JP4208062B2 - Slip detection reinforcement pile for earth structure - Google Patents

Slip detection reinforcement pile for earth structure Download PDF

Info

Publication number
JP4208062B2
JP4208062B2 JP2000240129A JP2000240129A JP4208062B2 JP 4208062 B2 JP4208062 B2 JP 4208062B2 JP 2000240129 A JP2000240129 A JP 2000240129A JP 2000240129 A JP2000240129 A JP 2000240129A JP 4208062 B2 JP4208062 B2 JP 4208062B2
Authority
JP
Japan
Prior art keywords
pile
slip detection
optical fiber
earth structure
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000240129A
Other languages
Japanese (ja)
Other versions
JP2002054153A (en
Inventor
謙一 小島
修 村田
史郎 棚村
裕昌 伊藤
洋 秋山
剛俊 山浦
博徳 紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Mitsubishi Heavy Industries Ltd
Original Assignee
Railway Technical Research Institute
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute, Mitsubishi Heavy Industries Ltd filed Critical Railway Technical Research Institute
Priority to JP2000240129A priority Critical patent/JP4208062B2/en
Publication of JP2002054153A publication Critical patent/JP2002054153A/en
Application granted granted Critical
Publication of JP4208062B2 publication Critical patent/JP4208062B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバーセンサーシステムに用いられる、特に、地山や盛土などの土構造物用すべり検知補強杭に関するものである。
【0002】
【従来の技術】
従来、地山や盛土などの土構造物の変状を検知するセンサーとしては、
(1)長尺部材に取り付けられた歪みゲージや地滑り計等のセンサーがあり、これらはポイントとポイントを計測するものである。
【0003】
(2)また、現在、光ファイバーセンサーは、コンクリート部材の歪みや盛土の表面での変形計測手法として用いられている。
【0004】
【発明が解決しようとする課題】
しかしながら、上記した従来の技術(1)のポイントとポイントの計測では、各地点で計測点が独立しており、数10kmを連続的に計測することはできなかった。
【0005】
また、上記した従来の技術(2)の光ファイバーセンサーは、コンクリート部材の歪みや盛土等の表面での変状計測手法として用いられているが、地中内の詳細な変状を計測するためには利用されていないのが現状である。
【0006】
このような状況から、本願発明者は、地中内の詳細な変状を計測することができる地中用光ファイバーセンサー及びその光ファイバーセンサーシステムを既に特願2000−31372号として提案した。
【0007】
本発明は、上記状況に鑑みて、土構造物の補強を行うとともに、その後の土構造物の変状管理を同時に行うことができる土構造物用すべり検知補強杭を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、上記目的を達成するために、
〔1〕土構造物用すべり検知補強杭において、本体が土構造物の側面から打ち込まれるとともに、前記本体の内空部に光ファイバーが折り返されて装着され、前記光ファイバーが前記本体の内面に間隔をおいて点状に接着樹脂により固定され、前記本体の内空部の出入口において前記光ファイバーが接着樹脂により固定される光ファイバーセンサーを具備することを特徴とする。
【0009】
〔2〕上記〔1〕記載の土構造物用すべり検知補強杭において、前記本体は高剛性管状杭であることを特徴とする。
【0010】
〔3〕上記〔1〕又は〔2〕記載の土構造物用すべり検知補強杭において、前記本体に水抜き穴が形成されることを特徴とする。
【0011】
〔4〕上記〔1〕又は〔2〕記載の土構造物用すべり検知補強杭において、前記土構造物の側面から前記補強杭の先端が上方に杭頭が下方になるように傾斜させて施工することを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について、詳細に説明する。
【0013】
図1は本発明の実施例を示す地中用光ファイバーセンサーシステムを用いる土構造物用すべり検知補強杭の施工を示す模式図である。
【0014】
図1に示すように、地山や盛土された軌道区域1に、光ファイバーセンサーの機能を有する土構造物用すべり検知補強杭2が施工される。
【0015】
この土構造物用すべり検知補強杭2は、鋼管やFRP管などの高剛性管状杭本体3内部に光ファイバー4が装着される。
【0016】
その土構造物用すべり検知補強杭2は地山や盛土された軌道区域1の側面からその補強杭2の先端2Aが上方に杭頭2Bが下方になるように傾斜させて打ち込むようにしている。
【0017】
以下、その土構造物用すべり検知補強杭の具体例を示す。
【0018】
図2は本発明の第1実施例を示す土構造物用すべり検知補強杭の構造を示す図、図3はその光ファイバーの固定状態を示す拡大図である。
【0019】
これらの図において、10は土構造物用すべり検知補強杭であり、その高剛性管状杭本体11には内空部12が形成され、その内空部12の内部に光ファイバー13を装置して、所定位置を点状に接着樹脂14により固定するようにしている。なお、高剛性管状杭本体の先端部は打設し易いように先端部を鋭角とする。高剛性管状杭本体11の内空部の出口では確実に接着樹脂14′により固定して、光ファイバー13が高剛性管状杭本体11の内空部の出入口で擦れて損傷することがないように留意する。
【0020】
また、光ファイバー13の高剛性管状杭本体11の内空部12への固定は、図4に示すように、内空部12内に光ファイバー13を装着して、高剛性管状杭本体11の内空部の全面に接着樹脂16を塗布して、光ファイバー13を全体的に固定するようにしてもよい。ここでも、光ファイバー13が高剛性管状杭本体11の内空部の出入口で擦れて損傷することがないように留意する。
【0021】
また、高剛性管状杭本体11の内空部の出入口まで、接着樹脂16′を延ばして確実に内空部の出口で固定するようにして、光ファイバー13が高剛性管状杭本体11の内空部の出口で擦れて損傷することがないように留意する。
【0022】
また、光ファイバーの高剛性管状杭本体の内空部の出入口には弾性材からなるキャップ15を装着するようにしてもよい。
【0023】
図5は本発明の第2実施例を示す土構造物用すべり検知補強杭の構造を示す図である。
【0024】
この図において、20は土構造物用すべり検知補強杭であり、この土構造物用すべり検知補強杭20は、その高剛性管状杭本体21には内空部22が形成され、その内空部22の内部に光ファイバー23を装置して、所定位置を点状に接着樹脂24により固定するようにしている。更に、この実施例では、高剛性管状杭本体21には水抜き穴25を形成して、通水性が良好になるようにする。
【0025】
特に、この種の土構造物用すべり検知補強杭20の場合は、図1にも示したように、地山や盛土された軌道区域1の側面からその補強杭20の先端20Aが上方に杭頭20Bが下方になるように傾斜させて打ち込むようにするのが良く地盤内から高剛性管状杭本体21の内部に浸入した水は、水抜き穴25を通って下方へと導かれ、高剛性管状杭本体21の後端(出入口)から外部へ排出されるため補強材として好ましい。
【0026】
図6は本発明の第3実施例を示す土構造物用すべり検知補強杭の構造を示す図である。
【0027】
この実施例においては、中実状の土構造物用すべり検知補強杭30の本体31の外面に光ファイバー32を巻回し、その外面を樹脂33でコーティングするようにしている。
【0028】
このようにすることにより、土構造物用すべり検知補強杭の構造を簡素化するとともに、光ファイバーの装着も容易である。その光ファイバーは樹脂により防護することができる。
【0029】
以下、上記した土構造物用すべり検知補強杭を用いた光ファイバーセンサーシステムについて図1を参照しながら説明する。
【0030】
土構造物用すべり検知補強杭2は地山や盛土された軌道区域1の側面から先端を上方に傾斜させて、打ち込まれて、光ファイバー4が布設される。その場合に、基準となる光ファイバー5を配置しておく。
【0031】
そこで、基準となる光ファイバー5と地山や盛土された軌道区域1に配置された光ファイバー4とに光源6から第1の光カプラ4aを通して光を導入して、光ファイバー5と光ファイバー4の両方に光を通し、光の導波状態を第2の光カプラ4bを介してO/E(光/電気変換器)7により電気に変換して、パッシブホモダイン復調器8で復調して、計測装置9により、光ファイバー4と5からの電気的出力状態を監視する。
【0032】
したがって、例えば、地山や盛土の内部に変状を来している場合には、光ファイバー4の経路に変化が生じる。つまり、土構造物用すべり検知補強杭2が変位する。すると、光ファイバー4内の光の導波の状態が変化し、基準となる光ファイバー5の光の導波の状態と比較すると、偏差が生じることになり、その偏差を計測装置9により計測することができる。
【0033】
また、上記した土構造物用すべり検知補強杭2が打ち込まれた地山や盛土の内部に破壊的な変状が生じたような場合には、光ファイバー4にも大きな変化が生じることになり、基準となる光ファイバー5の光の導波の状態と大きく異なる時には、計測装置9に連動する警報装置9Aによって警報を出すようにしてもよい。また、光源(レーザ光源)6とパッシブホモダイン復調器8間には、変調信号発生器8Aが設けられる。
【0034】
光ファイバーセンサーの布設の態様はその構造物の変状をどのようにモニターするかによって、種々の光ファイバーセンサーの配置とすることができる。
【0035】
また、計測は数10km以上行うことができ、かつ、遠隔地で集中管理が可能である。
【0036】
なお、本発明は上記実施例に限定されるものではなく、本発明の趣旨に基づいて種々の変形が可能であり、これらを本発明の範囲から排除するものではない。
【0037】
【発明の効果】
以上、詳細に説明したように、本発明によれば、以下のような効果を奏することができる。
【0038】
(A)地山や盛土等の土構造物の補強を行うとともに、その後の地山や盛土の土構造物の変状管理を同時に行うことができる。
【0039】
(B)高剛性管状杭本体の内空部に光ケーブルを固定するので、光ケーブルセンサーの施工が容易である。
【0040】
(C)光ケーブルの高剛性管状杭本体の内空部の出入口における固定を確実にしたので、光ケーブルの損傷を防止することができる。
【0041】
(D)地山や盛土された軌道区域の側面から補強杭の先端が上方に杭頭が下方になるように傾斜させて高剛性管状杭を打ち込むようにすることにより、地盤内から高剛性管状杭本体の内部に浸入した水は、水抜き穴を通って下方へと導かれて土構造物の外部へと排出されるため補強材として好ましい。
【図面の簡単な説明】
【図1】 本発明の実施例を示す地中用光ファイバーセンサーシステムを用いる土構造物用すべり検知補強杭の施工を示す模式図である。
【図2】 本発明の第1実施例を示す土構造物用すべり検知補強杭の構造を示す図である。
【図3】 本発明の第1実施例を示す土構造物用すべり検知補強杭の光ファイバーの固定状態を示す拡大図(その1)である。
【図4】 本発明の第1実施例を示す土構造物用すべり検知補強杭の光ファイバーの固定状態を示す拡大図(その2)である。
【図5】 本発明の第2実施例を示す土構造物用すべり検知補強杭の構造を示す図である。
【図6】 本発明の第3実施例を示す土構造物用すべり検知補強杭の構造を示す図である。
【符号の説明】
1 地山や盛土された軌道区域
2,10,20,30 土構造物用すべり検知補強杭
2A,20A 土構造物用すべり検知補強杭の先端
2B,20B 土構造物用すべり検知補強杭の杭頭
3,11,21,31 高剛性管状杭本体
4,4′,13,13′,23,23′,32 光ファイバー
4a 第1の光カプラ
4b 第2の光カプラ
5 基準となる光ファイバー
6 光源
7 O/E(光/電気変換器)
8 パッシブホモダイン復調器
8A 変調信号発生器
9 計測装置
9A 警報装置
12,22 内空部
14,14′,16,16′,24 接着樹脂
15 キャップ
25 水抜き穴
33 樹脂
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a slip detection / reinforcement pile for an earth structure such as a natural ground or embankment, which is used for an optical fiber sensor system.
[0002]
[Prior art]
Conventionally, as a sensor to detect the deformation of earth structures such as natural ground and embankment,
(1) There are sensors such as a strain gauge and a landslide meter attached to a long member, and these measure points.
[0003]
(2) Currently, the optical fiber sensor is used as a method for measuring distortion of a concrete member or deformation on the surface of the embankment.
[0004]
[Problems to be solved by the invention]
However, in the point-to-point measurement of the conventional technique (1) described above, measurement points are independent at each point, and it has not been possible to continuously measure several tens of kilometers.
[0005]
Moreover, although the optical fiber sensor of the above-mentioned conventional technique (2) is used as a deformation measurement technique on the surface of a concrete member such as distortion or embankment, in order to measure detailed deformation in the ground. Is currently not used.
[0006]
Under these circumstances, the present inventor has proposed underground fiber optic sensor and its fiber optic sensor system can measure detailed Deformation in underground as already JP Application 2 000-31372.
[0007]
In view of the above situation, an object of the present invention is to provide a slip detection / reinforcement pile for an earth structure that can reinforce the earth structure and simultaneously perform deformation management of the earth structure thereafter. .
[0008]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides
[1] In a slip detection / reinforcement pile for earth structure, the main body is driven from the side surface of the earth structure, and an optical fiber is folded and attached to the inner space of the main body, and the optical fiber is spaced from the inner surface of the main body. is by Ri fixed to the adhesive resin Oite punctate, the optical fiber in the doorway of the inner hollow portion of said body, characterized by comprising an optical fiber sensor which is fixed by an adhesive resin.
[0009]
[2] The slip detection and reinforcement pile for earth structure according to [1], wherein the main body is a high-rigidity tubular pile.
[0010]
[3] The slip detection / reinforcement pile for earth structure according to [1] or [2], wherein a drainage hole is formed in the main body.
[0011]
[4] In the slip detection reinforcing pile for earth structure according to the above [1] or [2], construction is performed by inclining the tip of the reinforcement pile upward and the pile head downward from the side of the earth structure. It is characterized by doing.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
[0013]
FIG. 1 is a schematic diagram showing the construction of a slip detection reinforcing pile for an earth structure using an underground optical fiber sensor system according to an embodiment of the present invention.
[0014]
As shown in FIG. 1, a slip detection reinforcing pile 2 for a soil structure having a function of an optical fiber sensor is applied to a natural mountain or a track area 1 that has been embanked.
[0015]
In this slip detection reinforcing pile 2 for earth structure, an optical fiber 4 is mounted inside a highly rigid tubular pile body 3 such as a steel pipe or an FRP pipe.
[0016]
The slip detection reinforcing pile 2 for the earth structure is driven so as to be tilted from the side surface of the ground mountain or the embankment of the track area 1 so that the tip 2A of the reinforcing pile 2 is upward and the pile head 2B is downward. .
[0017]
Hereinafter, specific examples of the slip detection / reinforcement pile for the earth structure will be shown.
[0018]
FIG. 2 is a view showing the structure of a slip detection / reinforcement pile for earth structure according to the first embodiment of the present invention, and FIG. 3 is an enlarged view showing a fixed state of the optical fiber.
[0019]
In these drawings, 10 is a slip detection reinforcing pile for earth structure, and an inner space portion 12 is formed in the high-rigidity tubular pile body 11, and an optical fiber 13 is installed inside the inner space portion 12, The predetermined position is fixed in a dot shape by the adhesive resin 14. The tip of the high-rigidity tubular pile body has an acute angle so that it can be easily placed. At the outlet of the inner space portion of the high-rigidity tubular pile body 11, it is securely fixed by the adhesive resin 14 'so that the optical fiber 13 is not rubbed and damaged at the inlet / outlet of the inner space portion of the high-rigidity tubular pile body 11. To do.
[0020]
Further, as shown in FIG. 4, the optical fiber 13 is fixed to the inner space portion 12 of the high rigidity tubular pile body 11 by mounting the optical fiber 13 in the inner space portion 12. An adhesive resin 16 may be applied to the entire surface of the part to fix the optical fiber 13 as a whole. Again, care should be taken that the optical fiber 13 is not rubbed and damaged at the entrance of the inner space of the high-rigidity tubular pile body 11.
[0021]
Also, the adhesive resin 16 ′ is extended to the entrance and exit of the inner space portion of the high-rigidity tubular pile body 11, and the optical fiber 13 is fixed to the inner space portion of the high-rigidity tubular pile body 11 by being surely fixed at the exit of the inner space portion. Be careful not to be rubbed and damaged at the outlet.
[0022]
Moreover, you may make it mount | wear with the cap 15 which consists of elastic materials at the entrance and exit of the inner space part of the highly rigid tubular pile main body of an optical fiber.
[0023]
FIG. 5 is a view showing the structure of a slip detection / reinforcement pile for earth structure according to a second embodiment of the present invention.
[0024]
In this figure, reference numeral 20 denotes a slip detection / reinforcement pile for an earth structure, and the slip detection / reinforcement pile 20 for an earth structure has an inner space portion 22 formed in the high-rigidity tubular pile body 21, and the inner space portion thereof. An optical fiber 23 is installed inside 22 so that a predetermined position is fixed in a dot shape by an adhesive resin 24. Furthermore, in this embodiment, the drainage hole 25 is formed in the high-rigidity tubular pile body 21 so that the water permeability is good.
[0025]
In particular, in the case of this kind of slip detection reinforcing pile 20 for earth structure, as shown in FIG. 1, the tip 20A of the reinforcing pile 20 is piled upward from the side surface of the ground area or the embankment of the track area 1. It is preferable that the head 20 </ b> B is inclined and driven so that the water that has entered the inside of the high-rigidity tubular pile main body 21 from the ground is guided downward through the drainage hole 25 and has high rigidity. Since it is discharged | emitted from the rear end (entrance / exit) of the tubular pile main body 21, it is preferable as a reinforcing material.
[0026]
FIG. 6 is a view showing the structure of a slip detection / reinforcement pile for earth structure according to a third embodiment of the present invention.
[0027]
In this embodiment, the optical fiber 32 is wound around the outer surface of the main body 31 of the solid soil structure slip detection reinforcing pile 30 and the outer surface is coated with the resin 33.
[0028]
By doing in this way, while simplifying the structure of the slip detection reinforcement pile for earth structures, mounting | wearing of an optical fiber is also easy. The optical fiber can be protected by a resin.
[0029]
Hereinafter, an optical fiber sensor system using the above-described slip detection reinforcing pile for earth structure will be described with reference to FIG.
[0030]
The slip detection / reinforcement pile 2 for the earth structure is driven with the tip inclined upward from the side surface of the track area 1 where the earth is piled or embanked, and the optical fiber 4 is laid. In that case, a reference optical fiber 5 is arranged.
[0031]
Therefore, light is introduced from the light source 6 through the first optical coupler 4a to the optical fiber 5 serving as a reference and the optical fiber 4 disposed in the ground or the embankment of the orbital area 1, and light is transmitted to both the optical fiber 5 and the optical fiber 4. The optical waveguide state is converted into electricity by the O / E (optical / electrical converter) 7 through the second optical coupler 4b, demodulated by the passive homodyne demodulator 8, and measured by the measuring device 9. The electrical output status from the optical fibers 4 and 5 is monitored.
[0032]
Therefore, for example, when the deformation has occurred inside the natural ground or embankment, the path of the optical fiber 4 changes. That is, the slip detection reinforcing pile 2 for the earth structure is displaced. Then, the waveguide state of light in the optical fiber 4 changes, and a deviation occurs when compared with the waveguide state of light in the optical fiber 5 serving as a reference. The deviation can be measured by the measuring device 9. it can.
[0033]
In addition, in the case where a destructive deformation occurs in the ground or embankment where the above-described slip detection reinforcing pile 2 for earth structure has been driven, a large change will occur in the optical fiber 4 as well. When the optical waveguide 5 serving as a reference is significantly different from the light waveguide state, an alarm device 9A linked to the measuring device 9 may issue an alarm. A modulation signal generator 8A is provided between the light source (laser light source) 6 and the passive homodyne demodulator 8.
[0034]
Depending on how the structure of the optical fiber sensor is to be monitored, the arrangement of various optical fiber sensors can be selected.
[0035]
Moreover, measurement can be performed for several tens of kilometers or more, and centralized management is possible at a remote place.
[0036]
In addition, this invention is not limited to the said Example, A various deformation | transformation is possible based on the meaning of this invention, and these are not excluded from the scope of the present invention.
[0037]
【The invention's effect】
As described above in detail, according to the present invention, the following effects can be obtained.
[0038]
(A) While reinforcing earth structures, such as a natural ground and embankment, the deformation management of the earth structure of a natural ground and embankment after that can be performed simultaneously.
[0039]
(B) Since the optical cable is fixed to the inner space of the high-rigidity tubular pile body, the construction of the optical cable sensor is easy.
[0040]
(C) Since the fixing at the entrance / exit of the inner space of the highly rigid tubular pile body of the optical cable is ensured, the optical cable can be prevented from being damaged.
[0041]
(D) A high-rigidity tubular pile is driven from the ground by inclining so that the tip of the reinforcing pile is upward and the pile head is downward from the side surface of the ground or embankment of the track area. The water that has entered the inside of the pile main body is preferable as a reinforcing material because it is guided downward through the drain hole and discharged to the outside of the earth structure.
[Brief description of the drawings]
FIG. 1 is a schematic view showing the construction of a slip detection reinforcing pile for earth structure using an underground optical fiber sensor system according to an embodiment of the present invention.
FIG. 2 is a diagram showing a structure of a slip detection / reinforcement pile for earth structure according to a first embodiment of the present invention.
FIG. 3 is an enlarged view (No. 1) showing a fixed state of the optical fiber of the slip detection and reinforcement pile for earth structure according to the first embodiment of the present invention.
FIG. 4 is an enlarged view (No. 2) showing a fixed state of the optical fiber of the slip detection reinforcing pile for earth structure according to the first embodiment of the present invention.
FIG. 5 is a diagram showing a structure of a slip detection / reinforcement pile for earth structure according to a second embodiment of the present invention.
FIG. 6 is a view showing a structure of a slip detection / reinforcement pile for earth structure according to a third embodiment of the present invention.
[Explanation of symbols]
1 Natural ground and embanked track area 2,10,20,30 Slip detection reinforcement pile for earth structure 2A, 20A Tip of slip detection reinforcement pile for earth structure 2B, 20B Pile of slip detection reinforcement pile for earth structure Head 3,11,21,31 High rigidity tubular pile body 4,4 ', 13,13', 23,23 ', 32 Optical fiber 4a First optical coupler 4b Second optical coupler 5 Reference optical fiber 6 Light source 7 O / E (optical / electrical converter)
8 Passive homodyne demodulator 8A Modulation signal generator 9 Measuring device 9A Alarm device 12, 22 Internal space 14, 14 ', 16, 16', 24 Adhesive resin 15 Cap 25 Water drain hole 33 Resin

Claims (4)

本体が土構造物の側面から打ち込まれるとともに、前記本体の内空部に光ファイバーが折り返されて装着され、前記光ファイバーが前記本体の内面に間隔をおいて点状に接着樹脂により固定され、前記本体の内空部の出入口において前記光ファイバーが接着樹脂により固定される光ファイバーセンサーを具備することを特徴とする土構造物用すべり検知補強杭。With the body is driven from the side of the soil structure, the main body fiber to the hollow portion is mounted folded in, the optical fiber is by Ri fixed to the adhesive resin at intervals in dots on an inner surface of said body , the hollow portion and the optical fiber Earth structure for slip detection reinforcing piles, characterized by comprising an optical fiber sensor which is fixed by an adhesive resin at the entrance of the body. 請求項1記載の土構造物用すべり検知補強杭において、前記本体は高剛性管状杭であることを特徴とする土構造物用すべり検知補強杭。  The slip detection / reinforcement pile for earth structures according to claim 1, wherein the main body is a high-rigidity tubular pile. 請求項1又は2記載の土構造物用すべり検知補強杭において、前記本体に水抜き穴が形成されることを特徴とする土構造物用すべり検知補強杭。  The slip detection / reinforcement pile for earth structure according to claim 1 or 2, wherein a drainage hole is formed in the main body. 請求項1又は2記載の土構造物用すべり検知補強杭において、前記土構造物の側面から前記補強杭の先端が上方に杭頭が下方になるように傾斜させて施工することを特徴とする土構造物用すべり検知補強杭。  The slip detection reinforcing pile for earth structure according to claim 1 or 2, wherein the construction is performed by inclining the tip of the reinforcing pile upward from the side of the earth structure so that the pile head is downward. Slip detection reinforcement pile for earth structures.
JP2000240129A 2000-08-08 2000-08-08 Slip detection reinforcement pile for earth structure Expired - Fee Related JP4208062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000240129A JP4208062B2 (en) 2000-08-08 2000-08-08 Slip detection reinforcement pile for earth structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000240129A JP4208062B2 (en) 2000-08-08 2000-08-08 Slip detection reinforcement pile for earth structure

Publications (2)

Publication Number Publication Date
JP2002054153A JP2002054153A (en) 2002-02-20
JP4208062B2 true JP4208062B2 (en) 2009-01-14

Family

ID=18731550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000240129A Expired - Fee Related JP4208062B2 (en) 2000-08-08 2000-08-08 Slip detection reinforcement pile for earth structure

Country Status (1)

Country Link
JP (1) JP4208062B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5385516B2 (en) * 2007-07-10 2014-01-08 エヌ・ティ・ティ・インフラネット株式会社 Deformation amount sensor, deformation amount measuring device, deformation amount measuring method
JP5295583B2 (en) * 2008-02-13 2013-09-18 太平洋セメント株式会社 Embedded strain gauge
CN103699060A (en) * 2013-09-27 2014-04-02 广东工业大学 Effectiveness optimization control system used in tubular pile producing and curing process
CN116024959B (en) * 2023-03-29 2023-06-16 中国电力科学研究院有限公司 Precast pile, construction method thereof and quality detection method

Also Published As

Publication number Publication date
JP2002054153A (en) 2002-02-20

Similar Documents

Publication Publication Date Title
EP2029993B1 (en) Reinforcement element with sensor fiber, monitoring system, and monitoring method
JP3668199B2 (en) Tunnel deformation measurement method
CN102102537A (en) Tunnel surrounding rock radial stress strain distributed monitoring technology
CN1888330A (en) Bored concrete pile foundation distributing optical fiber sensing detecting method and system
CN209470718U (en) A kind of fibre system being preset in shield tunnel
JPH0921661A (en) Apparatus for monitoring underground state of anchor construction part
JP3880765B2 (en) Underground optical fiber sensor and optical fiber sensor system
JP4208062B2 (en) Slip detection reinforcement pile for earth structure
CN110319862A (en) A kind of helical structure device for distributing optical fiber sensing in civil engineering
KR100712475B1 (en) Apparatus for mornitering a collapse of around the cutted ground
KR20060042611A (en) Array with a built-in multi-point fiber bragg grating(fbg) sensor for the strain measurement of concrete piles
JP3457894B2 (en) Optical fiber laying method and strain detecting device using optical fiber
JP2009020016A (en) Optical fiber sensor cable
KR20090042012A (en) System for structure safety supervision
CN110285769A (en) A kind of scale expansion device for distributive fiber optic strain sensing
JPH10197298A (en) Method for measuring variable state of baserock, slope soil structure and civil engineering structure
JP4660805B2 (en) Displacement measurement method using optical fiber sensor
CN107326942A (en) PHC tube pile structure loading detection devices and installation method
Mohamad et al. Distributed fibre optic inclinometer with cloud-based monitoring system
JP3602401B2 (en) A method for detecting a state change of a structure using an optical fiber sensor
JP4008623B2 (en) CONCRETE STRUCTURE AND ITS MANUFACTURING METHOD, CONCRETE STRUCTURE DAMAGE DETECTION DEVICE AND DAMAGE DETECTION METHOD
JP4105123B2 (en) Structure displacement / deformation detection system using optical fiber sensor
JP3224762B2 (en) Fiber optic cable
JP3871874B2 (en) Optical fiber strain sensor sheet
JP2001304924A (en) Slope-collapse measuring apparatus and strain- distribution measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060817

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070109

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070209

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070313

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070525

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080904

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121031

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131031

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees