JP4201944B2 - Jellyfish processing method - Google Patents
Jellyfish processing method Download PDFInfo
- Publication number
- JP4201944B2 JP4201944B2 JP37295699A JP37295699A JP4201944B2 JP 4201944 B2 JP4201944 B2 JP 4201944B2 JP 37295699 A JP37295699 A JP 37295699A JP 37295699 A JP37295699 A JP 37295699A JP 4201944 B2 JP4201944 B2 JP 4201944B2
- Authority
- JP
- Japan
- Prior art keywords
- jellyfish
- water
- tank
- crushed water
- floc
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 241000242583 Scyphozoa Species 0.000 title claims description 105
- 238000003672 processing method Methods 0.000 title claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 76
- 238000000926 separation method Methods 0.000 claims description 41
- 239000007788 liquid Substances 0.000 claims description 37
- 238000005188 flotation Methods 0.000 claims description 33
- 238000000034 method Methods 0.000 claims description 27
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 22
- 238000005273 aeration Methods 0.000 claims description 18
- 229910021578 Iron(III) chloride Inorganic materials 0.000 claims description 11
- 239000003795 chemical substances by application Substances 0.000 claims description 11
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 claims description 11
- 239000013535 sea water Substances 0.000 claims description 10
- 230000000694 effects Effects 0.000 claims description 8
- 244000144992 flock Species 0.000 claims description 8
- 239000005416 organic matter Substances 0.000 claims description 7
- 230000003472 neutralizing effect Effects 0.000 claims description 6
- 229920000642 polymer Polymers 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 239000001301 oxygen Substances 0.000 claims description 5
- 230000004931 aggregating effect Effects 0.000 claims description 4
- 238000000354 decomposition reaction Methods 0.000 claims description 4
- 244000005700 microbiome Species 0.000 claims description 4
- 229920006318 anionic polymer Polymers 0.000 claims description 3
- 238000007790 scraping Methods 0.000 claims 2
- 238000007664 blowing Methods 0.000 claims 1
- 230000008674 spewing Effects 0.000 claims 1
- 238000005345 coagulation Methods 0.000 description 9
- 230000015271 coagulation Effects 0.000 description 9
- 238000007667 floating Methods 0.000 description 9
- 230000018044 dehydration Effects 0.000 description 5
- 238000006297 dehydration reaction Methods 0.000 description 5
- 238000005189 flocculation Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 4
- 239000008394 flocculating agent Substances 0.000 description 4
- 230000016615 flocculation Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 238000004062 sedimentation Methods 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 238000005054 agglomeration Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 230000003311 flocculating effect Effects 0.000 description 3
- 238000005339 levitation Methods 0.000 description 3
- 239000010802 sludge Substances 0.000 description 3
- 241000242764 Aequorea victoria Species 0.000 description 2
- 239000000701 coagulant Substances 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000002351 wastewater Substances 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 125000000129 anionic group Chemical group 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 235000011116 calcium hydroxide Nutrition 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 239000013505 freshwater Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/20—Controlling water pollution; Waste water treatment
- Y02A20/204—Keeping clear the surface of open water from oil spills
Landscapes
- Cleaning Or Clearing Of The Surface Of Open Water (AREA)
- Processing Of Solid Wastes (AREA)
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Physical Water Treatments (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、発電所等の海水取水口に捕捉され滞留したクラゲを主体とする浮遊生物(ネクトン)を環境基準に基づいて処理するクラゲ類処理方法に関する。
【0002】
【従来の技術】
火力発電所及び原子力発電所で冷却水として使用される海水の取水口に配備されて海水中に漂うゴミ類を取り除く除塵装置にはクラゲ溜まりが付設され、海中でクラゲが大量発生するとクラゲ溜まりに大量のクラゲが他の浮遊生物と共に捕捉され滞留する。発電所の取水口に捕捉された大量のクラゲを発電所の構内に埋設処理することや、天日干しで処理することは、環境基準の点から難しい。そこで、現状においては取水口から取り出した大量のクラゲを環境基準に適合した廃棄物又は排水として処理するようにしており、このクラゲの処理方法として圧搾脱水法(特公平1−31434)、熱処理法(特公平7−94031)、凝集沈殿法(特公平4−48986)等が提案されている。
【0003】
圧搾脱水法は、クラゲをスラリー状に破砕して圧搾脱水機で固形成分と液状成分に分離して、固形成分を焼却等によって処分し、液状成分を酸化処理によって浄化してから排水する処理方法である。熱処理法は、クラゲを細かく切断したクラゲ片を85〜90℃の清温水に浸漬して攪拌し、清水の浸透圧と熱の相乗効果でクラゲ片の表皮組織を破壊して脱水筋質化したクラゲ残滓を廃棄処理する処理方法である。凝集沈殿法は、海水から分離したクラゲを破砕したクラゲ破砕水に凝集剤を添加して攪拌することで、クラゲ破砕有機物成分のフロックを凝集させ沈殿させた後、フロックを脱水機で脱水処理等して処分する処理方法である。
【0004】
【発明が解決しようとする課題】
上記圧搾脱水法は、少量ずつのクラゲを時間を掛けて処理するのには問題ないが、大量のクラゲを短時間で処理するためには巨大な圧搾脱水機が必要となり、このようなクラゲ処理設備はコスト面から事実上採用することができない。つまり、処理対象となるクラゲは、不定期に短時間で大量発生するのが常であり、かつ、短時間で大量発生したクラゲを短時間で処理することが要求されるが、この要求に圧搾脱水法では対処できないのが現状である。
【0005】
また、上記熱処理法は、実用性があるとして実際の設置例もあるが、回収した大量のクラゲの全量を処理槽に収容して一定時間加熱するため、大型の耐熱処理槽が必要になると共に、熱処理に必要な熱量が膨大となってランニングコストが高くなる問題があった。
【0006】
また、上記凝集沈殿法は、海水から分離したクラゲを破砕機で破砕したクラゲ破砕水に無機凝集剤や高分子凝集剤を添加してクラゲ破砕有機物成分のフロックを凝集させ沈殿させた固形成分と残りの液状成分をそれぞれ別個に処理する方法であるが、実験によって検討したところ、次のような実用上に不適格となる問題がある。
【0007】
すなわち、海水から分離した例えば水クラゲを破砕機で破砕したクラゲ破砕水の有機物含有量、汚染度の指標となるCOD(化学的酸素要求量)は300〜400mg/lの範囲にある。このクラゲ破砕水に硫酸バンド等の各種の無機凝集剤を添加してフロックを生成させ、そのフロックの沈降速度を調査した。その結果、概してフロックの生成状況が悪くてフロックを浮かべる液状成分(処理水)のCODが高くて濁りが残り、さらに、この液状成分でのフロックの沈降速度が悪くて、30分放置してもフロックの破砕水全量に対して占めるスカム容積(フロックの浮遊汚泥容積)が数10%以上と高く、かつ、スカム安定性が悪くて掻き回すと濁りが増すことがあって、クラゲ破砕水の凝集処理能力に大きく欠ける問題があった。
【0008】
本発明の目的とするところは、クラゲ破砕水のフロック生成を常に確実、迅速、効果的に成し得るクラゲ類処理方法を提供することにある。
【0009】
【課題を解決するための手段】
本発明の上記目的を達成する技術的手段は、海水から分離したクラゲ類を破砕機で破砕したクラゲ破砕水を個液分離槽に供給し、クラゲ破砕水のうち、クラゲから侵出した液状成分はエアレーション槽に送られ、クラゲ破砕水のうち、クラゲ有機成分を多く含むフロック成分は加圧浮上分離処理槽に送られ、エアレーション槽は、ここに供給されたクラゲ破砕水の液状成分に気泡状の空気を連続して注入し、注入した空気中の酸素で微生物による有機物分解活動を助長してCODを下げ、前記エアレーション槽で処理されたクラゲ処理水はCODが排水基準以下の場合にそのまま排水処理され、CODが排水基準を超える場合は加圧浮上分離処理槽に送られ、加圧浮上分離処理槽は、クラゲ破砕水に塩化第2鉄の無機凝集剤と中和剤を添加してフロックを凝集生成させると共に、加圧浮上分離処理槽のクラゲ破砕水に加圧空気を溶け込ませた水を噴出させることにより発生する微細気泡をフロックに付着させて、微細気泡の浮力によりフロックを強制的に浮上させ、クラゲ破砕水の水面に溜まったフロックであるスカムを掻き取って、このスカムをフロック回収槽に回収することを特徴とする(請求項1の発明)。
【0010】
また、本発明の上記目的を達成する別の技術的手段は、海水から分離したクラゲ類を破砕機で破砕したクラゲ破砕水を個液分離槽に供給し、クラゲ破砕水のうち、クラゲから侵出した液状成分はエアレーション槽に送られ、クラゲ破砕水のうち、クラゲ有機成分を多く含むフロック成分は加圧浮上分離処理槽に送られ、エアレーション槽は、ここに供給されたクラゲ破砕水の液状成分に気泡状の空気を連続して注入し、注入した空気中の酸素で微生物による有機物分解活動を助長してCODを下げ、前記エアレーション槽で処理されたクラゲ処理水はCODが排水基準以下の場合にそのまま排水処理され、CODが排水基準を超える場合は加圧浮上分離処理槽に送られ、加圧浮上分離処理槽は、クラゲ破砕水に液体硫酸バンドの無機凝集剤と中和剤を添加してフロックを凝集生成させると共に、加圧浮上分離処理槽のクラゲ破砕水に加圧空気を溶け込ませた水を噴出させることにより発生する微細気泡をフロックに付着させて、微細気泡の浮力によりフロックを強制的に浮上させ、クラゲ破砕水の水面に溜まったフロックであるスカムを掻き取って、このスカムをフロック回収槽に回収することを特徴とする(請求項2の発明)。
【0011】
以上の本発明においては、処理槽内のクラゲ破砕水に無機凝集剤の凝集機能を補助する高分子凝集助剤としてのアニオン系高分子凝集剤を添加することが望ましい(請求項3の発明)。
【0012】
以上の本発明は、クラゲ等の浮遊生物の有機物成分を凝集沈殿させる現状の処理方法に実用性に欠ける問題があることから凝集沈殿処理法を脱却して、別のクラゲ処理法である加圧浮上処理法の適用性を探る試験を行って成されたものである。つまり、水クラゲ等のクラゲを主体とするクラゲ類の破砕水を凝集させる凝集剤として液体硫酸バンド、塩化第2鉄等の無機凝集剤が適切であることが実験で分かったが、これら無機凝集剤がフロックを凝集させ沈殿させる用途においては実用性が見い出せない。そこで、これら無機凝集剤をクラゲ破砕水の加圧浮上処理の用途に適用したところ、ある条件下で非常に適していることが明らかになった。特に、塩化第2鉄の無機凝集剤は中和剤と凝集助剤の併用でクラゲ破砕水のフロック凝集と浮上効果に優れ、凝集剤使用の凝集加圧浮上分離処理装置の実用性を確実なものにする。また、無機凝集剤としては塩化第2鉄の38%FeClが最適であり、2番目に液体硫酸バンドが適切であることが後述する実験結果で分かっている。また、中和剤(pH調整剤)としては水酸化ナトリウム、消石灰等のアルカリ剤やが適切であり、凝集助剤にはクリフロックPA−331のアニオン系高分子凝集剤やクリフロックPF−102(商品名)の両性系高分子凝集剤等があるが,アニオン系のクリフロックPA−331がフロック生成に優れる。
【0013】
【発明の実施の形態】
本発明方法の実施形態を図1に示し説明すると、図1に示されるクラゲ処理設備は個液分離槽1とエアレーション槽2と加圧浮上分離槽3を備える。個液分離槽1に図示しない破砕機よりクラゲを破砕したクラゲ破砕水が供給されると、クラゲ破砕水は個液分離槽1に一時的に収容されてクラゲ有機物成分を多く含むフロック成分とクラゲから侵出した液状成分に大まかに分離されて、例えばフロック成分が加圧浮上分離槽3に送られ、液状成分がエアレーション槽2に送られる。エアレーション槽2は、ここに供給されたクラゲ破砕水の液状成分に気泡状の空気を連続して注入し、注入した空気中の酸素で微生物による有機物分解活動を助長してCODを積極的に下げるもので、ここで処理されたクラゲ処理水はCODが排水基準以下の場合にそのまま排水処理され、或いは、CODが排水基準を超える場合は加圧浮上分離処理槽3に送られる。そして、個液分離槽1とエアレーション槽2から加圧浮上分離槽3の凝集加圧浮上分離に適した処理槽に供給されたクラゲ処理水が本発明方法で処理される。
【0014】
なお、個液分離槽1にクラゲ破砕水を供給する破砕機の性能によっては、この破砕機から直接に加圧浮上分離槽3にクラゲ破砕水を供給して、本発明方法で処理するようにすることも可能である。また、個液分離槽1からエアレーション槽2に送られるクラゲ破砕水が主として泡成分の場合は、この泡成分を少しずつ連続的に加圧浮上分離槽3に供給するようにして、本発明方法で処理することも可能である。
【0015】
加圧浮上分離槽3は、個液分離槽1やエアレーション槽2から供給されたクラゲ処理水を収容し、槽底部に設置したノズル5から加圧空気を飽和させた水をクラゲ処理水中に噴出させて、クラゲ処理水中で凝縮して浮遊するフロックに微細な気泡を付着させてフロックを積極的に浮上させ、浮上したフロックのスカム(浮上汚泥)を掻き取ってフロック回収槽4に蓄積させる。ここで、本発明においては、まず加圧浮上分離槽3内のクラゲ破砕水に塩化第2鉄又は液体硫酸バンドの無機凝集剤と中和剤を添加してクラゲ有機物成分を主体とするフロックを積極的に凝集生成させる。また、無機凝集剤の高分子凝集助剤としてクリフロックPA−331も添加してフロックの凝集生成を迅速かつ確実なものにする。このフロック凝集の過程でクラゲ破砕水に加圧空気を飽和させた水を噴出させてクラゲ破砕水中に加圧空気の微細気泡を発生させ、この微細気泡を凝集過程にあるフロックに付着させて、フロックを微細気泡の浮力で強制的に浮上させるようにする。このようにするとクラゲ破砕水の水面にフロックが安定した状態で積極的に溜まってスカムとなり、このスカムが積極的に掻き取られてフロック回収槽4に回収される。
【0016】
以上の本発明によるクラゲ類処理方法の試験データを次の表1に示し、これを説明する。
【0017】
【表1】
【0018】
ただし、表1の試験データは次の試験条件に基づく。
【0019】
試験条件 ・無機凝集剤添加量
38%塩化第2鉄 1500mg/l
液体硫酸バンド 2000mg/l
・高分子凝集助剤添加量
クリフロックPA−331 3mg/l
クリフロックPF−102 3mg/l
・加圧浮上処理
加圧水圧力 5kg/cm2
加圧水比 20%
表1と試験条件に示される凝集助剤のクリフロックPA−331とPF−102は加圧浮上処理によく使用されるものであり、表1から塩化第2鉄と液体硫酸バンドの両無機凝集剤に対してクリフロックPA−331の方がフロックの浮上速度が速くて適していることが分かる。また、38%塩化第2鉄と液体硫酸バンドの両無機凝集剤によるスカム容積、スカム安定性が大差なくて共に良好であり、凝集加圧浮上処理に適切である。特に、38%塩化第2鉄とクリフロックPA−331を組合せた場合の浮上速度が130m/hと最も高くて最適となる。また、液体硫酸バンドとクリフロックPA−331を組合せの場合の浮上速度が54m/hと低いが、この程度では実用性を損なわずに済む。さらに、表1に示されていないが、上記試験条件で試験した加圧浮上処理水のCODは50〜60mg/lと低くなって、COD低下の処理効果も十分に発揮されることが確認された。以上のことからクラゲ破砕水は、上記方法による凝集加圧浮上処理が適していることが分かる。
【0020】
表1のように凝集加圧浮上処理されて図1のフロック回収槽4に回収されたフロックは、脱水処理等して汚泥として廃棄処分され、加圧浮上分離槽3でフロックが除かれた処理水はCODが排水基準以下の場合はそのまま排水処理され、CODが排水基準の超える場合は必要に応じて活性炭処理されてから排水処理される。この場合の活性炭処理は、処理されるクラゲ処理水の元々のCODが凝集加圧浮上処理で排水基準近くまで下げられているので、小規模な既設設備を使って簡単迅速に行うことができる。
【0021】
【発明の効果】
本発明によれば、加圧浮上分離用処理槽に収容されたクラゲ破砕水に添加される塩化第2鉄又は液体硫酸バンドの無機凝集剤は中和剤と凝集助剤の併用でクラゲ破砕水のフロック凝集と浮上効果に優れるため、凝集沈殿処理が難しいクラゲ破砕水のCOD低下のための凝集加圧浮上分離処理が確実、迅速に行えるようになり、クラゲ破砕水の加圧浮上分離装置の実用性を確実なものにする。
【図面の簡単な説明】
【図1】本発明方法の実施形態を示すクラゲ処理装置の構成図。
【符号の説明】
3 処理槽、加圧浮上分離槽[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a jellyfish treatment method for treating floating organisms (necton) mainly composed of jellyfish trapped and retained in a seawater intake port of a power plant or the like based on environmental standards.
[0002]
[Prior art]
A jellyfish reservoir is attached to a dust removal device that is installed at the intake of seawater used as cooling water at thermal power plants and nuclear power plants to remove debris floating in the seawater. Large amounts of jellyfish are trapped and stay with other airborne organisms. It is difficult to embed a large amount of jellyfish trapped at the water intake of the power plant in the premises of the power plant or to treat with sun-drying from the viewpoint of environmental standards. Therefore, at present, a large amount of jellyfish taken out from the water intake is treated as waste or waste water that conforms to environmental standards. As a treatment method for this jellyfish, the pressure dehydration method (Japanese Patent Publication No. 1-33434), the heat treatment method are used. (Japanese Patent Publication No. 7-94031), a coagulation precipitation method (Japanese Patent Publication No. 4-48986), and the like have been proposed.
[0003]
The pressure dehydration method is a treatment method in which jellyfish is crushed into a slurry, separated into a solid component and a liquid component by a pressure dehydrator, disposed of by incineration, etc., and the liquid component is purified by oxidation treatment before being drained. It is. In the heat treatment method, jellyfish pieces cut into small pieces of jellyfish were immersed in 85-90 ° C. warm water and stirred, and the epidermis tissue of the jellyfish pieces was destroyed and dehydrated by the synergistic effect of the osmotic pressure and heat of the fresh water. This is a processing method for disposing of jellyfish residue. The coagulation sedimentation method adds flocculant to the jellyfish crushed water obtained by crushing jellyfish separated from seawater, and agglomerates and precipitates the flocs of the jellyfish crushed organic components, and then dehydrates the flocs with a dehydrator. It is a processing method to be disposed of.
[0004]
[Problems to be solved by the invention]
The above-mentioned squeeze dehydration method has no problem in processing a small amount of jellyfish over time, but in order to process a large amount of jellyfish in a short time, a huge squeeze dehydrator is required. The equipment cannot be practically adopted from the viewpoint of cost. In other words, jellyfish to be processed usually occur in a large amount in a short period of time, and it is required to process a large amount of jellyfish in a short time in a short time. At present, the dehydration method cannot cope.
[0005]
In addition, although the above heat treatment method has practical examples because it has practicality, a large heat-resistant treatment tank is required because the entire amount of recovered jellyfish is stored in the treatment tank and heated for a certain period of time. There has been a problem that the amount of heat necessary for the heat treatment becomes enormous and the running cost becomes high.
[0006]
In addition, the coagulation sedimentation method includes adding a solid coagulant or a polymer coagulant to jellyfish crushed water obtained by crushing jellyfish separated from seawater using a crusher, and aggregating and precipitating the flocs of the jellyfish crushed organic component. This is a method of treating the remaining liquid components separately, but when examined by experiment, there are the following problems that make them unsuitable for practical use.
[0007]
That is, the organic matter content of jellyfish crushed water obtained by crushing, for example, water jellyfish separated from seawater with a crusher, and the COD (chemical oxygen demand) as an indicator of the degree of contamination are in the range of 300 to 400 mg / l. Various flocculating agents such as a sulfuric acid band were added to this jellyfish crushed water to generate floc, and the sedimentation rate of the floc was investigated. As a result, the generation condition of flocs is generally poor and the COD of the liquid component (treated water) that floats flocs is high and turbidity remains, and further, the sedimentation rate of flocs with this liquid component is poor, and it can be left for 30 minutes. The scum volume (floc floating sludge volume) occupying the total amount of flocc crushed water is as high as several tens of percent, and the scum stability is poor and the turbidity may increase if the scum is stirred. There was a problem of lack of ability.
[0008]
An object of the present invention is to provide a jellyfish processing method capable of always reliably, quickly and effectively generating flocculated water floes.
[0009]
[Means for Solving the Problems]
The technical means for achieving the above object of the present invention is to supply jellyfish crushed water obtained by crushing jellyfish separated from seawater with a crusher to the individual liquid separation tank. The components are sent to the aeration tank, and among the jellyfish crushed water, the floc component containing a lot of jellyfish organic components is sent to the pressurized flotation separation treatment tank, and the aeration tank is bubbled into the liquid component of the jellyfish crushed water supplied here The jellyfish treated water treated in the aeration tank is left as it is when the COD is below the drainage standard. When the wastewater treatment is performed and COD exceeds the wastewater standard, it is sent to the pressurized flotation separation treatment tank. The pressurized flotation separation treatment tank adds ferric chloride inorganic flocculant and neutralizing agent to jellyfish crushed water. The flocs are agglomerated and fine bubbles generated by spraying water in which pressurized air is dissolved in jellyfish crushed water in the pressurized flotation separation tank are attached to the flocs, and the flocs are forced by the buoyancy of the fine bubbles. The scum, which is a floc accumulated on the water surface of the jellyfish crushed water, is scraped off, and the scum is collected in a flock collecting tank (invention of claim 1).
[0010]
In addition, another technical means for achieving the above object of the present invention is to supply jellyfish crushed water obtained by crushing jellyfish separated from seawater with a crusher to the individual liquid separation tank. The leached liquid component is sent to the aeration tank. Among the jellyfish crushed water, the floc component containing a lot of jellyfish organic components is sent to the pressurized flotation separation treatment tank, and the aeration tank is supplied with the jellyfish crushed water supplied here. Bubbled air is continuously injected into the liquid component, and the oxygen in the injected air promotes organic matter decomposition activities by microorganisms to lower the COD. The jellyfish treated water treated in the aeration tank has COD below the drainage standard In this case, if the COD exceeds the drainage standard, it is sent to a pressurized flotation separation treatment tank, and the pressurized flotation separation treatment tank is combined with an inorganic flocculant of liquid sulfuric acid band in jellyfish crushed water. A floc is agglomerated by adding a summing agent, and fine bubbles generated by spraying water in which pressurized air is dissolved in jellyfish crushed water in a pressurized flotation separation treatment tank are attached to the flocs. The flocc is forcedly lifted by the buoyancy of the jellyfish, the scum, which is a flock accumulated on the surface of the jellyfish crushing water, is scraped off, and the scum is collected in the flock collecting tank (claim 2).
[0011]
In the present invention described above, it is desirable to add an anionic polymer flocculant as a polymer flocculating aid to assist the flocculating function of the inorganic flocculant to the jellyfish crushed water in the treatment tank (the invention of claim 3). .
[0012]
Since the present invention described above has a problem of lack of practicality in the current treatment method for coagulating and precipitating organic components of floating organisms such as jellyfish, it is a pressurization which is another jellyfish treatment method. The test was conducted to investigate the applicability of the levitation treatment method. In other words, it was proved by experiments that an inorganic flocculant such as a liquid sulfuric acid band and ferric chloride is suitable as a flocculant for aggregating crushed water of jellyfish mainly composed of jellyfish such as water jellyfish. In applications where the agent agglomerates and precipitates floc, no practicality can be found. Therefore, when these inorganic flocculants were applied to the use of pressurized levitation treatment of jellyfish crushed water, it was found that they were very suitable under certain conditions. In particular, ferric chloride inorganic flocculant is excellent in floc flocculation and flotation effect of jellyfish crushed water by using a neutralizing agent and a flocculant aid, and ensures the practicality of the flocculation pressure flotation separation device using flocculant. Make things. As the inorganic flocculant, 38% FeCl of ferric chloride is optimal, and it is known from the experimental results described later that the liquid sulfuric acid band is the second most suitable. Moreover, alkali agents such as sodium hydroxide and slaked lime are suitable as the neutralizing agent (pH adjusting agent), and an anionic polymer flocculant such as Clifflock PA-331 or Clifflock PF-102 is used as the coagulation aid. Although there is an amphoteric polymer flocculant (trade name), anionic Clifflock PA-331 is excellent in floc generation.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of the method of the present invention will be described with reference to FIG. 1. The jellyfish treatment facility shown in FIG. 1 includes an individual liquid separation tank 1, an
[0014]
Depending on the performance of the crusher that supplies the jellyfish crushed water to the individual liquid separation tank 1, the jellyfish crushed water may be supplied directly from this crusher to the pressurized flotation separation tank 3 and processed by the method of the present invention. It is also possible to do. Further, in the case where the jellyfish crushed water sent from the individual liquid separation tank 1 to the
[0015]
The pressurized flotation separation tank 3 contains the jellyfish treated water supplied from the individual liquid separation tank 1 or the
[0016]
The test data of the above jellyfish processing method according to the present invention is shown in the following Table 1 and will be described.
[0017]
[Table 1]
[0018]
However, the test data in Table 1 is based on the following test conditions.
[0019]
Test conditions ・ Inorganic flocculant added 38% ferric chloride 1500 mg / l
Liquid sulfuric acid band 2000mg / l
-Addition amount of polymer agglomeration aid Cliff Rock PA-331 3mg / l
Cliflock PF-102 3mg / l
・ Pressure floating treatment Pressurized water pressure 5kg / cm 2
Pressurized water ratio 20%
Cliflock PA-331 and PF-102, which are coagulation aids shown in Table 1 and test conditions, are often used for pressurized flotation treatment. From Table 1, both inorganic coagulations of ferric chloride and liquid sulfuric acid bands are performed. It can be seen that Cliff Rock PA-331 is suitable for the agent because the floc flying speed is faster. In addition, the scum volume and scum stability by both inorganic flocculants of 38% ferric chloride and liquid sulfuric acid band are not so different, and both are good and suitable for agglomeration pressure flotation treatment. In particular, the ascent speed when combining 38% ferric chloride and cliff rock PA-331 is as high as 130 m / h and is optimum. In addition, the flying speed in the combination of the liquid sulfuric acid band and Cliff Rock PA-331 is as low as 54 m / h, but this level does not impair the practicality. Furthermore, although not shown in Table 1, it is confirmed that the COD of the pressurized flotation treated water tested under the above test conditions is as low as 50 to 60 mg / l, and the treatment effect of reducing COD is sufficiently exhibited. It was. From the above, it can be seen that the jellyfish crushed water is suitable for the coagulation pressure floating treatment by the above method.
[0020]
As shown in Table 1, flocs that have been agglomerated and pressurized and floated and recovered in the floc recovery tank 4 in FIG. 1 are disposed of as sludge by dehydration and the like, and the flocs removed in the pressure and flotation separation tank 3 If the COD is less than the drainage standard, the water is treated as it is. If the COD exceeds the drainage standard, the water is treated with activated carbon as necessary and then drained. The activated carbon treatment in this case can be carried out easily and quickly using a small-scale existing facility because the original COD of the jellyfish treated water to be treated is lowered to near the drainage standard by the coagulation pressure flotation treatment.
[0021]
【The invention's effect】
According to the present invention, the inorganic flocculating agent of ferric chloride or liquid sulfuric acid band added to the jellyfish crushed water accommodated in the pressurized flotation separation treatment tank is a combination of a neutralizing agent and a flocculating aid. Because of its excellent floc flocculation and levitation effect, the flocculation pressure flotation separation process for reducing the COD of jellyfish crushing water, which is difficult to agglomerate and settle, can be performed reliably and quickly. Ensure practicality.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a jellyfish processing apparatus showing an embodiment of a method of the present invention.
[Explanation of symbols]
3 treatment tank, pressurized flotation separation tank
Claims (3)
クラゲ破砕水のうち、クラゲから侵出した液状成分はエアレーション槽に送られ、クラゲ破砕水のうち、クラゲ有機成分を多く含むフロック成分は加圧浮上分離処理槽に送られ、
エアレーション槽は、ここに供給されたクラゲ破砕水の液状成分に気泡状の空気を連続して注入し、注入した空気中の酸素で微生物による有機物分解活動を助長してCODを下げ、
前記エアレーション槽で処理されたクラゲ処理水はCODが排水基準以下の場合にそのまま排水処理され、CODが排水基準を超える場合は加圧浮上分離処理槽に送られ、
加圧浮上分離処理槽は、クラゲ破砕水に塩化第2鉄の無機凝集剤と中和剤を添加してフロックを凝集生成させると共に、加圧浮上分離処理槽のクラゲ破砕水に加圧空気を溶け込ませた水を噴出させることにより発生する微細気泡をフロックに付着させて、微細気泡の浮力によりフロックを強制的に浮上させ、
クラゲ破砕水の水面に溜まったフロックであるスカムを掻き取って、このスカムをフロック回収槽に回収することを特徴とするクラゲ類処理方法。 Jellyfish crushed water obtained by crushing jellyfish separated from seawater with a crusher is supplied to the individual liquid separation tank,
Among the jellyfish crushed water, the liquid component invading from the jellyfish is sent to the aeration tank, and among the jellyfish crushed water, the flock component containing a lot of jellyfish organic components is sent to the pressurized flotation separation treatment tank,
The aeration tank continuously injects bubble-like air into the liquid component of the jellyfish crushed water supplied here, promotes organic matter decomposition activity by microorganisms with the oxygen in the injected air, lowers the COD,
The jellyfish treated water treated in the aeration tank is drained as it is when the COD is below the drainage standard, and is sent to the pressurized flotation separation tank when the COD exceeds the drainage standard,
The pressurized flotation separation treatment tank adds ferric chloride inorganic flocculant and neutralizing agent to jellyfish crushed water to agglomerate and generate flocs, and pressurized air is added to the jellyfish crushed water in the pressurized flotation separation treatment tank. The fine bubbles generated by blowing out the melted water are attached to the floc, and the floc is forcedly lifted by the buoyancy of the fine bubbles,
A jellyfish processing method characterized by scraping off a scum, which is a floc accumulated on the surface of jellyfish crushed water, and collecting the scum in a flock collecting tank .
クラゲ破砕水のうち、クラゲから侵出した液状成分はエアレーション槽に送られ、クラゲ破砕水のうち、クラゲ有機成分を多く含むフロック成分は加圧浮上分離処理槽に送られ、
エアレーション槽は、ここに供給されたクラゲ破砕水の液状成分に気泡状の空気を連続して注入し、注入した空気中の酸素で微生物による有機物分解活動を助長してCODを下げ、
前記エアレーション槽で処理されたクラゲ処理水はCODが排水基準以下の場合にそのまま排水処理され、CODが排水基準を超える場合は加圧浮上分離処理槽に送られ、
加圧浮上分離処理槽は、クラゲ破砕水に液体硫酸バンドの無機凝集剤と中和剤を添加してフロックを凝集生成させると共に、加圧浮上分離処理槽のクラゲ破砕水に加圧空気を溶け込ませた水を噴出させることにより発生する微細気泡をフロックに付着させて、微細気泡の浮力によりフロックを強制的に浮上させ、
クラゲ破砕水の水面に溜まったフロックであるスカムを掻き取って、このスカムをフロック回収槽に回収することを特徴とするクラゲ類処理方法。 Jellyfish crushed water obtained by crushing jellyfish separated from seawater with a crusher is supplied to the individual liquid separation tank,
Among the jellyfish crushed water, the liquid component invading from the jellyfish is sent to the aeration tank, and among the jellyfish crushed water, the flock component containing a lot of jellyfish organic components is sent to the pressurized flotation separation treatment tank,
The aeration tank continuously injects bubble-like air into the liquid component of the jellyfish crushed water supplied here, promotes organic matter decomposition activity by microorganisms with the oxygen in the injected air, lowers the COD,
The jellyfish treated water treated in the aeration tank is drained as it is when the COD is below the drainage standard, and is sent to the pressurized flotation separation tank when the COD exceeds the drainage standard,
In the pressurized flotation separation tank, an inorganic flocculant and neutralizer of liquid sulfuric acid band are added to the jellyfish crushing water to agglomerate flocs, and pressurized air is dissolved in the jellyfish crushing water in the pressurized flotation separation treatment tank. The fine bubbles that are generated by spewing out the trapped water are attached to the floc, and the floc is forcibly lifted by the buoyancy of the fine bubbles,
A jellyfish processing method characterized by scraping off a scum, which is a floc accumulated on the surface of jellyfish crushed water, and collecting the scum in a flock collecting tank .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37295699A JP4201944B2 (en) | 1999-12-28 | 1999-12-28 | Jellyfish processing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP37295699A JP4201944B2 (en) | 1999-12-28 | 1999-12-28 | Jellyfish processing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001179265A JP2001179265A (en) | 2001-07-03 |
JP4201944B2 true JP4201944B2 (en) | 2008-12-24 |
Family
ID=18501328
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP37295699A Expired - Fee Related JP4201944B2 (en) | 1999-12-28 | 1999-12-28 | Jellyfish processing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4201944B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4549000B2 (en) * | 2001-12-06 | 2010-09-22 | Idec株式会社 | Water purification equipment for suspended solids |
CN103288161B (en) * | 2013-06-24 | 2014-12-03 | 甘肃金桥给水排水设计与工程(集团)有限公司 | Releasing device for air dissolved solution |
CN109736278A (en) * | 2019-01-29 | 2019-05-10 | 李子衡 | A kind of river garbage cleaning ship |
-
1999
- 1999-12-28 JP JP37295699A patent/JP4201944B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2001179265A (en) | 2001-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109437454B (en) | Enhanced physicochemical treatment method and device for refined high-salt high-ammonia special oily sewage | |
JP2005013892A (en) | Water cleaning method | |
KR20160128695A (en) | Method for eliminating algae using oxidants | |
KR101360018B1 (en) | Method of water treatment and system using the same | |
JP4201944B2 (en) | Jellyfish processing method | |
JP5211636B2 (en) | Oil-containing wastewater treatment method and oil-containing wastewater treatment facility | |
JP2008264764A5 (en) | Oil-containing wastewater treatment method and oil-containing wastewater treatment facility | |
KR101853095B1 (en) | Method for Removing Algae in Water | |
JP2004107780A (en) | Method for recovering and utilizing valuable metal in waste water containing metal | |
JP3939970B2 (en) | Coal storage wastewater treatment method | |
JP2001179233A (en) | Method for treating jellyfishes | |
JP2002035764A (en) | Method and system for treating organic wastewater | |
JP4549000B2 (en) | Water purification equipment for suspended solids | |
JP2001187379A (en) | Method for treating natural organic matter such as medusa | |
CN112279470A (en) | Down feather washing sewage treatment system | |
JP2004105923A (en) | Method of recovering valuable metal in metal-containing waste water and method of utilizing the same | |
JP5693992B2 (en) | Method for recovering dissolved iron from wastewater containing various metal ions | |
JP3986413B2 (en) | Aquatic organism processing method and apparatus | |
JP4137103B2 (en) | Treatment method of shellfish waste liquid | |
JP2002263676A (en) | Waste water treatment method and facility | |
JP4552287B2 (en) | Jellyfish processing apparatus and processing method | |
CN215627371U (en) | Waste water treatment system for fly ash landfill | |
CN213803405U (en) | Be used for abluent sewage treatment system of eiderdown | |
JP3700619B2 (en) | Jellyfish processing apparatus and processing method | |
JP3923020B2 (en) | Aquatic organism processing method and apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050426 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080707 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080710 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080902 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080924 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20081008 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111017 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111017 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121017 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131017 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |