JP4203787B2 - Fluid filter - Google Patents

Fluid filter Download PDF

Info

Publication number
JP4203787B2
JP4203787B2 JP2002017624A JP2002017624A JP4203787B2 JP 4203787 B2 JP4203787 B2 JP 4203787B2 JP 2002017624 A JP2002017624 A JP 2002017624A JP 2002017624 A JP2002017624 A JP 2002017624A JP 4203787 B2 JP4203787 B2 JP 4203787B2
Authority
JP
Japan
Prior art keywords
fluid
filter
filter medium
inlet
pressing portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002017624A
Other languages
Japanese (ja)
Other versions
JP2003214270A (en
Inventor
輝男 白石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoac Corp
Original Assignee
Inoac Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoac Corp filed Critical Inoac Corp
Priority to JP2002017624A priority Critical patent/JP4203787B2/en
Priority to AT03001559T priority patent/ATE297797T1/en
Priority to US10/349,862 priority patent/US6926828B2/en
Priority to DE60300826T priority patent/DE60300826T2/en
Priority to EP03001559A priority patent/EP1334757B1/en
Publication of JP2003214270A publication Critical patent/JP2003214270A/en
Application granted granted Critical
Publication of JP4203787B2 publication Critical patent/JP4203787B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/10Particle separators, e.g. dust precipitators, using filter plates, sheets or pads having plane surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2275/00Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2275/20Shape of filtering material
    • B01D2275/203Shapes flexible in their geometry, e.g. bendable, adjustable to a certain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2275/00Filter media structures for filters specially adapted for separating dispersed particles from gases or vapours
    • B01D2275/40Porous blocks
    • B01D2275/403Flexible blocks

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)
  • Filtration Of Liquid (AREA)
  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Filtering Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、流体フィルタに関し、更に詳細には、所要位置に流体の導入口および排出口を開設したケース体と、適度の弾力性を有する多孔質体を材質とし、前記ケース体に内部画成した収容部に着脱自在に収容される濾材とからなり、前記導入口からケース体へ導入した流体を前記濾材に通過させて該流体に混在している微細な異物を捕集し、清浄化された流体を前記排出口から排出するようにした流体フィルタに関するものである。
【0002】
【従来の技術】
例えば、空気清浄器、自動車用エンジン、流体圧シリンダ等、空気やガス等の気体またはオイル等の液体を活用する種々の装置では(以下、気体および液体を総称して「流体」という)、図10に示すように、この流体内に混在している微細な異物(塵埃、ゴミ等)を捕集して該流体を清浄化するための流体フィルタ10を、当該装置12における流体導入部14に装着する場合が多い。この流体フィルタ10は、種々形態・タイプのものが実施に供されているが、例えば図11に示すように、所要位置に流体の導入口22および排出口24を開設したフィルタケース(ケース体)20と、適度の弾力性を有する多孔質体を材質とし、前記フィルタケース20に内部画成した収容部26に着脱自在に収容される濾材30とからなり、前記導入口22からフィルタケース20へ導入した流体を前記濾材30に通過させて該流体に混在している微細な異物を捕集し、清浄化された流体を前記排出口24から排出するようになっている。
【0003】
ここで前記濾材30は、例えば連泡構造を有するスポンジやウレタンフォーム、または不織布や繊維集合体等、多数の孔(空隙)を有する所謂「多孔質体」が好適に実施可能であるが、該濾材30の密度(空隙の開口サイズや形成数)によって分散態様および圧力損失が変化し、流体に混在している異物の捕集効率に影響を及ぼすものとなっている。例えば図12は、密度が低い(各空隙の開口サイズが大きく形成されて所謂「目が粗い」)多孔質体からなる濾材30を実施した流体フィルタ10の構成断面図であり、また図13は、密度が高い(各空隙の開口サイズが小さく形成されて所謂「目が細かい」)多孔質体からなる濾材30を実施した流体フィルタ10の構成断面図である。ここで、図12に示した流体フィルタ10では、濾材30の目が粗いことにより流体が該濾材30を通過し易くなっているから、圧力損失が小さくなると共に異物Sが濾材30全体に適度に分散しつつ捕集されるが、空隙より小さいサイズを有する異物Sは捕集されることなく通過してしまい、捕集効率が向上しないので流体を適切に清浄化し得ない欠点を内在していた。
【0004】
一方、図13に示した流体フィルタ10では、濾材30の目が細かいことにより相当に微細なサイズを有する異物Sをも捕集することができる。しかしながら、流体が濾材30を通過し難いから圧力損失が大きくなる一方、濾材30における導入口22に臨んだ部位に種々サイズを有する異物Sが集中的に捕集されるから、異物Sを濾材30全体に亘り平均的に捕集することができず、短期間で目詰まりを起こしてしまう欠点を内在していた。
【0005】
【発明が解決しようとする課題】
そこで前記欠点を解決するため、図14または図15に示すように、密度が低い(目が粗い)多孔質体からなる第1濾材30Aと、該第1濾材30Aより密度が高い(目が細かい)多孔質体からなる第2濾材30Bとを組合わせることで、第1濾材30Aで大きいサイズを有する異物Sを捕集すると共に第2濾材30Bで小さいサイズを有する異物Sを捕集するようにした流体フィルタ10も実施されている。このような流体フィルタ10では、フィルタケース20の収容部26における導入口22側に第1濾材30Aをセットすると共に、排出口24側に第2濾材30Bをセットすることで、種々サイズを有する異物Sを適度に分散させつつ捕集できる。
【0006】
しかしながら、2種類またはそれ以上の密度の異なる濾材30(30A,30B)を使用することになるから、夫々の濾材30を所要の形状・サイズに加工する成形作業を要することになり、コストアップを招来する難点があった。また、第1濾材30Aと第2濾材30Bとの境目で密度が急激に変化するため、第1濾材30Aで捕集されなかった異物Sは第2濾材30Bの外表面で集中的に捕集されてしまい、異物Sを夫々の濾材30A,30B全体に亘り平均的に捕集し得ないと共に圧力損失を最小限に抑えることができず、依然として捕集効率の向上を図るには課題が残されていた。
【0007】
【発明の目的】
この発明は、前述した従来技術に内在している前記課題に鑑み、これを好適にに解決するべく提案されたもので、ケース体の内壁面に設けた押圧部により単一の濾材を圧縮して異物の捕集率を高めた圧縮部位を任意に作り出すことで、種々サイズを有する異物を前記濾材の全体に亘り平均的に捕集し得るよう構成した流体フィルタを提供することを目的とする。
【0008】
【課題を解決するための手段】
前記課題を解決し、所期の目的を達成するため本発明は、所要位置に流体の導入口および排出口を開設したケース体と、弾力性を有する多孔質体を材質とし、前記ケース体に内部画成した収容部に着脱自在に収容される濾材とからなり、前記導入口からケース体へ導入した流体を前記濾材に通過させて該流体に混在している微細な異物を捕集し、清浄化された流体を前記排出口から排出するようにした流体フィルタにおいて、
前記ケース体の前記収容部を挟んで対向する両側の内壁面に、収容部に向けて突出する複数の凸状の押圧部を、一方の内壁面の該押圧部と他方の内壁面の該押圧部とが交互に位置するように設け、
前記収容部)に収容した前記濾材を、前記各押圧部で両方向から互い違いに圧縮したことを特徴とする。
【0010】
【発明の実施の形態】
次に、本発明に係る流体フィルタにつき、好適な実施例を挙げて、添付図面を参照しながら以下説明する。
【0011】
1は、第1参考例に係る流体フィルタを概略的に示す縦断側面図、図2は、流体フィルタを実施状態で示す縦断側面図、図3は、流体フィルタの分解斜視図である。第1参考例に係る流体フィルタ40は、所要位置に流体の導入口22および排出口24を開設したフィルタケース(ケース体)20と、適度の弾力性を有する多孔質体を材質とし、前記フィルタケース20に内部画成した収容部26に着脱自在に収容される単一(1種類)の濾材30とから構成されている。なお第1参考例では、多孔質体として連泡構造を有するウレタンフォームを例示するが、本願での多孔質体とは、該ウレタンフォーム以外にスポンジ、不織布、繊維集合体(プラスチック、無機物、金属等から形成されるもの)等も含まれる。
【0012】
前記フィルタケース20は、トレー状の第1半体42およびトレー状の第2半体44とから構成され、これら第1半体42および第2半体44を対向的に組付けることで矩形箱体状を呈し、前記濾材30用の収容部26を内部に画成するようになっている。そして第1半体42の一側部位には、前記収容部26内へ流体が流入するのを許容する横長の導入口22が開設されており、また第2半体44の一側部位には、前記収容部26内の流体がケース外部へ流出するのを許容する横長の排出口24が開設されている。このような第1半体42と第2半体44とを組付けた際には、図1において、フィルタケース20における下面右端部位に前記導入口22が開口し、該フィルタケース20における上面左端部位に前記排出口24が開口するようになっており、導入口22からフィルタケース20内へ導入された流体は、収容部26内の一端から他端まで移動した後に排出口24から該フィルタケース20外へ排出される。
【0013】
そして前記第1半体42の内壁面には、前記収容部26に収容した前記濾材30を圧縮可能とするために、前記収容部26へ向けて突出する所要数の凸状の押圧部46が形成され、後述するように、前記収容部26へ収容した前記濾材30に該押圧部46を押付けて圧縮することで、異物Sの捕集率を高めた圧縮部位32を該濾材30に任意に作り出し得る構造となっている。ここで前記押圧部46は、前記フィルタケース20に設けたリブ状突片48であって、前記導入口22から排出口24に亘って適宜間隔毎に複数個(第1参考例では9個)が並設されている。しかも各リブ状突片48では、導入口22に隣接したリブ状突片48の突出量が最小とされ、排出口24に隣接した押圧部46の突出量が最大とされており、導入口22側から排出口24側に向けて突出量が徐々に大きくなるよう設定されている。このような形態では、前記各リブ状突片48の突出量に対応して前記濾材30における圧縮部位32の圧縮度合が変更され、具体的には該リブ状突片48の突出量を大きくする程に、濾材30の圧縮変形量が大きくなって圧縮部位32の密度が高くなる。
【0014】
前記濾材30は、例えば連泡構造を有する多孔質体であるウレタンフォームを材質とし、前記フィルタケース20に画成した矩形状の収容部26に合致する矩形直方体に成形されており(図3)、この形状に発泡成形したものや、大きい板状に発泡成形された原反からこの形状に切出したものである。このような濾材30は、発泡成形に際して形成された多数の連続気泡孔(空隙)を内部に有して弾力性および柔軟性に富んでおり、常態においては全体的に同一密度とされて全ての連続気泡孔(空隙)が略同一サイズとなっている。そして、濾材30を外方から押圧すると、この押圧された部位が簡易に圧縮変形して当該圧縮部位の密度が非圧縮部位の密度より高くなり、圧縮部位の連続気泡孔(空隙)が押し潰されて縮小化されているのでより小さい異物Sの捕集が可能となる。なお濾材30は、清浄対象とされる流体(気体または液体)に応じて決定されるものであり、ここでは詳細な説明は省略する。
【0015】
このようなフィルタケース20および濾材30から構成される第1参考例の流体フィルタ40では、図4に示すように、該濾材30を挟んで前記第1半体42および第2半体44を組付けることで、両半体42,44からなるフィルタケース20に内部画成された収容部26に濾材30が収容される。ここで、第1半体42と第2半体44とを組付けるに際し、該第1半体42に形成した前記各リブ状突片48が収容部26へ収容された前記濾材30の外面に押付けられ、該濾材30が圧縮されて異物Sの捕集率を高めた圧縮部位32が意図的に作り出される。しかも、前記リブ状突片48の突出量を前述したように設定してあることにより、濾材30に作り出された圧縮部位32は導入口22側から排出口24側に向けて徐々に厚みが小さくなり、これにより当該濾材30の圧縮度合が導入口22から排出口24に向けて徐々に大きくなっているから、排出口24側に近づくにつれてより小さいサイズを有する異物Sを捕集可能となっている。
【0016】
すなわち第1参考例の流体フィルタ40は、全体的に同一密度に発泡成形されたウレタンフォームからなる単一(1種類)の濾材30に、フィルタケース20内に突設した前記各リブ状突片48を押付けて圧縮することで、前記異物Sの捕集率を高めた圧縮部位32を意図的に作り出すことができ、単一の濾材30の使用により密度の異なる(捕集率の異なる)複数の濾材を使用した場合と同等乃至それ以上の捕集性能を得ることができる。これにより、低コストで異物Sの捕集効率を好適に向上させることができる。
【0017】
従って第1参考例の流体フィルタ40では、図2に示すように、前記導入口22からフィルタケース20へ導入した流体に種々サイズ(寸法)を有する異物Sが混在している場合でも、濾材30における導入口22に臨んだ部位では大きいサイズを有する異物Sが捕集されると共に、排出口24側に近づくにつれてより小さいサイズを有する異物Sが順次捕集されるようになる。すなわち、流体に混在する前記異物Sに寸法差があったとしても、サイズに応じて捕集される部位が異なるから、異物Sを濾材30の全体に亘り平均的に捕集することができ、捕集効率を好適に向上させることができる。また、濾材30の一部分に異物Sが集中して捕集されないから、該濾材30を通過する流体のスムーズな流動が維持されて圧力損失を最小限に抑えることもできる。
【0018】
なお第1参考例の流体フィルタ40では、図2に示すように、前記各リブ状突片48がフィルタケース20の内部下方に形成されていると共に、夫々のリブ状突片48の間に適宜の空間49が画成されているので、前記濾材30の圧縮部位32で捕集された異物Sの一部が該空間49内へ落下して堆積するようになる。従って、濾材30の目詰まり発生までの時間が長くなるので、該濾材30の交換サイクルまたはクリーニングサイクルを長く設定し得る。
【0019】
5は、第2参考例に係る流体フィルタを概略的に示す縦断側面図、図6は、流体フィルタを実施状態で示す縦断側面図、図7は、流体フィルタを分解して示す断面図である。第2参考例に係る流体フィルタ50は、基本的構成は前記第1参考例の流体フィルタ40と同一であるが、フィルタケース20の第1半体42に設けた押圧部46の形態を変更したものである。
【0020】
すなわち第2参考例の流体フィルタ50では、前記収容部26に収容した前記濾材30を圧縮可能とするために、フィルタケース20の外壁面を凹凸状に形成して、押圧部46を、該外壁面の一部として構成された凸壁部分52としたものであり、前記収容部26へ収容した前記濾材30に該凸壁部分52を押付けて圧縮することで、異物Sの捕集率を高めた圧縮部位32を任意に作り出す構造となっている。ここで前記凸壁部分52は、前記導入口22から排出口24に亘って適宜間隔毎に複数個(第2参考例では7個)が並設されている。しかも各凸壁部分52では、導入口22に隣接した凸壁部分52の突出量が最小とされ、排出口24に隣接した凸壁部分52の突出量が最大とされており、導入口22側から排出口24側に向けて突出量が徐々に大きくなるよう設定されている。従って前記第1参考例と同様に、前記各凸壁部分52の突出量に対応して前記濾材30における圧縮部位32の圧縮度合が変更され、具体的には該凸壁部分52の突出量を大きくする程に、濾材30の圧縮変形量が大きくなって圧縮部位32の密度が高くなる。
【0021】
このようなフィルタケース20および濾材30から構成される第2参考例の流体フィルタ50では、図7に示すように、該濾材30を挟んで前記第1半体42および第2半体44を組付けることで、両半体42,44からなるフィルタケース20に内部画成された収容部26に濾材30が収容される。ここで、第1半体42と第2半体44とを組付けるに際し、該第1半体42に形成した前記各凸壁部分52が収容部26へ収容された前記濾材30の外面に押付けられ、該濾材30が圧縮されて異物Sの捕集率を高めた圧縮部位32が意図的に作り出される。しかも濾材30の圧縮度合(圧縮変形量)は、導入口22から排出口24に向けて徐々に大きくなっているから、排出口24側に近づくに伴ってより小さいサイズを有する異物Sを捕集可能となっている。
【0022】
従って第2参考例の流体フィルタ50では、図6に示すように、前記導入口22からフィルタケース20へ導入した流体に種々のサイズ(寸法)を有する異物Sが混在している場合でも、濾材30における導入口22に臨んだ部位では大きいサイズを有する異物Sが捕集されると共に、排出口24側に近づくにつれてより小さいサイズを有する異物Sが順次捕集されるようになる。すなわち、流体に混在する前記異物Sに寸法差があったとしても、サイズに応じて捕集される部位が異なるから、異物Sを濾材30の全体に亘り平均的に捕集することができ、捕集効率を好適に向上させることができる。また、濾材30の一部分に異物Sが集中して捕集されないから、該濾材30を通過する流体のスムーズな流動が維持されて圧力損失を最小限に抑えることもできる。
【0023】
なお第2参考例の流体フィルタ50では、図6に示すように、前記各凸壁部分52がフィルタケース20の内部下方に形成されていると共に、夫々の凸壁部分52の間に適宜の空間54が画成されているので、前記濾材30の圧縮部位32で捕集された異物Sの一部が該空間54内へ落下して堆積するようになる。従って、濾材30の目詰まり発生までの時間が長くなるので、該濾材30の交換サイクルまたはクリーニングサイクルを長く設定し得る。
【0024】
前記第1参考例および第2参考例に示した流体フィルタ40,50では、フィルタケース20の内壁面に設けた所要数の凸状の押圧部46(リブ状突片48、凸壁部分52)に関し、収容部26における片側に並設して前記濾材30を一方向から圧縮して圧縮部位32を作り出す態様につき例示した。しかしながら、収容部26へ収容した前記濾材30に押圧部46を押付けて圧縮することで、異物Sの捕集率を高めた圧縮部位32を任意に作り出すには、例えば図8に示した流体フィルタ56のように、前記押圧部46を収容部26における両側に並設して、該濾材30を両方向から圧縮する態様としてもよい。
【0025】
図9は、実施例に係る流体フィルタ56を概略的に示す縦断側面図である。図9の流体フィルタ56は、押圧部46を収容部26における両側に並設して濾材30を両方向から圧縮して圧縮部位32を作り出す場合において、該収容部26における一方の側に設けた押圧部46および他方の側に設けた押圧部46、交互に位置するように配置したものである。各押圧部46をこのように配設すれば当該濾材30が両方向から互い違いに押圧されて圧縮され、収容部26により形成される流体の流通路が所謂「ラビリンス構造」を呈するようになるから、流体に混在している異物Sの捕集効率の更なる向上が期待できる。
【0026】
また、前記各流体フィルタ40,50,56では、各押圧部46(リブ状突片48、凸壁部分52)の突出量、配設位置、配設数、配設間隔等を適宜に設定変更することで、濾材30における圧縮部位32の圧縮度合(圧縮変形量)を様々に調整することが可能である。
【0028】
また、本願の濾材30を構成する多孔質体とは、前述した如く、前記各参考例および実施例に例示した連泡構造を有するウレタンフォームに限定されるものではなく、これ以外にスポンジ、不織布、繊維集合体(プラスチック、無機物、金属等から形成されるもの)等も好適に実施可能である。
【0029】
更に、本願の流体フィルタは、前記第1参考第2参考例および実施例に示した矩形状のものに限定されるものではなく、様々な形状・サイズに形成し得ることは勿論である。
【0030】
【発明の効果】
以上に説明した如く、本発明に係る流体フィルタによれば、全体的に同一密度に成形された多孔質体からなる単一(1種類)の濾材に、ケース体の収容部における内壁面の一方の側に設けた押圧部および他方の側に設けた押圧部を交互に位置させ、収容部に収容させた濾材を両方から互い違いに圧縮することで、当該濾材を圧縮して異物の捕集率を高めた圧縮部位を任意に作り出すことができ、単一の濾材を使用したとしても、捕集率の異なる複数の濾材を使用した場合と同等乃至それ以上の捕集効率を得ることができる。そして、前記押圧部の突出量に対応して前記濾材における圧縮部位の圧縮度合が変更されるので、低コストで異物の捕集性能を高め得る極めて有益な効果を奏する。
従って、流体に混在する前記異物に寸法差があったとしても、サイズに応じて捕集される部位が異なるから、異物を濾材全体に亘り平均的に捕集することができる。また、濾材の一部分に異物が集中して捕集されないから、該濾材を通過する流体のスムーズな流動が維持されて圧力損失を最小限に抑えることもできる。
なお前記押圧部は、ケース体内に設けたリブ状突片や、該ケース体の外壁面を構成する凸壁部分等とされる
【図面の簡単な説明】
【図1】参考例に係る流体フィルタを概略的に示す縦断側面図である。
【図2】図1に示した流体フィルタを実施状態で示す縦断側面図である。
【図3】流体フィルタの分解斜視図である。
【図4】第1半体および第2半体を組付けてフィルタケースを組立てることで、フィルタケースに画成される収容部に濾材を収容する状態を示す断面図である。
【図5】参考例に係る流体フィルタを概略的に示す縦断側面図である。
【図6】図5に示した流体フィルタを実施状態で示す縦断側面図である。
【図7】第1半体および第2半体を組付けてフィルタケースを組立てることで、フィルタケースに画成される収容部に濾材を収容する状態を示す断面図である。
【図8】別形態の流体フィルタを概略的に示す縦断側面図である。
【図9】 本発明の実施例に係る流体フィルタを概略的に示す縦断側面図である。
【図10】流体フィルタを装着した装置の概略図である。
【図11】第1半体および第2半体を組付けてフィルタケースを組立てることで、フィルタケースに画成される収容部に濾材を収容する状態を示す断面図である。
【図12】目が粗い単一の濾材をフィルタケースに収容して構成される従来実施の流体フィルタを示す縦断側面図である。
【図13】目が細かい単一の濾材をフィルタケースに収容して構成される従来実施の流体フィルタを示す縦断側面図である。
【図14】目が粗い第1濾材および目が細かい第2濾材をフィルタケースに収容して構成される従来実施の流体フィルタを示す縦断側面図である。
【図15】目が粗い第1濾材および目が細かい第2濾材をフィルタケースに収容して構成される従来実施の流体フィルタを示す縦断側面図である。
【符号の説明】
20フィルタケース(ケース体)
22 導入口
24 排出口
26 収容部
30 濾材
32 圧縮部位
46 押圧部
48 リブ状突片(押圧部)
52 凸壁部分(押圧部)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fluid filter, and more specifically, a case body having a fluid introduction port and a discharge port opened at a required position, and a porous body having appropriate elasticity, and the case body having an internal definition. The filter medium is detachably stored in the storage section, and the fluid introduced from the introduction port to the case body is passed through the filter medium to collect fine foreign matters mixed in the fluid and cleaned. The present invention relates to a fluid filter that discharges the fluid from the discharge port.
[0002]
[Prior art]
For example, in various devices that utilize a gas such as air or gas or a liquid such as oil, such as an air cleaner, an automobile engine, or a fluid pressure cylinder (hereinafter, gas and liquid are collectively referred to as “fluid”), FIG. As shown in FIG. 10, a fluid filter 10 for collecting fine foreign matters (dust, dust, etc.) mixed in the fluid and purifying the fluid is provided in the fluid introduction section 14 of the apparatus 12. Often worn. Various forms and types of the fluid filter 10 are provided for implementation. For example, as shown in FIG. 11, a filter case (case body) having a fluid inlet 22 and a outlet 24 opened at required positions. 20 and a filter medium 30 which is made of a porous body having an appropriate elasticity and is detachably accommodated in an accommodating portion 26 defined in the filter case 20, from the inlet 22 to the filter case 20. The introduced fluid is passed through the filter medium 30 to collect fine foreign matters mixed in the fluid, and the cleaned fluid is discharged from the discharge port 24.
[0003]
Here, the filter medium 30 can be suitably implemented as a so-called “porous body” having a large number of pores (voids) such as sponge or urethane foam having a continuous foam structure, or a nonwoven fabric or a fiber aggregate. The dispersion mode and the pressure loss change depending on the density of the filter medium 30 (opening size and number of formed voids), which affects the collection efficiency of foreign matters mixed in the fluid. For example, FIG. 12 is a structural cross-sectional view of the fluid filter 10 in which the filter medium 30 made of a porous material having a low density (so-called “coarse” in which the opening size of each void is formed large) is used, and FIG. 1 is a cross-sectional view of a configuration of a fluid filter 10 in which a filter medium 30 made of a porous material having a high density (so-called “fine” is formed by forming a small opening size of each void). Here, in the fluid filter 10 shown in FIG. 12, the coarseness of the filter medium 30 makes it easy for the fluid to pass through the filter medium 30, so that the pressure loss is reduced and the foreign matter S is moderately applied to the entire filter medium 30. Although collected while being dispersed, the foreign matter S having a size smaller than the gap passes through without being collected, and the trapping efficiency is not improved, so the fluid cannot be properly cleaned. .
[0004]
On the other hand, in the fluid filter 10 illustrated in FIG. 13, the foreign matter S having a considerably fine size can be collected due to the fine mesh of the filter medium 30. However, since the fluid does not easily pass through the filter medium 30, the pressure loss increases. On the other hand, the foreign substances S having various sizes are intensively collected at the portion facing the inlet 22 in the filter medium 30. There was an inherent disadvantage that the entire sample could not be collected on average and clogged in a short period of time.
[0005]
[Problems to be solved by the invention]
Therefore, in order to solve the above-mentioned drawbacks, as shown in FIG. 14 or FIG. 15, the first filter medium 30A made of a porous material having a low density (coarse eyes) and a density higher than the first filter medium 30A (the eyes are fine). ) In combination with the second filter medium 30B made of a porous material, the foreign substance S having a large size is collected by the first filter medium 30A and the foreign substance S having a small size is collected by the second filter medium 30B. The fluid filter 10 is also implemented. In such a fluid filter 10, foreign substances having various sizes can be obtained by setting the first filter medium 30 </ b> A on the inlet 22 side in the accommodating portion 26 of the filter case 20 and setting the second filter medium 30 </ b> B on the outlet 24 side. S can be collected while being appropriately dispersed.
[0006]
However, since two or more types of filter media 30 (30A, 30B) having different densities are used, it is necessary to form each filter media 30 into a required shape and size, thereby increasing costs. There was a difficulty to invite. Further, since the density rapidly changes at the boundary between the first filter medium 30A and the second filter medium 30B, the foreign matter S that has not been collected by the first filter medium 30A is intensively collected on the outer surface of the second filter medium 30B. As a result, the foreign matter S cannot be collected on the entire filter media 30A and 30B on average, and the pressure loss cannot be minimized, and there remains a problem in improving the collection efficiency. It was.
[0007]
OBJECT OF THE INVENTION
In view of the above-described problems inherent in the above-described prior art, the present invention has been proposed to suitably solve this problem. A single filter medium is compressed by a pressing portion provided on the inner wall surface of the case body. It is an object of the present invention to provide a fluid filter configured to arbitrarily collect foreign substances having various sizes over the entire filter medium by arbitrarily creating a compressed portion with an increased foreign matter collection rate. .
[0008]
[Means for Solving the Problems]
To solve the above problems, the present invention in order to achieve the intended purpose, and a case body which has opened the inlet and outlet of the fluid to the required position, a porous body having a bullet power resistance and material, the case body A filter medium that is detachably accommodated in a storage section that is internally defined, and allows the fluid introduced from the inlet to the case body to pass through the filter medium to collect minute foreign matter mixed in the fluid. In the fluid filter configured to discharge the cleaned fluid from the discharge port,
A plurality of convex pressing portions projecting toward the housing portion are provided on inner wall surfaces on opposite sides of the housing portion across the housing portion , and the pressing portion on one inner wall surface and the inner wall surface on the other inner wall surface Provided so that the pressing part is located alternately ,
Said filter medium accommodated in the accommodating portion), and wherein the compressed alternately from both directions by the respective pressing portions.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Next, a preferred embodiment of the fluid filter according to the present invention will be described below with reference to the accompanying drawings.
[0011]
FIG. 1 is a longitudinal side view schematically showing a fluid filter according to a first reference example, FIG. 2 is a longitudinal side view showing the fluid filter in an implementation state, and FIG. 3 is an exploded perspective view of the fluid filter. The fluid filter 40 according to the first reference example is made of a filter case (case body) 20 having a fluid introduction port 22 and a discharge port 24 opened at required positions, and a porous body having appropriate elasticity. The case 20 is composed of a single (one type) filter medium 30 that is detachably accommodated in an accommodating portion 26 that is internally defined in the case 20. In the first reference example, a urethane foam having an open cell structure is exemplified as the porous body. The porous body in the present application includes, in addition to the urethane foam, a sponge, a non-woven fabric, a fiber assembly (plastic, inorganic, metal Etc.) are also included.
[0012]
The filter case 20 includes a tray-like first half 42 and a tray-like second half 44, and the first half 42 and the second half 44 are assembled in a rectangular box by facing each other. It has a body shape, and the accommodating portion 26 for the filter medium 30 is defined inside. A laterally long introduction port 22 that allows a fluid to flow into the accommodating portion 26 is opened at one side portion of the first half body 42, and a side portion of the second half body 44 is provided at one side portion. A horizontally long discharge port 24 that allows the fluid in the housing portion 26 to flow out of the case is provided. When such a first half 42 and the second half 44 are assembled, the introduction port 22 opens at the lower right end portion of the filter case 20 in FIG. The discharge port 24 is opened at a site, and the fluid introduced from the introduction port 22 into the filter case 20 moves from one end to the other end in the accommodating portion 26 and then from the discharge port 24 to the filter case. 20 is discharged outside.
[0013]
On the inner wall surface of the first half body 42, a required number of convex pressing portions 46 projecting toward the housing portion 26 are provided so that the filter medium 30 housed in the housing portion 26 can be compressed. As will be described later, the compression part 32 having an increased collection rate of the foreign matter S can be arbitrarily formed on the filter medium 30 by pressing the pressing part 46 against the filter medium 30 accommodated in the accommodating part 26 and compressing it. It has a structure that can be created. Here, the pressing portion 46 is a rib-like protruding piece 48 provided on the filter case 20, and a plurality of the pressing portions 46 are provided at appropriate intervals from the introduction port 22 to the discharge port 24 (9 in the first reference example). Are arranged side by side. Moreover, in each rib-like protrusion 48, the protrusion amount of the rib-like protrusion 48 adjacent to the introduction port 22 is minimized, and the protrusion amount of the pressing portion 46 adjacent to the discharge port 24 is maximized. The amount of protrusion is gradually increased from the side toward the outlet 24 side. In such a form, the degree of compression of the compression portion 32 in the filter medium 30 is changed corresponding to the protruding amount of each rib-like protruding piece 48, specifically, the protruding amount of the rib-like protruding piece 48 is increased. As the amount of compressive deformation of the filter medium 30 increases, the density of the compressed portion 32 increases.
[0014]
The filter medium 30 is made of, for example, urethane foam, which is a porous body having an open cell structure, and is formed into a rectangular parallelepiped that matches the rectangular accommodating portion 26 defined in the filter case 20 (FIG. 3). These are foam-molded into this shape, or cut into this shape from the raw material foam-molded into a large plate shape. Such a filter medium 30 has a large number of open cell holes (voids) formed at the time of foam molding and is rich in elasticity and flexibility. Open cell holes (voids) have substantially the same size. When the filter medium 30 is pressed from the outside, the pressed portion is easily compressed and deformed, the density of the compressed portion becomes higher than the density of the non-compressed portion, and the open cell holes (voids) in the compressed portion are crushed. As a result, it is possible to collect a smaller foreign matter S. The filter medium 30 is determined according to the fluid (gas or liquid) to be cleaned, and detailed description thereof is omitted here.
[0015]
In the fluid filter 40 of the first reference example constituted by such a filter case 20 and the filter medium 30, as shown in FIG. 4, the first half body 42 and the second half body 44 are assembled with the filter medium 30 interposed therebetween. By attaching, the filter medium 30 is accommodated in the accommodating portion 26 defined in the filter case 20 composed of both halves 42 and 44. Here, when the first half 42 and the second half 44 are assembled, the rib-like projecting pieces 48 formed on the first half 42 are formed on the outer surface of the filter medium 30 accommodated in the accommodating portion 26. The compressed portion 32 is intentionally created by being pressed and the filter medium 30 being compressed to increase the collection rate of the foreign matter S. In addition, since the protruding amount of the rib-like protruding piece 48 is set as described above, the compression portion 32 created in the filter medium 30 gradually decreases in thickness from the inlet 22 side toward the outlet 24 side. As a result, the degree of compression of the filter medium 30 gradually increases from the inlet port 22 toward the outlet port 24, so that the foreign matter S having a smaller size can be collected as it approaches the outlet port 24 side. Yes.
[0016]
That is, the fluid filter 40 of the first reference example has the rib-shaped projecting pieces protruding from the filter case 20 on a single (one type) filter medium 30 made of urethane foam foamed to the same density as a whole. By pressing and compressing 48, it is possible to intentionally create a compressed portion 32 with an increased collection rate of the foreign matter S, and a plurality of different densities (different collection rates) by using a single filter medium 30. It is possible to obtain a collection performance equivalent to or higher than that when the filter medium is used. Thereby, the collection efficiency of the foreign material S can be suitably improved at low cost.
[0017]
Therefore, in the fluid filter 40 of the first reference example, as shown in FIG. 2, even when foreign matter S having various sizes (dimensions) is mixed in the fluid introduced from the inlet 22 into the filter case 20, the filter medium 30. The foreign matter S having a large size is collected at the portion facing the introduction port 22 in FIG. 2, and the foreign matter S having a smaller size is sequentially collected as it approaches the discharge port 24 side. That is, even if there is a dimensional difference in the foreign matter S mixed in the fluid, since the portion to be collected is different according to the size, the foreign matter S can be collected on the entire filter medium 30 on average. The collection efficiency can be preferably improved. Further, since the foreign matter S is not concentrated and collected on a part of the filter medium 30, the smooth flow of the fluid passing through the filter medium 30 is maintained, and the pressure loss can be minimized.
[0018]
In the fluid filter 40 of the first reference example, as shown in FIG. 2, the rib-like protruding pieces 48 are formed below the filter case 20, and the rib-like protruding pieces 48 are appropriately disposed between the rib-like protruding pieces 48. Since the space 49 is defined, a part of the foreign matter S collected at the compression portion 32 of the filter medium 30 falls into the space 49 and accumulates. Accordingly, since the time until the filter medium 30 is clogged becomes longer, the replacement cycle or the cleaning cycle of the filter medium 30 can be set longer.
[0019]
FIG. 5 is a longitudinal side view schematically showing a fluid filter according to a second reference example, FIG. 6 is a longitudinal side view showing the fluid filter in an implementation state, and FIG. 7 is an exploded sectional view showing the fluid filter. is there. The basic configuration of the fluid filter 50 according to the second reference example is the same as that of the fluid filter 40 of the first reference example, but the form of the pressing portion 46 provided in the first half 42 of the filter case 20 is changed. Is.
[0020]
That is, in the fluid filter 50 of the second reference example, in order to compress the filter medium 30 accommodated in the accommodating portion 26, the outer wall surface of the filter case 20 is formed in an uneven shape, and the pressing portion 46 is The convex wall portion 52 is configured as a part of the wall surface, and the convex wall portion 52 is pressed against the filter medium 30 accommodated in the accommodating portion 26 and compressed to increase the collection rate of the foreign matter S. The compression part 32 is created arbitrarily. Here, a plurality (7 in the second reference example) of the convex wall portions 52 are arranged in parallel from the introduction port 22 to the discharge port 24 at appropriate intervals. Moreover, in each convex wall portion 52, the protruding amount of the convex wall portion 52 adjacent to the inlet port 22 is minimized, and the protruding amount of the convex wall portion 52 adjacent to the outlet port 24 is maximized. Is set so that the amount of protrusion gradually increases from the outlet toward the outlet 24 side. Therefore, as in the first reference example, the degree of compression of the compression portion 32 in the filter medium 30 is changed corresponding to the amount of protrusion of each convex wall portion 52, and specifically, the amount of protrusion of the convex wall portion 52 is set. The larger the size is, the larger the amount of compressive deformation of the filter medium 30 becomes, and the density of the compressed portion 32 becomes higher.
[0021]
In the fluid filter 50 of the second reference example configured by such a filter case 20 and the filter medium 30, as shown in FIG. 7, the first half 42 and the second half 44 are assembled with the filter medium 30 interposed therebetween. By attaching, the filter medium 30 is accommodated in the accommodating portion 26 defined in the filter case 20 composed of both halves 42 and 44. Here, when the first half 42 and the second half 44 are assembled, the convex wall portions 52 formed in the first half 42 are pressed against the outer surface of the filter medium 30 accommodated in the accommodating portion 26. Thus, the compressed portion 32 in which the filter medium 30 is compressed and the collection rate of the foreign matter S is increased is intentionally created. In addition, since the degree of compression (the amount of compressive deformation) of the filter medium 30 gradually increases from the inlet port 22 toward the outlet port 24, the foreign matter S having a smaller size is collected as it approaches the outlet port 24 side. It is possible.
[0022]
Therefore, in the fluid filter 50 of the second reference example, as shown in FIG. 6, even when foreign matter S having various sizes (dimensions) is mixed in the fluid introduced from the inlet 22 into the filter case 20, the filter medium. The foreign matter S having a large size is collected at a portion facing the introduction port 22 in 30, and the foreign matter S having a smaller size is sequentially collected as it approaches the discharge port 24 side. That is, even if there is a dimensional difference in the foreign matter S mixed in the fluid, since the portion to be collected is different according to the size, the foreign matter S can be collected on the entire filter medium 30 on average. The collection efficiency can be preferably improved. Further, since the foreign matter S is not concentrated and collected on a part of the filter medium 30, the smooth flow of the fluid passing through the filter medium 30 is maintained, and the pressure loss can be minimized.
[0023]
In the fluid filter 50 of the second reference example, as shown in FIG. 6, the convex wall portions 52 are formed in the filter case 20 and the appropriate space between the convex wall portions 52. 54 is defined, a part of the foreign matter S collected at the compression portion 32 of the filter medium 30 falls into the space 54 and accumulates. Accordingly, since the time until the filter medium 30 is clogged becomes longer, the replacement cycle or the cleaning cycle of the filter medium 30 can be set longer.
[0024]
In the fluid filters 40 and 50 shown in the first reference example and the second reference example, a required number of convex pressing portions 46 (rib-shaped projecting pieces 48 and convex wall portions 52) provided on the inner wall surface of the filter case 20 are used. In connection with the above, a mode in which the compressed portion 30 is created by compressing the filter medium 30 from one direction by arranging in parallel on one side of the accommodating portion 26 is illustrated. However, in order to arbitrarily create the compression part 32 with an increased collection rate of the foreign matter S by pressing the pressing part 46 against the filter medium 30 accommodated in the accommodating part 26 and compressing, the fluid filter shown in FIG. Like 56, the said press part 46 is arranged in parallel in the both sides in the accommodating part 26, and it is good also as an aspect which compresses this filter medium 30 from both directions.
[0025]
FIG. 9 is a longitudinal side view schematically showing the fluid filter 56 according to the embodiment. Fluid filter 56 in FIG. 9 is provided with a filter medium 30 arranged side by side on both sides of the pressing portion 46 in the housing section 26 In no event you are compressed from both directions produce compressed site 32, on one side of the housing section 26 and the pressing portion 46 and the other pressing portion 46 provided on the side, in which is arranged so as to be positioned alternately. If each pressing portion 46 is arranged in this manner, the filter medium 30 is alternately pressed from both directions and compressed, and the fluid flow path formed by the containing portion 26 exhibits a so-called “labyrinth structure”. Further improvement in the collection efficiency of the foreign matter S mixed in the fluid can be expected.
[0026]
In each of the fluid filters 40, 50, and 56, the amount of protrusion, the position of the protrusion, the number of positions, the distance between the pressing portions 46 (rib-shaped protrusions 48 and convex wall portions 52) are appropriately changed. By doing so, it is possible to variously adjust the compression degree (compression deformation amount) of the compression site 32 in the filter medium 30.
[0028]
Further, as described above, the porous body constituting the filter medium 30 of the present application is not limited to the urethane foam having the open cell structure exemplified in the respective reference examples and examples. Further, fiber assemblies (formed from plastics, inorganic substances, metals, etc.) can be suitably implemented.
[0029]
Further, the fluid filter of the present application is not limited to the rectangular shape shown in the first reference example , the second reference example, and the embodiment, and it is needless to say that the fluid filter can be formed in various shapes and sizes. .
[0030]
【The invention's effect】
As described above, according to the fluid filter according to the present invention, the filter medium of a single (one kind) composed of a porous material which is formed into generally the same density, one of the inner wall surface of the housing portion of the case body The pressing part provided on the other side and the pressing part provided on the other side are alternately positioned, and the filter medium accommodated in the accommodating part is alternately compressed from both sides , thereby compressing the filter medium and collecting foreign matter. Thus, even if a single filter medium is used, a collection efficiency equivalent to or higher than that when a plurality of filter mediums having different collection rates is used can be obtained. And since the compression degree of the compression site | part in the said filter medium is changed corresponding to the protrusion amount of the said press part, there exists a very useful effect which can improve the collection performance of a foreign material at low cost.
Therefore, even if there is a dimensional difference in the foreign matter mixed in the fluid, the portion to be collected differs depending on the size, so that the foreign matter can be collected on the entire filter medium on average. Further, since foreign matters are not concentrated and collected on a part of the filter medium, the smooth flow of the fluid passing through the filter medium is maintained, and the pressure loss can be minimized.
The pressing portion is a rib-like protruding piece provided in the case body, a convex wall portion constituting the outer wall surface of the case body, or the like .
[Brief description of the drawings]
1 is a vertical sectional side view schematically showing a fluid filter according to the first exemplary embodiment.
2 is a longitudinal side view showing the fluid filter shown in FIG. 1 in an implementation state. FIG.
FIG. 3 is an exploded perspective view of a fluid filter.
FIG. 4 is a cross-sectional view showing a state in which a filter medium is housed in a housing portion defined in the filter case by assembling the filter case by assembling the first half and the second half.
5 is a vertical sectional side view schematically showing a fluid filter according to a second embodiment.
6 is a longitudinal side view showing the fluid filter shown in FIG. 5 in an implementation state. FIG.
FIG. 7 is a cross-sectional view showing a state in which the filter medium is accommodated in the accommodating portion defined in the filter case by assembling the filter case by assembling the first half and the second half.
FIG. 8 is a longitudinal side view schematically showing another form of fluid filter.
FIG. 9 is a longitudinal side view schematically showing a fluid filter according to an embodiment of the present invention .
FIG. 10 is a schematic view of an apparatus equipped with a fluid filter.
FIG. 11 is a cross-sectional view showing a state in which the filter medium is accommodated in the accommodating portion defined in the filter case by assembling the filter case by assembling the first half and the second half.
FIG. 12 is a longitudinal side view showing a conventional fluid filter configured by housing a single coarse filter medium in a filter case.
FIG. 13 is a longitudinal sectional side view showing a conventional fluid filter configured by accommodating a single fine filter medium in a filter case.
FIG. 14 is a longitudinal sectional side view showing a conventional fluid filter configured by accommodating a first filter medium having a coarse mesh and a second filter medium having a fine mesh in a filter case.
FIG. 15 is a longitudinal sectional side view showing a conventional fluid filter configured by housing a first filter medium having a coarse mesh and a second filter medium having a fine mesh in a filter case.
[Explanation of symbols]
20 filter cases (case body)
22 Inlet 24 Outlet 26 Storage part 30 Filter medium 32 Compression part 46 Press part 48 Rib-shaped protrusion (press part)
52 Convex wall part (pressing part)

Claims (4)

所要位置に流体の導入口(22)および排出口(24)を開設したケース体(20)と、弾力性を有する多孔質体を材質とし、前記ケース体(20)に内部画成した収容部(26)に着脱自在に収容される濾材(30)とからなり、前記導入口(22)からケース体(20)へ導入した流体を前記濾材(30)に通過させて該流体に混在している微細な異物を捕集し、清浄化された流体を前記排出口(24)から排出するようにした流体フィルタにおいて、
前記ケース体(20)の前記収容部 (26) を挟んで対向する両側の内壁面に、収容部(26)に向けて突出する数の凸状の押圧部(46)を、一方の内壁面の該押圧部 (46) と他方の内壁面の該押圧部 (46) とが交互に位置するように設け、
前記収容部(26)に収容した前記濾材(30)を、前記各押圧部(46)で両方向から互い違いに圧縮した
ことを特徴とする流体フィルタ。
Fluid inlet to the required position (22) and an outlet (24) opened the case body (20), accommodating a porous body as a material, defined inside said case body (20) having a bullet power resistance The filter medium (30) is detachably accommodated in the section (26), and the fluid introduced from the inlet (22) into the case body (20) is passed through the filter medium (30) and mixed with the fluid. In the fluid filter that collects the fine foreign matter that is discharged and discharges the cleaned fluid from the discharge port (24),
On both sides of the inner wall surfaces facing each other across the housing portion (26) of said case body (20), convex pressing portions of multiple projecting toward the said housing portion (26) to (46), the one pressing portion of the pressing portion of the inner wall surface (46) the other of the inner wall surface and (46) is provided so as to be positioned alternately
Fluid filter, wherein said accommodating portion to said filter medium accommodated in (26) (30), said <br/> be compressed alternately from both directions at each pressing portion (46).
前記押圧部(46)は、前記導入口(22)から排出口(24)に亘って複数個並設され、該導入口(22)に隣接した押圧部(46)の突出量を最小とすると共に該排出口(24)に隣接した押圧部(46)の突出量を最大として、導入口 (22) 側から排出口 (24) 側に向けて突出量が徐々に大きくなるように設定され、
前記各押圧部 (46) により圧縮された前記濾材 (30) における圧縮部位(32)の圧縮度合が導入口(22)から排出口(24)に向けて徐々に大きくなる請求項記載の流体フィルタ。
The pressing portion (46) is arranged several double over the outlet (24) from said inlet (22), and a minimum amount of projection of the pressing portion adjacent to the conductor inlet (22) (46) the pressing portion adjacent to the discharge port (24) to maximize the amount of projection of the (46), so that the amount of protrusion gradually increases toward the inlet (22) side to the outlet (24) side Set,
It said compression degree of the compression site (32) in the filter medium which has been compressed by the pressing portions (46) (30), Motomeko 1 toward the discharge port (24) gradually increases ing from an inlet (22) The fluid filter described.
前記押圧部(46)は、前記ケース体(20)内に設けたリブ状突片(48)である請求項1または2記載の流体フィルタ。The fluid filter according to claim 1 or 2, wherein the pressing portion (46) is a rib-like protruding piece (48) provided in the case body (20). 前記押圧部(46)は、前記ケース体(20)の外壁面を構成する凸壁部分(52)である請求項1または2記載の流体フィルタ。The fluid filter according to claim 1 or 2, wherein the pressing portion (46) is a convex wall portion (52) constituting an outer wall surface of the case body (20).
JP2002017624A 2002-01-25 2002-01-25 Fluid filter Expired - Fee Related JP4203787B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002017624A JP4203787B2 (en) 2002-01-25 2002-01-25 Fluid filter
AT03001559T ATE297797T1 (en) 2002-01-25 2003-01-23 FLUID FILTER
US10/349,862 US6926828B2 (en) 2002-01-25 2003-01-23 Fluid filter
DE60300826T DE60300826T2 (en) 2002-01-25 2003-01-23 fluid filter
EP03001559A EP1334757B1 (en) 2002-01-25 2003-01-23 Fluid filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002017624A JP4203787B2 (en) 2002-01-25 2002-01-25 Fluid filter

Publications (2)

Publication Number Publication Date
JP2003214270A JP2003214270A (en) 2003-07-30
JP4203787B2 true JP4203787B2 (en) 2009-01-07

Family

ID=27653247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002017624A Expired - Fee Related JP4203787B2 (en) 2002-01-25 2002-01-25 Fluid filter

Country Status (1)

Country Link
JP (1) JP4203787B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007090734A (en) * 2005-09-29 2007-04-12 Brother Ind Ltd Ink cartridge
CN101437595B (en) * 2006-03-28 2011-05-04 巴斯夫欧洲公司 Tube filled with an open-cell melamine/formaldehyde resin foam and use as a filter or static mixer
JP5077141B2 (en) * 2008-08-18 2012-11-21 京三電機株式会社 filter
JP2011152490A (en) * 2010-01-26 2011-08-11 Panasonic Electric Works Co Ltd Filter medium, water treatment apparatus using the filter medium, and method for manufacturing the filter medium
JP5447634B2 (en) * 2012-12-05 2014-03-19 京三電機株式会社 Moisture collector and fuel filter device including the same
JP5753214B2 (en) * 2013-05-01 2015-07-22 タイガースポリマー株式会社 Air cleaner case
KR102510691B1 (en) * 2022-08-19 2023-03-17 국방과학연구소 Purifying canister with an internal structure inducing uniform air flow distribution

Also Published As

Publication number Publication date
JP2003214270A (en) 2003-07-30

Similar Documents

Publication Publication Date Title
US6926828B2 (en) Fluid filter
US3494113A (en) Air filter assembly and sub-assemblies
US6482247B2 (en) Multi-panel fluid filter with equalized contaminant passages
RU2623263C2 (en) Air filter cartridge for internal combustion engine, method of its manufacturing and air filter containing specified cartridge
KR100355370B1 (en) filter
JP4203787B2 (en) Fluid filter
US7682416B2 (en) Air cleaner arrangements; serviceable filter elements; and, methods
US6174343B1 (en) Cam action attachment and locking mechanism for air cleaner shells
EP1247558A1 (en) A combination filter for filtering fluids
WO2003043717A1 (en) Dust collecting filter, dust collecting device, and intake device of gas turbine
CN108136299A (en) Filter for installation method and system
KR100473030B1 (en) Sintered plastic particles filter element
KR102591039B1 (en) A dust collector for laser processing easy to control dust collecting capacity
KR100763063B1 (en) Combination filter system including flow channel filtraton media and an adsorber particle filtration medium
US5716521A (en) Rechargeable filter
JP3829253B2 (en) Fluid filter
WO2020220486A1 (en) Explosion-proof valve, battery pack, and vehicle
JP4472698B2 (en) Cleaning liquid container
RU79802U1 (en) COMBINED FILTRATION SYSTEM
JP2004057914A (en) Fluid filter
KR101146228B1 (en) Filtration plate having channels being able to separating in filter press
KR100578727B1 (en) Dehydration apparatus for food waste
KR200188043Y1 (en) Air filter for air compressor
JP3677021B2 (en) filter
CN216295556U (en) Multiple combined filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081001

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111024

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121024

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131024

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees