002155288A Expired - Fee Related JP4208486B2 (en) 2002-05-29 2002-05-29 Temperature measuring device

Country Status (1)

Country Link
JP (1) JP4208486B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005075562A1 (en) 2004-02-03 2007-10-11 株式会社カネカ Curable composition
KR101074599B1 (en) 2008-12-31 2011-10-17 엘에스산전 주식회사 Temperature Detector and Measurement Method Of The Same
CN108151903B (en) * 2018-01-26 2023-12-29 扬州海通电子科技有限公司 High-precision low-temperature drift temperature measurement system based on three-wire PT100 and measurement method thereof

Also Published As

Publication number Publication date
JP2003344180A (en) 2003-12-03

Similar Documents

Publication Publication Date Title
JP5009374B2 (en) Detection of temperature sensor configuration in a process variable transmitter
US9116177B2 (en) Systems and methods for an open circuit current limiter
CN107076620B (en) Temperature-detecting device
CN105960056A (en) A power source unit and a related lighting system
US8963530B2 (en) Multi input circuit
KR101293280B1 (en) Multi input circuit
JP3901698B2 (en) Semiconductor integrated circuit with current detection function and power supply device using the same
JP4208486B2 (en) Temperature measuring device
JP2810541B2 (en) Lambda sensor internal resistance measurement circuit
CN101120264B (en) Millivolt output circuit for use with programmable sensor compensation integrated circuits
JP3075072B2 (en) Temperature converter
RU2008132748A (en) THERMOMETRIC BRAID AND ITS CALIBRATION METHOD
JP2018163140A5 (en)
JP2002357484A (en) Programmable controller, resistance thermometer element input module for it, and method and program for forming temperature measurement signal
JPH08247857A (en) Input device for temperature detecting resistor
KR101622435B1 (en) An apparatus for measuring temperature with rtd and a method for measuring temperature using it
JP5348380B2 (en) Control circuit
US20010035051A1 (en) Vacuum monitor and vacuum sensor
JP3330853B2 (en) Analog input circuit
JP4040908B2 (en) Impedance measuring device
JP2539425Y2 (en) Temperature measurement input circuit
JP2946907B2 (en) Temperature measuring device
KR20110035992A (en) Switching apparatus using the principle of temperature sensing
Chowdhury et al. Design of a temperature sensitive voltage regulator for AC load using RTD
JP3744261B2 (en) Fire detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050516

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080702

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081021

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees