JP4204187B2 - Loop heat pipe - Google Patents

Loop heat pipe Download PDF

Info

Publication number
JP4204187B2
JP4204187B2 JP2000372333A JP2000372333A JP4204187B2 JP 4204187 B2 JP4204187 B2 JP 4204187B2 JP 2000372333 A JP2000372333 A JP 2000372333A JP 2000372333 A JP2000372333 A JP 2000372333A JP 4204187 B2 JP4204187 B2 JP 4204187B2
Authority
JP
Japan
Prior art keywords
temperature
heat
working fluid
evaporator
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000372333A
Other languages
Japanese (ja)
Other versions
JP2002174492A (en
Inventor
博光 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000372333A priority Critical patent/JP4204187B2/en
Publication of JP2002174492A publication Critical patent/JP2002174492A/en
Application granted granted Critical
Publication of JP4204187B2 publication Critical patent/JP4204187B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sorption Type Refrigeration Machines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、発熱源から吸熱源へ熱を輸送するループヒートパイプ、特に発熱源の温度を効果的に制御するものに関する。
【0002】
【従来の技術】
従来より、宇宙用・工業用・家庭用の熱輸送装置として、ループヒートパイプが知られており、例えば米国特許第4,765,396号公報や特開平10−246583号公報などに示されている。
【0003】
このループヒートパイプでは、蒸発器により発熱源から吸熱して作動流体を蒸発し気相にし、得られた蒸気を凝縮器に供給しここで吸熱源へ放熱して液相にする。このため、例えば宇宙船などにおいて、内部の各種機器の発熱を蒸発器により吸熱し、この熱を凝縮器において宇宙に放熱して、各種機器の温度を制御することができる。特に、このようなループヒートパイプは、機械的な駆動部分がないため、無人の宇宙船などで長期間安定して使用することができる。
【0004】
【発明が解決しようとする課題】
しかし、上記従来例では、吸熱源の温度が変化すると、凝縮器からの作動流体の温度が変化し、これによって蒸発器に流入する作動流体の温度が変化してしまう。そこで、蒸発器における吸熱が変化して発熱源の温度が変化し、発熱源の温度調節を所望のものにできないという問題があった。
【0005】
また、米国特許第4,515,209号公報には、ループヒートパイプと同様の熱交換システムであって、凝縮器と蒸発器を接続する液管に接続して作動流体を保持するリザーバを有するキャピラリポンプループが示されている。このキャピラリポンプループでは、吸熱源の温度が低下すると、ガスによる加圧やヒータによる加熱によりリザーバ内の圧力を上昇させ作動流体をリザーバから押しだし、これによって凝縮器内における液相の作動流体の領域を増加させて、蒸気相の作動流体の温度を上昇させる。
【0006】
しかし、ループヒートパイプにおいては、キャピラリポンプループと異なり蒸発器から独立したリザーバなどは設けず、蒸発器および凝縮器における熱交換により、作動流体を循環させている。従って、リザーバを設けるとしても、これは蒸発器に隣接一体化して設けるか、蒸発器内部に内蔵される。
【0007】
従って、リザーバは熱的に蒸発器と強く結合しており、このリザーバの圧力を直接制御することはできない。そこで、ループヒートパイプにおいて、発熱源の温度を効率的に制御することが求められる。
【0008】
本発明は、上記課題に鑑みなされたものであり、発熱源のループヒートパイプにおいて効率的な発熱源温度制御が行えるループヒートパイプを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、発熱源から吸熱源へ熱を輸送するループヒートパイプであって、発熱源から吸熱して作動流体を蒸発する蒸発器と、吸熱源へ放熱し作動流体を凝縮する凝縮器と、蒸発した気相の作動流体を蒸発器から凝縮器に輸送する蒸気管と、凝縮した液相の作動流体を凝縮器から蒸発器に輸送する液管と、加熱手段および冷却手段を有し前記液管内の作動流体を加熱または冷却して温度調節する温度調節手段と、前記液管内の温度を検出する温度検出手段と、を有し、前記温度検出手段の温度検出結果に応じ、前記温度調節手段によって、蒸発器に流れ込む作動流体の温度を所定の温度に調整することを特徴とする。
【0010】
このように、本発明によれば、温度調節手段により、蒸発器への作動流体の温度を調節することができる。従って、吸熱源の温度変化の影響を排除して、発熱源からの吸熱を制御することができる。また、温度検出手段の温度検出結果に応じて前記温度調節手段により温度調節を制御することで、作動流体の温度を所定の温度に確実に制御することができる。
【0011】
また、前記温度調節手段は、ヒータおよびペルチェ素子を有する加熱冷却手段であることが好適である。ヒータ、ペルチェ素子のいずれかを利用することによって、蒸発器へ流入する作動流体の温度を任意に制御することができる。
【0012】
また、液管内の温度を検出する温度検出手段をさらに有し、この温度検出手段の温度検出結果に応じて前記温度調節手段により温度調節を制御することが好適である。このように、温度を検出して制御することで、作動流体の温度を所定の温度に確実に制御することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施形態について、図面に基づいて説明する。
【0014】
図1は、実施形態に係るループヒートパイプの一構成例を示す図である。図において、蒸発器1は、発熱源からの熱を吸収し、内部の作動流体5を加熱蒸発する。ここで、発熱源は、蒸発器1に直接接触していてもよいが、通常は蒸発器1から物理的に離れており、熱媒などを介し熱伝達がなされる。凝縮器2は、給熱源へ熱を放熱し、内部の作動流体5を冷却凝縮する。吸熱源は、通常直接凝縮器2に接触しているが、蒸発器1の場合と同様に熱媒などで熱伝達してもよい。
【0015】
蒸発器1の出口と、凝縮器2の入口には、蒸気管3が接続されており、凝縮器2の出口と蒸発器1の入口は液管4で接続されている。作動流体5は、熱の授受によって、液相と気相の間で相変化を起こす流体であり、図中5aは液相、5bは蒸気相(気相)を示している。なお、図において液相5aと気相5bは、異なるハッチングで示してある。
【0016】
また、蒸発器1の内部には、特開平10−246583号公報に示されるような、円筒状多孔体からなるウィック1aが設けられており、これによって、内部側の液相の作動流体5aの室と、外周側の気相の作動流体5bの室に仕切られている。なお、ウィック1aと蒸発器1のケーシング(容器)の間には外部からの熱をウィック1aに良好に伝達するためのスペーサなどが配置される。
【0017】
特に、本実施形態では、蒸発器1内の図における左側の空間がウィック1a内部と連通するリザーバ6となっており、ここに所定量の液相の作動流体5aが貯留される。
【0018】
なお、熱の輸送に蒸発潜熱を利用するため、作動流体としては気化特性の良い流体が一般に選ばれ、例えば、アンモニア、アルコールなどが使用される。
【0019】
このような装置において、蒸発器1においては、外部の発熱源からの熱を吸熱して、ウィック1aが加熱され、ウィック1aの表面から液相の作動流体5aが蒸発する。蒸気となった作動流体5bは、蒸気管3を通り凝縮器2に流れる。凝縮器2内では、作動流体5bは、外部の吸熱源に熱を放熱し、凝縮して液体になる。液体になった作動流体5aは、液管4を通って蒸発器1に還流する。
【0020】
このようにして、ループヒートパイプによって、発熱源の熱を吸熱源に放熱することができる。
【0021】
ここで、本実施形態では、液管4にヒータおよびペルチェ素子からなる温度調節器7が設けられている。なお、温度調節器7は、ヒータまたはペルチェ素子のいずれか一方のみを有し、加熱または冷却のいずれかのみを行うものでもよい。また、加熱手段として、直接加熱するヒータに代えて熱媒などを介して加熱するものを採用したり、冷却手段としてもペルチェ素子に代えて、冷媒を介し冷却するものを採用してもよい。また、この実施形態では、液管4の外側に温度調節器7を取り付け、液管4を介し作動流体5aを加熱したが、これに限定されることはなく、液管4の内部の作動流体5aを直接加熱するようにしてもよい。
【0022】
さらに、蒸発器1の入口付近には、作動流体の温度を検出する温度センサ8が設けられており、この検出結果はコントローラ9に供給される。そして、このコントローラ9は、温度センサ8の検出結果に従い、温度調節器7による加熱または冷却を制御する。
【0023】
ここで、凝縮器2出口における液相の作動流体5aと、蒸発器1出口での気相の作動流体5bの温度差は、蒸発器1への熱負荷量と、蒸発器1での相変化量の比で決定される。すなわち、熱負荷量と相変化量の差に相当する顕熱分の温度差が凝縮器2出口と、蒸発器1出口とで生じる。
【0024】
そして、本実施形態の装置では、液管4においてその内部の作動流体に熱の供給もしくは除去を行うことにより、見かけ上の蒸発器1への熱負荷量と相変化量の比を変化させ、蒸発器1の温度制御を行う。
【0025】
すなわち、吸熱源の温度低下を液管4内の作動流体の温度低下として温度センサ8が検知すると、コントローラ9は温度調節器7(例えばヒータ)により液管4を加熱する。これによって、凝縮器2出口からの作動流体の温度が上昇され、見かけ上の相変化量と熱負荷量の比を小さくし、顕熱分の温度差を大きくする。反対に、吸熱源温度の上昇を液管4内の作動流体温度上昇として温度センサ8が検知すると、温度調節器7(例えばペルチェ素子)によって液管4を冷却し、見かけ上の相変化量と熱負荷量の比を大きくして顕熱分の温度差を小さくする。
【0026】
このように、本実施形態においては、温度調節器7により、蒸発器1入口の作動流体5aの温度を調節することができる。従って、蒸発器1における発熱源からの吸熱を任意に制御することができる。例えば、温度センサ8において検出される温度が一定温度になるように、温度調節器7による加熱または冷却を制御することによって、蒸発器1入口の作動流体5aの温度を常に一定に保持できる。従って、吸熱源の温度変化の影響を排除して、発熱源からの吸熱を制御することができる。
【0027】
【発明の効果】
以上説明したように、本発明によれば、温度調節手段により、蒸発器へ流入する作動流体の温度を調節することができる。従って、吸熱源の温度変化の影響を排除して、発熱源からの吸熱を制御することができる。
【0028】
また、温度調節手段がヒータおよびペルチェ素子を有することで、ヒータ、ペルチェ素子のいずれかを利用することによって、蒸発器へ流入する作動流体の温度を任意に制御することができる。
【0029】
また、温度を検出して温度調節手段による温度調節を制御することで、作動流体の温度を所定の温度に確実に制御することができる。
【図面の簡単な説明】
【図1】 実施形態に係るループヒートパイプの構成を示す図である。
【符号の説明】
1 蒸発器、1a ウィック、2 凝縮器、3 蒸気管、4 液管、5 作動流体、6 リザーバ、7 温度調節器、8 温度センサ、9 コントローラ。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a loop heat pipe that transports heat from a heat source to an endothermic source, and in particular to one that effectively controls the temperature of the heat source.
[0002]
[Prior art]
Conventionally, a loop heat pipe has been known as a heat transport device for space, industrial, and home use. For example, it is shown in US Pat. No. 4,765,396 and Japanese Patent Laid-Open No. 10-246583. Yes.
[0003]
In this loop heat pipe, heat is absorbed from a heat generation source by an evaporator to evaporate the working fluid into a gas phase, and the obtained vapor is supplied to a condenser, where it dissipates heat to the heat absorption source to become a liquid phase. For this reason, for example, in a spacecraft, heat generated by various internal devices is absorbed by an evaporator, and this heat is dissipated to the space by a condenser to control the temperatures of the various devices. In particular, since such a loop heat pipe has no mechanical drive part, it can be used stably for a long time in an unmanned spacecraft or the like.
[0004]
[Problems to be solved by the invention]
However, in the above conventional example, when the temperature of the heat absorption source changes, the temperature of the working fluid from the condenser changes, thereby changing the temperature of the working fluid flowing into the evaporator. Therefore, there has been a problem that the heat absorption in the evaporator changes and the temperature of the heat source changes, and the temperature adjustment of the heat source cannot be made as desired.
[0005]
Further, US Pat. No. 4,515,209 is a heat exchange system similar to a loop heat pipe, and has a reservoir for holding a working fluid by connecting to a liquid pipe connecting a condenser and an evaporator. A capillary pump loop is shown. In this capillary pump loop, when the temperature of the heat absorption source decreases, the pressure in the reservoir is increased by gas pressurization or heating by the heater, and the working fluid is pushed out of the reservoir, thereby the liquid phase working fluid region in the condenser. To increase the temperature of the vapor phase working fluid.
[0006]
However, in the loop heat pipe, unlike the capillary pump loop, a reservoir independent of the evaporator is not provided, and the working fluid is circulated by heat exchange in the evaporator and the condenser. Therefore, even if the reservoir is provided, it is provided adjacent to the evaporator or integrated in the evaporator.
[0007]
Therefore, the reservoir is thermally strongly coupled to the evaporator and the pressure in this reservoir cannot be directly controlled. Therefore, it is required to efficiently control the temperature of the heat source in the loop heat pipe.
[0008]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a loop heat pipe that can perform efficient heat source temperature control in the heat source loop heat pipe.
[0009]
[Means for Solving the Problems]
The present invention is a loop heat pipe that transports heat from a heat generation source to a heat absorption source, an evaporator that absorbs heat from the heat generation source and evaporates the working fluid, a condenser that radiates heat to the heat absorption source and condenses the working fluid, A vapor pipe for transporting the vapor-phase working fluid from the evaporator to the condenser; a liquid pipe for transporting the condensed liquid-phase working fluid from the condenser to the evaporator; and a heating means and a cooling means. Temperature adjusting means for adjusting the temperature by heating or cooling the working fluid in the pipe, and temperature detecting means for detecting the temperature in the liquid pipe, and the temperature adjusting means according to the temperature detection result of the temperature detecting means Thus, the temperature of the working fluid flowing into the evaporator is adjusted to a predetermined temperature .
[0010]
Thus, according to the present invention, the temperature of the working fluid to the evaporator can be adjusted by the temperature adjusting means. Therefore, it is possible to control the heat absorption from the heat source by eliminating the influence of the temperature change of the heat absorption source. Moreover, the temperature of the working fluid can be reliably controlled to a predetermined temperature by controlling the temperature adjustment by the temperature adjusting unit according to the temperature detection result of the temperature detecting unit.
[0011]
The temperature adjusting means is preferably a heating / cooling means having a heater and a Peltier element. By using either the heater or the Peltier element, the temperature of the working fluid flowing into the evaporator can be arbitrarily controlled.
[0012]
In addition, it is preferable that temperature detection means for detecting the temperature in the liquid pipe is further provided, and temperature adjustment is controlled by the temperature adjustment means in accordance with a temperature detection result of the temperature detection means. Thus, by detecting and controlling the temperature, the temperature of the working fluid can be reliably controlled to a predetermined temperature.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0014]
Drawing 1 is a figure showing an example of 1 composition of a loop heat pipe concerning an embodiment. In the figure, an evaporator 1 absorbs heat from a heat source and heats and evaporates an internal working fluid 5. Here, the heat source may be in direct contact with the evaporator 1, but is usually physically separated from the evaporator 1, and heat is transferred through a heat medium or the like. The condenser 2 radiates heat to the heat supply source, and cools and condenses the internal working fluid 5. The heat absorption source is usually in direct contact with the condenser 2, but heat may be transferred by a heat medium or the like as in the case of the evaporator 1.
[0015]
A vapor pipe 3 is connected to the outlet of the evaporator 1 and the inlet of the condenser 2, and the outlet of the condenser 2 and the inlet of the evaporator 1 are connected by a liquid pipe 4. The working fluid 5 is a fluid that undergoes a phase change between a liquid phase and a gas phase by transferring heat. In the figure, 5a indicates a liquid phase and 5b indicates a vapor phase (gas phase). In the figure, the liquid phase 5a and the gas phase 5b are indicated by different hatchings.
[0016]
Further, inside the evaporator 1, there is provided a wick 1a made of a cylindrical porous body as shown in Japanese Patent Laid-Open No. 10-246583, whereby the liquid-phase working fluid 5a on the inner side is provided. It is divided into a chamber and a chamber of a gas-phase working fluid 5b on the outer peripheral side. Between the wick 1a and the casing (container) of the evaporator 1, a spacer or the like for favorably transferring heat from the outside to the wick 1a is disposed.
[0017]
In particular, in the present embodiment, the space on the left side of the evaporator 1 in the figure is a reservoir 6 communicating with the inside of the wick 1a, and a predetermined amount of the liquid-phase working fluid 5a is stored therein.
[0018]
In order to use latent heat of vaporization for heat transport, a fluid having good vaporization characteristics is generally selected as the working fluid, and for example, ammonia, alcohol or the like is used.
[0019]
In such an apparatus, the evaporator 1 absorbs heat from an external heat source to heat the wick 1a, and the liquid-phase working fluid 5a evaporates from the surface of the wick 1a. The working fluid 5 b that has become a vapor flows through the vapor pipe 3 to the condenser 2. In the condenser 2, the working fluid 5b dissipates heat to an external heat absorption source and condenses into a liquid. The working fluid 5 a that has become liquid returns to the evaporator 1 through the liquid pipe 4.
[0020]
In this way, the heat of the heat generation source can be radiated to the heat absorption source by the loop heat pipe.
[0021]
Here, in the present embodiment, the liquid pipe 4 is provided with a temperature regulator 7 including a heater and a Peltier element. Note that the temperature controller 7 may have only one of the heater and the Peltier element and perform only heating or cooling. Further, the heating means may be one that is heated via a heating medium instead of the directly heated heater, or the cooling means may be one that is cooled via a refrigerant instead of the Peltier element. In this embodiment, the temperature controller 7 is attached to the outside of the liquid pipe 4 and the working fluid 5a is heated via the liquid pipe 4. However, the present invention is not limited to this, and the working fluid inside the liquid pipe 4 is used. You may make it heat 5a directly.
[0022]
Further, a temperature sensor 8 that detects the temperature of the working fluid is provided near the inlet of the evaporator 1, and the detection result is supplied to the controller 9. The controller 9 controls heating or cooling by the temperature regulator 7 according to the detection result of the temperature sensor 8.
[0023]
Here, the temperature difference between the liquid-phase working fluid 5 a at the outlet of the condenser 2 and the gas-phase working fluid 5 b at the outlet of the evaporator 1 is the amount of heat load on the evaporator 1 and the phase change in the evaporator 1. Determined by the ratio of quantities. That is, a temperature difference corresponding to the difference between the heat load and the phase change amount occurs between the outlet of the condenser 2 and the outlet of the evaporator 1.
[0024]
And in the apparatus of this embodiment, by supplying or removing heat to the working fluid in the liquid pipe 4, the ratio of the apparent heat load to the evaporator 1 and the phase change amount is changed, Temperature control of the evaporator 1 is performed.
[0025]
That is, when the temperature sensor 8 detects a temperature drop of the heat absorption source as a temperature drop of the working fluid in the liquid pipe 4, the controller 9 heats the liquid pipe 4 by the temperature controller 7 (for example, a heater). As a result, the temperature of the working fluid from the outlet of the condenser 2 is increased, the apparent phase change amount and the heat load amount are reduced, and the temperature difference for the sensible heat is increased. On the contrary, when the temperature sensor 8 detects the rise in the temperature of the heat absorption source as the working fluid temperature rises in the liquid pipe 4, the liquid pipe 4 is cooled by the temperature regulator 7 (for example, a Peltier element), and the apparent phase change amount Increase the ratio of heat load to reduce the temperature difference of sensible heat.
[0026]
Thus, in the present embodiment, the temperature of the working fluid 5a at the inlet of the evaporator 1 can be adjusted by the temperature adjuster 7. Therefore, the heat absorption from the heat source in the evaporator 1 can be arbitrarily controlled. For example, the temperature of the working fluid 5a at the inlet of the evaporator 1 can always be kept constant by controlling the heating or cooling by the temperature regulator 7 so that the temperature detected by the temperature sensor 8 becomes a constant temperature. Therefore, it is possible to control the heat absorption from the heat source by eliminating the influence of the temperature change of the heat absorption source.
[0027]
【The invention's effect】
As described above, according to the present invention, the temperature of the working fluid flowing into the evaporator can be adjusted by the temperature adjusting means. Therefore, it is possible to control the heat absorption from the heat source by eliminating the influence of the temperature change of the heat absorption source.
[0028]
Further, since the temperature adjusting means includes the heater and the Peltier element, the temperature of the working fluid flowing into the evaporator can be arbitrarily controlled by using either the heater or the Peltier element.
[0029]
Further, the temperature of the working fluid can be reliably controlled to a predetermined temperature by detecting the temperature and controlling the temperature adjustment by the temperature adjusting means.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a loop heat pipe according to an embodiment.
[Explanation of symbols]
1 evaporator, 1a wick, 2 condenser, 3 vapor pipe, 4 liquid pipe, 5 working fluid, 6 reservoir, 7 temperature controller, 8 temperature sensor, 9 controller.

Claims (2)

発熱源から吸熱源へ熱を輸送するループヒートパイプであって、
発熱源から吸熱して作動流体を蒸発する蒸発器と、
吸熱源へ放熱し作動流体を凝縮する凝縮器と、
蒸発した気相の作動流体を蒸発器から凝縮器に輸送する蒸気管と、
凝縮した液相の作動流体を凝縮器から蒸発器に輸送する液管と、
加熱手段および冷却手段を有し前記液管内の作動流体を加熱または冷却して温度調節する温度調節手段と、
前記液管内の温度を検出する温度検出手段と、
を有し、
前記温度検出手段の温度検出結果に応じ、前記温度調節手段によって、蒸発器に流れ込む作動流体の温度を所定の温度に調整するループヒートパイプ。
A loop heat pipe that transports heat from a heat source to an endothermic source,
An evaporator that absorbs heat from the heat source and evaporates the working fluid;
A condenser that radiates heat to the heat absorption source and condenses the working fluid;
A vapor pipe for transporting the vaporized working fluid from the evaporator to the condenser;
A liquid pipe for transporting the condensed liquid phase working fluid from the condenser to the evaporator;
Temperature adjusting means having heating means and cooling means for adjusting the temperature by heating or cooling the working fluid in the liquid pipe;
Temperature detecting means for detecting the temperature in the liquid pipe;
Have
A loop heat pipe that adjusts the temperature of the working fluid flowing into the evaporator to a predetermined temperature by the temperature adjusting means according to the temperature detection result of the temperature detecting means .
請求項1に記載のループヒートパイプにおいて、
前記温度調節手段は、ヒータおよびペルチェ素子を有する加熱冷却手段であるループヒートパイプ。
In the loop heat pipe according to claim 1,
The temperature adjusting means is a loop heat pipe which is a heating and cooling means having a heater and a Peltier element.
JP2000372333A 2000-12-07 2000-12-07 Loop heat pipe Expired - Lifetime JP4204187B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000372333A JP4204187B2 (en) 2000-12-07 2000-12-07 Loop heat pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000372333A JP4204187B2 (en) 2000-12-07 2000-12-07 Loop heat pipe

Publications (2)

Publication Number Publication Date
JP2002174492A JP2002174492A (en) 2002-06-21
JP4204187B2 true JP4204187B2 (en) 2009-01-07

Family

ID=18841897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000372333A Expired - Lifetime JP4204187B2 (en) 2000-12-07 2000-12-07 Loop heat pipe

Country Status (1)

Country Link
JP (1) JP4204187B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4032954B2 (en) * 2002-07-05 2008-01-16 ソニー株式会社 COOLING DEVICE, ELECTRONIC DEVICE DEVICE, SOUND DEVICE, AND COOLING DEVICE MANUFACTURING METHOD
JP5344847B2 (en) * 2008-04-04 2013-11-20 富士通株式会社 Cooling system
JP5287638B2 (en) * 2009-09-25 2013-09-11 富士通株式会社 Loop heat pipe and electronic equipment
WO2011061952A1 (en) 2009-11-19 2011-05-26 富士通株式会社 Loop heat pipe system and information processing device
JP5321716B2 (en) * 2012-06-18 2013-10-23 富士通株式会社 Loop heat pipe and electronic equipment
JP6304328B2 (en) * 2016-08-31 2018-04-04 マツダ株式会社 Engine exhaust heat recovery device
WO2018047537A1 (en) * 2016-09-09 2018-03-15 株式会社デンソー Device temperature control device
JP2019207032A (en) * 2016-09-23 2019-12-05 株式会社デンソー Apparatus temperature control device
WO2018168276A1 (en) * 2017-03-16 2018-09-20 株式会社デンソー Device temperature adjusting apparatus
KR102367376B1 (en) * 2020-07-20 2022-02-23 한국항공우주연구원 Controlling the temperature of a primary evaporator of Cryogenic Loop Heat Pipe

Also Published As

Publication number Publication date
JP2002174492A (en) 2002-06-21

Similar Documents

Publication Publication Date Title
JP5061911B2 (en) Loop heat pipe and electronic equipment
JP4204187B2 (en) Loop heat pipe
US5159972A (en) Controllable heat pipes for thermal energy transfer
JP4875714B2 (en) Precision temperature control device
US6550530B1 (en) Two phase vacuum pumped loop
US5289692A (en) Apparatus and method for mass flow control of a working fluid
US5522231A (en) Apparatus and method for mass flow control of a working fluid
US20090288801A1 (en) Capillary Pumped Diphasic Fluid Loop Passive Thermal Control Device with Thermal Capacitor
JPH07218160A (en) Heat pipe type vehicle seat heater
US20070204974A1 (en) Heat pipe with controlled fluid charge
JP2014052110A (en) Heat exchanger and electronic equipment
JP2002054860A (en) Thermostatic expansion valve
JP5321716B2 (en) Loop heat pipe and electronic equipment
JP6095095B2 (en) Heat exchangers and electronics
JPS58500771A (en) Method and apparatus for controlling operation of a temperature-regulated expansion valve
JP5266455B2 (en) Temperature control device
JPH06123567A (en) Heat exchanging structure proper to liquid storage tank
US20080185371A1 (en) Fluid warmer
JPH08261594A (en) Chemical heat storage apparatus
JPH11151223A (en) Regulator for regulating flow rate and method therefor
JP2009115442A (en) Temperature adjusting device
JP2006292337A (en) Heat pipe device
JP2002181469A (en) Looped heat pipe
KR101262860B1 (en) Adiabatic chamber for micro machining device using saturated liquid and method for maintaining temperature of the same
JP2008309465A (en) Temperature control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050629

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081014

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081014

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4204187

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term