JP4205623B2 - Variable valve mechanism for internal combustion engine - Google Patents

Variable valve mechanism for internal combustion engine Download PDF

Info

Publication number
JP4205623B2
JP4205623B2 JP2004108579A JP2004108579A JP4205623B2 JP 4205623 B2 JP4205623 B2 JP 4205623B2 JP 2004108579 A JP2004108579 A JP 2004108579A JP 2004108579 A JP2004108579 A JP 2004108579A JP 4205623 B2 JP4205623 B2 JP 4205623B2
Authority
JP
Japan
Prior art keywords
hydraulic chamber
phase difference
speed
support shaft
camshaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004108579A
Other languages
Japanese (ja)
Other versions
JP2005291117A (en
JP2005291117A5 (en
Inventor
勝敏 北川
憲 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Otics Corp
Original Assignee
Otics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otics Corp filed Critical Otics Corp
Priority to JP2004108579A priority Critical patent/JP4205623B2/en
Publication of JP2005291117A publication Critical patent/JP2005291117A/en
Publication of JP2005291117A5 publication Critical patent/JP2005291117A5/ja
Application granted granted Critical
Publication of JP4205623B2 publication Critical patent/JP4205623B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/12Transmitting gear between valve drive and valve
    • F01L1/18Rocking arms or levers
    • F01L1/185Overhead end-pivot rocking arms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L13/00Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations
    • F01L13/0015Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque
    • F01L13/0063Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot
    • F01L2013/0068Modifications of valve-gear to facilitate reversing, braking, starting, changing compression ratio, or other specific operations for optimising engine performances by modifying valve lift according to various working parameters, e.g. rotational speed, load, torque by modification of cam contact point by displacing an intermediate lever or wedge-shaped intermediate element, e.g. Tourtelot with an oscillating cam acting on the valve of the "BMW-Valvetronic" type

Description

本発明は、内燃機関の運転状況に応じてバルブのリフト量、作用角及びタイミングを連続的に又は段階的に変化させる可変動弁機構に関するものである。   The present invention relates to a variable valve mechanism that changes a valve lift amount, a working angle, and timing continuously or stepwise in accordance with the operating state of an internal combustion engine.

この種の可変動弁機構として、特許文献1には長く複雑なリンク機構を用いたものが開示されているが、特許文献2ではそのような長く複雑なリンク機構を用いない比較的簡単な構成のものが提案されている。後者の可変動弁機構は、カムシャフトと、カムシャフトに設けられた回転カムと、カムシャフトとは異なる軸にて揺動可能に支持され、入力部(アーム)と出力部(揺動カム)とを有することで回転カムにより入力部が駆動されると出力部にてバルブを駆動する仲介駆動機構と、仲介駆動機構の入力部と出力部との相対位相差を可変とする仲介位相差可変手段とを備えている。   As this type of variable valve mechanism, Patent Document 1 discloses a mechanism using a long and complicated link mechanism, but Patent Document 2 discloses a relatively simple configuration that does not use such a long and complex link mechanism. Things have been proposed. The latter variable valve mechanism is supported by a camshaft, a rotating cam provided on the camshaft, and a swingable shaft different from the camshaft, and has an input section (arm) and an output section (swinging cam). When the input unit is driven by the rotating cam, the intermediate drive mechanism that drives the valve at the output unit, and the intermediate phase difference variable that makes the relative phase difference between the input unit and the output unit of the intermediate drive mechanism variable Means.

その仲介位相差可変手段は、入力部の内周面に設けられた入力部スプラインと、出力部の内周面に設けられ、入力部スプラインとは角度の異なる出力部スプラインと、仲介駆動機構の軸方向に移動可能な軸体であり、入力部スプラインに噛み合う入力用スプラインと出力部スプラインに噛み合う出力用スプラインとを軸体の外周面に有し、これらの噛み合いにより軸方向への移動に応じて入力部と出力部とを相対揺動させるスライダギアと、スライダギアの軸方向での変位を調整する変位調整手段とを備えている。
特開平11−324625号公報 特開2001−263015公報
The intermediate phase difference varying means includes an input part spline provided on the inner peripheral surface of the input part, an output part spline provided at an inner peripheral surface of the output part, and having an angle different from that of the input part spline, and an intermediate drive mechanism. A shaft body that can move in the axial direction, and has an input spline that meshes with the input spline and an output spline that meshes with the output spline on the outer peripheral surface of the shaft body. A slider gear that relatively swings the input portion and the output portion, and a displacement adjusting means that adjusts the displacement of the slider gear in the axial direction.
JP-A-11-324625 JP 2001-263015 A

上記特許文献2の可変動弁機構における仲介位相差可変手段は、入力部の内周面に入力部スプラインを設けるとともに、出力部の内周面に出力部スプラインを設ける必要があるため、それら内周面のギア加工が困難であるという問題があった。   The intermediary phase difference varying means in the variable valve mechanism of Patent Document 2 requires an input portion spline on the inner peripheral surface of the input portion and an output portion spline on the inner peripheral surface of the output portion. There was a problem that gear processing of the peripheral surface was difficult.

そこで、本発明の目的は、加工困難なギアを使わず、加工容易な油圧構造を使った簡単で安価な仲介位相差可変手段を備えた可変動弁機構を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a variable valve mechanism having a simple and inexpensive intermediate phase difference variable means that uses a hydraulic structure that is easy to process without using gears that are difficult to process.

本発明は、カムシャフトと、前記カムシャフトに設けられた回転カムと、前記カムシャフトとは異なる軸にて揺動可能に支持され、入力部と出力部とを有することで前記回転カムにより入力部が駆動されると出力部にてバルブを駆動する仲介駆動機構と、前記仲介駆動機構の入力部と出力部との相対位相差を可変とする仲介位相差可変手段とを備えた内燃機関の可変動弁機構において、次の{1}又は{2}のいずれかを特徴とする。
{1}前記仲介位相差可変手段は、前記入力部及び出力部を相対回動可能に連結する入力部に設けられた軸受穴及び出力部に設けられた支軸と、前記入力部のハウジングに設けられて前記軸受穴と共に前記支軸に対し相対回動する油圧室と、前記出力部に設けられるとともに前記油圧室に相対回動可能に収められて該油圧室を高速用油圧室と低速用油圧室とに区画し、前記支軸と共に前記軸受穴に対し相対回動するベーンと、前記高速用油圧室と低速用油圧室とに作動油を供給するとともに該高速用油圧室と低速用油圧室との油圧バランスを変化させる油圧回路とを備え、該油圧バランスを変化させることにより、前記相対位相差を変え、もって前記バルブのリフト量を連続的に可変とすること。
{2}前記仲介位相差可変手段は、前記入力部及び出力部を相対回動可能に連結する入力部に設けられた支軸及び出力部に設けられた軸受穴と、前記出力部のハウジングに設けられて前記軸受穴と共に前記支軸に対し相対回動する油圧室と、前記入力部に設けられるとともに前記油圧室に相対回動可能に収められて該油圧室を高速用油圧室と低速用油圧室とに区画し、前記支軸と共に前記軸受穴に対し相対回動するベーンと、前記高速用油圧室と低速用油圧室とに作動油を供給するとともに該高速用油圧室と低速用油圧室との油圧バランスを変化させる油圧回路とを備え、該油圧バランスを変化させることにより、前記相対位相差を変え、もって前記バルブのリフト量を連続的に可変とすること。
The present invention is supported by a camshaft, a rotating cam provided on the camshaft, and a swingable shaft on a shaft different from the camshaft, and has an input portion and an output portion so that an input is provided by the rotating cam. and intermediary drive mechanism for driving the valves Te to the output section and the section is driven, the internal combustion engine having an intermediary phase difference varying means for varying the relative phase difference between the input portion and the output portion of the intermediary drive mechanism In the variable valve mechanism, the following {1} or {2} is characterized.
{1} the mediation phase difference varying means includes a support shaft provided in the bearing hole and an output section provided with a front entry force and an output to the input for relatively rotatably connected, the housing of the input unit to the hydraulic chamber for relative rotation with respect to the support shaft together with the bearing hole provided, rotatable relative to videos is by hydraulic pressure chamber and the low speed fast the hydraulic chamber in the hydraulic chamber with is provided in the output section The hydraulic chamber is partitioned into a hydraulic chamber for operation, and the hydraulic oil is supplied to the high-speed hydraulic chamber and the low-speed hydraulic chamber, and the high-speed hydraulic chamber and the low-speed hydraulic chamber. A hydraulic circuit for changing a hydraulic balance with the hydraulic chamber, and changing the hydraulic balance to change the relative phase difference, thereby making the lift amount of the valve continuously variable .
{2} The intermediary phase difference varying means is provided in a shaft provided in an input part that connects the input part and the output part so as to be relatively rotatable, a bearing hole provided in the output part, and a housing of the output part. A hydraulic chamber provided and rotated relative to the support shaft together with the bearing hole; and a hydraulic chamber provided in the input portion and accommodated in the hydraulic chamber so as to be rotatable relative to the hydraulic chamber. The hydraulic chamber is partitioned into a hydraulic chamber and is rotated relative to the bearing hole together with the support shaft, and hydraulic oil is supplied to the high-speed hydraulic chamber and the low-speed hydraulic chamber, and the high-speed hydraulic chamber and the low-speed hydraulic chamber are supplied. A hydraulic circuit that changes a hydraulic balance with the chamber, and changing the hydraulic balance to change the relative phase difference, thereby making the lift amount of the valve continuously variable.

上記{2}の態様では、入力部に支軸が一体化されていると、入力部の支持スパンが長くなって安定し、回転カムの偏当たりが防止され、ひいては作用角のバラツキが出にくいので、好ましい。また、一体化により部品点数及びコストの低減も可能となる。 In the above {2} aspect, if the support shaft is integrated with the input portion, the support span of the input portion becomes longer and stable, the rotation cam is prevented from being biased, and the working angle is less likely to vary. Therefore, it is preferable. In addition, the number of parts and cost can be reduced by integration.

油圧室とベーンは、1組でもよいが、支軸の回りに角度間隔をおいて2組又は3組以上設けることが好ましい。   One set of the hydraulic chamber and the vane may be used, but it is preferable to provide two sets or three or more sets at an angular interval around the support shaft.

また、本発明の可変動弁機構は、吸気バルブ又は排気バルブの何れか一方に適用することもできるが、両方に適用することが好ましい。   The variable valve mechanism of the present invention can be applied to either the intake valve or the exhaust valve, but is preferably applied to both.

本発明によれば、加工困難なギアを使わず、ない簡単な油圧構造の仲介位相差可変手段を備えた可変動弁機構を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the variable valve mechanism provided with the intermediate | middle phase difference variable means of the simple hydraulic structure which does not use the gear which is difficult to process can be provided.

可変動弁機構の最良の形態は、前記の内燃機関の可変動弁機構において、前記仲介位相差可変手段は、前記入力部及び出力部に相対的に設けられて前記入力部及び出力部を相対回動可能に連結する支軸及び軸受穴と、前記軸受穴と共に前記支軸に対し相対回動する油圧室と、前記油圧室に相対回動可能に収められて該油圧室を区画し、前記支軸と共に前記軸受穴に対し相対回動するベーンと、区画された前記油圧室に作動油を供給する油圧回路とを備えることである。   The best mode of the variable valve mechanism is the variable valve mechanism of the internal combustion engine, wherein the intermediate phase difference varying means is provided relatively to the input unit and the output unit, and the input unit and the output unit are relatively A support shaft and a bearing hole that are rotatably connected, a hydraulic chamber that rotates relative to the support shaft together with the bearing hole, a hydraulic chamber that is housed in the hydraulic chamber so as to be relatively rotatable, and defines the hydraulic chamber, A vane that rotates relative to the bearing hole together with the support shaft; and a hydraulic circuit that supplies hydraulic oil to the partitioned hydraulic chamber.

図1〜図7は実施例1の可変動弁機構を示している。内燃機関が備える複数の気筒(図4には4気筒の例を示す。)にはそれぞれ燃焼室が形成され、各燃焼室にはそれぞれ吸気バルブと排気バルブ(図示略)とが本例では2本ずつ配置されている。アクセルペダルの操作やアイドルスピードコントロール時のエンジン回転数に応じた吸入空気量制御は、第1吸気バルブ2a及び第2吸気バルブ2bのリフト量を調整することによりなされる。このリフト量の調整は、吸気カムシャフト6に設けられた吸気カム6a(「回転カム」に相当する)とロッカーアーム4との間に存在する後述する仲介駆動機構20を油圧にて駆動することにより行われる。また、吸気バルブ2a,2bのバルブタイミングについては公知の回転位相差可変手段(図示略。例えば前出の特許文献2に記載のアクチュエータ)によりエンジンの運転状態に応じて調整される。なお、排気バルブは、排気カムシャフトに設けられた排気カム(図示略)の回転によりロッカーアームを介して一定のリフト量で開閉されるが、吸気バルブと同様にしてリフト量を可変にすることもできる。   1 to 7 show the variable valve mechanism of the first embodiment. A plurality of cylinders (four cylinders are shown in FIG. 4) provided in the internal combustion engine are each formed with a combustion chamber. Each combustion chamber has two intake valves and two exhaust valves (not shown) in this example. The books are arranged one by one. The intake air amount control according to the operation of the accelerator pedal and the engine speed during idle speed control is performed by adjusting the lift amounts of the first intake valve 2a and the second intake valve 2b. The lift amount is adjusted by hydraulically driving a later-described intermediate drive mechanism 20 existing between the intake cam 6a (corresponding to the “rotary cam”) provided on the intake camshaft 6 and the rocker arm 4. Is done. Further, the valve timings of the intake valves 2a and 2b are adjusted according to the operating state of the engine by a known rotational phase difference varying means (not shown, for example, the actuator described in Patent Document 2 described above). The exhaust valve is opened and closed with a constant lift amount via a rocker arm by the rotation of an exhaust cam (not shown) provided on the exhaust camshaft. However, the lift amount can be made variable in the same manner as the intake valve. You can also.

さて、吸気バルブ2a,2bの可変動弁機構について詳述すると、この可変動弁機構は、仲介駆動機構20、油圧回路及び回転位相差可変手段(図示略)を備えて構成されている。   Now, the variable valve mechanism of the intake valves 2a and 2b will be described in detail. The variable valve mechanism includes an intermediate drive mechanism 20, a hydraulic circuit, and a rotation phase difference variable means (not shown).

仲介駆動機構20は、中央に設けられた入力部22、左(後述するように気筒によっては右)に設けられた第1揺動カム24(「出力部」に相当する)及び右(気筒によっては左)に設けられた第2揺動カム26(「出力部」に相当する)を備えている。これら入力部22のハウジング22a及び揺動カム24,26の各ハウジング24a,26aはそれぞれ外径が同じ略円板状をなしている。   The intermediate drive mechanism 20 includes an input portion 22 provided in the center, a first swing cam 24 (corresponding to an “output portion”) provided on the left (right depending on the cylinder as described later), and a right (depending on the cylinder). Is provided with a second rocking cam 26 (corresponding to an “output portion”) provided on the left. The housing 22a of the input portion 22 and the housings 24a and 26a of the swing cams 24 and 26 are substantially disk-shaped with the same outer diameter.

入力部22のハウジング22aには、中心部を軸方向に貫通する丸穴状の軸受穴22bと、該軸受穴22bの例えば約180度離れた2箇所から連続し扇状に拡がる2つの油圧室22gとが形成されている。また外周面からは2つのアーム22c,22dが平行に突出して形成されている。これらアーム22c,22dの先端には、アーム22c,22d間にシャフト22eが掛け渡されている。このシャフト22eはハウジング22aの軸方向と平行であり、ローラ22fが回転可能に取り付けられている。   The housing 22a of the input portion 22 has a round hole-shaped bearing hole 22b penetrating the central portion in the axial direction, and two hydraulic chambers 22g extending in a fan shape continuously from, for example, two locations about 180 degrees apart of the bearing hole 22b. And are formed. Further, two arms 22c and 22d are formed to protrude in parallel from the outer peripheral surface. A shaft 22e is stretched between the arms 22c and 22d at the ends of the arms 22c and 22d. The shaft 22e is parallel to the axial direction of the housing 22a, and a roller 22f is rotatably attached thereto.

第1揺動カム24のハウジング24aには、中心部を軸方向に貫通する軸取付穴24bと、該軸取付穴24bを中心にして例えば180度離れた2箇所を軸方向に貫通する高速用給油穴24cとが形成されている。また、外周面に突設された複数の耳24fには軸方向に貫通する連結用穴24gが形成されている。また外周面からは略三角形状のノーズ24dが突出して形成されている。このノーズ24dの一辺は凹状に湾曲するカム面24eを形成している。   The housing 24a of the first rocking cam 24 has a shaft mounting hole 24b penetrating the central portion in the axial direction, and a high speed penetrating through two locations 180 degrees apart from the shaft mounting hole 24b in the axial direction. An oil supply hole 24c is formed. A plurality of ears 24f projecting from the outer peripheral surface are formed with connecting holes 24g penetrating in the axial direction. A substantially triangular nose 24d protrudes from the outer peripheral surface. One side of the nose 24d forms a cam surface 24e that curves in a concave shape.

第2揺動カム26のハウジング26aは内部に、中心部を軸方向に貫通する軸取付穴26bと、該軸取付穴26bを中心にして例えば180度離れた2箇所を軸方向に貫通する低速用給油穴26cとが形成されている。また、外周面に突設された複数の耳26fには軸方向に貫通する連結用穴26gが形成されている。また外周面からは略三角形状のノーズ26dが突出して形成されている。このノーズ26dの一辺は凹状に湾曲するカム面26eを形成している。   The housing 26a of the second rocking cam 26 is internally provided with a shaft mounting hole 26b penetrating the central portion in the axial direction, and a low speed penetrating through two locations 180 degrees apart from the shaft mounting hole 26b in the axial direction. An oil supply hole 26c is formed. A plurality of ears 26f projecting from the outer peripheral surface are formed with connecting holes 26g penetrating in the axial direction. Further, a substantially triangular nose 26d protrudes from the outer peripheral surface. One side of the nose 26d forms a cam surface 26e that curves in a concave shape.

第1揺動カム24及び第2揺動カム26は、次に述べるベーン部材28が取り付けられた後に、入力部22の両端から各端面を同軸上で接触させるように配置されるとともに、耳24f,26fの間にスペーサ30が介され、連結用ネジ32が連結用穴24g,26gからスペーサ30の雌ネジ穴に螺入されることにより、互いに連結されている。   The first rocking cam 24 and the second rocking cam 26 are disposed so that the end faces are coaxially contacted from both ends of the input portion 22 after the vane member 28 described below is attached, and the ear 24f. 26f, the spacer 30 is interposed, and the connecting screws 32 are connected to each other by being screwed into the female screw holes of the spacer 30 through the connecting holes 24g and 26g.

ベーン部材28は、入力部22と第1揺動カム24と第2揺動カム26とを合わせた左右長よりも長い基軸28aと、基軸28aの中央部に支軸28bが同心状に形成された支軸28bと、支軸28bの例えば180度離れた2箇所から放射状に設けられたベーン28cとからなる。基軸28aの両端は、第1揺動カム24の軸取付穴24bと第2揺動カム26の軸取付穴26bとに圧入されて回らないように取り付けられている。支軸28bは、入力部22の軸受穴22bに相対回動可能に嵌入されている。各ベーン28cは、入力部22の各油圧室22gに相対回動可能に収められて各油圧室22gを高速用油圧室22hと低速用油圧室22iとに区画しており、支軸28bと共に軸受穴22bに対し相対回動するようになっている。この高速用油圧室22hに高速用給油穴24cが開口し、低速用油圧室22iに低速用給油穴26cが開口する。   The vane member 28 has a base shaft 28a that is longer than the left and right length of the input portion 22, the first swing cam 24, and the second swing cam 26, and a support shaft 28b that is concentrically formed at the center of the base shaft 28a. The support shaft 28b and the vane 28c provided radially from, for example, two positions 180 degrees away from the support shaft 28b. Both ends of the base shaft 28a are attached so as not to rotate by being press-fitted into the shaft mounting hole 24b of the first rocking cam 24 and the shaft mounting hole 26b of the second rocking cam 26. The support shaft 28b is fitted into the bearing hole 22b of the input portion 22 so as to be relatively rotatable. Each vane 28c is accommodated in each hydraulic chamber 22g of the input portion 22 so as to be relatively rotatable, and divides each hydraulic chamber 22g into a high-speed hydraulic chamber 22h and a low-speed hydraulic chamber 22i, and bearings together with the support shaft 28b. It rotates relative to the hole 22b. A high speed oil supply hole 24c is opened in the high speed hydraulic chamber 22h, and a low speed oil supply hole 26c is opened in the low speed hydraulic chamber 22i.

このように構成された各仲介駆動機構20は、図4に示すように、揺動カム24,26の外側面にてシリンダヘッドに形成された立壁部36,38に挟まれるとともに、揺動カム24,26から突出した基軸28aにて、立壁部36,38の軸受穴に回動可能に嵌着されることにより、軸周りには揺動可能であるが軸方向に移動するのが阻止されている。なお、図4に示す4気筒の例では、4つの仲介駆動機構20のうち左から2番目と4番目のものは、第1揺動カム24が左で、第2揺動カム26が右であり、左から1番目と3番目のものは、第1揺動カム24が右で、第2揺動カム26が左である。   As shown in FIG. 4, each intermediate drive mechanism 20 configured as described above is sandwiched between standing wall portions 36 and 38 formed on the cylinder head on the outer surfaces of the swing cams 24 and 26, and the swing cams The base shaft 28a protruding from the shafts 24 and 26 is rotatably fitted in the bearing holes of the standing wall portions 36 and 38, so that it can swing around the shaft but is prevented from moving in the axial direction. ing. In the four-cylinder example shown in FIG. 4, the second and fourth of the four intermediary drive mechanisms 20 from the left are the first rocking cam 24 on the left and the second rocking cam 26 on the right. In the first and third ones from the left, the first swing cam 24 is on the right and the second swing cam 26 is on the left.

そして、5つの立壁部のうち左から2番目と4番目の立壁部36には、第1揺動カム24の高速用給油穴24cに連通する油路36aが形成され、左から1番目と3番目と5番目の立壁部38には、第2揺動カム26の低速用給油穴26cに連通する油路38aが形成されている。各油路36a,38aはバルブ(図示略)等を介して油圧ポンプ(図示略)に接続されている。これらの油圧ポンプ、バルブ、油路36a,38a、給油穴24c,26c等により、高速用油圧室22hと低速用油圧室22iに作動油を供給するとともに両油圧室22h,22iの油圧バランスを変化させる油圧回路が構成されている。   Of the five standing wall portions, the second and fourth standing wall portions 36 from the left are formed with oil passages 36a communicating with the high-speed oil supply holes 24c of the first swing cam 24, and the first and third from the left. An oil passage 38 a that communicates with the low-speed oil supply hole 26 c of the second swing cam 26 is formed in the fifth and fifth standing wall portions 38. Each oil passage 36a, 38a is connected to a hydraulic pump (not shown) via a valve (not shown). These hydraulic pumps, valves, oil passages 36a and 38a, oil supply holes 24c and 26c, etc. supply hydraulic oil to the high speed hydraulic chamber 22h and the low speed hydraulic chamber 22i and change the hydraulic balance between the hydraulic chambers 22h and 22i. A hydraulic circuit is configured.

仲介駆動機構20の入力部22に設けられているローラ22fは、図5に示したごとく吸気カム6aに接触している。このため各仲介駆動機構20の入力部22は吸気カム6aのカム面のプロフィールに応じて基軸28aの軸周りに揺動する。なお、ローラ22fを支持しているアーム22c,22dにはローラ22fを吸気カム6a方向へ付勢する圧縮状スプリング(図示略)がシリンダヘッドとの間に設けられている。このため、ローラ22fは常に吸気カム6aのカム面に接触している。   The roller 22f provided in the input part 22 of the mediation drive mechanism 20 is in contact with the intake cam 6a as shown in FIG. Therefore, the input portion 22 of each intermediary drive mechanism 20 swings around the axis of the base shaft 28a according to the profile of the cam surface of the intake cam 6a. The arms 22c and 22d that support the roller 22f are provided with compression springs (not shown) that urge the roller 22f in the direction of the intake cam 6a. For this reason, the roller 22f is always in contact with the cam surface of the intake cam 6a.

一方、揺動カム24,26はそれぞれベース円部分で2つのロッカーアーム4の中央に設けられた各ローラ4aに接触している。このロッカーアーム4はシリンダヘッドに対し基端部4cでアジャスタ4bにて揺動可能に支持され、先端部4dにて各吸気バルブ2a,2bのステムエンド2cにそれぞれ接触している。   On the other hand, the swing cams 24 and 26 are in contact with the respective rollers 4 a provided at the center of the two rocker arms 4 at the base circle portions. The rocker arm 4 is supported by the adjuster 4b at the base end portion 4c so as to be swingable with respect to the cylinder head, and is in contact with the stem ends 2c of the intake valves 2a and 2b at the tip end portion 4d.

前述したごとく油圧回路にて高速用油圧室22hと低速用油圧室22iに作動油を供給するとともに両油圧室22h,22iの油圧バランスを変化させることにより、入力部22(軸受穴22b)に対する揺動カム24,26(ベーン28c)の相対回動角度を変えて、入力部22のローラ22fと揺動カム24,26のノーズ24d,26dとの位相差が調整でき、もって吸気バルブ2a,2bのリフト量を連続的に可変とすることができる。   As described above, the hydraulic fluid is supplied to the high-speed hydraulic chamber 22h and the low-speed hydraulic chamber 22i by the hydraulic circuit, and the hydraulic pressure balance between the hydraulic chambers 22h and 22i is changed, thereby changing the vibration to the input portion 22 (bearing hole 22b). By changing the relative rotation angle of the moving cams 24 and 26 (vanes 28c), the phase difference between the roller 22f of the input unit 22 and the noses 24d and 26d of the swing cams 24 and 26 can be adjusted, so that the intake valves 2a and 2b. The lift amount can be made continuously variable.

本実施例の可変動弁機構は、内燃機関の運転時に次のように作用する。
まず、図5は、最大リフト量が必要な運転状況下を示している。なお、同図では第2揺動カム26が第1吸気バルブ2aを駆動する機構を示しているが、第1揺動カム24が第2吸気バルブ2bを駆動する機構についても同じである。このとき、油圧回路にて高速用油圧室22hの油圧が低速用油圧室22iの油圧より高くされ、ベーン28cとともに揺動カム24,26が同図において右回りに回動する。これにより、入力部22のローラ22fと揺動カム24,26のノーズ24d,26dとの位相差が大きくなるため、同図(a)のように吸気カム6aのベース円部分がローラ22fに接触しているとき、揺動カム24,26のノーズ24d,26dはロッカーアーム4のローラ4aには接触しておらず、ノーズ24d,26dに隣接したベース円部分が接触している。そして、同図(b)のように吸気カム6aのノーズ6bがローラ22fを押し下げると、仲介駆動機構20内では入力部22からベーン28cを介して揺動カム24,26に揺動が伝達されて、揺動カム24,26はノーズ24d,26dを押し下げるように揺動する。このことによりノーズ24d,26dに設けられた湾曲状のカム面24e,26eが直ちにロッカーアーム4のローラ4aに接触して、カム面24e,26eの全範囲を使用してローラ4aを押し下げる。このことにより、ロッカーアーム4は基端部4c側を中心に揺動し、ロッカーアーム4の先端部4dは大きくステムエンド2cを押し下げる。こうして吸気バルブ2a,2bは最大のリフト量Lmax にて吸気ポート(図示略)を開放状態とする。
The variable valve mechanism of the present embodiment operates as follows during operation of the internal combustion engine.
First, FIG. 5 shows an operating condition that requires the maximum lift amount. Although the second rocking cam 26 shows a mechanism for driving the first intake valve 2a in the figure, the same applies to the mechanism for the first rocking cam 24 to drive the second intake valve 2b. At this time, the hydraulic pressure in the high-speed hydraulic chamber 22h is made higher than the hydraulic pressure in the low-speed hydraulic chamber 22i by the hydraulic circuit, and the swing cams 24 and 26 rotate clockwise in FIG. As a result, the phase difference between the roller 22f of the input portion 22 and the noses 24d and 26d of the swing cams 24 and 26 increases, so that the base circle portion of the intake cam 6a contacts the roller 22f as shown in FIG. In this case, the noses 24d and 26d of the swing cams 24 and 26 are not in contact with the roller 4a of the rocker arm 4, and the base circle portions adjacent to the noses 24d and 26d are in contact. When the nose 6b of the intake cam 6a depresses the roller 22f as shown in FIG. 5B, the swing is transmitted from the input portion 22 to the swing cams 24 and 26 via the vane 28c in the intermediate drive mechanism 20. Thus, the swing cams 24 and 26 swing so as to push down the noses 24d and 26d. As a result, the curved cam surfaces 24e and 26e provided on the noses 24d and 26d immediately come into contact with the roller 4a of the rocker arm 4, and the roller 4a is pushed down using the entire range of the cam surfaces 24e and 26e. As a result, the rocker arm 4 swings around the base end 4c side, and the distal end 4d of the rocker arm 4 largely pushes down the stem end 2c. Thus, the intake valves 2a and 2b open the intake port (not shown) at the maximum lift amount Lmax.

次に、図6は、リフト量を減少させるべき運転状況下を示している。このとき、油圧回路にて低速用油圧室22iの油圧が高速用油圧室22hの油圧に近付けられ又はそれより高くされ、ベーン28cとともに揺動カム24,26が同図において左回りに回動する。これにより、入力部22のローラ22fと揺動カム24,26のノーズ24d,26dとの位相差が小さくなるため、同図(a)のように吸気カム6aのベース円部分がローラ22fに接触しているとき、揺動カム24,26のノーズ24d,26dはロッカーアーム4のローラ4aには接触しておらず、図5(a)の場合に比較して少しノーズ24d,26dから離れたベース円部分が接触している。従って、吸気カム6aのノーズ6bがローラ22fを押し下げ始めても、しばらくはロッカーアーム4のローラ4aはノーズ24d,26dに設けられた湾曲状のカム面24e,26eに接触することなくベース円部分に接触した状態を継続する。その後、図6(b)のように湾曲状のカム面24e,26eがローラ4aに接触して、該ローラ4aを押し下げるため、ロッカーアーム4は基端部4cを中心に揺動するが、ロッカーアーム4の揺動角度は小さくなり、ステムエンド2cの押し下げ量、すなわちリフト量Lは少なくなる。こうして吸気バルブ2a,2bは最大量よりも小さいリフト量にて吸気ポートを開放状態とする。   Next, FIG. 6 shows an operating condition in which the lift amount should be reduced. At this time, the hydraulic pressure in the low-speed hydraulic chamber 22i is brought close to or higher than the hydraulic pressure in the high-speed hydraulic chamber 22h in the hydraulic circuit, and the swing cams 24 and 26 rotate counterclockwise in FIG. . As a result, the phase difference between the roller 22f of the input portion 22 and the noses 24d and 26d of the swing cams 24 and 26 is reduced, so that the base circle portion of the intake cam 6a contacts the roller 22f as shown in FIG. In this case, the noses 24d and 26d of the swing cams 24 and 26 are not in contact with the roller 4a of the rocker arm 4, and are slightly separated from the noses 24d and 26d as compared with the case of FIG. The base circle is in contact. Therefore, even if the nose 6b of the intake cam 6a starts to push down the roller 22f, the roller 4a of the rocker arm 4 does not contact the curved cam surfaces 24e and 26e provided on the noses 24d and 26d for a while, and does not contact the base circle portion. Continue touching. Thereafter, as shown in FIG. 6B, the curved cam surfaces 24e and 26e come into contact with the roller 4a and push down the roller 4a, so that the rocker arm 4 swings about the base end 4c. The swing angle of the arm 4 becomes small, and the amount by which the stem end 2c is pushed down, that is, the lift amount L becomes small. Thus, the intake valves 2a and 2b open the intake port with a lift amount smaller than the maximum amount.

次に、図7は、リフト量を0にすべき運転状況下を示している。このとき、油圧回路にて低速用油圧室22iの油圧が高速用油圧室22hの油圧よりさらに高くされ、ベーン28cとともに揺動カム24,26が同図においてさらに左回りに回動する。これにより、入力部22のローラ22fと揺動カム24,26のノーズ24d,26dとの位相差が最少になるため、吸気カム6aのベース円部分が、仲介駆動機構20におけるローラ22fに接触しているとき、揺動カム24,26のノーズ24d,26dはロッカーアーム4のローラ4aには接触しておらず、ノーズ24d,26dから大きく離れたベース円部分が接触している。従って、吸気カム6aのノーズ6bがローラ22fを押し下げても、ロッカーアーム4のローラ4aはノーズ24d,26dに設けられた湾曲状のカム面24e,26eに接触することなくベース円部分に接触した状態を継続する。このことにより、ロッカーアーム4は基端部4cを中心に揺動することがなくなり、ロッカーアーム4の先端部4dによるステムエンド2cの押し下げ量、すなわちリフト量Lは0となる。 Next, FIG. 7 shows an operating condition in which the lift amount should be zero. At this time, the hydraulic pressure in the low-speed hydraulic chamber 22i is made higher than the hydraulic pressure in the high-speed hydraulic chamber 22h by the hydraulic circuit, and the swing cams 24 and 26 rotate further counterclockwise in the drawing together with the vane 28c. As a result, the phase difference between the roller 22f of the input portion 22 and the noses 24d and 26d of the swing cams 24 and 26 is minimized, so that the base circle portion of the intake cam 6a contacts the roller 22f in the mediation drive mechanism 20. In this case, the noses 24d and 26d of the swing cams 24 and 26 are not in contact with the roller 4a of the rocker arm 4, and a base circle portion that is far away from the noses 24d and 26d is in contact. Therefore, even if the nose 6b of the intake cam 6a depresses the roller 22f, the roller 4a of the rocker arm 4 contacts the base circle portion without contacting the curved cam surfaces 24e and 26e provided on the noses 24d and 26d. Continue state. As a result, the rocker arm 4 does not swing around the base end portion 4 c, and the amount by which the stem end 2 c is pushed down by the distal end portion 4 d of the rocker arm 4, that is, the lift amount L becomes zero.

以上の油圧回路による油圧バランスの調整は連続的に行われるため、吸気バルブ2a,2bのリフト量が連続的に調整可能となる。すなわち、軸受穴22b、油圧室22h,22i、支軸28b、ベーン28c及び油圧回路により、仲介位相差可変手段が構成されている。この仲介位相差可変手段は、加工困難なギアを使わない、加工容易な構造なので、低コスト化を図ることができる。   Since the adjustment of the hydraulic pressure balance by the above hydraulic circuit is continuously performed, the lift amount of the intake valves 2a and 2b can be continuously adjusted. That is, the intermediate phase difference varying means is configured by the bearing hole 22b, the hydraulic chambers 22h and 22i, the support shaft 28b, the vane 28c, and the hydraulic circuit. Since this intermediate phase difference varying means does not use gears that are difficult to process and is easy to process, the cost can be reduced.

次に、図8〜図11は実施例2の可変動弁機構を示している。本実施例2は、以下に説明する点において上記の実施例1と相違するものであり、その余の実施例1との共通部分については実施例1の説明を援用する。   Next, FIGS. 8 to 11 show the variable valve mechanism of the second embodiment. The second embodiment is different from the first embodiment in the points described below, and the description of the first embodiment is used for the other common parts with the first embodiment.

本実施例2における仲介駆動機構20も、入力部22、第1揺動カム24及び第2揺動カム26を備えているが、それぞれの形状は実施例1におけるそれと異なる。   The intermediate drive mechanism 20 in the second embodiment also includes an input unit 22, a first rocking cam 24, and a second rocking cam 26, but each shape is different from that in the first embodiment.

入力部22は、入力部22と第1揺動カム24と第2揺動カム26とを合わせた左右長よりも長い支軸22pと、支軸22pの例えば約90度離れた2箇所から放射状に設けられたベーン22qとを備える。支軸22pの一端面からは各ベーン22qの片面直下の支軸22pの外周面に開口する高速用給油穴22rが形成され、支軸22pの他端面からは各ベーン22qの他面直下の支軸22pの外周面に開口する低速用給油穴22sが形成されている。また、支軸22pから2つのアーム22c,22dが平行に突出しており、これらアーム22c,22dにシャフト22eにてローラ22fが取り付けられている点は実施例1と同じである。   The input portion 22 is radially formed from a support shaft 22p longer than the left and right length of the input portion 22, the first rocking cam 24, and the second rocking cam 26, and two portions of the support shaft 22p, for example, about 90 degrees apart. And a vane 22q provided in the vehicle. From one end surface of the support shaft 22p, a high-speed oil supply hole 22r is formed which opens to the outer peripheral surface of the support shaft 22p immediately below one surface of each vane 22q. A low speed oil supply hole 22s is formed in the outer peripheral surface of the shaft 22p. Further, the two arms 22c and 22d protrude in parallel from the support shaft 22p, and the roller 22f is attached to the arms 22c and 22d by the shaft 22e as in the first embodiment.

第1揺動カム24のハウジング24aには、中心部を軸方向に貫通する軸受穴24pと、周縁近くを軸方向に貫通する3つの連結用穴24qとが形成されている。ノーズ24d及びカム面24eについては実施例1と同じである。   The housing 24a of the first swing cam 24 is formed with a bearing hole 24p that penetrates the central portion in the axial direction and three connection holes 24q that penetrate the vicinity of the periphery in the axial direction. The nose 24d and the cam surface 24e are the same as those in the first embodiment.

第2揺動カム26のハウジング26aは第1揺動カム24のハウジング24aより長い一部切り欠かれた円柱状であり、中心部を軸方向に貫通する軸受穴26pと、周縁近くを軸方向に貫通する3つの連結用穴26qとが形成されている。ノーズ26d及びカム面26eについては実施例1と同じである。また、ハウジング26aには入力部22のアーム22c,22dを逃がすための切欠部26rが形成されるとともに、軸受穴26pの例えば約90度離れた2箇所から連続し扇状に拡がる2つの油圧室26sが形成されている。   The housing 26a of the second rocking cam 26 has a columnar shape with a part cut away longer than the housing 24a of the first rocking cam 24, and a bearing hole 26p penetrating the center portion in the axial direction, and the vicinity of the periphery in the axial direction. Are formed with three connecting holes 26q. The nose 26d and the cam surface 26e are the same as those in the first embodiment. The housing 26a is formed with notches 26r for allowing the arms 22c and 22d of the input portion 22 to escape, and two hydraulic chambers 26s continuously extending in a fan shape from two locations, for example, about 90 degrees apart from the bearing hole 26p. Is formed.

第1揺動カム24及び第2揺動カム26は、入力部22の支軸22pの両端部を軸受穴24p,26pに相対回動可能に嵌入させるようにして、入力部22の両端から配置されるとともに、連結用ネジ32が連結用穴24q,26qに螺入されることにより、互いに連結されている。各ベーン22qは、第2揺動カム26の各油圧室26sに相対回動可能に収められて各油圧室26sを高速用油圧室26tと低速用油圧室26uとに区画しており、支軸22pと共に軸受穴24p,26pに対し相対回動するようになっている。この高速用油圧室26tに高速用給油穴22rが開口し、低速用油圧室26uに低速用給油穴22sが開口する。   The first rocking cam 24 and the second rocking cam 26 are arranged from both ends of the input portion 22 so that both ends of the support shaft 22p of the input portion 22 are fitted into the bearing holes 24p and 26p so as to be relatively rotatable. At the same time, the connecting screws 32 are screwed into the connecting holes 24q and 26q to be connected to each other. Each vane 22q is accommodated in each hydraulic chamber 26s of the second swing cam 26 so as to be relatively rotatable, and divides each hydraulic chamber 26s into a high-speed hydraulic chamber 26t and a low-speed hydraulic chamber 26u. Together with 22p, it rotates relative to the bearing holes 24p, 26p. A high speed oil supply hole 22r opens in the high speed hydraulic chamber 26t, and a low speed oil supply hole 22s opens in the low speed hydraulic chamber 26u.

このように構成された各仲介駆動機構20は、図11に示すように、揺動カム24,26の外側面にてシリンダヘッドに形成された立壁部36,38に挟まれるとともに、揺動カム24,26から突出した支軸22pにて、立壁部36,38の軸受穴に回動可能に嵌着されることにより、軸周りには揺動可能であるが軸方向に移動するのが阻止されている。なお、図11に示す4気筒の例では、4つの仲介駆動機構20のうち左から2番目と4番目のものは、第1揺動カム24が左で、第2揺動カム26が右であり、左から1番目と3番目のものは、第1揺動カム24が右で、第2揺動カム26が左である。   As shown in FIG. 11, each of the intermediate drive mechanisms 20 configured as described above is sandwiched between standing wall portions 36 and 38 formed on the cylinder head on the outer surfaces of the swing cams 24 and 26, and the swing cams The pivot shafts 22p projecting from the shafts 24 and 26 are rotatably fitted in the bearing holes of the standing wall portions 36 and 38, so that they can swing around the shafts but are prevented from moving in the axial direction. Has been. In the example of the four cylinders shown in FIG. 11, the second and fourth of the four intermediary drive mechanisms 20 from the left are the first rocking cam 24 on the left and the second rocking cam 26 on the right. In the first and third ones from the left, the first swing cam 24 is on the right and the second swing cam 26 is on the left.

そして、5つの立壁部のうち左から2番目と4番目の立壁部36には、入力部22の高速用給油穴22rに連通する油路36aが形成され、左から1番目と3番目と5番目の立壁部38には、入力部22の低速用給油穴22sに連通する油路38aが形成されている。各油路36a,38aはバルブ(図示略)等を介して油圧ポンプ(図示略)に接続されている。これらの油圧ポンプ、バルブ、油路36a,38a、給油穴22r,22s等により、高速用油圧室26tと低速用油圧室26uに作動油を供給するとともに両油圧室26t,26uの油圧バランスを変化させる油圧回路が構成されている。この油圧バランスの変化により、入力部22(ベーン22q)に対する揺動カム24,26(軸受穴24p,26p)の相対回動角度を変えて、入力部22のローラ22fと揺動カム24,26のノーズ24d,26dとの位相差が調整でき、もって吸気バルブ2a,2bのリフト量を連続的に可変とすることができる。   Of the five standing wall portions, the second and fourth standing wall portions 36 from the left are formed with oil passages 36a communicating with the high-speed oil supply holes 22r of the input portion 22, and the first, third and fifth from the left. An oil passage 38 a communicating with the low speed oil supply hole 22 s of the input portion 22 is formed in the second standing wall portion 38. Each oil passage 36a, 38a is connected to a hydraulic pump (not shown) via a valve (not shown). These hydraulic pumps, valves, oil passages 36a and 38a, oil supply holes 22r and 22s, etc. supply hydraulic oil to the high-speed hydraulic chamber 26t and the low-speed hydraulic chamber 26u, and change the hydraulic balance between the hydraulic chambers 26t and 26u. A hydraulic circuit is configured. By changing the hydraulic balance, the relative rotation angle of the swing cams 24 and 26 (bearing holes 24p and 26p) with respect to the input portion 22 (vane 22q) is changed, and the roller 22f of the input portion 22 and the swing cams 24 and 26 are changed. The phase difference from the noses 24d and 26d can be adjusted, so that the lift amounts of the intake valves 2a and 2b can be made continuously variable.

従って、この実施例2によっても基本的に実施例1と同様の作用及び効果が得られる。さらに、入力部22に支軸22pが一体化されているので、入力部22の支持スパンが長くなって安定し、ローラ22fへの吸気カム6aの偏当たりが防止され、ひいては作用角のバラツキが出にくいので、好ましい。また、一体化により部品点数及びコストの低減も可能となる。   Therefore, the operation and effect similar to those of the first embodiment can be basically obtained by the second embodiment. Further, since the support shaft 22p is integrated with the input portion 22, the support span of the input portion 22 is lengthened and stabilized, and the intake cam 6a is prevented from being biased against the roller 22f. Since it is hard to come out, it is preferable. In addition, the number of parts and cost can be reduced by integration.

なお、本発明は前記実施例の構成に限定されるものではなく、発明の趣旨から逸脱しない範囲で変更して具体化することもできる。   In addition, this invention is not limited to the structure of the said Example, It can also change and embody in the range which does not deviate from the meaning of invention.

本発明の実施例1に係る可変動弁機構を示す斜視図である。It is a perspective view which shows the variable valve mechanism based on Example 1 of this invention. 同機構の要部を分解した状態を示す斜視図である。It is a perspective view which shows the state which decomposed | disassembled the principal part of the mechanism. 同機構の第1揺動カムを外して同機構を見た側面図である。It is the side view which removed the 1st rocking cam of the mechanism and looked at the mechanism. シリンダヘッドの立壁部に挟まれた4気筒分の同機構を示す断面図である。It is sectional drawing which shows the same mechanism for 4 cylinders pinched | interposed into the standing wall part of a cylinder head. 最大リフト量が必要なときの同機構の要部を示すもので、(a)はベース円時の側面図、(b)はノーズ時の側面図である。The principal part of the mechanism when the maximum lift amount is required is shown, (a) is a side view at the time of a base circle, and (b) is a side view at the time of a nose. リフト量を減少させるときの同機構の要部を示すもので、(a)はベース円時の側面図、(b)はノーズ時の側面図である。The principal part of the mechanism when reducing the lift amount is shown, (a) is a side view at the base circle, (b) is a side view at the nose. リフト量を0にするときの同機構の要部を示すもので、(a)はベース円時の側面図、(b)はノーズ時の側面図である。The principal part of the mechanism when the lift amount is set to 0 is shown, (a) is a side view at the time of a base circle, and (b) is a side view at the time of a nose. 本発明の実施例2に係る可変動弁機構を示す斜視図である。It is a perspective view which shows the variable valve mechanism based on Example 2 of this invention. 同機構の要部を分解した状態を示す斜視図である。It is a perspective view which shows the state which decomposed | disassembled the principal part of the mechanism. 同機構の第1揺動カムを外して同機構を見た側面図である。It is the side view which removed the 1st rocking cam of the mechanism and looked at the mechanism. シリンダヘッドの立壁部に挟まれた4気筒分の同機構を示す断面図である。It is sectional drawing which shows the same mechanism for 4 cylinders pinched | interposed into the standing wall part of a cylinder head.

符号の説明Explanation of symbols

2a 第1吸気バルブ
2b 第2吸気バルブ
4 ロッカーアーム
4a ローラ
6 吸気カムシャフト
6a 吸気カム
20 仲介駆動機構
22 入力部
22b 軸受穴
22h 高速用油圧室
22i 低速用油圧室
22p 支軸
22q ベーン
22r 高速用給油穴
22s 低速用給油穴
24 第1揺動カム
24c 高速用給油穴
24p 軸受穴
26 第2揺動カム
26c 低速用給油穴
26p 軸受穴
26t 高速用油圧室
26u 低速用油圧室
28 ベーン部材
28b 支軸
28c ベーン
36a 油路
38a 油路
2a 1st intake valve 2b 2nd intake valve 4 rocker arm 4a roller 6 intake camshaft 6a intake cam 20 intermediate drive mechanism 22 input part 22b bearing hole 22h high speed hydraulic chamber 22i low speed hydraulic chamber 22p support shaft 22q vane 22r high speed Oil supply hole 22s Low speed oil supply hole 24 First rocking cam 24c High speed oil supply hole 24p Bearing hole 26 Second rocking cam 26c Low speed oil supply hole 26p Bearing hole 26t High speed hydraulic chamber 26u Low speed hydraulic chamber 28 Vane member 28b Support Shaft 28c Vane 36a Oil passage 38a Oil passage

Claims (3)

カムシャフト(6)と、前記カムシャフトに設けられた回転カム(6a)と、前記カムシャフトとは異なる軸にて揺動可能に支持され、入力部(22)と出力部(24,26)とを有することで前記回転カムにより入力部が駆動されると出力部にてバルブ(2a,2b)を駆動する仲介駆動機構(20)と、前記仲介駆動機構の入力部と出力部との相対位相差を可変とする仲介位相差可変手段とを備えた内燃機関の可変動弁機構において、
前記仲介位相差可変手段は、前記入力部及び出力部を相対回動可能に連結する入力部に設けられた軸受穴(22b)及び出力部に設けられた支軸(28b)と、前記入力部のハウジング(22a)に設けられて前記軸受穴と共に前記支軸に対し相対回動する油圧室(22g)と、前記出力部に設けられるとともに前記油圧室に相対回動可能に収められて該油圧室を高速用油圧室(22h)と低速用油圧室(22i)とに区画し、前記支軸と共に前記軸受穴に対し相対回動するベーン(28c)と、前記高速用油圧室と低速用油圧室とに作動油を供給するとともに該高速用油圧室と低速用油圧室との油圧バランスを変化させる油圧回路とを備え、
該油圧バランスを変化させることにより、前記相対位相差を変え、もって前記バルブのリフト量を連続的に可変とすることを特徴とする内燃機関の可変動弁機構。
A camshaft (6), a rotating cam (6a) provided on the camshaft, and a camshaft supported by a shaft different from the camshaft are supported, and an input portion (22) and an output portion (24, 26). Doo valves (2a, 2b) Te to the output portion and the input portion is driven by the rotary cam by having an intermediary drive mechanism for driving (20), between the input portion and the output portion of the intermediary drive mechanism In a variable valve mechanism for an internal combustion engine provided with an intermediate phase difference variable means for making the relative phase difference variable,
The mediation phase difference varying means, the entering-force unit and the bearing hole provided in the input unit of the output unit for connecting relatively pivotably (22b) and the support shaft provided on the output section (28b), said input A hydraulic chamber (22g) which is provided in the housing (22a) of the portion and rotates relative to the support shaft together with the bearing hole, and is provided in the output portion and accommodated in the hydraulic chamber so as to be relatively rotatable. The hydraulic chamber is divided into a high-speed hydraulic chamber (22h) and a low-speed hydraulic chamber (22i), a vane (28c) that rotates relative to the bearing hole together with the support shaft, the high-speed hydraulic chamber, and the low-speed hydraulic chamber and a hydraulic circuit for changing the pressure balance between the hydraulic chamber and the low-speed hydraulic chamber for the high speed with which supplies hydraulic oil to the hydraulic chamber,
A variable valve operating mechanism for an internal combustion engine , wherein the relative phase difference is changed by changing the hydraulic pressure balance so that the lift amount of the valve is continuously variable .
カムシャフト(6)と、前記カムシャフトに設けられた回転カム(6a)と、前記カムシャフトとは異なる軸にて揺動可能に支持され、入力部(22)と出力部(24,26)とを有することで前記回転カムにより入力部が駆動されると出力部にてバルブ(2a,2b)を駆動する仲介駆動機構(20)と、前記仲介駆動機構の入力部と出力部との相対位相差を可変とする仲介位相差可変手段とを備えた内燃機関の可変動弁機構において、
前記仲介位相差可変手段は、前記入力部及び出力部を相対回動可能に連結する入力部に設けられた支軸(22p)及び出力部に設けられた軸受穴(24p,26p)と、前記出力部のハウジング(26a)に設けられて前記軸受穴と共に前記支軸に対し相対回動する油圧室(26s)と、前記入力部に設けられるとともに前記油圧室に相対回動可能に収められて該油圧室を高速用油圧室(26t)と低速用油圧室(26u)とに区画し、前記支軸と共に前記軸受穴に対し相対回動するベーン(22q)と、前記高速用油圧室と低速用油圧室とに作動油を供給するとともに該高速用油圧室と低速用油圧室との油圧バランスを変化させる油圧回路とを備え、
該油圧バランスを変化させることにより、前記相対位相差を変え、もって前記バルブのリフト量を連続的に可変とすることを特徴とする内燃機関の可変動弁機構。
A camshaft (6), a rotating cam (6a) provided on the camshaft, and a camshaft supported by a shaft different from the camshaft are supported, and an input portion (22) and an output portion (24, 26). Doo valves (2a, 2b) Te to the output portion and the input portion is driven by the rotary cam by having an intermediary drive mechanism for driving (20), between the input portion and the output portion of the intermediary drive mechanism In a variable valve mechanism for an internal combustion engine provided with an intermediate phase difference variable means for making the relative phase difference variable,
The mediation phase difference varying means, the entering-force unit and the support shaft provided in the input unit of the output unit for connecting relatively pivotably (22p) and a bearing hole provided in an output portion (24p, 26p), A hydraulic chamber (26s) provided in the output portion housing (26a) and rotated relative to the support shaft together with the bearing hole, and provided in the input portion and accommodated in the hydraulic chamber so as to be relatively rotatable. The hydraulic chamber is divided into a high-speed hydraulic chamber (26t) and a low-speed hydraulic chamber (26u), the vane (22q) rotating relative to the bearing hole together with the support shaft, the high-speed hydraulic chamber, and a hydraulic circuit for changing the pressure balance between the hydraulic chamber and the low-speed hydraulic chamber for the high speed with which supplies hydraulic fluid to the low-speed hydraulic chamber,
A variable valve operating mechanism for an internal combustion engine , wherein the relative phase difference is changed by changing the hydraulic pressure balance so that the lift amount of the valve is continuously variable .
前記入力部(22)に前記支軸(22p)が一体化されている請求項記載の内燃機関の可変動弁機構。 The variable valve mechanism for an internal combustion engine according to claim 2 , wherein the support shaft (22p) is integrated with the input portion (22).
JP2004108579A 2004-03-31 2004-03-31 Variable valve mechanism for internal combustion engine Expired - Fee Related JP4205623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004108579A JP4205623B2 (en) 2004-03-31 2004-03-31 Variable valve mechanism for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004108579A JP4205623B2 (en) 2004-03-31 2004-03-31 Variable valve mechanism for internal combustion engine

Publications (3)

Publication Number Publication Date
JP2005291117A JP2005291117A (en) 2005-10-20
JP2005291117A5 JP2005291117A5 (en) 2006-12-21
JP4205623B2 true JP4205623B2 (en) 2009-01-07

Family

ID=35324326

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004108579A Expired - Fee Related JP4205623B2 (en) 2004-03-31 2004-03-31 Variable valve mechanism for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4205623B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5090037B2 (en) * 2007-03-22 2012-12-05 株式会社オティックス Variable valve mechanism
FR2980515B1 (en) * 2011-09-26 2016-03-11 Vianney Rabhi ELECTRO-HYDRAULIC VALVE ACTUATOR WITH ALTERNATIVE CAM

Also Published As

Publication number Publication date
JP2005291117A (en) 2005-10-20

Similar Documents

Publication Publication Date Title
JP4108295B2 (en) Variable valve mechanism
CN103038458A (en) Variable valve device of internal combustion engine
JP4697011B2 (en) Variable valve mechanism
JP2002054410A (en) Opening-angle changeable valve system for engine
US6378474B1 (en) Variable value timing mechanism with crank drive
JP2008025431A (en) Fluid pressure actuator
JP2007126966A (en) Variable valve mechanism
JP4420855B2 (en) Variable valve mechanism for internal combustion engine
JP2005264841A (en) Variable valve system for internal combustion engine
JP4205623B2 (en) Variable valve mechanism for internal combustion engine
KR20090064013A (en) Continuous variable valve lift apparatus
JP2003148116A (en) Valve system for four cycle engine
JP5215147B2 (en) Variable valve lift device
JP2002242626A (en) Variable valve system of internal combustion engine
JP5625616B2 (en) Variable valve operating device for internal combustion engine
JP2008025441A (en) Variable valve gear
JPH05231116A (en) Valve system for internal combustion engine
JP4157649B2 (en) Variable valve operating device for internal combustion engine
JP2011127489A (en) Variable valve gear of internal combustion engine
JP2001003720A (en) Variable valve system of internal combustion engine
JP4016956B2 (en) Engine variable valve mechanism and control device therefor
JP4225294B2 (en) Variable valve operating device for internal combustion engine
JP4181086B2 (en) Variable valve mechanism for internal combustion engine
JP4546435B2 (en) Variable lift valve operating system for internal combustion engine
JP4481294B2 (en) Variable valve opening characteristics internal combustion engine

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080619

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080821

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141024

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees