JP4205412B2 - Method for manufacturing optically coupled semiconductor device - Google Patents

Method for manufacturing optically coupled semiconductor device Download PDF

Info

Publication number
JP4205412B2
JP4205412B2 JP2002349654A JP2002349654A JP4205412B2 JP 4205412 B2 JP4205412 B2 JP 4205412B2 JP 2002349654 A JP2002349654 A JP 2002349654A JP 2002349654 A JP2002349654 A JP 2002349654A JP 4205412 B2 JP4205412 B2 JP 4205412B2
Authority
JP
Japan
Prior art keywords
light
lead frame
side lead
semiconductor device
optically coupled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002349654A
Other languages
Japanese (ja)
Other versions
JP2004186297A (en
Inventor
正明 河北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Engineering Ltd
Original Assignee
NEC Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Engineering Ltd filed Critical NEC Engineering Ltd
Priority to JP2002349654A priority Critical patent/JP4205412B2/en
Publication of JP2004186297A publication Critical patent/JP2004186297A/en
Application granted granted Critical
Publication of JP4205412B2 publication Critical patent/JP4205412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/93Batch processes
    • H01L24/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L24/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/93Batch processes
    • H01L2224/95Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
    • H01L2224/97Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting

Description

【0001】
【発明の属する技術分野】
本発明は、光結合半導体装置の製造方法に関し、特に、発光素子を搭載した発光側リードフレームと、受光素子を搭載した受光側リードフレームとの間に絶縁性フィルムを備えた光結合半導体装置の製造方法に関する。
【0002】
【従来の技術】
従来、発光側リードフレームと、受光側リードフレームとの間に絶縁性フィルムを備えた光結合半導体装置を製造するにあたって、例えば、図10に示す方法が採用されている。
【0003】
この方法では、受光側リードフレーム101に受光素子102を搭載し、ボンディングワイヤー105をボンディングする。その後、受光素子102の上面に光透過性樹脂106を塗布し、絶縁フィルム107をマウントした後、受光側リードフレーム101に硬化処理を施し、光透過性樹脂106を硬化させる。同様に、発光側リードフレーム103に発光素子104を搭載し、ボンディングワイヤー105をボンディングし、光透過性樹脂106を塗布する。そして、上記受光側リードフレーム101と発光側リードフレーム103とを対向させて、光結合半導体装置を組み立てる。
【0004】
しかし、この方法では、受光側リードフレーム101に絶縁フィルム107をマウントする際に、光透過性樹脂106の上にマウントすることとなるが、マウントされた絶縁フィルム107は、自重で傾き始め、最終的に、アイランドのエッジ部分である第1支持点108とボンディングワイヤー105の頂上部である第2支持点109によって支持される。
【0005】
そのため、絶縁フィルム107のマウント位置によって絶縁フィルム107の傾きが一定とならず、様々な方向に傾斜する。また、第1支持点108と第2支持点9によって絶縁フィルム107が支持されるが、第2支持点109は、ボンディングワイヤー105の頂上部であるため、絶縁フィルム107をマウントした際の衝撃、あるいは荷重によって、ボンディングワイヤー105が変形し、光結合半導体装置の品質に悪影響を及ぼすおそれがある。
【0006】
また、このように絶縁フィルム107を挿入して製造する方法では、絶縁フィルム107の大きさをできるだけ大きくすることで、沿面距離を長くして絶縁耐圧の向上を図ることが望ましい。しかしながら、従来の方法では、絶縁フィルム107を大きくすることによって、さらに絶縁フィルム107が不安定となるため、絶縁耐圧の向上を図ることが困難であるという問題があった。
【0007】
例えば、特許文献1に記載の光結合半導体装置では、図11に示すように、発光素子210と受光素子211との間に設けられている絶縁フィルム213の形状を屏状側面部を有する立体構造とすることにより、内部沿面距離を長くして絶縁耐圧の向上を図っている。
【0008】
この方法では、発光素子210上に光透過性樹脂212を載せ、その上に鉤形の側面部を有する絶縁フィルム213を載置する。次に、受光素子211が対向するように導出リード214、215を固定し、遮光性樹脂216で素子を封止する。
【0009】
この方法では、絶縁耐圧を向上させるという一応の効果は得られるものの、前述のように、絶縁フィルム213の自重によってボンディングワイヤー217の変形を引き起こすとともに、光透過性樹脂212の上に載せただけでは絶縁フィルム213の安定した形状を維持するのが非常に困難であり、安定した形状が得られないため、定量的な絶縁耐圧値を得るのが困難であるという問題がある。
【0010】
そこで、特許文献2に記載の光結合半導体装置では、図12及び図13に示すように、1次側リードフレーム311のアイランド部309に発光ダイオード303をダイボンディングして配線した後、1次側透明シリコン樹脂304をポッティングし、リードフレームのストッパ部313に1次側絶縁フィルム306をマウントする。次に、2次側リードフレームにおいても同様な組立をした後、発光ダイオード303と受光素子302が対向するように透明ゲルシリコン樹脂308で1次側と2次側の絶縁フイルム306、307を接合することにより、絶縁フイルム306、307を安定させ、ボンディングワイヤー315、316との接触を防止することにより、上述のようなボンディングワイヤーの変形等を防止し、定量的な絶縁耐圧値を得ることができる構成を提案している。
【0011】
【特許文献1】
特開昭59−111377号公報
【0012】
【特許文献2】
特開平5−327004号公報
【0013】
【発明が解決しようとする課題】
しかし、上記特許文献2に記載の光結合半導体装置では、リードフレームストッパ部313、314が存在するため、樹脂封止の際に、遮光性樹脂320の流れを妨げ、遮光性樹脂320の充填が不完全となり、高品質で高絶縁耐圧の光結合半導体装置を得ることができないおそれがあった。
【0014】
そこで、本発明は、上記従来の光結合半導体装置等における問題点に鑑みてなされたものであって、遮光性樹脂の未充填を防止し、高品質かつ高絶縁耐圧の光結合半導体装置の製造方法を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するため、本発明は、発光素子を搭載した発光側リードフレームと、前記発光素子に相対向する位置に受光素子を搭載した受光側リードフレームと、該受光側リードフレームと前記発光側リードフレームとの間に絶縁性フィルムを備えた光結合半導体装置の製造方法において、前記受光側リードフレームと前記発光側リードフレームのいずれか一方に、前記絶縁性フィルムを支持する支持手段を設け、前記発光素子及び受光素子に光透過性樹脂を塗布して硬化処理を施し、前記支持手段を除去し、前記発光素子を搭載した発光側リードフレーム、前記受光素子を搭載した受光側リードフレーム、前記絶縁性フィルム及び前記光透過性樹脂を遮光性樹脂で封止することを特徴とする。
【0016】
そして、本発明によれば、受光側リードフレームと発光側リードフレームのいずれか一方に設けた支持手段によって絶縁性フィルムを支持し、発光素子及び受光素子に光透過性樹脂を塗布して硬化処理を施すため、絶縁フイルムとボンディングワイヤーとの接触を防止するとともに、絶縁フイルムを安定させ、定量的な絶縁耐圧値を得ることができる。また、これに加え、光透過性樹脂の硬化処理後、支持手段を除去するため、遮光性樹脂による樹脂封止の際に、遮光性樹脂流れを妨げることもなく、遮光性樹脂の未充填を防止し、高品質かつ高絶縁耐圧の光結合半導体装置を得ることができる。
【0017】
前記光結合半導体装置の製造方法において、前記支持手段を、前記受光側リードフレームと前記発光側リードフレームのいずれか一方のタイバー部から延設された板状部材とすることができる。そして、この板状部材は、受光側リードフレームと発光側リードフレームのいずれか一方のタイバー部のディンプル角と同一の角度で曲折されるようにすることが好ましい。
【0018】
さらに、本発明にかかる光結合半導体装置の製造方法は、複数のリードを備えた光結合半導体装置にも適用することができる。
【0019】
【発明の実施の形態】
次に、本発明の実施の形態について図面を参照しながら説明する。
【0020】
図1乃至図8は、本発明にかかる光結合半導体装置の製造方法の一実施の形態を示し、この光結合半導体装置は、受光側リードフレームと発光側リードフレームの間に絶縁フィルムを備える。
【0021】
図1及び図3に示すように、受光側リードフレーム16には、タイバー部21よりストッパー22a、22bが水平方向に延設される。ストッパー22bは、タイバー部21より延設され、受光側リードフレーム16のディンプル角25と同じ角度で曲げられ、任意の位置で水平方向に曲げられている。
【0022】
受光側リードフレーム16に受光素子17を搭載し、ボンディングワイヤー19をボンディングし、受光素子17の上面に光透過性樹脂18を塗布する。絶縁フィルム20をマウントする場合には、タイバー部21より伸びたストッパー22aに接するようにマウントする。ストッパー22aに接するところでマウントした後、絶縁フィルム20は、自重でストッパー22aとの接点である第2支持点24を中心に傾き、図2に示すように、ストッパー22bの先端である第1支持点23との2点で支持される。このように、第1支持点23及び第2支持点24によって、常に一定の傾きが得られ、ばらつきなく安定した状態での絶縁フィルム20のマウントが可能である。
【0023】
さらに、ストッパー22a、22bによって絶縁フィルム20のマウント位置を高く保つことができ、ボンディングワイヤー19への接触がなくなり、ボンディングワイヤー19の損傷を防止することができる。また、絶縁フィルム20が直接ボンディングワイヤー19に触れることがないため、絶縁フィルムをマウントする際の衝撃等でボンディングワイヤー19を変形させることはない。その結果、従来よりも高品質の光結合半導体装置を提供することができる。また、ストッパー22a、22bの第1支持点23、第2支持点24によって支持され安定しているため、絶縁フィルム20の寸法を大きく取ることができ、高絶縁耐圧を得ることが可能である。
【0024】
図4に示すように、別の発光側リードフレーム26には、受光側リードフレーム16と同様に発光素子27が搭載され、ボンディングワイヤー29がボンディングされている。さらに、発光素子27を覆うように光透過性樹脂28が塗布されている。
【0025】
この2枚の受光側リードフレーム16と発光側リードフレーム26を対向させ、発光側リードフレーム26に塗布された光透過性樹脂28を受光側リードフレーム14にマウントされた絶縁フィルム20に結合させる。その後、対向させた受光側リードフレーム16と発光側リードフレーム26に硬化処理を施し、光透過性樹脂18、28を硬化させる。さらに、受光側リードフレーム16のタイバー部21より伸びているストッパー22a、22bを、図5及び図6に示すように、切断パンチ31によって上から下へと打ち抜いて切断し、図7に示すような状態とした後、図8に示すように、遮光性樹脂32によって封止して光結合半導体装置が完成する。
【0026】
ここで、光透過性樹脂18、28は、既に硬化処理により硬化しているため、ストッパー22a、22bを切断しても絶縁フィルム20のマウント状態が変わることはなく、ストッパー22a、22bを切断しても問題とはならない。
【0027】
また、ストッパー22a、22bが切断可能であるため、絶縁フィルム20をマウントして2枚のリードフレーム16、26を対向させた後は、ストッパー22a、22bが遮光性樹脂31とともに樹脂封止されることはない。
【0028】
さらに、ストッパー22a、22bは、タイバー部21より切断されるため、樹脂封止の際に遮光性樹脂32の流れを妨げることはなく、遮光性樹脂32の未充填という問題も発生しない。
【0029】
上記各実施例において、光結合半導体装置のリードの本数が増加した場合についても同様の構造を取ることができる。
【0030】
すなわち、図9に示すように、リードの本数が増えた場合でも、上記実施の形態と略々同様の製造工程となるが、相違点としては、ストッパー34a〜34cの本数を増やして絶縁フィルム35を支持する点である。
【0031】
同図に示すように、リード33の本数が増えると、必ずしもストッパー34a、34bが装置の中心付近に配置されるとは限らない。本実施の形態では、リード33間から各々ストッパー34a、34bをタイバー部36から水平に複数本延設している。ストッパー34cは、タイバー部36のディンプル角に沿って任意の位置で水平方向に伸びている。これにより、絶縁フィルム35は、支持点37〜40の4点にて支持される。
【0032】
そして、上述の実施の形態と同様の工程を経て発光素子及び受光素子に光透過性樹脂を塗布し、硬化処理を施し、ストッパー34a〜34cを除去し、遮光性樹脂で封止することにより光結合半導体装置を製造することができ、上述の実施の形態と同様の効果を奏する。
【0033】
本実施の形態では、リード33の本数が増えることによって、絶縁フィルム35の寸法も大きくなるが、このような構造にすることによって、絶縁フィルム35が大きくなっても安定してマウントすることができる。その結果、さらに高絶縁耐圧の光結合半導体装置を提供することができる。
【0034】
【発明の効果】
以上説明したように、本発明によれば、遮光性樹脂の未充填を防止しながら、高品質かつ高絶縁耐圧の光結合半導体装置の製造方法を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明にかかる光結合半導体装置の製造方法における絶縁フィルムのマウント状態を示す図である。
【図2】本発明にかかる光結合半導体装置の製造方法において絶縁フィルムを支持した状態を示す図である。
【図3】図2のA−A矢視図である。
【図4】本発明にかかる光結合半導体装置の製造方法においてリードフレームを対向させた状態を示す図である。
【図5】本発明にかかる光結合半導体装置の製造方法においてストッパーを切断した状態を示す図である。
【図6】図5のB−B矢視図である。
【図7】本発明にかかる光結合半導体装置の製造方法においてストッパーを切断した後の状態を示す図である。
【図8】本発明にかかる光結合半導体装置の製造方法において樹脂封止を行った状態を示す図である。
【図9】本発明にかかる光結合半導体装置の製造方法の他の実施の形態において絶縁フィルムをマウントした後の状態を示す平面図である。
【図10】従来の光結合半導体装置の製造方法の一例を示す図である。
【図11】従来の光結合半導体装置の製造方法の他の例を示す図である。
【図12】従来の光結合半導体装置の製造方法の他の例を示す図である。
【図13】図12の光結合半導体装置の製造方法のリードフレームストッパ部等を示す斜視図である。
【符号の説明】
16 受光側リードフレーム
17 受光素子
18 光透過性樹脂
19 ボンディングワイヤー
20 絶縁フィルム
21 タイバー部
22a ストッパー
22b ストッパー
23 第1支持点
24 第2支持点
25 ディンプル角
26 発光側リードフレーム
27 発光素子
28 光透過性樹脂
29 ボンディングワイヤー
31 切断パンチ
32 遮光性樹脂
33 リード
34a ストッパー
34b ストッパー
34c ストッパー
35 絶縁フィルム
37〜40 支持点
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an optically coupled semiconductor device, and more particularly, to an optically coupled semiconductor device including an insulating film between a light emitting side lead frame on which a light emitting element is mounted and a light receiving side lead frame on which a light receiving element is mounted. It relates to a manufacturing method.
[0002]
[Prior art]
Conventionally, for example, a method shown in FIG. 10 is employed in manufacturing an optically coupled semiconductor device including an insulating film between a light emitting side lead frame and a light receiving side lead frame.
[0003]
In this method, the light receiving element 102 is mounted on the light receiving side lead frame 101 and the bonding wire 105 is bonded. Thereafter, a light transmissive resin 106 is applied to the upper surface of the light receiving element 102 and an insulating film 107 is mounted. Then, the light receiving side lead frame 101 is cured to cure the light transmissive resin 106. Similarly, the light emitting element 104 is mounted on the light emitting side lead frame 103, the bonding wire 105 is bonded, and the light transmitting resin 106 is applied. Then, the light receiving side lead frame 101 and the light emitting side lead frame 103 are opposed to each other to assemble an optically coupled semiconductor device.
[0004]
However, in this method, when the insulating film 107 is mounted on the light receiving side lead frame 101, the insulating film 107 is mounted on the light-transmitting resin 106. The mounted insulating film 107 starts to tilt by its own weight, and finally In particular, the first support point 108 that is the edge portion of the island and the second support point 109 that is the top of the bonding wire 105 are supported.
[0005]
Therefore, the inclination of the insulating film 107 is not constant depending on the mounting position of the insulating film 107, and is inclined in various directions. Further, the insulating film 107 is supported by the first support point 108 and the second support point 9, but the second support point 109 is the top of the bonding wire 105, and therefore, when the insulating film 107 is mounted, Alternatively, the bonding wire 105 may be deformed by the load, which may adversely affect the quality of the optically coupled semiconductor device.
[0006]
Further, in the method of manufacturing by inserting the insulating film 107 in this way, it is desirable to increase the creepage distance and increase the withstand voltage by increasing the size of the insulating film 107 as much as possible. However, the conventional method has a problem that it is difficult to improve the withstand voltage because the insulating film 107 becomes more unstable by increasing the insulating film 107.
[0007]
For example, in the optically coupled semiconductor device described in Patent Document 1, as shown in FIG. 11, the shape of the insulating film 213 provided between the light emitting element 210 and the light receiving element 211 is a three-dimensional structure having saddle-shaped side portions. Thus, the internal creepage distance is increased to improve the withstand voltage.
[0008]
In this method, a light-transmitting resin 212 is placed on the light emitting element 210, and an insulating film 213 having a bowl-shaped side portion is placed thereon. Next, the lead-out leads 214 and 215 are fixed so that the light receiving element 211 faces each other, and the element is sealed with a light shielding resin 216.
[0009]
In this method, although a temporary effect of improving the withstand voltage can be obtained, as described above, the bonding wire 217 is deformed by the dead weight of the insulating film 213, and only by placing it on the light-transmitting resin 212. There is a problem that it is very difficult to maintain a stable shape of the insulating film 213, and it is difficult to obtain a quantitative withstand voltage value because a stable shape cannot be obtained.
[0010]
Therefore, in the optically coupled semiconductor device described in Patent Document 2, the light emitting diode 303 is die-bonded and wired to the island portion 309 of the primary lead frame 311 as shown in FIGS. The transparent silicon resin 304 is potted, and the primary insulating film 306 is mounted on the stopper portion 313 of the lead frame. Next, after the same assembly is performed on the secondary lead frame, the primary and secondary insulating films 306 and 307 are joined with the transparent gel silicone resin 308 so that the light emitting diode 303 and the light receiving element 302 face each other. By stabilizing the insulating films 306 and 307 and preventing contact with the bonding wires 315 and 316, deformation of the bonding wire as described above can be prevented, and a quantitative withstand voltage value can be obtained. A possible configuration is proposed.
[0011]
[Patent Document 1]
JP 59-111377 A
[Patent Document 2]
JP-A-5-327004 [0013]
[Problems to be solved by the invention]
However, in the optically coupled semiconductor device described in Patent Document 2, since the lead frame stopper portions 313 and 314 exist, the flow of the light-shielding resin 320 is prevented during resin sealing, and the light-shielding resin 320 is not filled. There is a possibility that an optically coupled semiconductor device having high quality and high withstand voltage cannot be obtained.
[0014]
Accordingly, the present invention has been made in view of the problems in the above-described conventional optically coupled semiconductor devices and the like, and prevents the unfilling of a light-shielding resin, and manufactures an optically coupled semiconductor device having high quality and high withstand voltage. It aims to provide a method.
[0015]
[Means for Solving the Problems]
To achieve the above object, the present invention provides a light emitting side lead frame on which a light emitting element is mounted, a light receiving side lead frame on which a light receiving element is mounted at a position opposite to the light emitting element, the light receiving side lead frame, and the light emitting element. In the method of manufacturing an optically coupled semiconductor device including an insulating film between the side lead frame and the light receiving side lead frame or the light emitting side lead frame, a support means for supporting the insulating film is provided. A light-transmitting resin is applied to the light-emitting element and the light-receiving element to perform a curing process, the support means is removed, a light-emitting side lead frame on which the light-emitting element is mounted, a light-receiving side lead frame on which the light-receiving element is mounted, The insulating film and the light transmitting resin are sealed with a light blocking resin.
[0016]
According to the present invention, the insulating film is supported by the support means provided on either the light-receiving side lead frame or the light-emitting side lead frame, and the light-transmitting resin and the light-receiving element are coated with the light-transmitting resin and cured. Therefore, it is possible to prevent contact between the insulating film and the bonding wire, stabilize the insulating film, and obtain a quantitative withstand voltage value. In addition to this, the support means is removed after the light-transmitting resin is cured, so that when the resin is sealed with the light-shielding resin, the flow of the light-shielding resin is not hindered and the light-shielding resin is not filled. Therefore, an optically coupled semiconductor device with high quality and high withstand voltage can be obtained.
[0017]
In the method for manufacturing an optically coupled semiconductor device, the supporting means may be a plate-like member extending from one of the light receiving side lead frame and the light emitting side lead frame. The plate member is preferably bent at the same angle as the dimple angle of one of the light receiving side lead frame and the light emitting side lead frame.
[0018]
Furthermore, the method for manufacturing an optically coupled semiconductor device according to the present invention can also be applied to an optically coupled semiconductor device having a plurality of leads.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
[0020]
1 to 8 show an embodiment of a method for manufacturing an optically coupled semiconductor device according to the present invention. This optically coupled semiconductor device includes an insulating film between a light receiving side lead frame and a light emitting side lead frame.
[0021]
As shown in FIGS. 1 and 3, stoppers 22 a and 22 b are extended from the tie bar portion 21 in the light receiving side lead frame 16 in the horizontal direction. The stopper 22b extends from the tie bar portion 21, is bent at the same angle as the dimple angle 25 of the light receiving side lead frame 16, and is bent in the horizontal direction at an arbitrary position.
[0022]
A light receiving element 17 is mounted on the light receiving side lead frame 16, a bonding wire 19 is bonded, and a light transmitting resin 18 is applied to the upper surface of the light receiving element 17. When the insulating film 20 is mounted, the insulating film 20 is mounted so as to be in contact with the stopper 22a extending from the tie bar portion 21. After mounting at a position where it comes into contact with the stopper 22a, the insulating film 20 is tilted about the second support point 24, which is a contact point with the stopper 22a, by its own weight, and as shown in FIG. 2, the first support point is the tip of the stopper 22b. 23 and supported at two points. Thus, the first support point 23 and the second support point 24 always provide a constant inclination, and the insulating film 20 can be mounted in a stable state without variation.
[0023]
Furthermore, the mounting position of the insulating film 20 can be kept high by the stoppers 22a and 22b, the contact with the bonding wire 19 is eliminated, and the bonding wire 19 can be prevented from being damaged. Moreover, since the insulating film 20 does not touch the bonding wire 19 directly, the bonding wire 19 is not deformed by an impact or the like when mounting the insulating film. As a result, it is possible to provide an optically coupled semiconductor device with higher quality than before. Moreover, since it is supported and stabilized by the first support point 23 and the second support point 24 of the stoppers 22a and 22b, the size of the insulating film 20 can be increased and a high withstand voltage can be obtained.
[0024]
As shown in FIG. 4, a light emitting element 27 is mounted on another light emitting side lead frame 26 in the same manner as the light receiving side lead frame 16, and a bonding wire 29 is bonded thereto. Further, a light transmissive resin 28 is applied so as to cover the light emitting element 27.
[0025]
The two light receiving side lead frames 16 and the light emitting side lead frame 26 are opposed to each other, and the light transmitting resin 28 applied to the light emitting side lead frame 26 is coupled to the insulating film 20 mounted on the light receiving side lead frame 14. Thereafter, the light receiving side lead frame 16 and the light emitting side lead frame 26 which are opposed to each other are subjected to a curing process, and the light transmissive resins 18 and 28 are cured. Further, as shown in FIGS. 5 and 6, the stoppers 22a and 22b extending from the tie bar portion 21 of the light receiving side lead frame 16 are punched and cut from the top to the bottom by the cutting punch 31, as shown in FIG. Then, as shown in FIG. 8, sealing with a light-shielding resin 32 completes the optically coupled semiconductor device.
[0026]
Here, since the light-transmitting resins 18 and 28 are already cured by the curing process, the mounting state of the insulating film 20 does not change even if the stoppers 22a and 22b are cut, and the stoppers 22a and 22b are cut. It doesn't matter.
[0027]
Since the stoppers 22a and 22b can be cut, the stoppers 22a and 22b are sealed with the light-shielding resin 31 after the insulating film 20 is mounted and the two lead frames 16 and 26 are opposed to each other. There is nothing.
[0028]
Furthermore, since the stoppers 22a and 22b are cut from the tie bar portion 21, the flow of the light shielding resin 32 is not hindered during resin sealing, and the problem of unfilling the light shielding resin 32 does not occur.
[0029]
In each of the above embodiments, the same structure can be adopted even when the number of leads of the optically coupled semiconductor device is increased.
[0030]
That is, as shown in FIG. 9, even when the number of leads is increased, the manufacturing process is substantially the same as that of the above embodiment, except that the number of stoppers 34a to 34c is increased and the insulating film 35 is increased. It is a point that supports.
[0031]
As shown in the figure, when the number of leads 33 increases, the stoppers 34a and 34b are not necessarily arranged near the center of the apparatus. In the present embodiment, a plurality of stoppers 34 a and 34 b are horizontally extended from between the leads 33 from the tie bar portion 36. The stopper 34 c extends in the horizontal direction at an arbitrary position along the dimple angle of the tie bar portion 36. Thereby, the insulating film 35 is supported by four points of the support points 37-40.
[0032]
Then, a light-transmitting resin is applied to the light-emitting element and the light-receiving element through the same steps as in the above-described embodiment, a curing process is performed, the stoppers 34a to 34c are removed, and sealing is performed with a light-shielding resin. A coupled semiconductor device can be manufactured, and the same effects as those of the above-described embodiment can be obtained.
[0033]
In the present embodiment, as the number of leads 33 increases, the size of the insulating film 35 also increases. With such a structure, even if the insulating film 35 becomes large, it can be mounted stably. . As a result, an optically coupled semiconductor device having a higher withstand voltage can be provided.
[0034]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a method for manufacturing a high-quality and high withstand voltage optically coupled semiconductor device while preventing unfilling of the light-shielding resin.
[Brief description of the drawings]
FIG. 1 is a diagram showing a mounted state of an insulating film in a method for manufacturing an optically coupled semiconductor device according to the present invention.
FIG. 2 is a view showing a state in which an insulating film is supported in the method for manufacturing an optically coupled semiconductor device according to the present invention.
FIG. 3 is a view taken along arrow AA in FIG. 2;
FIG. 4 is a view showing a state in which lead frames are opposed to each other in the method for manufacturing an optically coupled semiconductor device according to the present invention.
FIG. 5 is a view showing a state in which a stopper is cut in the method of manufacturing an optically coupled semiconductor device according to the present invention.
6 is a view taken along arrow BB in FIG. 5;
FIG. 7 is a view showing a state after a stopper is cut in the method of manufacturing an optically coupled semiconductor device according to the present invention.
FIG. 8 is a view showing a state where resin sealing is performed in the method of manufacturing an optically coupled semiconductor device according to the present invention.
FIG. 9 is a plan view showing a state after mounting an insulating film in another embodiment of the method for manufacturing an optically coupled semiconductor device according to the present invention.
FIG. 10 is a diagram showing an example of a conventional method for manufacturing an optically coupled semiconductor device.
FIG. 11 is a diagram showing another example of a conventional method for manufacturing an optically coupled semiconductor device.
FIG. 12 is a diagram showing another example of a conventional method for manufacturing an optically coupled semiconductor device.
13 is a perspective view showing a lead frame stopper and the like in the method for manufacturing the optically coupled semiconductor device of FIG. 12;
[Explanation of symbols]
16 Light receiving side lead frame 17 Light receiving element 18 Light transmitting resin 19 Bonding wire 20 Insulating film 21 Tie bar portion 22a Stopper 22b Stopper 23 First support point 24 Second support point 25 Dimple angle 26 Light emitting side lead frame 27 Light emitting element 28 Light transmission Resin 29 Bonding wire 31 Cutting punch 32 Light blocking resin 33 Lead 34a Stopper 34b Stopper 34c Stopper 35 Insulating film 37-40 Supporting point

Claims (4)

発光素子を搭載した発光側リードフレームと、前記発光素子に相対向する位置に受光素子を搭載した受光側リードフレームと、該受光側リードフレームと前記発光側リードフレームとの間に絶縁性フィルムを備えた光結合半導体装置の製造方法において、
前記受光側リードフレームと前記発光側リードフレームのいずれか一方に、前記絶縁性フィルムを支持する支持手段を設け、
前記発光素子及び受光素子に光透過性樹脂を塗布して硬化処理を施し、
前記支持手段を除去し、
前記発光素子を搭載した発光側リードフレーム、前記受光素子を搭載した受光側リードフレーム、前記絶縁性フィルム及び前記光透過性樹脂を遮光性樹脂で封止することを特徴とする光結合半導体装置の製造方法。
A light emitting side lead frame on which a light emitting element is mounted, a light receiving side lead frame on which a light receiving element is mounted at a position opposite to the light emitting element, and an insulating film between the light receiving side lead frame and the light emitting side lead frame In the manufacturing method of the optically coupled semiconductor device provided,
A support means for supporting the insulating film is provided on one of the light receiving side lead frame and the light emitting side lead frame,
Applying a light-transmitting resin to the light-emitting element and the light-receiving element and applying a curing treatment,
Removing said support means,
An optically coupled semiconductor device comprising: a light emitting side lead frame on which the light emitting element is mounted; a light receiving side lead frame on which the light receiving element is mounted; the insulating film; and the light transmitting resin are sealed with a light blocking resin. Production method.
前記支持手段は、前記受光側リードフレームと前記発光側リードフレームのいずれか一方のタイバー部から延設された板状部材であることを特徴とする請求項1記載の光結合半導体装置の製造方法。2. The method of manufacturing an optically coupled semiconductor device according to claim 1, wherein the supporting means is a plate-like member extending from one of the light receiving side lead frame and the light emitting side lead frame. . 前記板状部材は、前記受光側リードフレームと前記発光側リードフレームのいずれか一方のタイバー部のディンプル角と同一の角度で曲折されることを特徴とする請求項2記載の光結合半導体装置の製造方法。3. The optically coupled semiconductor device according to claim 2, wherein the plate-like member is bent at the same angle as a dimple angle of one of the light receiving side lead frame and the light emitting side lead frame. Production method. 前記半導体装置は、複数のリードを備えることを特徴とする請求項1、2または3記載の光結合半導体装置の製造方法。The method of manufacturing an optically coupled semiconductor device according to claim 1, wherein the semiconductor device includes a plurality of leads.
JP2002349654A 2002-12-02 2002-12-02 Method for manufacturing optically coupled semiconductor device Expired - Fee Related JP4205412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002349654A JP4205412B2 (en) 2002-12-02 2002-12-02 Method for manufacturing optically coupled semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002349654A JP4205412B2 (en) 2002-12-02 2002-12-02 Method for manufacturing optically coupled semiconductor device

Publications (2)

Publication Number Publication Date
JP2004186297A JP2004186297A (en) 2004-07-02
JP4205412B2 true JP4205412B2 (en) 2009-01-07

Family

ID=32752123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002349654A Expired - Fee Related JP4205412B2 (en) 2002-12-02 2002-12-02 Method for manufacturing optically coupled semiconductor device

Country Status (1)

Country Link
JP (1) JP4205412B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4897530B2 (en) * 2007-03-23 2012-03-14 ルネサスエレクトロニクス株式会社 Photocoupler and its assembly method
JP5646830B2 (en) 2009-09-02 2014-12-24 ルネサスエレクトロニクス株式会社 Semiconductor device, method for manufacturing semiconductor device, and lead frame

Also Published As

Publication number Publication date
JP2004186297A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
US6603148B1 (en) Semiconductor device
US6861683B2 (en) Optoelectronic component using two encapsulating materials and the method of making the same
TWI630688B (en) Sensor package structure
TWI245429B (en) Photosensitive semiconductor device, method for fabricating the same and lead frame thereof
CN100565891C (en) Semiconductor device and manufacture method thereof
EP3200246A1 (en) Manufacturing method of light emitting diode
JP3447604B2 (en) Surface mount type light emitting diode and method of manufacturing the same
JPH1065037A (en) Semiconductor package with window
JP2008027999A (en) Light-emitting device manufacturing method and light-emitting device
JP2002151743A (en) Light emitting device and its manufacturing method
TWI667752B (en) Sensor package structure
CN101241920A (en) Optical device and method of manufacturing the same
JP4205412B2 (en) Method for manufacturing optically coupled semiconductor device
US7586529B2 (en) Solid-state imaging device
JP2001094157A (en) Chip component type light emitting diode and manufacturing method thereof
CN102106005A (en) Optoelectronic semiconductor component
JP4897530B2 (en) Photocoupler and its assembly method
JPH0418468B2 (en)
JP3970377B2 (en) Optical semiconductor device and manufacturing method thereof
KR20030071545A (en) Semiconductor device
US10720556B2 (en) Method for manufacturing light emitting device
CN108807435B (en) Semiconductor device package and method of manufacturing the same
JPH07335912A (en) Package of semiconductor sensor
JP2983767B2 (en) Method for manufacturing solid-state imaging device
JP2501811Y2 (en) Optical semiconductor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081016

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees