JP4206456B2 - Method for producing water-insoluble DNA cross-linked product by ultraviolet irradiation and use of the cross-linked product as environmental purification material - Google Patents

Method for producing water-insoluble DNA cross-linked product by ultraviolet irradiation and use of the cross-linked product as environmental purification material Download PDF

Info

Publication number
JP4206456B2
JP4206456B2 JP25573399A JP25573399A JP4206456B2 JP 4206456 B2 JP4206456 B2 JP 4206456B2 JP 25573399 A JP25573399 A JP 25573399A JP 25573399 A JP25573399 A JP 25573399A JP 4206456 B2 JP4206456 B2 JP 4206456B2
Authority
JP
Japan
Prior art keywords
water
dna
insoluble
film
cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25573399A
Other languages
Japanese (ja)
Other versions
JP2001081098A (en
Inventor
則雄 西
真路 山田
こずえ 加藤
Original Assignee
日生バイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日生バイオ株式会社 filed Critical 日生バイオ株式会社
Priority to JP25573399A priority Critical patent/JP4206456B2/en
Publication of JP2001081098A publication Critical patent/JP2001081098A/en
Application granted granted Critical
Publication of JP4206456B2 publication Critical patent/JP4206456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Filtering Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)
  • Saccharide Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本願発明は、支持体上の水溶液中にあってもよい水溶性DNAに波長が250〜270nmの範囲の紫外線を照射することによる支持体に固定された水溶性DNAの水不溶性架橋体の製造方法、該架橋体;該架橋体を含有する医薬、獣医薬又は食品;該架橋体による、DNAへの挿入剤の集積及び除去;銀イオンを含有する該架橋体とその殺菌材料としての利用に関する。
【0002】
【従来の技術と発明が解決しようとする課題】
紫外線照射により、二本鎖DNAが、エタノール中で互いの二本鎖DNAの間で架橋することは知られている(例えば、Photochemistry and Photobiology, 1998, 67(4): 386-390 を参照) 。しかし、水中又は無溶媒の条件下で二本鎖DNAの間での架橋が起こることは知られていない。又、一本鎖DNA又はRNAの紫外線照射による架橋化は知られていない。
【0003】
【課題を解決するための手段】
本発明者は、水中又は無溶媒下での、水溶性二本鎖DNA、水溶性一本鎖DNA又はRNAの紫外線照射による影響を検討したところ、意外にも該二本鎖DNA間の水不溶性の架橋体、該一本鎖DNA間又はRNA間の水不溶性の架橋体が生成することを発見し、この発見に基づき本発明を完成した。
【0004】
即ち、本願発明は、支持体上の水溶性DNAの水溶液もしくはその液膜、又は支持体上の水溶性DNAの薄層又は支持体上の水溶性DNAの溶液の液膜の濃縮乃至乾涸により得られた薄層に、波長が250〜270nmの範囲の紫外線を照射することによる、支持体に固定された水溶性DNAの水不溶性架橋重合体の製造方法に関する。
【0005】
又、本願発明は、上記発明の一変形として、支持体例えばセルロース繊維不織布を浸漬した水溶性DNAの水溶液に波長が250〜270nmの範囲の紫外線を照射することによる、水溶性DNAの水不溶性架橋重合体により被覆された支持体又はセルロース繊維不織布の製造方法にも関する。
【0006】
又、本願発明は、上記支持体に固定された水溶性DNAの水不溶性架橋重合体、上記支持体に固定された水溶性DNAの水不溶性架橋重合体から例えば剥離により支持体を除いた水不溶性架橋重合体の利用法にも関する。
【0007】
【発明の実施の形態】
水溶性DNAの例としては、一本鎖のDNA又は二本鎖DNA例えば魚類の精巣又は動物の胸腺から得られるDNAが挙げられる。例えばサケ、ニシン、タラの白子(精巣)から得られるものが好ましい。又、哺乳動物もしくは鳥類、例えばウシ、ブタ、ニワトリ等の胸腺から得られるものが好ましい。
他の水溶性DNAの例としては、合成DNA特に(dA)−(dT)の塩基対を持つDNA配列、特に例えばpoly(dA)−poly(dT)型の配列を持つDNAであってもよい。
RNAの例としては、酵母から得られるRNAが好ましい。
【0008】
支持体は、生成した水溶性DNAの水不溶性架橋体を膜状、線状又は点状に支持できる能力のあるものであればよい。
支持体の形状と材質は、多孔性であってもよい、板状、球状例えば直径0.1mmないし10mmの球状又は繊維状の、合成樹脂、ガラス、セラミックス又は金属;天然繊維例えばセルロース又はパルプ;或いは天然繊維例えばセルロース又はパルプを化学的に加工したものである。
【0009】
支持体の材質としては、DNA架橋体との結合力の乏しい材質例えばガラス、合成樹脂例えばポリエチレン又はポリプロピレン又は金属、乃至は、結合力の強い表面を持つ、表面処理済のガラス、表面処理してあってもよい合成樹脂又は表面処理してあってもよい金属、又はセルロースであってもよい。何れの場合にも、照射される紫外線により分解され難いものが好ましい。
そして上記水不溶性架橋体と結合力の弱い支持体は生成したDNA架橋体例えばフィルムの該支持体からの剥離が容易であってもよい。この場合の支持体は架橋体を剥離しない場合は、該架橋体の物理的補強材料にもなり得る。
更に上記水不溶性架橋体と結合力の強い支持体は、該架橋体、例えばフィルム状の架橋体の物理的補強材料にもなり得る。
【0010】
ガラスとセラミックスは表面を化学的処理してあるものであってもよい。例えば、表面処理をしてない市販のボーラスガラスビーズ(粒径=約0.5〜1.2mm、平均して約1mm)の場合は、10mg/mLのDNA溶液に2時間浸漬する。
表面処理の場合は、例えばポーラスガラスビーズを約70℃の濃H2SO4 :30%H22 =7:3の溶液に30分間浸漬して、表面に水酸基を導入した後、10mg/mLのDNA溶液に2時間浸漬する。
同様にして、ポーラスガラスビーズを約70℃の濃H2SO4 :30%H22 =7:3の溶液に30分間浸漬、次いで密封容器内に3−アミノプロピルニトリルトリエトキシシランと共に約2時間放置して、ビーズの表面に有機アミノ基を導入した後、10mg/mLのDNA溶液に2時間浸漬する。
【0011】
支持体上の水溶性DNAの薄層は通常は、支持体上の水溶性DNAの溶液の液膜を濃縮乃至乾涸することにより生成する。この際に使用される溶液の溶媒は、水、水性メタノール又は水性エタノールであり、風乾の容易なものが好ましい。特に水が好ましい。水溶性DNAの薄層の厚みは通常0.01〜1mmであるが、この範囲外の厚みであってもよい。
【0012】
水溶性DNAの水溶液の濃度は、該水溶液DNAの飽和溶液の濃度以下であればよい。例えば、溶解処理のし易い濃度であるDNA10mg/水1mL程度である。水溶性DNAの水溶液の液膜の厚みは通常0.1〜20mm、好ましくは0.1〜10mmであるが、この範囲外の厚みであってもよい。
【0013】
照射する紫外線の波長は250〜270nmの範囲にあるものが好ましい。必要な照射時間は、照射される紫外線の照射強度に反比例する。5600μW/cm2 (照射距離は約7.5cmである)の場合は、概ね12時間以上の照射時間である。照射時間が不十分な場合は、水不溶性DNAの収率が低下する。従って、生成したフィルム中の水溶液DNA量又は水不溶性DNA量を追跡して、収率の高い照射強度と照射時間を選択するのが好ましい。例えばサケの精巣から得られたDNA膜(DNA10mgと水20mLからの溶液を乾涸した。膜面積は約10cm2 )を強度5600μW/cm2 (照射距離は約7.5cmである)の260nm紫外線で照射すると、1時間照射後に生成したフィルムから水により約50%のDNAが溶するが、12時間照射後には約25%のDNAが溶出する。又、薄膜の厚みは、照射された紫外線がDNA膜の深部に到達できる程度の厚みであることが好ましい。普通は、薄膜の厚みは、0.01〜1mm程度である。 紫外線の照射温度は、普通は0〜50℃以下、室温例えば10〜35℃が好ましい。
【0014】
紫外線照射後、得られたフィルムから水可溶性のDNAを水により溶出した後得れた水不溶性DNAフィルムは、例えば50日の長期にわたって常温の水中に浸漬しても水に不溶性であるので、常温の水中では安定且つ不溶性である。水不溶性とは、80℃以下の水に容易に溶解しないと定義する。上記水不溶性架橋体は、100℃の沸騰水中では15分間で溶解した。この溶解物は冷却しても水中への析出を認めることは出来なかった。この溶解した試料を水に希釈して、濃度0.1μg/10μLの溶液にした後、アガロースゲル電気泳動法(和科盛(製)、移動相 TAE buffer,分析温度30℃、移動距離 12cm)で分析すると非常に分子量の高い超巨大DNA化合物であることを示していた。
【0015】
常温(25℃)における水不溶性と測定できない程度の高い分子量を合わせて考察するとこの水不溶性DNAは、多数の二本鎖DNA間の架橋反応により生成したDNA架橋重合体であると推定される。
【0016】
得られた(水溶性DNAの)水不溶性架橋体のフィルムは、水溶性DNAがサケの精巣由来の場合は、IR(KBr錠剤法)スペクトルとUV−VS領域の吸光スペクトルにおいて、使用された原料の水溶性DNAのそれと問題にできる程度顕著な差異を認めることができなかった。現在時点ては、どの部分で架橋化しているのか不明である。
【0017】
しかるに、Poly(dA)−Poly(dT)( 1%アガロースゲルを用いる電気泳動を行った。その結果、2.7,4.3,5.0と6.0(kbp)付近にバンドを示した)の薄膜に254nmの紫外線を30分間照射したところ、水不溶性のフィルム(上記の1%アガロースゲルを用いる電気泳動による分析では、水に不溶性のためなのだろう、バンドを示さなかった)を生じた。この水不溶性フィルムのIRスペクトル(フィルム20μg+KBr数百gから錠剤を測定)は、下記の波長領域において、紫外線照射前の原料との吸収の違いを示した。
(1)1680 cm-1近傍のチミンの二重結合に由来するνCHの吸収(ν:伸縮振動) が消えた。
(2)1450 cm -1 付近に大きな変化を示した。
(3)968 cm-1: デオキシリボースのνC-C の消失
(4)800 cm-1: νP-O の変化
(5)1230,1090 cm-1: 非対象νPO2
結論:1680 cm -1近傍吸収の消失はチミンダイマーの形成を示している。
【0018】
上記のPoly(dA)−Poly(dT)の分析結果から考察すると、サケ由来のDNAにおいては(dA)−(dT)対がランダムに存在しているため、架橋のチャンスは少なく、水不溶化してもIRスペクトルでは顕著な差が観察されなかったことによると思われる。なお、現時点で得られたデータのみからは、チミンダイマーの形成だけが不溶化の原因であるとは断定できない。
【0019】
本発明者は、このようにして得られた水不溶性架橋体のフィルムは、DNAへの挿入剤(intercalating agent) である環境ホルモン等の化合物、例えば臭化エチジウム(4ppm);ベンゾ[a]ピレン(10ppb);ジベンゾ−p−ジオキサン(10ppb);ジベンゾフラン(10ppb)及びビフェニル(10ppb)の極めて低い濃度〔各化合物の後に記述した()中の数値〕の水溶液からこれら挿入剤を極めて高い収率で吸着、これらの水溶液から除去することを見出した。この効果により、生体内外の又は食用の液体又は固体又は環境内の液体又は気体中に存在する極めて低い濃度のDNAへの挿入剤を除去することが可能になる。
【0020】
従って、支持体の材質と形状を適宜選択することにより、挿入剤の除去をするのに有用である。挿入剤を集積及び除去するための濾過材又は吸着剤、例えば、タバコのフィルター、空気浄化器の気体濾過材、飲料水、食用水、飲料食品例えば牛乳、母乳の液体濾過材、動物特にヒトを含む哺乳動物の消化管内の挿入剤例えばの吸着・清浄剤として有用である。
【0021】
上述のように、支持体はガラスとセラミックスは表面を化学的処理してあるものであってもよい。例えば、表面処理をしてない市販のボーラスガラスビーズ(粒径=約0.5〜1.2mm、平均して約1mm)の場合は、10mg/mLのDNA溶液に2時間浸漬、乾燥後、紫外線を2時間照射する。紫外線照射に際しては、15分毎に、ポーラスガラスをかき混ぜた。
表面処理の場合は、例えばポーラスガラスビーズを約70℃の濃H2SO4 :30%H22 =7:3の溶液に30分間浸漬して、表面に水酸基を導入した後、10mg/mLのDNA溶液に2時間浸漬、乾燥後、上記と同様に紫外線照射する。
同様にして、ポーラスガラスビーズを約70℃の濃H2SO4 :30%H22 =7:3の溶液に30分間浸漬、次いで密封容器内に3−アミノプロピルニトリルトリエトキシシランと共に約2時間放置して、ビーズの表面に有機アミノ基を導入した後、10mg/mLのDNA溶液に2時間浸漬、乾燥後、上記と同様に紫外線照射する。
これらのポーラスガラスビーズの表面へのDNA固定量は、下記の通りであった。
市販されているポーラスガラスビーズ:4−6mg/ビーズ1g;表面に水酸基があるポーラスガラスビーズ:約3mg/ビーズ1g;表面に有機アミノ基があるポーラスガラスビーズ:5−7mg/ビーズ1g。
このように固定されたDNA架橋体は、上記の水不溶性架橋体のフィルムと同様の作用を、DNAへの挿入剤に対して持つ。
【0022】
本発明の製造方法を、水溶液DNAを含有する水溶液に浸漬したセルロース繊維不織布に応用した。即ち、上記浸漬液へ、250〜270nmの範囲の紫外線を照射した結果、DNAの水不溶性架橋体がセルロース上に固定化されることを見出した。このセルロース繊維不織布は、水不溶性架橋体の物理的補強剤として機能している。このものは、上記の挿入剤又は環境ホルモン型化合物を吸着できる。また、セルロース繊維不織布は、硫酸銀、硝酸銀のような水溶性銀塩例えば硝酸銀の水溶液からAg+ イオンを水で洗浄除去できない程度に固定的に吸着した。そして、その含Ag+ 不織布がEsch richia coli Staphylococcus aureus 等の細菌に顕著な生育抑制作用を示している。この結果は、殺生物作用のある金属イオン例えばAg+ の他に、Hg+ 、Hg2+、Cu+ 、Cu2+等の金属イオンでも同様に使用できる可能性を示している。
【0023】
上記のセルロース繊維不織布に換えて、通常のセルロース繊維織物、例えばガーゼのような形態のものも使用できる。セルロース繊維間の間隔を調節することにより不織布又は織物の目の大きさを通液又は通気のために自由に調節することができる。同様にして上記のセルロース繊維不織布をセルロース紙に換えることも可能である。この場合は、所望の大きさの孔径を持つセルロース紙であってもよい。又、上記セルロースはセルロース誘導体、例えばメチルセルロース、エチルセルロース、2−ヒドロキシエチルセルロース又はヒドロキシプロピルセルロースであってもよい。
【0024】
又、上記の水溶性DNAの水不溶性架橋体は、DNA構造を維持したDNAの架橋体であるので、DNAと同様の金属との結合力を持つ。従って、Cd2+、クロムイオン例えばCr3+、Hg2+、マンガンイオン例えばMn2+等の金属イオンを吸着できる環境浄化材料としての機能もある。これは、上記の水溶性DNAの水不溶性架橋体のフィルムと該架橋体により被覆された支持体例えばセルロース繊維不織布についても言える。
【0025】
又、本発明の水不溶性架橋体は、初期的試験では或る種(マイクロコッカル・ヌクレアーゼ(Sigma))のヌクレアーゼにより加水分解されないことが証明されている。これはこのものが普通のDNAと異なり、ヒトを含む哺乳動物、鳥類の消化器管内で分解されないことを示唆しているので、消化管内にある上記の挿入剤又は金属イオン類を集積・除去する毒物除去即ち解毒の作用を持つ医薬又は獣医薬又は食品として機能する。
【0026】
なお、水溶性二本鎖DNAを水溶性一本鎖DNA又はRNAに換えても、250〜270nmの範囲の紫外線を照射の結果、水不溶性架橋体が形成されることを確認している。この一本鎖DNA又はRNAの水不溶性架橋体も、上記の金属に対して二本鎖DNA架橋体と同様の作用を持つ。
又、支持体上の一本鎖と二本鎖のDNAの混合物に250〜270nmの範囲の紫外線を照射して架橋体を形成することも、本願発明の対象である。
【0027】
【実施例】
本願発明を下記の実施例により更に具体的に説明する。
実施例1.水溶性DNAの架橋重合体の合成
サケの白子から得られた二本鎖DNA(分子量,5×106 )10mgを水1mLに溶解し、得られたDNA溶液を直径3cmのシャーレに注入し、室温で風乾した。次いで、紫外線ランプ(R−52G型、5600μW/cm2 、ウルトラ・バイオレット社製 )を使用して254nmの紫外線(照射距離は約7.5cmであった。)を1〜12時間照射した。シャーレに水を注入して、シャーレ底部に生成した水不溶性のDNAフィルムをシャーレ底部から剥離した。
【0028】
この水不溶性DNAフィルムは、50日の長期にわたって水中に浸漬しても水に不溶性であるので、水中では安定であった。
この紫外線照射により得られた水不溶性のDNAは、100℃の沸騰水中では約15分間で溶解した。この溶解した試料を水に希釈して、濃度0.1μg/10μLの溶液にした後、アガロースゲル電気泳動法(和科盛(製)、移動相 TAE buffer,分析温度30℃、移動距離 12cm)で分析すると、移動が認められず、非常に分子量の高い超巨大化合物であることを示していた。なお、水不溶性DNAの常温における水抽出液(反応ろ液)中にも、アガロースゲル電気泳動法で移動が認められない非常に分子量の高い化合物を混在を確認している。
【0029】
常温(25℃)における水不溶性と測定できない程度の高い分子量を合わせて考察するとこの水不溶性DNAは、多数のDNAの架橋反応により生成したDNA架橋重合体である。
【0030】
実施例2.上記の水不溶性DNAフィルム ( フィルム状のDNA架橋重合体 ) による挿入剤( intercalating agent) の集積及び除去
実施例1で得られた水不溶性DNAフィルム1mg(面積約1cm2 )を、下記の挿入剤を下記の濃度で含有する水10mLに浸漬し、水中の濃度をUV−VS分光吸光度により所定の経過時間に測定して、追跡した:臭化エチジウム、4ppm;ベンゾ[a]ピレン、10ppb;ジベンゾ−p−ジオキサン、10ppb;ジベンゾフラン、10ppb;ビフェニル、10ppb。例えば臭化エチジウムの場合は、該化合物の極大吸光波長480nmにおける吸光度が時間経過と共に減少し、24時間で完全に消失した。同様のことが、他の挿入剤についても観察された。
【0031】
実施例3.紫外線照射によるセルロース繊維不織繊維上へのDNAの固定化
100mgのセルロース繊維不織布(布の厚み0.15mm)を、実施例1で使用したDNA3mgを水1mLに溶解した溶液に含浸した。含浸した上記不織セルロース繊維を風乾し、実施例1と同様にして所定時間にわたり紫外線照射した。その後、約20℃の水で十分に洗浄して固定されていないDNAを除去し、乾燥した。不織セルロース繊維上に固定化されたDNAの量は紫外線照射の時間と共に概ね増加し、照射15分後には一定値に到達していた。不織セルロース繊維1gへ固定化されたDNAの最大量は約20mgであった(最大量の測定法:100℃、1N HClで1hr加熱、室温に冷後、260nmの吸光度で測定した)。
【0032】
実施例4.実施例3で得られたDNA固定セルロース繊維不織布へのAg + の吸着とAg + 吸着不織布の殺菌活性
実施例3で得られたDNA固定セルロース繊維不織布30mg(DNA含有量20mg/布1g)を、10mMの硝酸銀を含有する水溶液に1時間浸漬する。次いで、硝酸銀水溶液からDNA固定不織布を取り出し、水で洗浄した後、室温で乾燥する。十分に洗浄した後のDNA固定不織布に吸着されたAg+ の量は、使用される硝酸銀の量に依存し、硝酸銀の量が多いと吸着量も概ね多くなる。DNA固定不織布1gへ吸着されたAg+ の量は最大量は5mgであった。
【0033】
Ag+ 含有−DNA固定不織布は、Esch richia coli Staphylococcus aureus 等の細菌に対して顕著な生長阻害性を示した。この布は、抗菌材料として広く使用され得る。
【0034】
【発明の効果】
支持体上の水溶性DNAもしくは水溶性RNAの薄層又は水溶性DNAもしく水溶性RNAの水溶液又はその液膜に、波長が250〜270nmの範囲の紫外線を照射すると、該DNAもしくはRNAは水に不溶性の超巨大分子の架橋体に変化する。同様にして、例えばセルロース繊維不織布を浸漬した水溶性DNAの水溶液に波長が250〜270nmの範囲の紫外線を照射することによる、該DNAの水不溶性架橋重合体により被覆されたセルロース繊維不織布が形成される。更に、同様にして、水溶性DNAにより被覆されたガラスピーズに同様の紫外線を照射すると水不溶性のDNA架橋重合体が表面に固定された。このDNAが二本鎖DNAである場合の架橋体はDNAへの挿入剤またはDNAへの挿入剤である環境ホルモン類を水中又は気体中の極めて低い濃度の状態でも極めて収率高く吸着する。同様に有毒金属例えばHgイオンも水に対して固定的に吸着する。従って、この架橋体は、環境ホルモンと有害金属を集積・除去する環境浄化材料として有用である。具体的には、生物体内外の挿入剤を集積・除去するための、空気、水、飲料水、飲料食品の濾過材、又はヒトを含む哺乳動物の消化管内の清浄剤即ち医薬、獣医薬または食品に含まれる有効成分として使用することが可能である。一本鎖のDNA又はRNAの架橋体は、有害金属を固定するので環境浄化材として有用である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a water-insoluble crosslinked product of water-soluble DNA fixed to a support by irradiating the water-soluble DNA which may be in an aqueous solution on the support with ultraviolet rays having a wavelength in the range of 250 to 270 nm. The present invention relates to a pharmaceutical, veterinary medicine or food containing the cross-linked product; accumulation and removal of an intercalating agent into DNA by the cross-linked product; and the use of the cross-linked product containing silver ions as a sterilizing material.
[0002]
[Prior art and problems to be solved by the invention]
It is known that double-stranded DNA crosslinks between each double-stranded DNA in ethanol by ultraviolet irradiation (see, for example, Photochemistry and Photobiology, 1998, 67 (4): 386-390). . However, it is not known that cross-linking occurs between double-stranded DNA under water or solvent-free conditions. In addition, crosslinking of single-stranded DNA or RNA by ultraviolet irradiation is not known.
[0003]
[Means for Solving the Problems]
The present inventor has examined the influence of ultraviolet irradiation of water-soluble double-stranded DNA, water-soluble single-stranded DNA or RNA in water or in the absence of a solvent. It was discovered that a water-insoluble cross-linked product between the single-stranded DNA and RNA was produced, and the present invention was completed based on this discovery.
[0004]
That is, the present invention is obtained by concentrating or drying a water film of a water-soluble DNA on a support or a liquid film thereof, or a thin layer of water-soluble DNA on a support or a liquid film of a water-soluble DNA solution on a support. The present invention relates to a method for producing a water-insoluble crosslinked polymer of water-soluble DNA fixed to a support by irradiating the obtained thin layer with ultraviolet rays having a wavelength in the range of 250 to 270 nm.
[0005]
The present invention also provides a water-insoluble cross-linking of water-soluble DNA by irradiating an aqueous solution of water-soluble DNA immersed in a support, for example, a cellulose fiber nonwoven fabric, with ultraviolet rays having a wavelength in the range of 250 to 270 nm. It also relates to a method for producing a support or cellulose fiber nonwoven fabric coated with a polymer.
[0006]
The present invention also provides a water-insoluble cross-linked polymer of water-soluble DNA immobilized on the support, and a water-insoluble cross-linked polymer obtained by removing the support from the water-insoluble cross-linked polymer of water-soluble DNA immobilized on the support by, for example, peeling. It also relates to the use of cross-linked polymers.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Examples of water-soluble DNA include single-stranded DNA or double-stranded DNA, such as DNA obtained from fish testis or animal thymus. For example, those obtained from salmon, herring, cod roe (testis) are preferred. Further, mammals or birds such as those obtained from thymus such as cows, pigs and chickens are preferred.
Examples of other water-soluble DNAs may be synthetic DNAs, particularly DNA sequences having base pairs of (dA)-(dT), particularly DNAs having a poly (dA) -poly (dT) type sequence, for example. .
As an example of RNA, RNA obtained from yeast is preferable.
[0008]
The support is only required to be capable of supporting the water-insoluble crosslinked product of the produced water-soluble DNA in the form of a film, line or dot.
The shape and material of the support may be porous, plate-like, spherical, for example spherical or fibrous with a diameter of 0.1 mm to 10 mm, synthetic resin, glass, ceramics or metal; natural fiber such as cellulose or pulp; Alternatively, natural fibers such as cellulose or pulp are chemically processed.
[0009]
As a material of the support, a material having poor binding force with a DNA cross-linked body such as glass, synthetic resin such as polyethylene or polypropylene or metal, or a surface-treated glass having a surface having a strong binding force, surface-treated It may be a synthetic resin that may be present, a metal that may be surface-treated, or cellulose. In any case, those which are difficult to be decomposed by the irradiated ultraviolet rays are preferable.
The support having a weak binding force with the water-insoluble crosslinked product may be easily peeled from the produced DNA crosslinked product, for example, the film. The support in this case can also be a physical reinforcing material for the crosslinked body when the crosslinked body is not peeled off.
Furthermore, the support having a strong binding force with the water-insoluble crosslinked body can also be a physical reinforcing material for the crosslinked body, for example, a film-like crosslinked body.
[0010]
Glass and ceramics may be those whose surfaces are chemically treated. For example, in the case of commercially available bolus glass beads not subjected to surface treatment (particle size = about 0.5 to 1.2 mm, average about 1 mm), it is immersed in a DNA solution of 10 mg / mL for 2 hours.
In the case of surface treatment, for example, porous glass beads are immersed in a solution of concentrated H 2 SO 4 : 30% H 2 O 2 = 7: 3 at about 70 ° C. for 30 minutes to introduce hydroxyl groups on the surface, and then 10 mg / Immerse in mL of DNA solution for 2 hours.
Similarly, the porous glass beads were immersed in a solution of concentrated H 2 SO 4 : 30% H 2 O 2 = 7: 3 at about 70 ° C. for 30 minutes, and then about 3-aminopropylnitrile triethoxysilane together with 3-aminopropylnitrile triethoxysilane in a sealed container. After allowing to stand for 2 hours to introduce an organic amino group on the surface of the beads, it is immersed in a 10 mg / mL DNA solution for 2 hours.
[0011]
The thin layer of water-soluble DNA on the support is usually produced by concentrating or drying the liquid film of the water-soluble DNA solution on the support. The solvent of the solution used at this time is water, aqueous methanol, or aqueous ethanol, and those that are easily air-dried are preferable. Water is particularly preferable. The thickness of the water-soluble DNA thin layer is usually 0.01 to 1 mm, but may be a thickness outside this range.
[0012]
The concentration of the aqueous solution of water-soluble DNA may be not more than the concentration of the saturated solution of the aqueous DNA. For example, the concentration is about 10 mg of DNA / 1 mL of water, which is a concentration that facilitates dissolution treatment. The thickness of the liquid film of the aqueous solution of water-soluble DNA is usually 0.1 to 20 mm, preferably 0.1 to 10 mm, but may be outside this range.
[0013]
The wavelength of the irradiated ultraviolet light is preferably in the range of 250 to 270 nm. The necessary irradiation time is inversely proportional to the irradiation intensity of the irradiated ultraviolet rays. In the case of 5600 μW / cm 2 (irradiation distance is about 7.5 cm), the irradiation time is approximately 12 hours or longer. If the irradiation time is insufficient, the yield of water-insoluble DNA decreases. Therefore, it is preferable to select the irradiation intensity and irradiation time with high yield by tracking the amount of aqueous DNA or water-insoluble DNA in the produced film. For example, a DNA film obtained from salmon testis (a solution of 10 mg of DNA and 20 mL of water was dried. The film area was about 10 cm 2 ) with 260 nm ultraviolet light having an intensity of 5600 μW / cm 2 (irradiation distance was about 7.5 cm). Upon irradiation, approximately 50% of the DNA by the water from the resulting film after one hour irradiation elute Suruga, after irradiation 12 hours about 25% of the DNA is eluted. The thickness of the thin film is preferably such that the irradiated ultraviolet rays can reach the deep part of the DNA film. Usually, the thickness of the thin film is about 0.01 to 1 mm. The irradiation temperature of ultraviolet rays is usually preferably 0 to 50 ° C. or less, and preferably room temperature, for example, 10 to 35 ° C.
[0014]
After UV irradiation, the resulting water-insoluble DNA films obtained we were after the DNA of water-soluble and eluted with water from the film, for example, because a long period of 50 days are insoluble in water even when immersed in water at room temperature, It is stable and insoluble in normal temperature water. Water insoluble is defined as not easily dissolved in water at 80 ° C. or lower. The water-insoluble crosslinked product was dissolved in boiling water at 100 ° C. in 15 minutes. Even when this dissolved product was cooled, precipitation into water could not be observed. This dissolved sample is diluted with water to make a solution with a concentration of 0.1 μg / 10 μL, and then agarose gel electrophoresis (manufactured by Washina Sheng (manufactured), mobile phase TAE buffer, analysis temperature 30 ° C., moving distance 12 cm) Analysis showed that it was a very large DNA compound with a very high molecular weight.
[0015]
Considering the high molecular weight that cannot be measured as water-insoluble at room temperature (25 ° C.), this water-insoluble DNA is presumed to be a DNA cross-linked polymer produced by a cross-linking reaction between a large number of double-stranded DNAs.
[0016]
The obtained water-insoluble cross-linked film (of water-soluble DNA) is the raw material used in IR (KBr tablet method) spectrum and UV-VS region absorption spectrum when the water-soluble DNA is derived from salmon testis. It was not possible to recognize any significant difference from that of the water-soluble DNA. At the present time, it is unclear which part is cross-linked.
[0017]
Accordingly, electrophoresis using Poly (dA) -Poly (dT) (1% agarose gel was performed. As a result, bands were observed in the vicinity of 2.7, 4.3, 5.0 and 6.0 (kbp). The film was irradiated with UV light at 254 nm for 30 minutes, and a water-insoluble film (analysis by electrophoresis using the above 1% agarose gel did not show a band, probably due to insolubility in water). occured. The IR spectrum of this water-insoluble film (film was measured from 20 μg + KBr several hundred g) showed a difference in absorption from the raw material before ultraviolet irradiation in the following wavelength region.
(1) Absorption of νCH derived from the thymine double bond near 1680 cm −1 (ν: stretching vibration) disappeared.
(2) A large change was observed around 1450 cm- 1 .
(3) 968 cm -1 : disappearance of νC-C of deoxyribose
(4) 800 cm -1 : change in νP-O
(5) 1230,1090 cm -1 : Untargeted νPO 2
Conclusion: The disappearance of absorption near 1680 cm -1 indicates the formation of thymine dimer.
[0018]
Considering from the analysis result of the above Poly (dA) -Poly (dT), since the (dA)-(dT) pair is present at random in salmon-derived DNA, there is little chance of cross-linking, and water insolubilization occurs. However, it seems that no significant difference was observed in the IR spectrum. From the data obtained at the present time alone, it cannot be determined that only the formation of thymine dimer is the cause of insolubilization.
[0019]
The inventor has obtained a film of a water-insoluble crosslinked product thus obtained from a compound such as an environmental hormone that is an intercalating agent for DNA, such as ethidium bromide (4 ppm); benzo [a] pyrene. (10 ppb); dibenzo-p-dioxane (10 ppb); very high yields of these intercalators from aqueous solutions of very low concentrations of dibenzofuran (10 ppb) and biphenyl (10 ppb) [numbers in parentheses described after each compound] Was found to be adsorbed and removed from these aqueous solutions. This effect makes it possible to remove intercalation agents into very low concentrations of DNA present in in vitro or edible liquids or solids or in liquids or gases in the environment.
[0020]
Therefore, it is useful for removing the insertion agent by appropriately selecting the material and shape of the support. Filter media or adsorbents for collecting and removing intercalating agents such as tobacco filters, air filter gas filter media, drinking water, edible water, beverage foods such as milk, liquid milk milk filters, animals, especially humans. It is useful as an intercalating agent in the digestive tract of mammals, for example, as an adsorption / cleaning agent.
[0021]
As described above, the support may be a glass and ceramic whose surface is chemically treated. For example, in the case of commercially available bolus glass beads not subjected to surface treatment (particle size = about 0.5 to 1.2 mm, average about 1 mm), after being immersed in a 10 mg / mL DNA solution for 2 hours, dried, Irradiate with ultraviolet light for 2 hours. During the ultraviolet irradiation, porous glass was stirred every 15 minutes.
In the case of surface treatment, for example, porous glass beads are immersed in a solution of concentrated H 2 SO 4 : 30% H 2 O 2 = 7: 3 at about 70 ° C. for 30 minutes to introduce hydroxyl groups on the surface, and then 10 mg / Immerse in a DNA solution of 2 hours, dry, and then irradiate with UV light as above.
Similarly, the porous glass beads were immersed in a solution of concentrated H 2 SO 4 : 30% H 2 O 2 = 7: 3 at about 70 ° C. for 30 minutes, and then about 3-aminopropylnitrile triethoxysilane together with 3-aminopropylnitrile triethoxysilane in a sealed container. The mixture is allowed to stand for 2 hours to introduce organic amino groups onto the surface of the beads, immersed in a 10 mg / mL DNA solution for 2 hours, dried, and then irradiated with ultraviolet rays in the same manner as described above.
The amount of DNA immobilized on the surface of these porous glass beads was as follows.
Commercially available porous glass beads: 4-6 mg / g of beads; porous glass beads with hydroxyl groups on the surface: about 3 mg / g of beads; porous glass beads with organic amino groups on the surface: 5-7 mg / g of beads.
The DNA cross-linked product thus immobilized has the same action as the above water-insoluble cross-linked film on the DNA intercalating agent.
[0022]
The production method of the present invention was applied to a cellulose fiber nonwoven fabric immersed in an aqueous solution containing aqueous DNA. That is, it was found that the water-insoluble crosslinked DNA was immobilized on cellulose as a result of irradiating the immersion liquid with ultraviolet rays in the range of 250 to 270 nm. This cellulose fiber nonwoven fabric functions as a physical reinforcing agent for the water-insoluble crosslinked product. This can adsorb the above intercalating agent or environmental hormone type compound. Moreover, the cellulose fiber nonwoven fabric adsorbed the water-soluble silver salt such as silver sulfate and silver nitrate, for example, from an aqueous solution of silver nitrate so that Ag + ions could not be washed and removed with water. Then, the free Ag + non-woven fabric has showed significant growth inhibitory effect on bacteria such as Esch e richia coli and Staphylococcus aureus. This result indicates the possibility that metal ions such as Hg + , Hg 2+ , Cu + and Cu 2+ can be used in the same manner in addition to biocidal metal ions such as Ag + .
[0023]
Instead of the above cellulose fiber nonwoven fabric, a normal cellulose fiber fabric, for example, a gauze-like one can also be used. By adjusting the spacing between the cellulose fibers, the size of the nonwoven fabric or woven fabric can be freely adjusted for liquid passing or aeration. Similarly, the cellulose fiber nonwoven fabric can be replaced with cellulose paper. In this case, cellulose paper having a desired pore size may be used. The cellulose may be a cellulose derivative such as methyl cellulose, ethyl cellulose, 2-hydroxyethyl cellulose, or hydroxypropyl cellulose.
[0024]
Further, the water-insoluble cross-linked product of the water-soluble DNA is a cross-linked product of DNA that maintains the DNA structure, and thus has a binding force to the same metal as DNA. Therefore, it also has a function as an environmental purification material capable of adsorbing metal ions such as Cd 2+ , chromium ions such as Cr 3+ , Hg 2+ , manganese ions such as Mn 2+ . This is also true for the water-insoluble crosslinked film of water-soluble DNA and a support coated with the crosslinked body, such as a cellulose fiber nonwoven fabric.
[0025]
In addition, the water-insoluble crosslinked product of the present invention has been proved not to be hydrolyzed by a certain kind of nuclease (micro-coccal nuclease (Sigma)) in an initial test. This suggests that this is different from normal DNA and is not degraded in the digestive tract of mammals and birds including humans. Therefore, the above intercalating agents or metal ions in the digestive tract are accumulated and removed. It functions as a medicine or veterinary medicine or food having the action of toxic removal, that is, detoxification.
[0026]
It has been confirmed that even when the water-soluble double-stranded DNA is replaced with water-soluble single-stranded DNA or RNA, a water-insoluble crosslinked product is formed as a result of irradiation with ultraviolet rays in the range of 250 to 270 nm. This water-insoluble cross-linked product of single-stranded DNA or RNA also has the same action as the double-stranded DNA cross-linked product with respect to the above metals.
It is also an object of the present invention to form a crosslinked body by irradiating a mixture of single-stranded and double-stranded DNA on a support with ultraviolet rays in the range of 250 to 270 nm.
[0027]
【Example】
The present invention will be described more specifically with reference to the following examples.
Example 1. Synthesis of cross-linked polymer of water-soluble DNA 10 mg of double-stranded DNA (molecular weight, 5 × 10 6 ) obtained from salmon roe was dissolved in 1 mL of water, and the resulting DNA solution was petri dish having a diameter of 3 cm. And air dried at room temperature. Subsequently, 254 nm ultraviolet rays (irradiation distance was about 7.5 cm) were irradiated for 1 to 12 hours using an ultraviolet lamp (R-52G type, 5600 μW / cm 2 , manufactured by Ultra Violet). Water was poured into the petri dish, and the water-insoluble DNA film formed on the petri dish bottom was peeled off from the petri dish bottom.
[0028]
This water-insoluble DNA film was stable in water because it was insoluble in water even when immersed in water for a long period of 50 days.
The water-insoluble DNA obtained by the ultraviolet irradiation was dissolved in boiling water at 100 ° C. in about 15 minutes. This dissolved sample is diluted with water to make a solution with a concentration of 0.1 μg / 10 μL, and then agarose gel electrophoresis (manufactured by Washina Sheng (manufactured), mobile phase TAE buffer, analysis temperature 30 ° C., moving distance 12 cm) Analysis showed that it was a very large compound with very high molecular weight. In addition, it has been confirmed that a compound having a very high molecular weight that does not migrate by agarose gel electrophoresis is also mixed in a water extract (reaction filtrate) of water-insoluble DNA at room temperature.
[0029]
Considering the high molecular weight that cannot be measured as water-insoluble at room temperature (25 ° C.), this water-insoluble DNA is a DNA cross-linked polymer produced by a cross-linking reaction of a large number of DNAs.
[0030]
Example 2 Accumulation and removal of intercalating agent by the water-insoluble DNA film ( film-like DNA cross-linked polymer ) 1 mg (area of about 1 cm 2 ) of the water-insoluble DNA film obtained in Example 1 was obtained. The following intercalating agent was immersed in 10 mL of water containing the following concentrations, and the concentrations in water were measured by UV-VS spectral absorbance at a predetermined elapsed time and followed: ethidium bromide, 4 ppm; benzo [a] pyrene 10 ppb; dibenzo-p-dioxane, 10 ppb; dibenzofuran, 10 ppb; biphenyl, 10 ppb. For example, in the case of ethidium bromide, the absorbance at the maximum absorption wavelength of 480 nm of the compound decreased with time, and disappeared completely in 24 hours. The same was observed for other intercalating agents.
[0031]
Example 3 FIG. Immobilization of DNA on Cellulose Fiber Nonwoven Fiber by UV Irradiation 100 mg of cellulose fiber nonwoven fabric (cloth thickness 0.15 mm) was impregnated in a solution of 3 mg of DNA used in Example 1 in 1 mL of water. The impregnated nonwoven cellulose fibers were air-dried and irradiated with ultraviolet rays for a predetermined time in the same manner as in Example 1. Thereafter, the DNA not fixed was removed by washing thoroughly with water at about 20 ° C. and dried. The amount of DNA immobilized on the non-woven cellulose fibers generally increased with the time of ultraviolet irradiation, and reached a certain value after 15 minutes of irradiation. The maximum amount of DNA immobilized on 1 g of the non-woven cellulose fiber was about 20 mg (maximum amount measurement method: measured at 100 ° C., 1N HCl for 1 hr, cooled to room temperature, and then measured at an absorbance of 260 nm).
[0032]
Example 4 Obtained in Example 3 DNA fixed cellulose to the fiber nonwoven Ag + adsorption and Ag + DNA obtained in bactericidal activity Example 3 of adsorbed nonwoven fixed cellulosic fibrous nonwoven 30mg of (DNA content 20mg / cloth 1 g), Immerse in an aqueous solution containing 10 mM silver nitrate for 1 hour. Next, the DNA-immobilized nonwoven fabric is taken out from the aqueous silver nitrate solution, washed with water, and dried at room temperature. The amount of Ag + adsorbed on the DNA-immobilized non-woven fabric after sufficient washing depends on the amount of silver nitrate used, and the amount of adsorption increases generally when the amount of silver nitrate is large. The maximum amount of Ag + adsorbed to 1 g of the DNA-immobilized nonwoven fabric was 5 mg.
[0033]
Ag + containing -DNA fixed nonwoven fabric showed marked growth inhibitory to Esch e richia coli and Staphylococcus aureus bacteria such. This fabric can be widely used as an antimicrobial material.
[0034]
【The invention's effect】
When a thin layer of water-soluble DNA or water-soluble RNA on a support or an aqueous solution of water-soluble DNA or water-soluble RNA or a liquid film thereof is irradiated with ultraviolet rays having a wavelength in the range of 250 to 270 nm, the DNA or RNA becomes water. It turns into a crosslinked body of supermacromolecules that are insoluble in water. Similarly, a cellulose fiber nonwoven fabric coated with a water-insoluble crosslinked polymer of DNA is formed by, for example, irradiating an aqueous solution of water-soluble DNA soaked with a cellulose fiber nonwoven fabric with ultraviolet rays having a wavelength in the range of 250 to 270 nm. The In the same manner, when glass peas coated with water-soluble DNA were irradiated with the same ultraviolet rays, a water-insoluble DNA cross-linked polymer was fixed on the surface. When this DNA is a double-stranded DNA, the cross-linked product adsorbs the intercalating agent for DNA or the environmental hormones that are intercalating agents for DNA even in a very low concentration state in water or in gas. Similarly, toxic metals such as Hg ions are also fixedly adsorbed to water. Therefore, this crosslinked product is useful as an environmental purification material that accumulates and removes environmental hormones and harmful metals. Specifically, air, water, drinking water, a filtering material for beverage food, or a cleaning agent in the digestive tract of mammals including humans, that is, pharmaceuticals, veterinary medicines or It can be used as an active ingredient contained in food. A single-stranded DNA or RNA cross-linked product is useful as an environmental purification material because it fixes harmful metals.

Claims (5)

持体上の水溶性二本鎖DNAの薄層又は支持体上の水溶性二本鎖DNAの溶液の液膜の濃縮乃至乾涸により得られた薄層に、波長が250〜270nmの範囲の紫外線を照射することにより支持体に固定された水不溶性架橋重合体の膜を形成し、これを該支持体から剥離することにより製造される水不溶性DNAフィルムの製造方法。A thin layer obtained by concentration to dryness of the water-soluble double-stranded DNA in solution of the liquid film on the thin layer or the support of the water-soluble double-stranded DNA on supporting lifting member, a wavelength in the range of 250~270nm A method for producing a water-insoluble DNA film, which is produced by forming a film of a water-insoluble crosslinked polymer fixed on a support by irradiating ultraviolet rays, and peeling the film from the support. DNAの薄層の厚みが0.01〜1mmである請求項1記載の水不溶性DNAフィルムの製造方法。 The method for producing a water-insoluble DNA film according to claim 1, wherein the thin layer of the DNA has a thickness of 0.01 to 1 mm. 請求項1又は2記載の方法により製造された水不溶性DNAフィルム。  A water-insoluble DNA film produced by the method according to claim 1 or 2. 該DNAが魚類の白子(精巣)又は哺乳動物もしくは鳥類の胸腺から得られるDNAである請求項3記載の水不溶性DNAフィルム。  The water-insoluble DNA film according to claim 3, wherein the DNA is DNA obtained from a fish larva (testis) or a thymus of a mammal or a bird. ンゾ[a]ピレン、ジベンゾ−p−ジオキサン、ジベンゾフラン及びビフェニルより選択される1種又はそれ以上のDNAへの挿入剤を含む液体又は気体から該DNAへの挿入剤を除去するための、請求項3又は4記載の水不溶性DNAフィルムの使用(人間の体内への適用を除外する) Baie emission zone [a] pyrene, dibenzo -p- dioxane, from a liquid or gas containing the intercalating agent to the one or more DNA selected from dibenzofuran and biphenyl to remove the intercalating agent to said DNA, Use of the water-insoluble DNA film according to claim 3 or 4 (excluding application to the human body) .
JP25573399A 1999-09-09 1999-09-09 Method for producing water-insoluble DNA cross-linked product by ultraviolet irradiation and use of the cross-linked product as environmental purification material Expired - Fee Related JP4206456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25573399A JP4206456B2 (en) 1999-09-09 1999-09-09 Method for producing water-insoluble DNA cross-linked product by ultraviolet irradiation and use of the cross-linked product as environmental purification material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25573399A JP4206456B2 (en) 1999-09-09 1999-09-09 Method for producing water-insoluble DNA cross-linked product by ultraviolet irradiation and use of the cross-linked product as environmental purification material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008000793A Division JP2008169210A (en) 2008-01-07 2008-01-07 Process for producing crosslinked dna insoluble in water by ultraviolet irradiation and its use

Publications (2)

Publication Number Publication Date
JP2001081098A JP2001081098A (en) 2001-03-27
JP4206456B2 true JP4206456B2 (en) 2009-01-14

Family

ID=17282885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25573399A Expired - Fee Related JP4206456B2 (en) 1999-09-09 1999-09-09 Method for producing water-insoluble DNA cross-linked product by ultraviolet irradiation and use of the cross-linked product as environmental purification material

Country Status (1)

Country Link
JP (1) JP4206456B2 (en)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001181295A (en) * 1999-12-24 2001-07-03 Asahi Denka Kogyo Kk Method for producing formed article
WO2004091753A1 (en) * 2003-04-16 2004-10-28 Nissei Bio Co., Ltd. Method of removing harmful substances and filter for removing harmful substances
EP1625851A4 (en) 2003-05-16 2007-12-26 Bbk Bio Corp Preparation for preventing contact of pathogenic matter with living organism
JP4612789B2 (en) 2003-05-29 2011-01-12 キヤノン株式会社 Environmental purification system using DNA hybrid and DNA hybrid
JP4522105B2 (en) * 2004-02-02 2010-08-11 キヤノン株式会社 Method for separating substances from liquids
JP2005213238A (en) * 2004-02-02 2005-08-11 Nissei Bio Kk Absorbing material for toxic substance of food
JP4515162B2 (en) 2004-06-15 2010-07-28 キヤノン株式会社 Structure for adsorbing DNA intercalating substances
WO2007111232A1 (en) 2006-03-24 2007-10-04 National University Corporation Gunma University Process for producing gel with liquid crystal structure, and gel with liquid crystal structure produced by the process
JP5120911B2 (en) * 2006-06-21 2013-01-16 国立大学法人群馬大学 Method for producing gel composition stably containing deoxyribonucleic acid and gel composition obtained by the method
JP5504558B2 (en) * 2007-09-28 2014-05-28 大日本印刷株式会社 Porous body, cell culture membrane, method for producing porous body, and method for producing cell culture membrane
JP5194698B2 (en) * 2007-06-11 2013-05-08 大日本印刷株式会社 Cell culture membrane, cell culture kit and method for producing cell culture membrane
JP2008068254A (en) * 2007-08-13 2008-03-27 Nissei Bio Kk Method and filter for removing harmful substance
JP2008030039A (en) * 2007-08-13 2008-02-14 Nissei Bio Kk Method for removing harmful substance and filter for removing harmful substance
US8911833B2 (en) * 2008-04-30 2014-12-16 Xyleco, Inc. Textiles and methods and systems for producing textiles
JP7034425B2 (en) 2016-04-15 2022-03-14 エーディーエムバイオサイエンス インコーポレイテッド Nucleic acid film manufacturing method and drug injection device using nucleic acid film
US12071489B2 (en) 2020-05-12 2024-08-27 Cornell University Methods of converting biomass nucleic acids and converted biomass nucleic acid products and uses thereof

Also Published As

Publication number Publication date
JP2001081098A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
JP4206456B2 (en) Method for producing water-insoluble DNA cross-linked product by ultraviolet irradiation and use of the cross-linked product as environmental purification material
JP5175296B2 (en) Fluid sterilization and storage
Erşan et al. Investigation of kinetic and thermodynamic characteristics of removal of tetracycline with sponge like, tannin based cryogels
CN104944537A (en) Bactericide for aquaculture
JP2001505475A (en) Sterilizable plastic sponge material
US10772330B2 (en) Controlled release N-halamine polymers for water decontamination and detoxification
Parvathi et al. Ricinus Communis Activated Charcoal Preparation, Characterization and Application for Methyl Red Adsorptive Removal
JPS60147287A (en) Drinking water modifier
RU2426557C1 (en) Sorption-bactericidal material, method of its obtaining, method of filtering liquid or gaseous media, medical sorbent
JP3361324B2 (en) Silver-iodine plating activated carbon with bactericidal effect
JP2008155211A (en) Method of producing water insoluble cross-linked dna by ultraviolet irradiation and use of the same
JP2008169210A (en) Process for producing crosslinked dna insoluble in water by ultraviolet irradiation and its use
EP3098203A1 (en) Process for ammonia removal from wastewater
WO2005123249A1 (en) Structure designed for adsorption of dna intercalators
EP1140333B1 (en) Microporous flat, capillary or tubular membrane and method of manufacturing the same
JP3720079B2 (en) Water treatment agent and method for producing the same
JP7364186B2 (en) Water purification material, water purification device, water purification method, and manufacturing method of fulvic acid immobilized composite material
JPH0847687A (en) Water purifier
Sinha et al. Role of Silver Nanoparticles on Wastewater Treatment, Environmental Implications, and Challenges
JP3889106B2 (en) Water treatment sheet material and method for producing the same
JPS6229978A (en) Carrier for immobilizing physiologically active substance
JPH0551401A (en) Antibacterial agent-containing chitin form
JPH01308565A (en) Chitosan type deodorant
JPH0724451A (en) Method for purifying water in aquatic organism breeding area
US3625182A (en) Treatment of water in fish hatchery rearing ponds

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080208

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111031

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees