JP4204027B2 - Broadcast receiving method and broadcast receiver - Google Patents

Broadcast receiving method and broadcast receiver Download PDF

Info

Publication number
JP4204027B2
JP4204027B2 JP2001031595A JP2001031595A JP4204027B2 JP 4204027 B2 JP4204027 B2 JP 4204027B2 JP 2001031595 A JP2001031595 A JP 2001031595A JP 2001031595 A JP2001031595 A JP 2001031595A JP 4204027 B2 JP4204027 B2 JP 4204027B2
Authority
JP
Japan
Prior art keywords
receiver
sub
signal
station
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001031595A
Other languages
Japanese (ja)
Other versions
JP2002237757A (en
Inventor
圭太 江部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alpine Electronics Inc
Original Assignee
Alpine Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpine Electronics Inc filed Critical Alpine Electronics Inc
Priority to JP2001031595A priority Critical patent/JP4204027B2/en
Publication of JP2002237757A publication Critical patent/JP2002237757A/en
Application granted granted Critical
Publication of JP4204027B2 publication Critical patent/JP4204027B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、AM放送、或いはFM放送等を受信する放送受信方法及び放送受信機に関し、特に希望局の放送受信時に混入する隣接妨害電波の影響を除き、出力オーディオ特性を良好に保つようにした放送受信方法及び放送受信機に関する。
【0002】
【従来の技術】
例えばAM放送は9kHz間隔に放送局が割り振られており、その間隔が比較的狭いので、受信希望局の周波数に隣接して大出力の放送局が存在すると混信を起こす隣接妨害と呼ばれる受信障害が発生することがある。また、FM放送においてもFM多重放送を含め放送局が増加し、他の放送局との周波数間隔が近接してきており、それにより放送受信機で受信する希望放送局の同調周波数信号と、隣接する他の放送局の周波数信号との間が接近し、受信希望放送局に対して隣接する他の放送局の周波数信号の干渉や混信が発生し、良好な受信ができなくなる隣接妨害が多くなってきている。
【0003】
この時混信する隣接妨害電波は、必ずしも受信希望局に隣接して割り当てられている局とは限らず、受信希望局の周波数とは少し離れた周波数ではあっても、各地域の事情により受信希望局に比較的近接していることにより、また近接する他の局の電波が比較的強いとき等に混信することも多い。このように受信希望局の周波数に比較的近接し、受信希望局の受信電波に混信することにより適切な受信を妨害する総称を一般に隣接妨害と呼んでいる。
【0004】
このような隣接妨害による混信を防止するため従来の放送受信機においては、例えば受信した電波の強さを表すS−メータ(Signal Strength Meter)を用いた電界強度レベル検出器の信号等により隣接妨害信号のレベルを検出し、通過する周波数帯域を異ならせたフィルタを選択することにより対処していた。
【0005】
即ち、例えば図8に示すFM放送受信機のように、アンテナ40で受信した電波の高周波成分を高周波増幅器41で増幅し、これを混合器42に入力する。一方、ユーザが操作する選局部43におけるシークアップ、シークダウンの信号をシステム制御部44が入力し、それに対応してPLL(Phase Locked Loop)回路45において周波数シンセサイザ方式の局部発信器46を作動し、デジタル制御によって一定の周波数ステップ毎の受信周波数の変化を指示入力信号に対応する方向に行い、その周波数信号を混合器42に入力する。混合器42においては、前記高周波増幅された受信電波とこの周波数信号を混合して10.7MHzの中間周波信号に変換する。
【0006】
この信号を中間周波増幅・検波回路47で増幅し検波して、帯域幅別フィルタ選択部48に出力する。この帯域別フィルタ選択部48には例えば帯域幅が5kHzの広帯域フィルタ50と、帯域幅が2.0Khz〜2.5kHzの狭帯域フィルタ51の2種類の帯域フィルタを備えており、フィルタセレクタ52においていずれかの帯域のフィルタを選択する。なお、この帯域別フィルタは必要に応じて更に多くの種類を設け、適宜選択して使用することもある。
【0007】
電界強度レベル検出器53においては、中間周波増幅・検波回路47からの信号を整流して得られる前記S−メータ信号に含まれている100kビートのノイズ成分を検出し、隣接妨害レベル検出器54ではこの信号により受信した電波が隣接妨害を受けている程度を検出する。なお、前記電界強度レベル検出器53において、その電界強度が例えば2μV以下であるときには受信状態が悪いと判別し、後述する帯域幅切替制御回路55に帯域フィルタ選択指示信号を出力する。
【0008】
帯域幅切替制御回路55においては、上記のように隣接妨害レベル検出器54における信号により、受信電波が所定値以上隣接妨害を受けていると判別したときには、帯域別フィルタ選択部48におけるフィルタセレクタ52に対して通過する帯域が狭い狭帯域フィルタ51を選択するように指示する。また、受信電波が受けている隣接妨害が所定値以下であると判別されたときには、フィルタセレクタ52において広帯域フィルタ50を選択するように指示する。
【0009】
上記のように、帯域別フィルタ選択部48において、受信を希望する局の受信電波が隣接妨害を受けていることにより良好な受信を行うことができないとき等には、狭帯域フィルタ51を選択することにより隣接妨害成分をできる限り通さないようにしている。
【0010】
【発明が解決しようとする課題】
上記のような従来の放送受信機においては、受信した受信希望電波に対して隣接妨害を受けていることにより良好な受信を行うことができないと判別したときには、予め用意した通過帯域幅の異なる帯域フィルターの選択を行い、隣接妨害を受けているときには帯域幅の狭いフィルターを選択しているが、このように帯域幅が狭いフィルターが選択されると、隣接妨害によるノイズの影響を減少させることができるものの、受信希望局の帯域幅が狭くなるため、こもった不明瞭な音となる問題点があった。
【0011】
したがって、本発明は、隣接妨害を受けている受信希望局の放送信号を、隣接妨害を除去しつつ且つオーディオ特性を変化させず、明瞭に受信することができる放送受信方法及び放送受信機を提供することを主たる目的としている。
【0012】
【課題を解決するための手段】
本発明に係る放送受信方法は、上記課題を解決するため、主受信機と副受信機を備え、主受信機の受信電界強度の変動を検出し、少なくとも主受信機の受信電界強度の変動が所定以上であることを検出したとき隣接妨害除去処理を行うことを判別し、隣接妨害除去処理を行うときには副受信機の受信局を主受信機で受信している局に近い局から順に変更し、副受信機の受信電界強度の変動を検出して、変動が所定以上であることを検出したとき副受信機の受信局をロックし、このときの主受信機の受信電波に含まれる隣接妨害電波の混信率を求め、この混信率と同じ値で副受信機のオーディオ信号を含むMPX信号をアッテネートし、主受信機のオーディオ信号を含むMPX信号から前記副受信機のオーディオ信号を含むMPX信号を減算して出力するようにしたものである。
【0013】
また、本発明に係る放送受信機は、利用者が指定した局の電波を受信する主受信機と、主受信機の受信電界強度の変動を検出する主受信機電界強度変動検出部と、少なくとも前記主受信機電界強度変動検出部において所定以上の変動を検出したとき、隣接妨害除去処理を行うことを判別する隣接妨害除去処理判別部と、前記隣接妨害除去処理判別部において隣接妨害除去処理を行う出力時に、主受信機で受信している局の周波数に近い側から順に受信局の変更を指示する副受信機受信局変更指定部と、前記副受信機受信局変更指定部で指定した局の電波を受信する副受信機と、副受信機の受信電界強度の変動を検出する副受信機電界強度変動検出部と、前記副受信機電界強度変動検出部において所定以上の変動を検出したとき、前記副受信機受信局変更定部での受信局の変更を停止する受信局ロック指定部と、前記受信局の変更を停止したときの主受信機の受信電波に含まれる隣接妨害電波の混信率を求める混率演算部と、前記混信率演算部で求めた混信率に副受信機のオーディオ信号を含むMPX信号をアッテネートするッテネータと、前記受信局の変更を停止したときの主受信機のオーディオ信号を含むMPX信号から副受信機の前記アッテネートされたオーディオ信号を含むMPX信号を減算する減算処理部と、主受信機からのオーディオ信号を含むMPX信号と、この受信信号を前記減算処理部で減算処理したオーディオ信号を含むMPX信号とを切り替えて出力する出力受信信号切替部とを備えたものである。
【0014】
また、本発明に係る他の放送受信機は、主受信機での受信信号のパイロット信号の変動を検出するパイロット信号変動検出部を備え、前記隣接妨害除去処理判別部では更に、前記パイロット信号変動検出部において所定以上の変動を検出しないときの両条件を満たしたときに隣接妨害除去処理を行うと判別するようにしたものである。
【0015】
また、本発明に係る他の放送受信機は、前記副受信機受信局変更指定部では、主受信機で受信している局の周波数に近い側から放送局割り当て周波数間隔で順に受信局の変更を指定するようにしたものである。
【0016】
また、本発明に係る他の放送受信機は、各地域で受信可能な局と各局の送信電波周波数を記録したメモリを備え、前記副受信機受信局変更指定部では、前記メモリのデータに基づき、主受信機で受信している局の周波数に近い側から順に前記受信可能な局に受信局の変更を指定するようにしたものである。
【0017】
また、本発明に係る他の放送受信機は、前記隣接妨害除去判別部で隣接妨害除去処理を行わないと判別したときには、副受信機は主受信機と同じ局を受信するようにしたものである。
【0018】
また、本発明に係る他の放送受信機は、前記混信率演算部では、主受信機の受信電界強度と、副受信機の受信電界強度により隣接妨害電波の混信率を推定するようにしたものである。
【0019】
また、本発明に係る他の放送受信機は、前記減算処理部からの信号に含まれるパイロット信号の変動を検出するパイロット信号変動検出部を備え、当該パイロット信号変動検出部におけるパイロット信号の変動が所定の範囲内であるとき、副受信機が主受信機の隣接妨害局を受信していると判定するものである。
【0020】
【発明の実施の形態】
本発明の実施の形態を図面に沿って説明する。図1は本発明の放送受信機の一例としてのFM放送受信機を示し、特に本発明において隣接妨害を除去するための機能をなす構成を主体に示した機能ブロック図である。同図においてこの放送受信機には主受信機2と副受信機3を備え、通常は操作部4からシステムコントローラ5に対して入力された利用者からの、例えば特定のプリセットキーによる選択信号、或いはシークアップ、シークダウンの操作信号に基づき、受信局指定部6は特定の受信局の指示、或いは初期周波数から所定の周波数間隔で受信指示周波数を増加方向、或いは減少方向に受信局を変化させる。この受信局指定部6からの信号は、主受信機2に対しては直接の指示信号とし、副受信機3に対しては後に述べるような別途の受信局指定信号に基づいて変更する受信局変更部7を介して、副受信機3に対する受信局の指示信号とする。
【0021】
主受信機2からはオーディオ信号を含むMPX信号と、主受信機2がアンテナ1から受信した希望局の電波の強さを示す電界強度の信号を出力する。そのうちMPX信号は、DSP10内における後述するMPX信号切替器28を介してオーディオDSP処理部30に入り、従来から行われている各種オーディオ出力用の信号処理を行い、アンプ等へのオーディオ出力とする。また、パイロット信号変動検出部13においてはこのMPX信号内のパイロット信号を検出して入力し、そのレベル変動をレベル変動検出部11で検出する。
【0022】
一般にFM電波が多重反射して受信されるとき、FMステレオ放送信号がマルチパス歪みを生じ、FM復調部から得られる複合ステレオ信号はマルチパス妨害の影響を受けて位相変動する。この位相変動の度合いはマルチパス妨害の程度に応じたものとなり、したがってMPXのステレオ信号に含まれるパイロット信号の位相変動の度合いを検出することにより、受信した電波がマルチパスノイズを受けている程度を知ることができる。
【0023】
前記パイロット信号変動検出部13におけるレベル変動検出部11でマルチパスを受けてパイロット信号が変動している状態を検出し、設定値比較部12ではその変動の状態が予め設定した値の範囲内であるか否かを比較し、その信号を本発明における隣接妨害除去処理の作動を行うか否かの判別を行う隣接妨害除去処理判別部20に出力する。パイロット信号変動検出部13でパイロット信号の変動が設定値よりも大きいと判別されたときには、現在受信している電波の状態は後述する隣接ノイズの影響の他にマルチパスノイズの影響も大きく受けており、隣接妨害除去処理判別部20における、本発明による隣接妨害処理を行うことは適切ではない旨の判断を行う基礎データとする。
【0024】
電界強度信号はDSP10内における主受信機電界強度変動検出部16に入力し、レベル変動検出部14において前記パイロット信号変動検出部13と同様に入力信号のレベル変動を検出する。なお、この電界強度信号のレベル変動を検出するには種々の手段を採用することができるが、例えば電界強度信号の振幅を常時検出し、その振幅の所定時間内で大きく振れた頻度とその高低差に基づく変動値を得て、その値に基づくデータを得ることもできる。この電界強度の変動が大きいときは、現在受信している受信希望局の電波が隣接妨害を受けていると推定することができるので、設定値比較部15で得られたこの信号を隣接妨害除去処理判別部20に入力し、この判別を行う基礎データとする。
【0025】
一方、副受信機3においては、通常作動時には主受信機2と同じ局を受信しており、この電界強度信号は前記主受信機2の電界強度の変動を検出する主受信機電界強度変動検出部16と全く同じ構成をなす副受信機電界強度変動検出部19を備えており、そのレベル変動検出部17、及び設定値比較部18の作動も前記と同様である。この設定値比較部18で得られた副受信機3の電界強度の変動の程度を示す信号も、前記と同様に隣接妨害除去処理判別部20に入力され、判別の基礎データとされる。
【0026】
副受信機3からのオーディオ信号であるMPX信号は、主受信機2から出力されその後にオーディオ出力信号とされるMPX信号と異なり、後に述べるように主受信機のMPX信号に対して減算処理を行うための信号として使用される。この副受信機3からのMPX信号は、アッテネータ23において、主受信機と副受信機の電界強度のデータに基づいて混信率を演算する混信率演算部9からの信号に基づきアッテネート量設定部22によって設定されたアットネート量で減衰処理され、遅延器25を介してMPX信号減算処理部26に出力する。
【0027】
MPX信号減算処理部26においては、主受信機2のMPX信号も遅延器24を介して同期を取りながら入力しており、この内部では後述するように主受信機のMPX信号から、これと同期し、且つ所定のアッテネート量でアッテネートされたMPX信号をシステムコントローラ5の信号により減算処理し、これをMPX信号切替器28における1つの選択出力信号とする。MPX信号減算処理部26においては、隣接妨害除去処理判別部20において後述するような条件を満した旨の出力信号により作動し、同時に隣接妨害除去処理判別部20は出力信号切替部27を作動し、このときこの減算処理した信号をオーディオDSP処理部30に出力し、オーディオ信号として外部に出力する。
【0028】
MPX信号減算処理部26において減算処理されたMPX信号は、パイロット信号変動検出部32に入力され、減算処理後のMPX信号に含まれるパイロット信号の変動具合を検出し、隣接妨害除去処理判別20に入力され、判別の基礎データとされる。減算処理後のMPX信号に含まれるパイロット信号の変動が所定値より小さい場合に、副受信機3の受信局が妨害局であると判別することができる。
【0029】
前記隣接妨害除去処理判別部20からは、後述する所定の条件のとき副受信機受信局変更指定部21に信号を出力し、副受信機受信局変更指定部21ではこの信号を入力する毎に、予め地域別に受信可能な放送局とその放送局の周波数を周波数順に記憶している地域別受信可能放送局周波数リストメモリ29のデータを後に述べるような順に読み出し、或いは所定の離間周波数順にこれを受信局変更部7に出力して副受信機3の受信局を変更する。また、副受信機電界強度変動検出部19において電界強度のレベル変動が設定値以上であると判別されたときには、受信局ロック指定部31が副受信機受信局変更指定部21における変更指定を停止させ、受信局をロックする。
【0030】
上記のような構成をなす放送受信機において、その作動は例えば図2に示す作動フローに従って行うことができる。以下、その作動フローを、前記図1のブロック図、及び図3〜図7の各種作動を示す図と共に説明する。
【0031】
この放送受信機の放送受信中の処理においては、最初主受信機の電界強度検出を行い(ステップS1)、次いでこの電界強度信号に基づいて電界強度のレベル変動の検出を行い(ステップS2)、更にこの電界強度のレベル変動が設定値以上であるか否かを判別する(ステップS3)。これらの処理は、前記のように図1における主受信機電界強度変動検出部16において行われる。
【0032】
上記電界強度の変動が設定値以上ではないと判別されたときにはステップS18に進み、現在受信している主受信機の受信MPXに対して隣接ノイズ処理を行わずにそのままオーディオ信号として出力する。なお、その際、必要に応じてマルチパスノイズ除去処理等を別途行うことができるのは当然である。
【0033】
一方、前記電界強度の変動が設定値以上であるか否かの判別において、設定値以上の変動があると判別されたときには、第1の処理として主受信機のパイロット信号の検出を行い(ステップS4)、次いでそのパイロット信号の変動を検出し(ステップS5)、更にその変動は設定範囲内であるか否かの判別を行う(ステップS6)。これらの処理は、図1におけるパイロット信号変動検出部13において行われる。
【0034】
この判別の結果、主受信機のパイロット信号の変動が設定値以上であると判別されたときには、主受信機が受信している電波は山やビル等に反射してきた電波によって大きく影響を受けてマルチパスノイズを生じている電波であるので、本発明による後述するような減算処理による隣接妨害除去処理は困難であるとみなして再びステップS1に戻り、少なくともマルチパスノイズが安定するまで前記の処理を繰り返す。前記判別の結果、パイロット信号の変動が設定範囲内であると判別されたときには、後述する信号と共に次のステップ11に進む。
【0035】
前記ステップS3において、主受信機の電界強度のレベル変動が設定値以上であると判別されたときの第2の処理として、副受信機の電界強度の検出を行う(ステップS7)。次いでその電界強度のレベル変動を検出し(ステップS8)、更にその変動は設定値以上であるか否かの判別を行う(ステップS9)。これらの処理は、図1における副受信機電界強度変動検出部19において行われる。
【0036】
この判別の結果、副受信機の電界強度のレベル変動が設定値以上ではないと判別されたときには、次いでこの判別が第1回目の判別処理であるか否かを判別する(ステップS10)。即ち、最初主受信機と副受信機は同一の局を受信しているため、前記のステップ3において主受信機の電界強度のレベル変動が設定値以上であると判別されたときには、当然この時の副受信機の電界強度のレベル変動も設定値以上であるので、第1回目の判別に限ってステップS19に進み、副受信機の受信周波数を所定順に変更する処理を行う。また、前記ステップS9において副受信機の電界強度のレベル変動が設定値以上ではないと判別されたときにもステップS19に進み、前記と同様に副受信機の受信周波数を所定順に変更する。なお、この時は前記ステップS10において第1回目の判別処理ではないとされた後の処理となる。
【0037】
ステップS19における副受信機の受信周波数を所定順に変更する処理は、副受信機受信局変更指定部21において行われ、その際には前記のように予め用意された地域別受信可能放送局周波数リストメモリ29のデータを用いて行われる。但し、このようなデータを用いることなく、予め設定した所定の周波数間隔で順に受信周波数を変更することもできる。図4にはこの作動をわかりやすく説明するために受信希望局から100kHzずつ離れた周波数部分にこの地方で受信できる放送局が存在すると仮定した時の作動例を示しており、前記ステップS10において第1回目(n=1)の判別処理であるとされたときには、受信希望局より100kHz高い周波数に副受信機の受信周波数を変更する。
【0038】
このような変更は図1における受信局変更部7において行われ、ここでは最初受信局指定部6において主受信機2と同じ局が指定されていたものであるが、前記副受信機受信局変更指定部21による指示に従って、受信局の変更を行う。この変更処理の結果、副受信機の受信周波数は希望受信局より100kHz高い周波数の局を受信することとなり、再びステップS7に戻って、前記と同様に副受信機の電界強度のレベル変動が設定値以上であるか否かの判別を行う。その結果未だ設定値以上にならないとき、即ち主受信機が受信している受信希望局の電波に対して隣接妨害を与えている局の電波を受信していないと判別されたときには、再び副受信機の受信周波数を所定順に変更する処理を行う。
【0039】
前記の例においては図4(a)に示されるように、受信可能周波数が100kHz間隔で並んでいるので、次に隣接妨害を与えている可能性の高い、受信希望局の周波数より100kHz低い周波数の局の受信を行う。それでも未だ主受信機の受信希望局に隣接妨害を与えている局を受信していないと判別されたときには、次に可能性の高い受信希望局よりも200kHz高い周波数の局の受信を行う。このような受信周波数の変更処理を繰り返し、図示実施例では5回(n=5)の周波数変更処理によって隣接妨害を与えている局である、受信希望局の周波数よりも300kHz高い周波数の局を受信することとなる。その結果、前記ステップS9において副受信機の電界強度のレベル変動が設定値以上であると判別され、且つステップS10において第1回目の判別処理ではないとされるので、ステップS11に進む。なお、副受信機における受信周波数をシークする作動に際しては、例えば図4(b)に示すように、図1における地域別受信可能放送局周波数リストメモリ29のデータに基づいて、P局、Q局、R局、S局の順にシークを行い、最終的に受信希望局から300kHz離間している隣接妨害局を探し出すこともできる。
【0040】
上記のように、ステップS6において主受信機のパイロット信号の変動が設定値の範囲内であると判別され、しかも前記ステップS9で副受信機の電界強度のレベル変動が設定値以上であると判別され、かつこのステップS9の判別が第1回目の判別処理ではないときにはステップS11において、両信号が同時に入力したか否か、即ち両条件を同時に満たしているか否かを判別する。このうちいずれかが満たされていないとき、即ち片方しか入力されていないときには以降の減算処理を行わず、ステップS1に戻って前記作動を繰り返し、上記条件を満たすまで次の処理を行わない。
【0041】
なお、前記ステップS19において、副受信機の受信周波数を所定順に変更する処理を行う際に、図2に示す実施例においてはステップS7に戻って副受信機の電界強度のレベル変動が設定値以上になるまで繰り返す例を示したが、例えばステップS1まで戻り、主受信機の電界強度のレベル変動が設定値以上であるか否かの検出を行い、先の隣接妨害の状態に変わりはないかを確かめた後に、副受信機で受信する新たな局において電界強度レベルが設定値以上であるか否かの検出を行うようにしても良い。
【0042】
ステップS11において上記条件を満たしていると判別されたときには、副受信機において主受信機の受信希望局に近い順に探し出した特定の局の電界強度のレベル変動が設定値以上であると判別された結果、主受信機に対して隣接妨害を与えている可能性のある局を特定することができるので、副受信機の受信周波数をその局にロックする。即ち、副受信機の受信周波数は主受信機に隣接妨害を与えている可能性のある周波数にロックする(ステップS12)。
【0043】
次いで、上記のようにして主受信機に隣接妨害を与えている可能性のある局に受信をロックした状態における副受信機の電界強度データと、隣接妨害を受けながら受信希望局を受信している主受信機の電界強度データとによって、主受信機が隣接妨害を受けている率を演算し、これを副受信機で現在受信しているMPX信号に対するアッテネート量として設定する(ステップS13)。このアッテネート量の設定は、図1におけるアッテネート量設定部22において行われ、その設定に際しては混信率演算部9に入力されている主受信機2の電界強度データ、及び副受信機3の電界強度データとによって演算し、アッテネート量の設定を行う。
【0044】
その後、主受信機のMPX信号から、前記アッテネートした副受信機のMPX信号を減算し(ステップS14)、それにより隣接妨害を受けている主受信機のMPX信号から隣接妨害分を除去する。その原理は図3に示しており、同図において主受信機のMPX信号は図中fmとして示している。この信号は受信希望局のMPX信号faと隣接妨害としてのMPX信号fb’が加算されている(fm=fa+fb’)。
【0045】
また、主受信機に隣接妨害を与えている局を受信している副受信機のMPX信号は図中fsとして示されており、この信号は隣接妨害を与えている局の電波を受けたMPX信号のfbと、相互に隣接妨害を与え合うことによる主受信機で受信している受信希望局による隣接妨害としてのMPX信号fa’とが加算されている(fs=fa’+fb)。
【0046】
この時の主受信機と副受信機の隣接妨害は相互に同程度であり、この混信の度合いをJとすると、前記fb’は(J×fb)で表され、同様に前記fa’は(J×fa)で表される。なお、同図においてfmとfsは後の演算を簡略にするため同じ大きさで示しているが、主受信機と副受信機のMPXの大きさが異なるときには、増幅手段を用いることにより同一レベルとすることができる。
【0047】
上記のようにして表される副受信機のMPX信号fsに対して、前記のように主受信機と副受信機の電界強度信号によって演算される混信の度合いJとほぼ同じ値に設定したアッテネート量Kによってアッテネート(減衰)する。その結果、図3に示されるように、副受信機のアッテネートしたMPX信号はK×fsで表され、その信号の成分を見ると、前記fa’がK倍のアッテネートによりfa”(fa”=K×fa’)となり、fbもK倍のアッテネートによりfb”(fb”=K×fb)となっている。ここで、K≒Jに設定すると、特にfb”は主受信機に隣接妨害を与えているMPXのfb’とほぼ同一となる。
【0048】
したがって、主受信機で受信しているMPX信号のfmから、前記副受信機のアッテネートしたMPX信号を減算してfm−K×fsの信号を得ると、同図において隣接妨害が除去された主受信機のMPX信号として示されるように、主受信機のMPX信号fmから隣接妨害fb’が除去される。なお、この時主受信機で受信した受信希望局のMPX信号もfa”だけ減少した信号となるが、従来の狭い帯域のフィルタを通す場合よりもMPX信号に与える影響は少なく、また、少なくとも隣接妨害を除去する効果の方が遙かに大きい。
【0049】
このような隣接妨害の除去作用を、実際の受信電波信号を模擬的に表したものが図5〜図7である。即ち、図5において主受信機で受信する受信希望局の波形を第1周波数の波形としてfaで示している。また、この主受信機に混入して隣接妨害を与えている局から送信される本来の波形を第2周波数の波形としてfbで示している。
【0050】
これらの波が互いに隣接妨害となるとき、前記のように混信の度合いをJとすると、各々振幅のみが減少したJ×faと、J×fbの波形となって隣接妨害を行うこととなる。このようにして隣接妨害を受けている主受信機の信号は図6(a)に示されるように、前記第1周波数とこれに隣接ノイズとなっている第2周波数の合成波となる。また、同様に主受信機に隣接妨害を与えている局を受信している副受信機の信号は同図(b)に示されるように、前記第2周波数とこれに対して隣接ノイズとなっている第1周波数の合成波となる。これらの合成波は、各々の図において太線で示されている。
【0051】
このうち、前記図6(b)で示される合成波に対して前記のようにK倍のアッテネートを行うと、図7(a)に示された前記図6(b)における合成波が、図7(b)に示されるようにその振幅が減少する。この波が減算補正用の波として、前記図6(a)の合成波から減算を行う。その結果図7(c)の太線で示されるように、隣接妨害を受けている図6(a)の合成波から隣接妨害を除去した、ほぼ図5においてfaとして示される本来の信号波と同じ信号波を得ることができることがわかる。
【0052】
前記ステップS14において減算処理されたMPX信号は、上記のような本発明の基本原理により作動し、また前記模擬的な波形に表されるように処理される結果隣接ノイズが原理的には除去されるが、更にこの実施例においては減算処理波形中に含まれるパイロット信号の変動を検出し、減算処理後のMPX信号のパイロット信号の変動が所定値以下か否かを判別する(ステップS15)。このパイロット信号の変動は図1における減算処理波形中のパイロット信号変動検出部32において検出し、隣接妨害除去処理判別部20に出力する。隣接妨害除去処理判別部20では、パイロット信号の変動が所定値以下である場合、副受信機3で受信中の局が妨害局であると判定し、ステップS16へ移行する。また、減算処理後のMPX信号のパイロット変動が所定値を超えている場合はステップS7に戻り、副受信機の受信局を変更して前記と同様の処理を継続する。
【0053】
ステップS16では、減算処理したMPX信号によりオーディオ出力を行い、更に受信機の電源をオフする等による受信終了の指示があるか否かを判別し(ステップS19)、受信が継続しているときには再びステップS1に戻り、主受信機の電界強度検出から前記処理を繰り返す。また、受信終了の指示があったときには、このフローを終了する(ステップS20)。
【0054】
上記実施例においては、本発明をFM放送受信機に適用した例を示したが、AM放送受信機に対しても同様に適用することができる。なお、そのときにはパイロット信号変動等を利用することはなくなる。また、本発明の主要機能部を備えることができる放送受信機であるならば、その他の種々の放送受信機にも同様にして適用することができる。
【0055】
【発明の効果】
本発明による放送受信方法及び放送受信機は、隣接妨害を受けている受信希望局の受信信号から隣接妨害の信号成分を確実に除去することができ、且つ受信希望局の受信信号のオーディオ特性を変化させることもない。
【0056】
また、主受信機での受信信号のパイロット信号の変動を検出するパイロット信号変動検出部を備え、前記隣接妨害除去処理判別部では更に、前記パイロット信号変動検出部において所定以上の変動を検出しないときの両条件を満たしたときに隣接妨害除去処理を行うと判別する放送受信機においては、主受信機の受信電波にマルチパスノイズが多いときには本発明による上記処理を行わず、最適な条件の時のみ上記隣接妨害の除去処理を行うことができる。
【0057】
また、前記副受信機受信局変更指定部で、主受信機で受信している局の周波数に近い側から放送局割り当て周波数間隔で順に受信局の変更を指定する放送受信機においては、主受信機に隣接妨害を与えている局を確実に検出することができる。
【0058】
また、各地域で受信可能な局と各局の送信電波周波数を記録したメモリを備え、
前記副受信機受信局変更指定部で、前記メモリのデータに基づき、主受信機で受信している局の周波数に近い側から順に前記受信可能な局に受信局の変更を指定する放送受信機においては、主受信機に隣接妨害を与えている局を確実に、且つ素早く検出し、隣接妨害除去処理を速く行うことができる。
【0059】
また、前記隣接妨害除去判別部で隣接妨害除去処理を行わないと判別したときには、副受信機が主受信機と同じ局を受信する放送受信機においては、予め副受信機を隣接妨害除去処理のため待機させておくことができ、必要なときに直ちに処理を開始することができ、また、主受信機に隣接妨害を与えている局を探し出す際、副受信機が現在受信している局の近くから探し出す処理を行うことができ、隣接妨害を与えている局を素早く検出することができる。
【0060】
また、前記混信率推定部で、主受信機の受信電界強度と、副受信機の受信電界強度により隣接妨害電波の混信率を求める放送受信機においては、混信率を確実に求めることができ、この値に基づく副受信機の受信信号に対するアッテネート量を正確に求めることができるので、隣接妨害除去処理を確実に行うことができる。
【0061】
また、前記減算処理部からの信号に含まれるパイロット信号の変動を検出するパイロット信号変動検出部を備え、当該パイロット信号変動検出部におけるパイロット信号の変動が所定の範囲内であるとき、副受信機が主受信機の隣接妨害局を受信していると判定する放送受信機においては、前記減算処理部の信号に含まれるパイロット信号の変動を検出することにより副受信機が妨害局を受信したことを確実に判定することができ、隣接妨害を確実に除去することができる。
【図面の簡単な説明】
【図1】本発明による放送受信機の実施例の機能ブロック図である。
【図2】本発明の実施例の作動フロー図である。
【図3】本発明による隣接妨害除去の基本原理を示す図である。
【図4】本発明により隣接妨害を与えている局を探す手法を示す図であり、(a)は副受信機の受信周波数を所定離間周波数で順に探す態様の図であり、(b)は受信可能局を順に探す態様の図である。
【図5】本発明により隣接妨害が除去される例における、受信希望周波数と隣接妨害を与えている周波数の信号波形を示す図である。
【図6】本発明により隣接妨害が除去される受信信号の例における、隣接ノイズが混入している受信希望局を受信したときの信号波形と、隣接妨害を与えている局を受信したときの信号波形を示す図である。
【図7】本発明により隣接妨害が除去される受信信号の例における、隣接妨害を与えている局を受信した信号をアッテネートした信号波形と、この信号波形を隣接ノイズが混入している受信希望局の信号波形から減算することにより隣接妨害が除去されていることを示す図である。
【図8】従来の放送受信機における隣接妨害処理の1例を示す機能ブロック図である。
【符号の説明】
2 主受信機
3 副受信機
5 システムコントローラ
6 受信局指定部
7 受信局変更部
9 混信率演算部
10 DSP
11 レベル変動検出部
12 設定値比較部
13 パイロット信号変動検出部
16 主受信機電界強度変動検出部
19 副受信機電界強度変動検出部
20 隣接妨害除去処理判別部
21 副受信機受信局変更指定部
22 アッテネート量設定部
23 アッテネータ
24 遅延器
25 遅延器
26 MPX信号減算処理部
27 出力信号切替部
28 MPX信号切替部
30 オーディオDSP処理部
31 受信局ロック指定部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a broadcast receiving method and a broadcast receiver for receiving AM broadcast, FM broadcast, etc., and in particular, the output audio characteristics are kept good except for the influence of adjacent interfering radio waves mixed when receiving a broadcast of a desired station. The present invention relates to a broadcast receiving method and a broadcast receiver.
[0002]
[Prior art]
For example, in AM broadcasting, broadcasting stations are allocated at intervals of 9 kHz, and the intervals are relatively narrow. Therefore, if there is a high-power broadcasting station adjacent to the frequency of the station desired to receive, there is a reception failure called adjacent interference that causes interference. May occur. Also, in FM broadcasting, the number of broadcasting stations including FM multiplex broadcasting has increased, and the frequency interval with other broadcasting stations has become close, thereby adjacent to the tuning frequency signal of the desired broadcasting station received by the broadcast receiver. The frequency signals of other broadcasting stations are close to each other, causing interference and interference with the frequency signals of other broadcasting stations adjacent to the desired broadcasting station, resulting in an increase in adjacent interference that prevents good reception. ing.
[0003]
The adjacent interfering signal that interferes at this time is not necessarily the station assigned adjacent to the station you want to receive, but you may want to receive it depending on the circumstances of each region, even if the frequency is slightly different from the frequency of the station you want to receive. Interference often occurs due to relatively close proximity to the station and when the radio waves of other nearby stations are relatively strong. A generic term that interferes with appropriate reception by being relatively close to the frequency of the desired reception station and interfering with the received radio wave of the desired reception station is generally called adjacent interference.
[0004]
In order to prevent such interference due to adjacent interference, in a conventional broadcast receiver, for example, adjacent interference is detected by a signal from an electric field strength level detector using an S-meter (Signal Strength Meter) indicating the strength of the received radio wave. This is dealt with by detecting the signal level and selecting a filter with a different frequency band.
[0005]
That is, for example, as in the FM broadcast receiver shown in FIG. 8, the high frequency component of the radio wave received by the antenna 40 is amplified by the high frequency amplifier 41 and input to the mixer 42. On the other hand, a system control unit 44 inputs a seek up / seek down signal in the channel selection unit 43 operated by the user, and a frequency synthesizer type local transmitter 46 is operated in a PLL (Phase Locked Loop) circuit 45 correspondingly. Then, a change in the reception frequency for each fixed frequency step is performed in a direction corresponding to the instruction input signal by digital control, and the frequency signal is input to the mixer 42. In the mixer 42, the received radio wave amplified by the high frequency and the frequency signal are mixed and converted to an intermediate frequency signal of 10.7 MHz.
[0006]
This signal is amplified and detected by the intermediate frequency amplification / detection circuit 47 and output to the filter selection unit 48 for each bandwidth. The band-specific filter selection unit 48 includes, for example, two types of band filters, a wide band filter 50 having a bandwidth of 5 kHz and a narrow band filter 51 having a band width of 2.0 Khz to 2.5 kHz. Select a filter for either band. It should be noted that this band-by-band filter may be provided with more types as necessary, and may be appropriately selected and used.
[0007]
The electric field strength level detector 53 detects a noise component of 100 k beats included in the S-meter signal obtained by rectifying the signal from the intermediate frequency amplification / detection circuit 47, and an adjacent interference level detector 54. Then, the extent to which the radio wave received by this signal is subject to adjacent interference is detected. The electric field strength level detector 53 determines that the reception state is bad when the electric field strength is 2 μV or less, for example, and outputs a band filter selection instruction signal to the bandwidth switching control circuit 55 described later.
[0008]
In the bandwidth switching control circuit 55, when it is determined from the signal in the adjacent interference level detector 54 that the received radio wave has received adjacent interference of a predetermined value or more as described above, the filter selector 52 in the filter selection unit 48 for each band. Is instructed to select the narrow band filter 51 having a narrow pass band. When it is determined that the adjacent interference received by the received radio wave is equal to or less than a predetermined value, the filter selector 52 instructs the wideband filter 50 to be selected.
[0009]
As described above, the narrowband filter 51 is selected by the band-by-band filter selection unit 48 when good reception cannot be performed because the received radio wave of the station desired to receive has received adjacent interference. In this way, adjacent interference components are prevented from passing through as much as possible.
[0010]
[Problems to be solved by the invention]
In the conventional broadcast receiver as described above, when it is determined that good reception cannot be performed due to adjacent interference with the received reception desired radio wave, bands with different passband widths prepared in advance When a filter is selected and a filter with a narrow bandwidth is selected when receiving adjacent interference, if a filter with such a narrow bandwidth is selected, the influence of noise due to adjacent interference may be reduced. Although it was possible, the bandwidth of the desired reception station was narrowed, and there was a problem that the sound became muddy and unclear.
[0011]
Accordingly, the present invention provides a broadcast receiving method and a broadcast receiver that can clearly receive a broadcast signal of a reception-desired station that has received adjacent interference while eliminating adjacent interference and without changing the audio characteristics. The main purpose is to do.
[0012]
[Means for Solving the Problems]
In order to solve the above-described problem, the broadcast receiving method according to the present invention includes a main receiver and a sub-receiver, detects a change in the received electric field strength of the main receiver, and at least changes in the received electric field strength of the main receiver. When it is detected that it is greater than or equal to the predetermined value, it is determined that the adjacent interference removal processing is performed. When the adjacent interference removal processing is performed, the receiving station of the sub-receiver is changed in order from the station closest to the station receiving the main receiver. Detecting fluctuations in the received signal strength of the sub-receiver and locking the sub-receiver's receiving station when the fluctuation is detected to be greater than or equal to the specified value, the adjacent interference included in the radio wave received by the main receiver at this time Obtain the radio wave interference rate, and use the same value as this MPX signal including audio signal Attenuate the main receiver MPX signal including audio signal From the sub receiver MPX signal including audio signal Is output by subtracting.
[0013]
The broadcast receiver according to the present invention includes a main receiver that receives radio waves of a station specified by a user, a main receiver electric field strength fluctuation detection unit that detects fluctuations in the received electric field strength of the main receiver, and at least When the main receiver electric field strength fluctuation detecting unit detects a fluctuation of a predetermined value or more, an adjacent disturbance removing process determining unit for determining that an adjacent disturbance removing process is to be performed, and an adjacent disturbance removing process in the adjacent disturbance removing process determining unit. At the time of output to be performed, the sub-receiver receiving station change specifying unit for instructing the change of the receiving station in order from the side closer to the frequency of the station being received by the main receiver, and the station specified by the sub-receiver receiving station change specifying unit A sub-receiver that receives the radio wave, a sub-receiver electric field strength fluctuation detecting unit that detects fluctuations in the received electric field strength of the sub-receiver, and a sub-receiver electric field strength fluctuation detecting unit that detects a predetermined fluctuation or more. The secondary receiver Receiving station lock designating unit that stops changing the receiving station at the receiving station changing and determining unit, and a cross ratio calculation for obtaining the interference rate of adjacent interfering radio waves included in the received radio wave of the main receiver when the changing of the receiving station is stopped And the interference rate obtained by the interference rate calculation unit to the sub receiver MPX signal including audio signal Of the attenuator that attenuates the main receiver when the change of the receiving station is stopped MPX signal including audio signal Of the secondary receiver from the attenuated MPX signal including audio signal From the main receiver MPX signal including audio signal And the received signal is subtracted by the subtraction processing unit. MPX signal including audio signal And an output reception signal switching unit for switching and outputting.
[0014]
In addition, another broadcast receiver according to the present invention includes a pilot signal fluctuation detection unit that detects a fluctuation of a pilot signal of a received signal at a main receiver, and the adjacent interference removal processing determination unit further includes the pilot signal fluctuation. In the detection unit, it is determined that the adjacent interference removal process is performed when both conditions when a predetermined fluctuation or more is not detected are satisfied.
[0015]
Further, in the other broadcast receiver according to the present invention, in the sub-receiver receiving station change designating unit, the receiving station is changed in order at a frequency interval assigned to the broadcasting station from the side closer to the frequency of the station received by the main receiver. Is specified.
[0016]
Further, another broadcast receiver according to the present invention includes a memory that records a station that can be received in each region and a transmission radio frequency of each station, and the sub-receiver receiving station change designation unit is based on the data in the memory. The change of the receiving station is designated to the receivable stations in order from the side closer to the frequency of the station receiving by the main receiver.
[0017]
Further, in the other broadcast receiver according to the present invention, the sub-receiver receives the same station as the main receiver when it is determined that the adjacent disturbance removal determination unit does not perform the adjacent disturbance removal processing. is there.
[0018]
In another broadcast receiver according to the present invention, the interference rate calculation unit estimates the interference rate of adjacent interfering radio waves from the reception field strength of the main receiver and the reception field strength of the sub-receiver. It is.
[0019]
In addition, another broadcast receiver according to the present invention includes a pilot signal fluctuation detection unit that detects a fluctuation of a pilot signal included in the signal from the subtraction processing unit, and the fluctuation of the pilot signal in the pilot signal fluctuation detection unit is detected. When it is within the predetermined range, it is determined that the sub-receiver is receiving the adjacent interfering station of the main receiver.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an FM broadcast receiver as an example of a broadcast receiver according to the present invention, and is a functional block diagram mainly showing a configuration for performing a function for removing adjacent interference in the present invention. In this figure, this broadcast receiver is provided with a main receiver 2 and a sub-receiver 3, and usually a selection signal from a user input from the operation unit 4 to the system controller 5 by a specific preset key, Alternatively, the receiving station designation unit 6 changes the receiving station in the direction of increasing or decreasing the receiving instruction frequency at a predetermined frequency interval from the initial frequency or from the initial frequency based on the seek up and seek down operation signals. . The signal from the receiving station designating unit 6 is a direct instruction signal for the main receiver 2, and the receiving station for the sub receiver 3 is changed based on a separate receiving station designating signal as described later. It is set as an instruction signal of the receiving station for the sub receiver 3 via the changing unit 7.
[0021]
The main receiver 2 outputs an MPX signal including an audio signal and an electric field strength signal indicating the strength of the radio wave of the desired station received from the antenna 1 by the main receiver 2. Among them, the MPX signal enters the audio DSP processing unit 30 via an MPX signal switching unit 28 (to be described later) in the DSP 10, performs various signal processing for audio output that has been conventionally performed, and outputs the audio output to an amplifier or the like. . The pilot signal fluctuation detection unit 13 detects and inputs a pilot signal in the MPX signal, and the level fluctuation detection unit 11 detects the level fluctuation.
[0022]
In general, when FM radio waves are received with multiple reflections, the FM stereo broadcast signal causes multipath distortion, and the composite stereo signal obtained from the FM demodulator undergoes phase fluctuations under the influence of multipath interference. The degree of this phase fluctuation depends on the degree of multipath interference. Therefore, the degree of phase fluctuation of the pilot signal included in the MPX stereo signal is detected, so that the received radio wave is subjected to multipath noise. Can know.
[0023]
The level fluctuation detection unit 11 in the pilot signal fluctuation detection unit 13 receives a multipath and detects a state in which the pilot signal is fluctuating, and the setting value comparison unit 12 detects that the fluctuation state is within a preset value range. It is compared whether or not there is, and the signal is output to the adjacent disturbance removal processing determination unit 20 for determining whether or not to perform the adjacent disturbance removal processing in the present invention. When the pilot signal fluctuation detector 13 determines that the fluctuation of the pilot signal is larger than the set value, the state of the currently received radio wave is greatly influenced by multipath noise in addition to the influence of adjacent noise described later. Therefore, it is assumed that the adjacent disturbance removal processing determination unit 20 uses basic data for determining that it is not appropriate to perform the adjacent disturbance processing according to the present invention.
[0024]
The electric field strength signal is input to the main receiver electric field strength variation detector 16 in the DSP 10, and the level variation detector 14 detects the level variation of the input signal in the same manner as the pilot signal variation detector 13. It should be noted that various means can be adopted to detect the level fluctuation of the electric field strength signal. For example, the amplitude of the electric field strength signal is always detected, and the frequency of the amplitude greatly changing within a predetermined time and the level of the amplitude. It is also possible to obtain a variation value based on the difference and obtain data based on that value. When the fluctuation of the electric field strength is large, it can be estimated that the radio wave of the currently desired receiving station is subjected to adjacent interference, so this signal obtained by the set value comparison unit 15 is removed from the adjacent interference. The data is input to the process determination unit 20 and is used as basic data for this determination.
[0025]
On the other hand, the sub-receiver 3 receives the same station as that of the main receiver 2 during normal operation, and this electric field strength signal is used to detect fluctuations in the electric field strength of the main receiver 2. A sub-receiver electric field strength fluctuation detecting unit 19 having the same configuration as that of the unit 16 is provided, and the operations of the level fluctuation detecting unit 17 and the set value comparing unit 18 are the same as described above. A signal indicating the degree of fluctuation of the electric field strength of the sub-receiver 3 obtained by the set value comparison unit 18 is also input to the adjacent disturbance removal processing determination unit 20 in the same manner as described above and used as basic data for determination.
[0026]
The MPX signal that is an audio signal from the sub-receiver 3 is different from the MPX signal that is output from the main receiver 2 and then becomes an audio output signal. As will be described later, a subtraction process is performed on the MPX signal of the main receiver. Used as a signal to do. The MPX signal from the sub-receiver 3 is attenuated by the attenuator 23 based on the signal from the interference rate calculation unit 9 that calculates the interference rate based on the electric field strength data of the main receiver and the sub-receiver. Attenuation processing is performed with the amount of attonate set by, and output to the MPX signal subtraction processing unit 26 via the delay unit 25.
[0027]
In the MPX signal subtraction processing unit 26, the MPX signal of the main receiver 2 is also input while being synchronized via the delay unit 24, and this is synchronized with this from the MPX signal of the main receiver as will be described later. Then, the MPX signal attenuated by a predetermined attenuation amount is subtracted by the signal of the system controller 5, and this is used as one selection output signal in the MPX signal switch 28. The MPX signal subtraction processing unit 26 is operated by an output signal indicating that a condition as will be described later is satisfied in the adjacent disturbance removal processing determination unit 20, and at the same time, the adjacent disturbance removal processing determination unit 20 operates the output signal switching unit 27. At this time, the subtracted signal is output to the audio DSP processing unit 30 and output to the outside as an audio signal.
[0028]
The MPX signal subtracted by the MPX signal subtraction processing unit 26 is input to the pilot signal fluctuation detection unit 32, detects the fluctuation level of the pilot signal included in the MPX signal after the subtraction process, and determines to the adjacent disturbance removal process determination 20. Input and used as basic data for discrimination. When the fluctuation of the pilot signal included in the MPX signal after the subtraction process is smaller than a predetermined value, it can be determined that the receiving station of the sub receiver 3 is an interfering station.
[0029]
The adjacent interference removal processing determination unit 20 outputs a signal to the sub-receiver receiving station change designating unit 21 under a predetermined condition to be described later, and the sub-receiver receiving station change designating unit 21 every time this signal is input. The data of the broadcast station frequency list memory 29 that stores the broadcast stations that can be received in each region in advance and the frequencies of the broadcast stations in the order of frequency are read out in the order as described later, or the data are read in the order of predetermined separation frequencies. The data is output to the receiving station changing unit 7 and the receiving station of the sub receiver 3 is changed. When the sub-receiver electric field strength fluctuation detecting unit 19 determines that the electric field strength level fluctuation is equal to or greater than the set value, the receiving station lock designating unit 31 stops the change designation in the sub-receiver receiving station change designating unit 21. Lock the receiving station.
[0030]
In the broadcast receiver configured as described above, its operation can be performed, for example, according to the operation flow shown in FIG. The operation flow will be described below together with the block diagram of FIG. 1 and the drawings showing various operations of FIGS.
[0031]
In the process during the broadcast reception of the broadcast receiver, the electric field strength of the main receiver is first detected (step S1), and then the level fluctuation of the electric field strength is detected based on the electric field strength signal (step S2). Further, it is determined whether or not the level fluctuation of the electric field intensity is a set value or more (step S3). These processes are performed in the main receiver electric field strength fluctuation detector 16 in FIG. 1 as described above.
[0032]
When it is determined that the variation in the electric field intensity is not equal to or greater than the set value, the process proceeds to step S18, and the received MPX of the main receiver that is currently received is output as it is without being subjected to adjacent noise processing. In this case, it is natural that multipath noise removal processing or the like can be separately performed as necessary.
[0033]
On the other hand, in the determination of whether or not the fluctuation of the electric field intensity is greater than or equal to a set value, if it is determined that there is a fluctuation greater than or equal to the set value, the pilot signal of the main receiver is detected as the first processing (step Next, a change in the pilot signal is detected (step S5), and it is further determined whether or not the fluctuation is within a set range (step S6). These processes are performed in the pilot signal fluctuation detector 13 in FIG.
[0034]
As a result of this determination, when it is determined that the fluctuation of the pilot signal of the main receiver is greater than or equal to the set value, the radio wave received by the main receiver is greatly affected by the radio waves reflected on the mountains, buildings, etc. Since the radio wave is causing multipath noise, it is considered that the adjacent interference removal process by the subtraction process as described later according to the present invention is difficult, and the process returns to step S1 again, and the above process is performed until at least the multipath noise is stabilized. repeat. As a result of the determination, when it is determined that the fluctuation of the pilot signal is within the set range, the process proceeds to the next step 11 together with a signal to be described later.
[0035]
In step S3, as a second process when it is determined that the level fluctuation of the electric field strength of the main receiver is greater than or equal to the set value, the electric field strength of the sub receiver is detected (step S7). Next, the level fluctuation of the electric field strength is detected (step S8), and it is further determined whether or not the fluctuation is equal to or greater than a set value (step S9). These processes are performed in the sub-receiver electric field strength fluctuation detector 19 in FIG.
[0036]
As a result of this determination, when it is determined that the level variation of the electric field strength of the sub-receiver is not equal to or greater than the set value, it is then determined whether or not this determination is the first determination process (step S10). That is, since the main receiver and the sub-receiver are receiving the same station at the beginning, when it is determined in step 3 that the level fluctuation of the electric field strength of the main receiver is equal to or higher than the set value, naturally this time. Since the fluctuation in the level of the electric field strength of the sub-receiver is equal to or greater than the set value, the process proceeds to step S19 only for the first determination, and processing for changing the reception frequency of the sub-receiver in a predetermined order is performed. Further, when it is determined in step S9 that the level fluctuation of the electric field strength of the sub-receiver is not equal to or greater than the set value, the process proceeds to step S19, and the reception frequency of the sub-receiver is changed in a predetermined order as described above. At this time, the processing is after the determination that the determination processing is not the first time in step S10.
[0037]
The process of changing the reception frequency of the sub-receiver in the predetermined order in step S19 is performed in the sub-receiver receiving station change designating unit 21. At this time, the area-specific receivable broadcasting station frequency list prepared in advance as described above. This is performed using the data in the memory 29. However, the reception frequency can be changed in order at predetermined frequency intervals without using such data. FIG. 4 shows an example of operation when it is assumed that there is a broadcasting station capable of receiving in this region at a frequency portion separated by 100 kHz from the desired reception station in order to explain this operation in an easy-to-understand manner. When it is determined that the determination process is the first (n = 1), the reception frequency of the sub-receiver is changed to a frequency 100 kHz higher than the desired reception station.
[0038]
Such a change is made in the receiving station changing unit 7 in FIG. 1. In this example, the same station as the main receiver 2 was first specified in the receiving station specifying unit 6, but the sub receiver receiving station change The receiving station is changed according to the instruction from the designating unit 21. As a result of this change processing, the sub-receiver receives a station whose frequency is 100 kHz higher than the desired receiving station, and returns to step S7 again to set the variation in the field strength of the sub-receiver in the same manner as described above. It is determined whether or not it is greater than or equal to the value. As a result, when it does not exceed the set value yet, that is, when it is determined that the radio wave of the station that is adjacent to the radio wave of the desired reception station that the main receiver is receiving has not been received, the secondary reception is performed again. A process of changing the reception frequency of the machine in a predetermined order is performed.
[0039]
In the above example, as shown in FIG. 4A, since the receivable frequencies are arranged at intervals of 100 kHz, the frequency that is 100% lower than the frequency of the desired reception station that is likely to cause the next adjacent interference. Of the other station. If it is still determined that the station that has caused the adjacent interference to the reception desired station of the main receiver has not been received yet, a station having a frequency higher by 200 kHz than the next desired reception desired station is received. Such a process of changing the reception frequency is repeated, and in the illustrated embodiment, a station having a frequency higher by 300 kHz than the frequency of the desired reception station, which is a station giving adjacent interference by the frequency change process five times (n = 5). Will be received. As a result, in step S9, it is determined that the level variation of the electric field strength of the sub-receiver is equal to or greater than the set value, and in step S10, it is determined that it is not the first determination process, so the process proceeds to step S11. In the operation of seeking the reception frequency in the sub-receiver, for example, as shown in FIG. 4B, based on the data in the regional receivable broadcast station frequency list memory 29 in FIG. , R station, then S station in order, and finally find the adjacent interfering station that is 300 kHz away from the desired receiving station.
[0040]
As described above, in step S6, it is determined that the fluctuation of the pilot signal of the main receiver is within the range of the set value, and in step S9, it is determined that the level fluctuation of the electric field strength of the sub-receiver is greater than or equal to the set value. If the determination in step S9 is not the first determination process, it is determined in step S11 whether or not both signals are input simultaneously, that is, whether or not both conditions are satisfied simultaneously. When one of them is not satisfied, that is, when only one of them is inputted, the subsequent subtraction processing is not performed, the operation is repeated by returning to step S1, and the next processing is not performed until the above condition is satisfied.
[0041]
In the step S19, when the process of changing the reception frequency of the sub-receiver is performed in a predetermined order, in the embodiment shown in FIG. 2, the process returns to step S7 and the level variation of the electric field strength of the sub-receiver exceeds the set value. In the example shown in FIG. 1, the process returns to step S1, for example, whether or not the fluctuation in the level of the electric field strength of the main receiver is greater than or equal to the set value, and whether the previous adjacent interference state has changed. After confirming the above, it may be detected whether or not the electric field strength level is equal to or higher than a set value in a new station received by the sub-receiver.
[0042]
When it is determined in step S11 that the above condition is satisfied, it is determined in the sub-receiver that the fluctuation in the level of the electric field strength of the specific station searched in the order closer to the reception desired station of the main receiver is greater than or equal to the set value. As a result, it is possible to identify a station that may be causing adjacent interference to the main receiver, so that the reception frequency of the sub receiver is locked to that station. That is, the reception frequency of the sub receiver is locked to a frequency that may cause adjacent interference to the main receiver (step S12).
[0043]
Next, receive the reception desired station while receiving the adjacent disturbance and the field intensity data of the sub-receiver in the state where reception is locked to the station that may have caused adjacent interference to the main receiver as described above. Based on the field strength data of the main receiver, the rate at which the main receiver is receiving adjacent interference is calculated, and this is set as the attenuation amount for the MPX signal currently received by the sub-receiver (step S13). The attenuation amount setting is performed in the attenuation amount setting unit 22 in FIG. 1. At the time of setting, the electric field strength data of the main receiver 2 and the electric field strength of the sub-receiver 3 input to the interference rate calculation unit 9 are set. Calculate the attenuation amount and set the attenuation amount.
[0044]
Thereafter, the MPX signal of the sub receiver that has been attenuated is subtracted from the MPX signal of the main receiver (step S14), thereby removing adjacent interference from the MPX signal of the main receiver that is receiving adjacent interference. The principle is shown in FIG. 3, in which the MPX signal of the main receiver is shown as fm in the figure. This signal is obtained by adding the MPX signal fa of the station desired to receive and the MPX signal fb ′ as adjacent interference (fm = fa + fb ′).
[0045]
Also, the MPX signal of the sub-receiver receiving the station that is causing adjacent interference to the main receiver is indicated by fs in the figure, and this signal is MPX that has received the radio wave of the station that is causing adjacent interference. The signal fb is added to the MPX signal fa ′ as the adjacent interference by the desired receiving station received by the main receiver by giving adjacent interference to each other (fs = fa ′ + fb).
[0046]
At this time, the adjacent interference between the main receiver and the sub-receiver is similar to each other. When the degree of this interference is J, fb ′ is represented by (J × fb), and similarly, fa ′ is ( J × fa). In the figure, fm and fs are shown to have the same size for the sake of simplifying the subsequent calculation. However, when the MPX sizes of the main receiver and the sub-receiver are different, the same level can be obtained by using amplification means. It can be.
[0047]
Attenuation set to substantially the same value as the degree of interference J calculated from the electric field strength signals of the main receiver and the sub-receiver as described above with respect to the MPX signal fs of the sub-receiver expressed as described above. Attenuate by the amount K. As a result, as shown in FIG. 3, the attenuated MPX signal of the sub-receiver is expressed by K × fs, and when the component of the signal is viewed, fa ′ is fa ″ (fa ″ = fa ″ = K × fa ′), and fb is fb ″ (fb ″ = K × fb) due to K-times attenuation. Here, when K≈J is set, particularly fb ″ is substantially the same as fb ′ of MPX which gives adjacent interference to the main receiver.
[0048]
Therefore, when the MPX signal attenuated by the sub-receiver is subtracted from the fm of the MPX signal received by the main receiver to obtain a signal of fm−K × fs, the main disturbance from which the adjacent interference is removed in FIG. As shown as the MPX signal of the receiver, the adjacent disturbance fb ′ is removed from the MPX signal fm of the main receiver. At this time, the MPX signal of the desired reception station received by the main receiver is also a signal reduced by fa ″, but the influence on the MPX signal is less than that when passing through a conventional narrow band filter, and at least adjacent to the MPX signal. The effect of removing interference is much greater.
[0049]
FIGS. 5 to 7 schematically show the actual reception radio wave signal for the effect of removing such adjacent interference. That is, in FIG. 5, the waveform of the desired reception station received by the main receiver is indicated by fa as the waveform of the first frequency. Further, the original waveform transmitted from the station mixed in the main receiver and causing adjacent interference is indicated by fb as the second frequency waveform.
[0050]
When these waves are adjacent to each other, assuming that the degree of interference is J as described above, adjacent interference is performed in the form of J × fa and J × fb waveforms each having a reduced amplitude. As shown in FIG. 6A, the signal of the main receiver receiving the adjacent interference in this way is a composite wave of the first frequency and the second frequency that is adjacent to the first frequency. Similarly, the signal of the sub-receiver receiving the station that is causing adjacent interference to the main receiver becomes adjacent noise with respect to the second frequency as shown in FIG. The synthesized wave of the first frequency. These synthesized waves are indicated by bold lines in each figure.
[0051]
Among these, when K-times attenuation is performed on the synthesized wave shown in FIG. 6B as described above, the synthesized wave in FIG. 6B shown in FIG. As shown in FIG. 7 (b), the amplitude decreases. This wave is subtracted from the synthesized wave shown in FIG. 6A as a wave for subtraction correction. As a result, as indicated by the thick line in FIG. 7 (c), the adjacent signal is removed from the combined wave in FIG. 6 (a) that has been subjected to adjacent interference, and is substantially the same as the original signal wave shown as fa in FIG. It can be seen that a signal wave can be obtained.
[0052]
The MPX signal subjected to the subtraction process in step S14 operates according to the basic principle of the present invention as described above, and the adjacent noise is removed in principle as a result of being processed as represented by the simulated waveform. However, in this embodiment, the variation of the pilot signal included in the subtraction processing waveform is detected, and it is determined whether or not the variation of the pilot signal of the MPX signal after the subtraction processing is equal to or less than a predetermined value (step S15). The pilot signal fluctuation is detected by the pilot signal fluctuation detecting unit 32 in the subtraction processing waveform in FIG. When the fluctuation of the pilot signal is equal to or less than the predetermined value, the adjacent interference removal processing determination unit 20 determines that the station being received by the sub-receiver 3 is an interference station, and proceeds to step S16. If the pilot fluctuation of the MPX signal after the subtraction process exceeds a predetermined value, the process returns to step S7, the receiving station of the sub receiver is changed, and the same process as described above is continued.
[0053]
In step S16, audio output is performed using the subtracted MPX signal, and it is further determined whether or not there is an instruction to end reception by turning off the power of the receiver (step S19). Returning to step S1, the process is repeated from the detection of the electric field strength of the main receiver. When there is an instruction to end reception, this flow is ended (step S20).
[0054]
In the above embodiment, the example in which the present invention is applied to the FM broadcast receiver has been shown, but the present invention can be similarly applied to the AM broadcast receiver. At that time, the pilot signal fluctuation or the like is not used. Moreover, if it is a broadcast receiver which can be provided with the main function part of this invention, it can apply similarly to other various broadcast receivers.
[0055]
【The invention's effect】
The broadcast receiving method and the broadcast receiver according to the present invention can reliably remove the signal component of the adjacent interference from the reception signal of the reception desired station that is receiving the adjacent interference, and the audio characteristics of the reception signal of the reception desired station. There is no change.
[0056]
A pilot signal fluctuation detection unit that detects a fluctuation of a pilot signal of the received signal at the main receiver, and the adjacent interference removal processing determination unit further detects no fluctuations greater than a predetermined value in the pilot signal fluctuation detection unit In a broadcast receiver that determines that adjacent interference removal processing is performed when both of the above conditions are satisfied, the above processing according to the present invention is not performed when multipath noise is present in the received radio wave of the main receiver, and the optimal condition is Only the adjacent interference removal process can be performed.
[0057]
Further, in the broadcast receiver that specifies the change of the receiving station in order from the side closer to the frequency of the station that is being received by the main receiver in the sub-receiver receiving station change designating unit, the main reception Stations that are causing adjacent disturbance to the aircraft can be reliably detected.
[0058]
In addition, it has a memory that records the stations that can be received in each region and the transmission radio frequency of each station,
Broadcast receiver that designates the change of the receiving station to the receivable stations in order from the side closer to the frequency of the station that is received by the main receiver based on the data in the memory in the sub receiver receiving station change designation unit In, the station that is causing adjacent interference to the main receiver can be detected reliably and quickly, and adjacent interference removal processing can be performed quickly.
[0059]
In addition, when the adjacent interference removal determining unit determines that the adjacent interference removal processing is not performed, in the broadcast receiver in which the sub-receiver receives the same station as the main receiver, the sub-receiver performs the adjacent interference removal processing in advance. Therefore, when it is necessary, the process can be started immediately. Also, when searching for a station that is causing adjacent interference to the main receiver, the sub receiver It is possible to perform processing to find from nearby, and it is possible to quickly detect a station that is causing adjacent interference.
[0060]
Further, in the broadcast receiver that obtains the interference rate of adjacent interfering radio waves from the reception electric field strength of the main receiver and the reception electric field strength of the sub-receiver in the interference rate estimation unit, the interference rate can be obtained reliably. Since the amount of attenuation with respect to the received signal of the sub-receiver based on this value can be obtained accurately, the adjacent interference elimination processing can be performed reliably.
[0061]
A pilot signal fluctuation detecting unit that detects a fluctuation of a pilot signal included in the signal from the subtraction processing unit, and when the fluctuation of the pilot signal in the pilot signal fluctuation detecting unit is within a predetermined range, In the broadcast receiver that determines that the receiver receives the adjacent jamming station of the main receiver, the sub-receiver has received the jamming station by detecting the fluctuation of the pilot signal included in the signal of the subtraction processing unit. Can be reliably determined, and adjacent interference can be reliably removed.
[Brief description of the drawings]
FIG. 1 is a functional block diagram of an embodiment of a broadcast receiver according to the present invention.
FIG. 2 is an operation flowchart of the embodiment of the present invention.
FIG. 3 is a diagram illustrating a basic principle of adjacent interference removal according to the present invention.
FIGS. 4A and 4B are diagrams illustrating a method for searching for a station that is causing adjacent interference according to the present invention, in which FIG. 4A is a diagram illustrating a mode of sequentially searching for reception frequencies of a sub-receiver at a predetermined separation frequency; It is a figure of the aspect which searches a receivable station in order.
FIG. 5 is a diagram illustrating a signal waveform of a frequency desired for reception and a frequency giving adjacent interference in an example in which adjacent interference is removed by the present invention.
FIG. 6 shows an example of a received signal from which adjacent interference is removed according to the present invention; a signal waveform when receiving a reception desired station mixed with adjacent noise and a station receiving adjacent interference; It is a figure which shows a signal waveform.
FIG. 7 shows an example of a received signal from which adjacent interference is removed according to the present invention, a signal waveform obtained by attenuating a signal received by a station that gives adjacent interference, and a reception request in which adjacent noise is mixed with this signal waveform. It is a figure which shows that the adjacent disturbance is removed by subtracting from the signal waveform of a station.
FIG. 8 is a functional block diagram showing an example of adjacent interference processing in a conventional broadcast receiver.
[Explanation of symbols]
2 Main receiver
3 Sub receiver
5 System controller
6 Receiving station designation part
7 Receiving station change part
9 Interference rate calculator
10 DSP
11 Level fluctuation detector
12 Set value comparison unit
13 Pilot signal fluctuation detector
16 Main receiver electric field strength fluctuation detector
19 Sub-receiver electric field strength fluctuation detector
20 Adjacent disturbance removal processing discriminator
21 Sub receiver receiving station change designation section
22 Attenuation amount setting section
23 Attenuator
24 delay unit
25 Delay device
26 MPX signal subtraction processing unit
27 Output signal switching part
28 MPX signal switching section
30 Audio DSP processor
31 Receiving station lock designation part

Claims (8)

主受信機と副受信機を備え、
主受信機の受信電界強度の変動を検出し、
少なくとも主受信機の受信電界強度の変動が所定以上であることを検出したとき隣接妨害除去処理を行うことを判別し、
隣接妨害除去処理を行うときには副受信機の受信局を主受信機で受信している局に近い局から順に変更し、
副受信機の受信電界強度の変動を検出して、変動が所定以上であることを検出したとき副受信機の受信局をロックし、
このときの主受信機の受信電波に含まれる隣接妨害電波の混信率を求め、
この混信率と同じ値で副受信機のオーディオ信号を含むMPX信号をアッテネートし、
主受信機のオーディオ信号を含むMPX信号から前記副受信機のオーディオ信号を含むMPX信号を減算して出力することを特徴とする放送受信方法。
It has a main receiver and a sub receiver
Detects fluctuations in the received field strength of the main receiver,
It is determined that the adjacent interference elimination processing is performed at least when it is detected that the fluctuation of the reception field strength of the main receiver is equal to or greater than a predetermined value
When performing adjacent interference elimination processing, change the receiving station of the secondary receiver in order from the station closest to the station receiving by the main receiver,
Detects fluctuations in the received signal strength of the sub receiver, and locks the receiving station of the sub receiver when it detects that the fluctuation is greater than or equal to a predetermined value.
At this time, obtain the interference rate of the adjacent jamming radio wave included in the radio wave received by the main receiver,
Attenuate the MPX signal including the audio signal of the sub receiver with the same value as this interference rate,
A broadcast receiving method comprising: subtracting an MPX signal including an audio signal of the sub receiver from an MPX signal including an audio signal of a main receiver, and outputting the subtracted MPX signal .
利用者が指定した局の電波を受信する主受信機と、
主受信機の受信電界強度の変動を検出する主受信機電界強度変動検出部と、
少なくとも前記主受信機電界強度変動検出部において所定以上の変動を検出したとき、隣接妨害除去処理を行うことを判別する隣接妨害除去処理判別部と、
前記隣接妨害除去処理判別部において隣接妨害除去処理を行う出力時に、主受信機で受信している局の周波数に近い側から順に受信局の変更を指示する副受信機受信局変更指定部と、
前記副受信機受信局変更指定部で指定した局の電波を受信する副受信機と、
副受信機の受信電界強度の変動を検出する副受信機電界強度変動検出部と、
前記副受信機電界強度変動検出部において所定以上の変動を検出したとき、前記副受信機受信局変更定部での受信局の変更を停止する受信局ロック指定部と、
前記受信局の変更を停止したときの主受信機の受信電波に含まれる隣接妨害電波の混信率を求める混率演算部と、
前記混信率演算部で求めた混信率に副受信機のオーディオ信号を含むMPX信号をアッテネートするアッテネータと、
前記受信局の変更を停止したときの主受信機のオーディオ信号を含むMPX信号から副受信機の前記ッテネートされたオーディオ信号を含むMPX信号を減算する減算処理部と、
主受信機からのオーディオ信号を含むMPX信号と、この受信信号を前記減算処理部で減算処理したオーディオ信号を含むMPX信号とを切り替えて出力する出力受信信号切替部とを備えたことを特徴とする放送受信機。
A main receiver that receives the radio waves of the station specified by the user;
A main receiver electric field strength fluctuation detector for detecting fluctuations in the received electric field strength of the main receiver;
An adjacent disturbance removal processing determination unit for determining that adjacent disturbance removal processing is performed when at least a predetermined variation is detected in the main receiver electric field strength variation detection unit;
Sub-receiver receiving station change designating unit for instructing the change of the receiving station in order from the side closer to the frequency of the station received by the main receiver at the time of output for performing the adjacent interference removing process in the adjacent interference removing process determining unit,
A sub-receiver that receives the radio waves of the station designated by the sub-receiver receiving station change designation unit;
A sub-receiver electric field strength fluctuation detector for detecting fluctuations in the received electric field strength of the sub-receiver;
A receiving station lock designating unit for stopping the change of the receiving station in the sub-receiver receiving station change determining unit when detecting a variation of a predetermined value or more in the sub-receiver electric field strength variation detecting unit;
A cross rate calculation unit for obtaining a crosstalk rate of adjacent interfering radio waves included in the received radio wave of the main receiver when the change of the receiving station is stopped;
An attenuator for attenuating the MPX signal including the audio signal of the sub-receiver in the interference rate obtained by the interference rate calculation unit;
A subtraction processing unit for subtracting the MPX signal including the attenuated audio signal of the sub receiver from the MPX signal including the audio signal of the main receiver when the change of the receiving station is stopped;
An output reception signal switching unit that switches between an MPX signal including an audio signal from a main receiver and an MPX signal including an audio signal obtained by subtracting the reception signal by the subtraction processing unit. Broadcast receiver.
主受信機での受信信号のパイロット信号の変動を検出するパイロット信号変動検出部を備え、前記隣接妨害除去処理判別部では更に、前記パイロット信号変動検出部において所定以上の変動を検出しないときの両条件を満たしたときに隣接妨害除去処理を行うと判別することを特徴とする請求項2記載の放送受信機。  A pilot signal fluctuation detecting unit for detecting fluctuations in the pilot signal of the received signal at the main receiver, and the adjacent interference removal processing determining unit further includes both when the pilot signal fluctuation detecting unit does not detect fluctuations greater than a predetermined value. 3. The broadcast receiver according to claim 2, wherein it is determined that the adjacent interference removal processing is performed when the condition is satisfied. 前記副受信機受信局変更指定部では、主受信機で受信している局の周波数に近い側から放送局割り当て周波数間隔で順に受信局の変更を指定することを特徴とする請求項2記載の放送受信機。  3. The sub-receiver receiving station change designating unit designates changing of receiving stations in order at a broadcasting station assigned frequency interval from the side closer to the frequency of the station receiving by the main receiver. Broadcast receiver. 各地域で受信可能な局と各局の送信電波周波数を記録したメモリを備え、前記副受信機受信局変更指定部では、前記メモリのデータに基づき、主受信機で受信している局の周波数に近い側から順に前記受信可能な局に受信局の変更を指定することを特徴とする請求項2記載の放送受信機。  It has a memory that records the stations that can be received in each area and the transmission radio frequency of each station, and the sub-receiver receiving station change designation unit sets the frequency of the station that is received by the main receiver based on the data in the memory. 3. The broadcast receiver according to claim 2, wherein a change of a receiving station is designated to the receivable stations in order from the closest side. 前記隣接妨害除去判別部で隣接妨害除去処理を行わないと判別したときには、副受信機は主受信機と同じ局を受信することを特徴とする請求項2記載の放送受信機。  3. The broadcast receiver according to claim 2, wherein the sub-receiver receives the same station as the main receiver when it is determined by the adjacent interference cancellation determination unit that the adjacent interference cancellation processing is not performed. 前記混信率演算部では、主受信機の受信電界強度と、副受信機の受信電界強度により隣接妨害電波の混信率を求めることを特徴とする請求項2記載の放送受信機。  The broadcast receiver according to claim 2, wherein the interference rate calculation unit obtains an interference rate of adjacent interfering radio waves based on a reception electric field strength of a main receiver and a reception electric field strength of a sub receiver. 前記減算処理部からの信号に含まれるパイロット信号の変動を検出するパイロット信号変動検出部を備え、当該パイロット信号変動検出部におけるパイロット信号の変動が所定の範囲内であるとき、副受信機が主受信機の隣接妨害局を受信していると判定することを特徴とする請求項2記載の放送受信機。  A pilot signal fluctuation detection unit that detects a fluctuation of a pilot signal included in the signal from the subtraction processing unit, and when the fluctuation of the pilot signal in the pilot signal fluctuation detection unit is within a predetermined range, the sub receiver 3. The broadcast receiver according to claim 2, wherein it is determined that an adjacent jamming station of the receiver is being received.
JP2001031595A 2001-02-07 2001-02-07 Broadcast receiving method and broadcast receiver Expired - Fee Related JP4204027B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001031595A JP4204027B2 (en) 2001-02-07 2001-02-07 Broadcast receiving method and broadcast receiver

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001031595A JP4204027B2 (en) 2001-02-07 2001-02-07 Broadcast receiving method and broadcast receiver

Publications (2)

Publication Number Publication Date
JP2002237757A JP2002237757A (en) 2002-08-23
JP4204027B2 true JP4204027B2 (en) 2009-01-07

Family

ID=18895659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001031595A Expired - Fee Related JP4204027B2 (en) 2001-02-07 2001-02-07 Broadcast receiving method and broadcast receiver

Country Status (1)

Country Link
JP (1) JP4204027B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0624982D0 (en) * 2006-12-14 2007-01-24 Cambridge Silicon Radio Ltd FM signal quality measurement

Also Published As

Publication number Publication date
JP2002237757A (en) 2002-08-23

Similar Documents

Publication Publication Date Title
US7715567B2 (en) Noise reduction in a stereo receiver
JP5001302B2 (en) FM tone removal
JP4203111B2 (en) Interference wave detection device and interference wave elimination device
JP4916974B2 (en) FM tuner
JP2009081839A (en) Fm tuner
JP2009105727A (en) Fm receiver
EP0696852B1 (en) FM receiver
JP3992521B2 (en) Adjacent interference detection apparatus and method, and broadcast receiving apparatus capable of using the method
JP4204027B2 (en) Broadcast receiving method and broadcast receiver
JP2004048397A (en) Reception system
JPWO2006008963A1 (en) Phase synthesis diversity receiver
JP4121410B2 (en) Signal detecting apparatus and receiving apparatus capable of using the apparatus
JPH06291688A (en) Receiver
JP4378263B2 (en) Receiver
JP4627094B2 (en) Diversity receiver
JP3157281B2 (en) Receiving machine
JP3263650B2 (en) FM radio receiver
JPH03120915A (en) Radio receiver
WO2007066528A1 (en) Reception sensitivity detection device and reception device
JP2009105729A (en) Fm radio receiver
JPH1188207A (en) Noise canceller for fm receiver
JP3157283B2 (en) Receiving machine
JPS59190747A (en) Multipath distortion reducing device of fm receiver
JP2006067036A (en) High frequency receiver
JP3994330B2 (en) Radio receiver and radio reception tuning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081010

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081010

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees