JP4200523B2 - Air conditioning system for precise temperature control of local space - Google Patents

Air conditioning system for precise temperature control of local space Download PDF

Info

Publication number
JP4200523B2
JP4200523B2 JP2005184321A JP2005184321A JP4200523B2 JP 4200523 B2 JP4200523 B2 JP 4200523B2 JP 2005184321 A JP2005184321 A JP 2005184321A JP 2005184321 A JP2005184321 A JP 2005184321A JP 4200523 B2 JP4200523 B2 JP 4200523B2
Authority
JP
Japan
Prior art keywords
air
temperature
duct
area
return
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005184321A
Other languages
Japanese (ja)
Other versions
JP2007003107A (en
Inventor
真也 平沢
明弘 土谷
泰三 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airtech Japan Ltd
Original Assignee
Airtech Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airtech Japan Ltd filed Critical Airtech Japan Ltd
Priority to JP2005184321A priority Critical patent/JP4200523B2/en
Publication of JP2007003107A publication Critical patent/JP2007003107A/en
Application granted granted Critical
Publication of JP4200523B2 publication Critical patent/JP4200523B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Description

本発明は、周囲環境の温度変動に影響を受けやすい、作業対象物質等に対して使用する局所空間を精密に温度制御するための空調システムに関する。   The present invention relates to an air conditioning system for precisely controlling the temperature of a local space that is easily affected by temperature fluctuations in the surrounding environment and that is used for a work target substance.

作業空間や対象物質等を囲う空間の温度変動を減らすためには室内全体を空調する方式が一般的で、一般空調レベル18℃乃至27℃の範囲で±1℃乃至±3℃の範囲の制御は可能である。然し、更に温度変動幅を少なくし変動幅を0.1℃乃至0.01℃以上精密に制御するには、式(1)
Q≧q÷1.2 ÷0.24÷|t| ・・・ 式(1)
|t|≧q÷Q÷1.2 ÷0.24 ・・・ 式(2)
Q :空調機の必要風量 (m3/H)
q :熱負荷の合計 (Kcal/H)
1.2 :空気の比重(20℃時) (kg/m3
0.24:空気の比熱 (Kcal/kg・℃)
t :温度精度 (℃)
によって送風量を10乃至100倍以上にしなければならない。従って、風量に比例して空調機寸法が大きくなり、設備費用が増加し、かつ、エネルギーコストも増加する。
そのため、部屋全体を一次空調とし温度変動を安定させ、必要部分のみ壁体で囲って二次空調として局所的に高精度に温度制御された空気を送風する方法が採用されている(特許文献1参照)。
In order to reduce the temperature fluctuation of the work space and the space surrounding the target substance, etc., the general method is to air-condition the entire room, and control within the range of ± 1 ° C to ± 3 ° C within the general air conditioning level range of 18 ° C to 27 ° C Is possible. However, in order to further reduce the temperature fluctuation range and to precisely control the fluctuation range from 0.1 ° C. to 0.01 ° C. or more, the equation (1)
Q ≧ q ÷ 1.2 ÷ 0.24 ÷ | t | Equation (1)
| t | ≧ q ÷ Q ÷ 1.2 ÷ 0.24 Expression (2)
Q: Required air volume of air conditioner (m 3 / H)
q: Total heat load (Kcal / H)
1.2: Specific gravity of air (at 20 ° C) (kg / m 3 )
0.24: Specific heat of air (Kcal / kg ・ ℃)
t: Temperature accuracy (° C)
Therefore, the air flow must be 10 to 100 times or more. Accordingly, the size of the air conditioner increases in proportion to the air volume, the equipment cost increases, and the energy cost also increases.
Therefore, a method is adopted in which the entire room is primary air-conditioned, temperature fluctuations are stabilized, and only necessary portions are surrounded by walls, and air that is locally temperature-controlled with high accuracy is blown as secondary air-conditioning (Patent Document 1). reference).

その1つの例を図3で説明する。
断熱パネルで構成された部屋1全体を一次空調エリア2とし、冷凍機3,冷却コイル4,ヒーター5,ファン6等を有する一次空調機7を室1の外部(内部でも可)に設置し、一次空調機7の空調空気を供給ダクト8で室1の吹出部9から一次空調エリア2内に吹き出している。一次空調エリア2内には必要な部分のみ保温材等よりなる壁体10で囲って精密空調エリア(二次空調エリア)11としている。
One example will be described with reference to FIG.
The entire room 1 composed of heat insulating panels is used as a primary air conditioning area 2 and a primary air conditioner 7 having a refrigerator 3, a cooling coil 4, a heater 5, a fan 6, etc. is installed outside the room 1 (or inside). The conditioned air of the primary air conditioner 7 is blown out from the outlet 9 of the chamber 1 into the primary air conditioning area 2 through the supply duct 8. In the primary air-conditioning area 2, only a necessary part is surrounded by a wall body 10 made of a heat insulating material or the like to form a precision air-conditioning area (secondary air-conditioning area) 11.

精密空調エリア11には、一次空調エリア2から導入した空気を所定の温度とするための冷凍機12,冷却コイル13,1次及び2次のヒーター14,送風機15等を有する二次空調機16が設けられ、二次空調機16の空調空気をダクト17で導きヘパフィルター18を介して精密空調エリア11に吹き出すことによって精密に温度制御をしている。然し、ダクト17内の空調空気は、二次空調機16の壁体10が保温材,断熱材として熱を通りにくくしても通過熱量を0とすることは出来ず、一次空調エリア2の影響を受けることになる。   In the precision air conditioning area 11, a secondary air conditioner 16 having a refrigerator 12, a cooling coil 13, primary and secondary heaters 14, a blower 15 and the like for setting the air introduced from the primary air conditioning area 2 to a predetermined temperature. The air-conditioning air of the secondary air conditioner 16 is guided by the duct 17 and blown out to the precision air-conditioning area 11 through the hepa filter 18 to precisely control the temperature. However, the conditioned air in the duct 17 cannot reduce the amount of heat passing through even if the wall 10 of the secondary air conditioner 16 is difficult to pass heat as a heat insulating material or heat insulating material, and the influence of the primary air conditioning area 2 Will receive.

例えば、一次空調エリア2の温度変動が2℃発生(23℃から25℃)、供給ダクト表面積6m2、供給ダクト内温度(精密温度エリア所定温度)23℃、熱貫流率0.42(クリーンルームで使用される断熱パネル)、精密温度エリアの処理風量50m3/minとすると、一次空調エリア2からダクト17に伝熱する熱量は、式(3)により
Q=K(t1 −t2 )A ・・・ (3)
Q :伝熱量 (Kcal/h)
K :熱貫流率 (Kcal/m2・h・℃)
t1 ,t2 :両側の流体温度
A :壁面の表面積 (m2
Q=0.42×(25−23)×6=5.04Kcal/h
となり、伝熱する熱量により供給ダクト17内の空気の温度変化は式(2)により
t≧5.04÷50÷60÷1.2=0.0058℃
となる。一般的にはこの程度の温度変化があっても特に問題はないが、精密電子加工の分野では現在0.01℃乃至0.0001℃の温度変化が問題になっている。
For example, temperature fluctuation in the primary air-conditioning area 2 is 2 ° C. (23 ° C. to 25 ° C.), supply duct surface area 6 m 2 , supply duct temperature (precise temperature area predetermined temperature) 23 ° C., heat transmissivity 0.42 (in clean room) insulation panels used), if the process air volume 50 m 3 / min precision temperature area, transfer heat heat from the primary air conditioning area 2 in the duct 17, by the equation (3)
Q = K (t1−t2) A (3)
Q: Heat transfer (Kcal / h)
K: Thermal conductivity (Kcal / m 2 · h · ° C)
t1, t2: fluid temperature on both sides
A: Surface area of the wall (m 2 )
Q = 0.42 × (25-23) × 6 = 0.04 Kcal / h
The temperature change of the air in the supply duct 17 due to the amount of heat transferred is given by equation (2)
t ≧ 5.04 ÷ 50 ÷ 60 ÷ 1.2 = 0.0058 ° C
It becomes. In general, there is no particular problem with such a temperature change, but a temperature change of 0.01 ° C. to 0.0001 ° C. is currently a problem in the field of precision electronic processing.

然し、二次空調機を用いる方式においても、温度精度を±0.01℃以上精密に制御する場合には、式(2)の如く、熱負荷の合計qを小さくするために一次空調精度を必要な温度精度付近まで制御するか、二次空調機の風量を増加させる必要があり、結果的に空調機寸法,エネルギーコスト,設備費用が大きくなる欠点があった。
特開2004−184010号公報
However, even in the method using a secondary air conditioner, when the temperature accuracy is controlled precisely over ± 0.01 ° C, the primary air conditioning accuracy is reduced to reduce the total heat load q as shown in Equation (2). It is necessary to control to near the required temperature accuracy or to increase the air volume of the secondary air conditioner, resulting in the disadvantage that the air conditioner dimensions, energy cost and equipment cost increase.
JP 2004-184010 A

本発明は上記の点に鑑みて、作業空間や作業対象を囲う空間の空気調和機の温度制御を精密に行う空調システムを得ることを目的とする。   An object of this invention is to obtain the air-conditioning system which performs precisely the temperature control of the air conditioner of the space surrounding work space or work object in view of said point.

請求項1記載の発明にあっては、供給ダクトに連なる送風機,冷却コイル,加熱コイル,及び複数の温度変動吸収ユニットを有する空調機にて精密に温度調整をして精密温度エリアに空調空気を送るための、加熱,冷却等の機器及び空気供給ダクトを、2層構造とする内側に配置し、前記内側に配置した機器及び空気供給ダクトの外側を精密温度エリアからの戻り空気を空調機に戻す空調機へのリターンダクトとし、精密温度エリアに空調空気を吹き出す、空調空気の供給ダクトの最下流部位を囲ってリターンダクトに連なる戻り空気ダクトケースを設けたたことを特徴とする。 In the first aspect of the invention, the temperature is precisely adjusted by an air conditioner having a blower connected to the supply duct, a cooling coil, a heating coil, and a plurality of temperature fluctuation absorption units, and the conditioned air is supplied to the precision temperature area. Equipment for heating, cooling, etc. and air supply ducts to be sent are arranged inside the two-layer structure, and the outside air of the equipment and air supply ducts arranged on the inside is returned to the air conditioner from the precision temperature area. A return duct to the air conditioner to be returned is provided, and a return air duct case is provided that surrounds the most downstream portion of the air-conditioning air supply duct and blows out the conditioned air to the precision temperature area and continues to the return duct.

本発明にあっては、作業対象物を囲う処理空間である精密温度エリアが、作業対象物を収容する筐体及び筐体の周囲を囲うリターン空気によって、2重に断熱されている。リターン空気は、処理空間から流出した空気であり、その温度等は処理空間の温度に極めて近い温度のものである。それにより筐体の処理空間の空気はほぼ所定の目的温度で囲われていると同効であり、かつ、筐体の断熱効果をも得て2重に断熱されることになり、過剰な断熱処理を行なわずとも高精度な温度制御が可能にになる。
また、前記した理由により流動空気の量が少なくても高精度な温度制御が可能で、風量が少ないことにより空調機寸法、エネルギーコスト、設備費用等を少なくすることが出来る。
In the present invention, the precision temperature area, which is the processing space surrounding the work object, is double insulated by the housing that houses the work object and the return air that surrounds the housing. The return air is the air that has flowed out of the processing space, and the temperature thereof is very close to the temperature of the processing space. As a result, if the air in the processing space of the casing is surrounded by a predetermined target temperature, it is effective, and the casing is also insulated twice, resulting in excessive insulation. High-accuracy temperature control is possible without processing.
For the reasons described above, highly accurate temperature control is possible even when the amount of flowing air is small, and the size of the air conditioner, energy costs, equipment costs, etc. can be reduced by reducing the amount of air flow.

本発明を実施する最良の形態を図面と共に次に説明する。
図1は、本発明空調システム20の概略縦断側面図である。本発明空調システム20は筐体21で構成される精密温度エリア22と空調機23とが、温調空気の供給ダクト24をリターンダクト25で囲ったダクト26で接続されている。精密温度エリア22はその背面部に設けられている整流ボックス27との間にヘパフィルター28等の整流用部材を有している。精密温度エリア22の形状は必ずしも一定ではなく、温度を精密に制御したい領域に、制御し安定性化させた空気を送り込み、該領域をリターン空気で囲うようにしたのが基本コンセプトである。そして、筐体21、供給ダクト24の周囲を戻り空気ダクトケース25aで囲い、戻りダクトケース25aは前記リターンダクト25に接続されている。戻りダクトケース25aが設置できない場合、フレキシブルダクトで代用することも出来る。この場合、精密温度エリア22及び整流ボックス27の周囲を断熱材29で囲み温度,精度,風量に見合った断熱処理を行う。
The best mode for carrying out the present invention will be described below with reference to the drawings.
FIG. 1 is a schematic longitudinal side view of the air conditioning system 20 of the present invention. In the air conditioning system 20 of the present invention, a precision temperature area 22 constituted by a casing 21 and an air conditioner 23 are connected by a duct 26 in which a temperature-controlled air supply duct 24 is surrounded by a return duct 25. The precision temperature area 22 has a rectifying member such as a hepa filter 28 between the rectifying box 27 provided on the back surface thereof. The shape of the precision temperature area 22 is not necessarily constant, and the basic concept is that air that has been controlled and stabilized is fed into an area where the temperature is to be precisely controlled, and the area is surrounded by return air. The casing 21 and the supply duct 24 are surrounded by a return air duct case 25a, and the return duct case 25a is connected to the return duct 25. If the return duct case 25a cannot be installed, a flexible duct can be used instead. In this case, the precision temperature area 22 and the rectifying box 27 are surrounded by a heat insulating material 29, and a heat insulating process corresponding to the temperature, accuracy, and air volume is performed.

精密温度エリア22の前面には戻りダクトケース25aの吸引開口部30が設けられ、また、筐体21の前面扉31の部分は精密温度エリア22の陽圧分の排気が可能となっている。ダクトケース25aは、前記の如く精密温度エリア22、即ち、筐体21及び整流ボックス27を囲い、整流ボックス27と供給ダクト24の接合部位の周囲をも囲っている。この為に精密温度エリア22から戻された安定温度の戻り空気によって、供給ダクト24の終端の供給空気は囲まれる事になり、周囲環境からの影響がより少ないことに加えリターン空気により供給空気温度が安定する効果を望める。リターンダクト25は、前記精密エリア22及び整流ボックス27の外周をジャケットの如く囲うと共に、整流ボックス27に開口した供給ダクト24の外周をも囲っている。   A suction opening 30 of the return duct case 25 a is provided in front of the precision temperature area 22, and the front door 31 of the housing 21 can be exhausted by the positive pressure in the precision temperature area 22. As described above, the duct case 25 a surrounds the precise temperature area 22, that is, the casing 21 and the rectification box 27, and also surrounds the periphery of the joint portion between the rectification box 27 and the supply duct 24. For this reason, the supply air at the end of the supply duct 24 is surrounded by the return air of the stable temperature returned from the precision temperature area 22, and the supply air temperature is reduced by the return air in addition to being less influenced by the surrounding environment. Can have a stable effect. The return duct 25 surrounds the outer periphery of the precision area 22 and the rectifying box 27 like a jacket, and also surrounds the outer periphery of the supply duct 24 opened to the rectifying box 27.

空調機23は供給ダクト24に連なる送風機32,冷却コイル33,加熱コイル34,温度変動吸収ユニット35等を有し、その外側をジャケット状に囲うリターンダクト25で被われている。リターンダクト25には外気取入口36が設けられている。図示の例では送風機32の排出口側に連なる供給ダクト24に冷却コイル33,加熱コイル34を列設し、続くダクト24a内に、温度変動吸収ユニット35をダクト24aの流れの上流側から複数(図示の例では3基35a,35b,35c)直列に収容している。温度変動吸収ユニット35は温度変動吸収ユニット35の一次側の温度が変動した場合に、その変動の平均温度に出側の温度を安定させるためである。その概略を図2により説明する。   The air conditioner 23 includes a blower 32 connected to the supply duct 24, a cooling coil 33, a heating coil 34, a temperature fluctuation absorbing unit 35, and the like, and is covered with a return duct 25 that surrounds the outside in a jacket shape. The return duct 25 is provided with an outside air inlet 36. In the example shown in the figure, a cooling coil 33 and a heating coil 34 are arranged in a row on the supply duct 24 connected to the discharge port side of the blower 32, and a plurality of temperature fluctuation absorption units 35 are provided in the subsequent duct 24a from the upstream side of the flow of the duct 24a ( In the illustrated example, three groups 35a, 35b, 35c) are accommodated in series. This is because the temperature fluctuation absorbing unit 35 stabilizes the outlet temperature to the average temperature of the fluctuation when the temperature on the primary side of the temperature fluctuation absorbing unit 35 fluctuates. The outline will be described with reference to FIG.

供給ダクト24aに設けられた温度変動吸収ユニット35は、供給ダクト24aを横切って電気ヒーター351が設けられている。電気ヒーター351は、ニクロム線保護パイプ352を有し、ニクロム線保護パイプ352はコントローラ353を介して供給ダクト24aの所定位置に設けた温度センサー354に接続されている。前記ヒーター351は温度センサー354の検出値に基づきコントローラ353によりオンオフを繰り返し温度センサー354の部位を所定温度に保つようにする。このオンオフの回数は実際には1秒間に50回以上で、高精度に温度を制御している。   The temperature fluctuation absorption unit 35 provided in the supply duct 24a is provided with an electric heater 351 across the supply duct 24a. The electric heater 351 has a nichrome wire protection pipe 352, and the nichrome wire protection pipe 352 is connected to a temperature sensor 354 provided at a predetermined position of the supply duct 24a via a controller 353. The heater 351 is repeatedly turned on and off by the controller 353 based on the detection value of the temperature sensor 354 so as to keep the temperature sensor 354 at a predetermined temperature. The number of on / off operations is actually 50 or more per second, and the temperature is controlled with high accuracy.

然し、上記の熱交換にあってもニクロム線保護パイプ352の間近を通過する空気には熱が多く伝わるが離れた位置を通過する空気には熱が伝わりにくい。そのために空気の流れに交差する方向に温度むらが生じ、これが温度変動の主原因ともなっている。それを防止するため、本実施形では温度変動吸収ユニット35を3基設けることにより温度差をなしているが、その他の温度変動を防止する手段として、熱容量の大きな物質(重量・比熱が大きい程良い)による吸収が考えられる。   However, even in the above heat exchange, a lot of heat is transmitted to the air passing in the vicinity of the nichrome wire protection pipe 352, but the heat is not easily transferred to the air passing through a distant position. For this reason, temperature unevenness occurs in the direction crossing the air flow, and this is the main cause of temperature fluctuation. In order to prevent this, in this embodiment, the temperature difference is made by providing three temperature fluctuation absorption units 35. However, as a means for preventing other temperature fluctuations, a substance having a large heat capacity (the larger the weight and specific heat, Absorption).

そして、前記供給ダクト24aは、精密温度エリア22に連なる供給ダクト24に接続されている。空調機23の冷却コイル33,加熱コイル34,温度変動吸収ユニット35及びそれらを連ねている供給ダクト24,24aの外周部分はリターンダクト25を構成しリターンダクト25の終端に接続して前記送風機32の吸入口が設けられ、送風機32の排気口は供給ダクト24に接続されている。   The supply duct 24 a is connected to the supply duct 24 connected to the precision temperature area 22. The cooling coil 33, the heating coil 34, the temperature fluctuation absorbing unit 35 of the air conditioner 23, and the outer peripheral portions of the supply ducts 24, 24a connecting them constitute a return duct 25, which is connected to the end of the return duct 25 and connected to the blower 32. And an exhaust port of the blower 32 is connected to the supply duct 24.

次に、本発明装置の作用につき説明する。
送風機32の回転につれ外気取入口36から吸引された空気と共にリターンダクト25の終端部から送風機32に吸引された供給空気37は、冷却コイル33,加熱コイル34により所定温度に調整され、かつ、複数の温度変動吸収ユニット35により、更に精密に温度調整がなされている。即ち、その1例を示すと、図1において供給ダクト24aの最上流位置にある第1の温度変動吸収ユニット35aの入側の点(イ)において、気流の温度変動幅は0.099℃となっているが、第1の温度変動吸収ユニット35a通過直後の点(ロ)では温度変動幅は0.045℃となり、第2の温度変動吸収ユニット35b通過直後の点(ハ)では温度変動幅は0.015℃となり、第3の温度変動吸収ユニット35c通過直後の点(ニ)では温度変動幅は0.005℃となり、空調機23から供給ダクト24により整流ボックス27を経て精密温度エリア22に吹き出される。精密温度エリア22からの戻り空気は吸引開口部30,30から戻りダクトケース25aに入りリターンダクト25に流れ、リターンダクト25内を送風機32まで戻りこれを繰り返す。
上記戻りダクトケース25aは、精密温度エリア22,整流ボックス27の外周を囲ってジャケット状に設けられており、精密温度エリア22から戻された安定温度の戻り空気によって、供給ダクト24の終端の供給空気は囲まれる事になり、精密温度エリア22に導入される空調空気は、リターン空気によって周囲環境の影響を受けない状態として精密温度エリア22に送り込まれる。
また空調機23でも供給ダクト24の外側をリターンダクト25が囲ってジャケット状に設けられているので、所定の温度を保たなければならない供給ダクトで送られる空気流の温度の変動をその外側から前記所定温度に近い温度で保護することになり、省電力かつ精密に温度制御を行うことが出来る。
Next, the operation of the device of the present invention will be described.
The supply air 37 sucked into the blower 32 from the end portion of the return duct 25 together with the air sucked from the outside air intake 36 as the blower 32 rotates is adjusted to a predetermined temperature by the cooling coil 33 and the heating coil 34, and a plurality of The temperature adjustment is performed more precisely by the temperature fluctuation absorbing unit 35. That is, as an example, the temperature fluctuation width of the airflow is 0.099 ° C. at the point (A) on the entry side of the first temperature fluctuation absorption unit 35a at the most upstream position of the supply duct 24a in FIG. However, at the point (b) immediately after passing through the first temperature fluctuation absorption unit 35a, the temperature fluctuation range is 0.045 ° C., and at the point (c) immediately after passing through the second temperature fluctuation absorption unit 35b, the temperature fluctuation range. Is 0.015 ° C., and the temperature fluctuation width is 0.005 ° C. immediately after passing through the third temperature fluctuation absorption unit 35c, and the precision temperature area 22 passes from the air conditioner 23 through the rectification box 27 by the supply duct 24. Is blown out. The return air from the precision temperature area 22 enters the return duct case 25a from the suction openings 30 and 30, flows into the return duct 25, returns to the blower 32 in the return duct 25, and repeats this.
The return duct case 25a is provided in a jacket shape so as to surround the outer periphery of the precision temperature area 22 and the rectifying box 27, and the supply air at the end of the supply duct 24 is supplied by the return air having a stable temperature returned from the precision temperature area 22. The air is surrounded, and the conditioned air introduced into the precision temperature area 22 is sent to the precision temperature area 22 in a state where it is not influenced by the surrounding environment by the return air.
In the air conditioner 23, the return duct 25 surrounds the outside of the supply duct 24 and is provided in a jacket shape. Therefore, fluctuations in the temperature of the air flow sent through the supply duct that must maintain a predetermined temperature are observed from the outside. Since protection is performed at a temperature close to the predetermined temperature, temperature control can be performed with power saving and precision.

本発明は、温度環境の設定に極めて厳しい、温度環境を精密に安定させることが必須の作業環境要件として必要とする業態に利用する。   The present invention is used for business conditions that are extremely strict in setting a temperature environment and that require precise stabilization of the temperature environment as an essential work environment requirement.

本発明空調システムの概略正面図。The schematic front view of this invention air-conditioning system. 温度変動ユニットの構成説明図。Structure explanatory drawing of a temperature fluctuation unit. 従来の空調システムの概略正面図。The schematic front view of the conventional air conditioning system.

符号の説明Explanation of symbols

1 室
2 一次空調エリア
3 冷凍機
4 冷却コイル
5 ヒーター
6 ファン
7 一次空調機
8 供給ダクト
9 吹出口
10 壁体
11 精密空調エリア
12 冷凍機
13 冷却コイル
14 ヒーター
15 送風機
16 二次空調機
17 ダクト
18 ヘパフィルター
20 空調システム
21 筐体
22 精密温度エリア
23 空調機
24 供給ダクト
25 リターンダクト
25a 戻りダクトケース
26 ダクト
27 整流ボックス
28 ヘパフィルター
29 断熱材
30 吸引開口部
31 扉
32 送風機
33 冷却コイル
34 加熱コイル
35,35a,35b,35c 温度変動吸収ユニット
36 外気取入口
37 供給空気
351 電気ヒーター
352 ニクロム線保護パイプ
353 コントローラー
354 温度センサー
1 room 2 primary air conditioning area 3 refrigerator 4 cooling coil 5 heater 6 fan 7 primary air conditioner 8 supply duct 9 outlet 10 wall body 11 precision air conditioning area 12 refrigerator 13 cooling coil 14 heater 15 blower 16 secondary air conditioner 17 duct 18 Hepa Filter 20 Air Conditioning System 21 Housing 22 Precision Temperature Area 23 Air Conditioner 24 Supply Duct 25 Return Duct 25a Return Duct Case 26 Duct 27 Rectification Box 28 Hepa Filter 29 Heat Insulation Material 30 Suction Opening 31 Door 32 Blower 33 Cooling Coil 34 Heating Coil 35, 35a, 35b, 35c Temperature fluctuation absorption unit 36 Outside air intake 37 Supply air 351 Electric heater 352 Nichrome wire protection pipe 353 Controller 354 Temperature sensor

Claims (1)

供給ダクトに連なる送風機,冷却コイル,加熱コイル,及び複数の温度変動吸収ユニットを有する空調機にて精密に温度調整をして精密温度エリアに空調空気を送るための、加熱,冷却等の機器及び空気供給ダクトを、2層構造とする内側に配置し、前記内側に配置した機器及び空気供給ダクトの外側を精密温度エリアからの戻り空気を空調機に戻す空調機へのリターンダクトとし、精密温度エリアに空調空気を吹き出す、空調空気の供給ダクトの最下流部位を囲ってリターンダクトに連なる戻り空気ダクトケースを設けたことを特徴とする局所空間を精密に温度制御するための空調システム。 Equipment for heating and cooling, etc., for precisely adjusting the temperature with an air blower, cooling coil, heating coil and air conditioner having a plurality of temperature fluctuation absorption units connected to the supply duct and sending the conditioned air to the precision temperature area The air supply duct is arranged inside the two-layer structure, and the equipment arranged inside and the outside of the air supply duct is used as a return duct to the air conditioner for returning the return air from the precision temperature area to the air conditioner. An air conditioning system for precisely controlling the temperature of a local space, characterized in that a return air duct case that blows conditioned air into an area and surrounds the most downstream portion of the conditioned air supply duct and continues to the return duct is provided.
JP2005184321A 2005-06-24 2005-06-24 Air conditioning system for precise temperature control of local space Active JP4200523B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005184321A JP4200523B2 (en) 2005-06-24 2005-06-24 Air conditioning system for precise temperature control of local space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005184321A JP4200523B2 (en) 2005-06-24 2005-06-24 Air conditioning system for precise temperature control of local space

Publications (2)

Publication Number Publication Date
JP2007003107A JP2007003107A (en) 2007-01-11
JP4200523B2 true JP4200523B2 (en) 2008-12-24

Family

ID=37688907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005184321A Active JP4200523B2 (en) 2005-06-24 2005-06-24 Air conditioning system for precise temperature control of local space

Country Status (1)

Country Link
JP (1) JP4200523B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5899561B2 (en) * 2012-09-06 2016-04-06 日本スピンドル製造株式会社 Temperature control system
JP7195109B2 (en) 2018-10-22 2022-12-23 株式会社日立プラントサービス Environmental test chamber and air conditioning system
JP7199655B2 (en) * 2018-10-22 2023-01-06 株式会社日立プラントサービス Environmental test chamber and rectifying member used therefor
JP7284599B2 (en) * 2019-03-08 2023-05-31 株式会社大気社 air conditioning booth

Also Published As

Publication number Publication date
JP2007003107A (en) 2007-01-11

Similar Documents

Publication Publication Date Title
JP5185319B2 (en) Air conditioning system and air conditioning control method for server room management
JP5932350B2 (en) Air conditioning apparatus and air conditioning control method
CN100587346C (en) Air cooling and air dehumidifying module including capillary pad and method of use thereof
JP5524467B2 (en) Server room air conditioning system
JP4200523B2 (en) Air conditioning system for precise temperature control of local space
US20190154283A1 (en) Compact air handler with multiple fans
JP6805714B2 (en) Data center
KR102383336B1 (en) Moisture inflow prevent device of vehicle dust sensor
TWI464565B (en) Container data center
JP5217701B2 (en) Air conditioning system
JP3087486B2 (en) Air conditioning system
JP2009198141A (en) Heat exchange apparatus
KR100509564B1 (en) Heater for airconditioning
JP5899561B2 (en) Temperature control system
JP2021116998A (en) air conditioner
JP2005274103A (en) Air conditioning system
JP2014202369A (en) Circulator
JP3459332B2 (en) Air conditioner
US20240102672A1 (en) Thick film heating assembly in a packaged terminal air conditioner unit
JP4799478B2 (en) Temperature control device
JP7118185B2 (en) residential air conditioning system
JP2007085607A (en) Precision temperature control device
JP5749935B2 (en) Partition panel and radiant cooling and heating system
JP6814934B2 (en) Bathroom air conditioner
JP4091524B2 (en) Air conditioning system

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080903

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080926

R150 Certificate of patent or registration of utility model

Ref document number: 4200523

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250