JP4199996B2 - Sample holder for charged particle beam equipment - Google Patents

Sample holder for charged particle beam equipment Download PDF

Info

Publication number
JP4199996B2
JP4199996B2 JP2002366018A JP2002366018A JP4199996B2 JP 4199996 B2 JP4199996 B2 JP 4199996B2 JP 2002366018 A JP2002366018 A JP 2002366018A JP 2002366018 A JP2002366018 A JP 2002366018A JP 4199996 B2 JP4199996 B2 JP 4199996B2
Authority
JP
Japan
Prior art keywords
sample
ion beam
holder
sample holder
holding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002366018A
Other languages
Japanese (ja)
Other versions
JP2004199969A (en
Inventor
紀恵 矢口
武夫 上野
英巳 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2002366018A priority Critical patent/JP4199996B2/en
Publication of JP2004199969A publication Critical patent/JP2004199969A/en
Application granted granted Critical
Publication of JP4199996B2 publication Critical patent/JP4199996B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、透過電子顕微鏡または走査電子顕微鏡で観察するための試料を集束イオンビーム(以下、FIB)加工装置により薄膜または断面加工し、さらに観察目的や試料材質に合わせ、化学研磨や電解研磨などの試料追加工を行うための試料台に関する。
【0002】
【従来の技術】
従来、FIB加工装置による透過電子顕微鏡観察試料を支持する試料台としては特許文献1がある。この技術における試料台ではFIB加工装置内で摘出した試料を透過電子顕微鏡で観察,分析する際の試料の機械的安定性の問題や、電子線照射された試料台から発生するX線(システムピーク)の問題などについては種々の配慮がみられるが、いずれも通称切り欠きメッシュと呼ばれている半ディスク状の試料台に試料を固定する方法について種々の工夫がなされているのみで数10μm程度の極微小試料専用の試料台に関する技術ではない。また、特許文献2の技術においても透過電子顕微鏡観察試料を支持する試料台に関する方法、試料の固定法に関する配慮は見られるが、FIB加工装置を用いて試料を加工する際に必然的に試料表面に発生するイオン照射ダメージ層の除去や試料断面近傍を通過したイオンビームや試料断面で散乱したイオンビームが試料底部や試料台をスパッタし、試料の加工表面に汚染物質として再付着するいわゆるリデポジションの問題については配慮されていない。
【0003】
【特許文献1】
特開2002−319363号公報
【特許文献2】
特開2002−25490号公報
【0004】
【発明が解決しようとする課題】
本発明の目的は、集束イオンビーム加工の際に発生する前記リデポジションの問題を解決し、FIB加工中、必然的に試料最表面に形成されるイオンビーム照射ダメージ層を他の試料研磨法で容易に除去可能な試料台を提供し、試料の本質を変えずに任意の形状に整形加工することを可能とし、透過電子顕微鏡および走査電子顕微鏡を用いた微細構造解析や元素分析および化学結合状態分析などの分析精度を向上することにある。
【0005】
【課題を解決するための手段】
上記目的は、集束イオンビームで薄膜化する試料を支持する試料台をFIB加工時の試料損傷や試料汚染が発生しにくい形状とし、なおかつ電解研磨や化学研磨などの他の方法による薄膜化処理も行える材質と形状にすることにより達成される。
【0006】
液体金属を備えたイオン源と、該イオン源から発せられたイオンビームを加速する高電圧電源と、イオンビームを試料面上に集束するレンズと、集束されたイオンビームを試料面上で走査する偏向装置と試料を固定した試料ホールダを挿入する試料室を備えた集束イオンビーム加工装置試料ホールダ用試料台において該試料ホールダの形状が円柱または角柱状であることを特徴とする集束イオンビーム加工装置試料ホールダ用試料台は、微小試料を載せた試料台を、試料に衝撃や応力を加えずにしかも簡単な操作で試料ホールダに挿入または取り外すことを可能とする。また、試料を透過電子顕微鏡の中で傾斜、または回転して観察する際に試料台が電子線通路を妨害することも最小限に抑えることができる。さらにFIB加工時に常に問題となる散乱イオンビームによる試料台のスパッタに起因する試料汚染の低減にも効果がある。
【0007】
上述の集束イオンビーム加工装置試料ホールダ用試料台においてその先端の形状が円錐または角錐状であることを特徴とする集束イオンビーム加工装置試料ホールダ用試料台は、上述の集束イオンビーム加工装置試料ホールダ用試料台で解決しようとする試料台のスパッタによる試料加工表面の汚染防止効果を促進するものである。また、透過電子顕微鏡や走査電子顕微鏡の特性X線分析機能を用いた元素分析の際、分析精度低下の原因となっている試料台からのノイズ信号を最小限に抑える効果もある。
【0008】
上述の集束イオンビーム加工装置試料ホールダ用試料台においてその最先端が平坦加工してあることを特徴とする集束イオンビーム加工装置試料ホールダ用試料台は、円柱状または角柱状試料台に設けられた円錐状または角錐状の最先端部に微小試料を接着,固定する際の微小試料の機械的安定性を確保する上で効果の高い技術である。
【0009】
上述の集束イオンビーム加工装置試料ホールダ用試料台においてその材料が導電体であることを特徴とする集束イオンビーム加工装置試料ホールダ用試料台は、FIB加工試料の表面がFIB加工時に損傷または汚染を受けた場合、その損傷または汚染を電解研磨法などにより除去する上で重要な技術である。
【0010】
上述の集束イオンビーム加工装置試料ホールダ用試料台においてその材質が試料の化学研磨剤に対し耐食性を有していることを特徴とする集束イオンビーム加工装置試料ホールダ用試料台は、FIB加工試料の表面がFIB加工時に損傷または汚染を受けた場合、その損傷または汚染を強酸などの化学研磨剤を用いて除去する場合の重要な働きをする技術である。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明について説明する。図1に本発明が適用されるFIB加工装置の構成図を示す。FIB加工装置1は、イオン銃2,コンデンサーレンズ3,絞り4,走査電極5,対物レンズ6で構成されている。FIB加工装置1の試料室には、試料9を取り付けた試料ホールダ10,その上方に二次電子検出器7,試料9への保護膜の形成および試料台への試料9の固定のための思料オールダ8,FIB加工により作製した微小試料の運搬のためのマイクロプローブ12がとりつけられている。
【0012】
二次電子検出器7には走査像表示装置13が接続されている。走査像表示装置13は走査電極制御部14を介して走査電極5に接続されている。また、マイクロプローブ12にはマイクロプローブ12の位置制御を行うためのマイクロプローブ制御装置15が接続されている。また、試料ホールダ10は、ホールダ制御部11に接続されている。
【0013】
イオン銃2から放出されたイオンビーム16は、コンデンサーレンズ3と絞り4により収束され、対物レンズ6を通過し、試料9上に照射される。対物レンズ6上方の走査電極5は、走査電極制御部14の指示により、試料9に入射するイオンビーム16を偏向し走査させる。
【0014】
イオンビーム16が試料9に照射されると、試料9からは二次電子が発生する。発生した二次電子は、二次電子検出器7により検出され走査像表示装置13に試料像として表示される。
【0015】
試料ホールダ8より試料9方向に放出されたガスはイオンビーム16照射により分解され、金属が試料9面上のイオンビーム16照射領域に堆積する。この堆積膜は、FIB加工前の試料9表面の保護膜の形成および微小試料の試料台への固定に用いられる。試料9の加工位置の設定は試料ホールダ8に接続されたホールダ制御部11により試料ホールダ8の位置を移動することにより自由に変えることが出来る。
【0016】
図2は本発明の試料台を取り付けるFIB加工装置用試料ホールダ10先端部の上面図(a)および断面図(b)である。試料ホールダ10には円筒状の試料台挿入部17が設けてある。試料台挿入部17に挿入された試料台18の先端には試料21が固定してある。試料21の上方からはイオンビーム16が照射され試料21の加工が行われる。
【0017】
本実施例の試料ホールダは、試料台18(試料支持部)と、試料台挿入部17(保持部)が、着脱可能に構成されており、後述するように、試料台18を取り外して洗浄することが可能である。またその試料台18は、試料を保持する先端部が細く、試料台挿入部17に保持される被保持部が太く形成されている(例えば円錐形状や角錐形状)。このような構成によれば、微小な試料を洗浄する際の取扱いが容易になる。試料台18を着脱する機構は、単に試料台挿入部17を、試料台18を嵌合するための開口部としても良いし、試料台18を挟持する部材を試料台挿入部17に設けるようにしても良い。
【0018】
なお、本実施例の試料ホールダは、試料台18を回転する回転機構(図示せず)を備えている。この回転機構は、試料ホールダの荷電粒子線装置への挿入方向と垂直な方向に回転軸を備えている。このような回転機構の採用によって、任意の方向からの加工,観察が可能になる。
【0019】
図3(a)および図3(b)は本発明の一実施例である試料台18および試料台19である。試料台18は本体が円柱状になっており、先端部が円錐状に整形されている。試料台19は本体が角柱状になっており、先端部が角錐状に整形されている。円柱状試料台と角柱状試料台は試料の形状に合わせて使い分ける。
【0020】
また、円柱状試料台18と試料台19(角柱状)は同一の試料ホールダ10に使用できるよう円柱状試料台の直径と角錐状試料台の最大径を同じ寸法とする。図3(c)は試料台18および試料台19の最先端部に設けた試料9を固定するための平坦に加工された試料接着面20である。バルク材料からプローブ12を用いて摘出された試料9はこの試料接着面20に移動され、金属デポジションにより接着,固定される。
【0021】
図3(d)は試料台18および試料台19の最先端部に設けた試料接着面20に試料21によって固定された試料9がFIB加工装置1内で、Arイオンビーム22によって加工されている状態を示す。
【0022】
試料9の側面をスパッタしながら下方に進行するArイオンビーム22は試料9の側面を通過後、試料台18に照射される。試料台18のArイオンビーム22が照射される部分は傾斜しているため試料台18に当たったArイオンビーム22は上方に反射することなく斜面に沿ってそのまま下方に進行する。このように、試料台18の先端部の形状を工夫することによりArイオンビーム22によってスパッタされた試料台18の材料の試料9の加工面への付着を防止することができる。また、試料接着面20の面の大きさを試料9の底面と同等または小さくすることにより試料台18がArイオンビーム22によってスパッタされることを防ぐこともできる。
【0023】
図4はFIB加工中に試料表面に生じたイオンビーム損傷層を他の試料前処理法で除去する際の試料台の働きを示す。特にイオン源に液体金属を用いた場合、イオンビーム損傷層が形成されることがあるが、本実施例によれば、その損傷を容易に排除することができる。
【0024】
図4(a)は一旦FIB加工装置を用いて加工した試料9の表面に存在するGaイオンビーム照射損傷層をArイオンビーム22を用いたイオンスパッタリング法で除去する場合の試料9および試料台18とArイオンビーム22の位置関係を示す。この場合もFIB加工同様、Arイオンビーム22は試料台18で反射することなく多少の屈折をしながらほぼ進行方向に直進するので反射イオンビームなどに起因する試料9加工表面への汚染付着は発生しない。
【0025】
図4(b)は一旦FIB加工装置を用いて加工した試料9の表面を化学研磨法により追加エッチングする場合の試料9および試料台18と化学研磨液容器23と研磨液24を示す。この場合、研磨液24には硫酸や塩酸などの強酸を含んだエッチング液が用いられるので試料台18にはセラミックスなどの耐食性にすぐれた材料が用いられる。これにより化学研磨中の試料台18の溶出による試料9の汚染を防ぐことができる。
【0026】
図4(c)は一旦FIB加工装置を用いて加工した試料9の表面を電解研磨法によりエッチングする場合の試料9および試料台18と電解研磨液容器25,電解研磨液26,直流電源27および陰極板28を示す。
【0027】
この場合、試料台18は直流電源27からの電流を試料9に伝えるための導電体としての働きが求められるので試料台18はには金属が用いられる。試料9が金属の場合に用いる方法であるが、試料台18の電解研磨液26への溶出が試料9の汚染原因となることが予想される場合は試料台18の材質は試料9と同一のものとする。
【0028】
試料9から溶出する金属陽イオンは研磨液24を経て陰極板28に移動する。電解研磨法は真空中で試料表面に直接高電圧で加速されたイオンビームを照射するFIB加工法やイオンミリング法とはことなり結晶欠陥を生じさせるような応力は印加されない。従って金属材料表面近傍の微細構造評価のための清浄な薄膜試料を作製する方法としては最も優れた特性を有する。
【0029】
ただし、エッチング量が少ないことと特定領域を選択的に薄膜化することはできない。FIB加工法との組み合わせは迅速に清浄な薄膜試料を作製することを可能にする。
【0030】
【発明の効果】
本発明のFIB加工装置試料ホールダ用試料台を用いることにより、FIB加工時に発生する試料汚染やイオンビーム損傷を最小限に抑えることが可能となる。また、FIB加工時に汚染や損傷が発生した場合でも加工試料を引き続き他の試料研磨法により完全に除去することが可能で、従来は不可能と考えられていたFIB加工試料の無汚染,無損傷化が実現する。
【図面の簡単な説明】
【図1】本発明技術説明のためのFIB加工装置基本構成図。
【図2】本発明技術説明のためのFIB加工装置試料台。
【図3】本発明の一実施例である試料台の側面図。
【図4】本発明の一実施例である試料台使用例概念図を示す。
【符号の説明】
1…FIB加工装置、2…イオン銃、3…コンデンサーレンズ、4…絞り、5…走査電極、6…対物レンズ、7…二次電子検出器、8,10…試料ホールダ、9,21…試料、11…試料ホールダ制御部、12…マイクロプローブ、13…走査像表示装置、14…走査電極制御部、15…マイクロプローブ制御装置、16…イオンビーム、17…試料台挿入部、18…試料台(円柱状)、19…試料台(角柱状)、20…試料接着面、22…Arイオンビーム、23…化学研磨液容器、24,26…化学研磨液、25…電解研磨液容器、27…電源、28…陰極板。
[0001]
BACKGROUND OF THE INVENTION
In the present invention, a sample for observation with a transmission electron microscope or a scanning electron microscope is processed into a thin film or a cross section by a focused ion beam (hereinafter referred to as FIB) processing apparatus, and further, chemical polishing, electrolytic polishing, etc. according to the observation purpose and sample material. The present invention relates to a sample stage for performing additional sample processing.
[0002]
[Prior art]
Conventionally, there is Patent Document 1 as a sample stage for supporting a transmission electron microscope observation sample by an FIB processing apparatus. In the sample stage in this technique, there is a problem of mechanical stability of the sample when the sample extracted in the FIB processing apparatus is observed and analyzed with a transmission electron microscope, and X-rays generated from the sample stage irradiated with the electron beam (system peak). )), There are various considerations, all of which are several tens of μm only by various means of fixing the sample to a semi-disc-shaped sample stage called a notch mesh. It is not a technology related to a sample stage dedicated to ultra-small samples. Also in the technique of Patent Document 2, consideration is given to a method related to a sample stage for supporting a transmission electron microscope observation sample and a fixing method of the sample, but the sample surface is inevitably necessary when processing the sample using the FIB processing apparatus. So-called redeposition, in which the ion irradiation damage layer generated on the surface of the sample is removed, or the ion beam that has passed near the sample cross section or the ion beam scattered on the sample cross section sputters the sample bottom or sample stage and reattaches to the sample processing surface as a contaminant. This issue is not considered.
[0003]
[Patent Document 1]
JP 2002-319363 A [Patent Document 2]
Japanese Patent Laid-Open No. 2002-25490
[Problems to be solved by the invention]
An object of the present invention is to solve the above redeposition problem that occurs during focused ion beam processing, and during FIB processing, an ion beam irradiation damage layer that is inevitably formed on the outermost surface of the sample is formed by another sample polishing method. Providing an easily removable sample stage, enabling shaping to any shape without changing the essence of the sample, fine structure analysis, elemental analysis and chemical bonding state using transmission electron microscope and scanning electron microscope It is to improve analysis accuracy such as analysis.
[0005]
[Means for Solving the Problems]
The purpose is to make the sample stage that supports the sample to be thinned with a focused ion beam into a shape that is unlikely to cause sample damage or sample contamination during FIB processing, and thin film processing by other methods such as electrolytic polishing and chemical polishing is also possible. This is achieved by making the material and shape that can be used.
[0006]
An ion source having a liquid metal, a high voltage power source for accelerating an ion beam emitted from the ion source, a lens for focusing the ion beam on the sample surface, and scanning the focused ion beam on the sample surface A focused ion beam processing apparatus having a sample chamber for inserting a deflection apparatus and a sample holder to which a sample is fixed. A sample holder for a sample holder, wherein the shape of the sample holder is cylindrical or prismatic. The sample holder sample holder allows a sample holder on which a micro sample is placed to be inserted into or removed from the sample holder with a simple operation without applying impact or stress to the sample. Further, when the sample is observed while being tilted or rotated in the transmission electron microscope, it is possible to minimize the sample stage from interfering with the electron beam path. Furthermore, it is also effective in reducing sample contamination caused by sputtering of the sample stage by the scattered ion beam, which is always a problem during FIB processing.
[0007]
In the focused ion beam processing apparatus sample holder sample holder, the tip shape of the sample base is a cone or a pyramid. The focused ion beam processing apparatus sample holder sample holder is the above-mentioned focused ion beam processing apparatus sample holder. This promotes the effect of preventing contamination of the sample processing surface by sputtering of the sample stage to be solved by the sample stage. In addition, when elemental analysis is performed using the characteristic X-ray analysis function of a transmission electron microscope or scanning electron microscope, there is also an effect of minimizing a noise signal from the sample stage that causes a reduction in analysis accuracy.
[0008]
The sample holder for the focused ion beam processing apparatus sample holder is flattened at the forefront of the sample holder, and the sample holder for the focused ion beam processing apparatus is provided on a cylindrical or prismatic sample stage. This is a highly effective technique for ensuring the mechanical stability of a micro sample when the micro sample is bonded and fixed to the most conical or pyramidal tip.
[0009]
In the above-mentioned focused ion beam processing apparatus sample holder sample holder, the material is a conductor. The focused ion beam processing apparatus sample holder sample stage is characterized in that the surface of the FIB processed sample is damaged or contaminated during FIB processing. When received, this is an important technique for removing the damage or contamination by an electropolishing method or the like.
[0010]
In the above-mentioned focused ion beam processing apparatus sample holder sample holder, the material stand has corrosion resistance to the chemical abrasive of the sample. When the surface is damaged or contaminated during the FIB processing, it is a technique that plays an important role in removing the damage or contamination using a chemical abrasive such as a strong acid.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below with reference to the drawings. FIG. 1 shows a configuration diagram of a FIB processing apparatus to which the present invention is applied. The FIB processing apparatus 1 includes an ion gun 2, a condenser lens 3, a diaphragm 4, a scanning electrode 5, and an objective lens 6. In the sample chamber of the FIB processing apparatus 1, a sample holder 10 to which a sample 9 is attached, a secondary electron detector 7 above the sample holder 10, a protective film for the sample 9, and a material for fixing the sample 9 to the sample stage. Alder 8, a micro probe 12 for carrying a micro sample produced by FIB processing is attached.
[0012]
A scanning image display device 13 is connected to the secondary electron detector 7. The scanning image display device 13 is connected to the scanning electrode 5 via the scanning electrode control unit 14. The microprobe 12 is connected to a microprobe control device 15 for controlling the position of the microprobe 12. The sample holder 10 is connected to the holder control unit 11.
[0013]
The ion beam 16 emitted from the ion gun 2 is converged by the condenser lens 3 and the diaphragm 4, passes through the objective lens 6, and is irradiated onto the sample 9. The scanning electrode 5 above the objective lens 6 deflects and scans the ion beam 16 incident on the sample 9 according to an instruction from the scanning electrode control unit 14.
[0014]
When the sample 9 is irradiated with the ion beam 16, secondary electrons are generated from the sample 9. The generated secondary electrons are detected by the secondary electron detector 7 and displayed on the scanning image display device 13 as a sample image.
[0015]
The gas emitted from the sample holder 8 in the direction of the sample 9 is decomposed by irradiation with the ion beam 16, and metal is deposited on the irradiation region of the ion beam 16 on the surface of the sample 9. This deposited film is used for forming a protective film on the surface of the sample 9 before FIB processing and fixing the micro sample to the sample stage. The setting of the processing position of the sample 9 can be freely changed by moving the position of the sample holder 8 by the holder control unit 11 connected to the sample holder 8.
[0016]
FIG. 2 is a top view (a) and a cross-sectional view (b) of the tip portion of the sample holder 10 for the FIB processing apparatus to which the sample stage of the present invention is attached. The sample holder 10 is provided with a cylindrical sample stage insertion portion 17. A sample 21 is fixed to the tip of the sample table 18 inserted into the sample table insertion portion 17. The ion beam 16 is irradiated from above the sample 21 to process the sample 21.
[0017]
In the sample holder of this embodiment, the sample stage 18 (sample support part) and the sample stage insertion part 17 (holding part) are configured to be detachable, and the sample stage 18 is removed and cleaned as will be described later. It is possible. Further, the sample stage 18 has a thin tip part for holding the sample and a thick part to be held by the sample stage insertion part 17 (for example, a cone shape or a pyramid shape). Such a configuration facilitates handling when cleaning a minute sample. The mechanism for attaching and detaching the sample stage 18 may simply use the sample stage insertion part 17 as an opening for fitting the sample stage 18, or provide a member for holding the sample stage 18 in the sample stage insertion part 17. May be.
[0018]
Note that the sample holder of this embodiment includes a rotation mechanism (not shown) that rotates the sample stage 18. This rotation mechanism includes a rotation axis in a direction perpendicular to the insertion direction of the sample holder into the charged particle beam apparatus. By adopting such a rotating mechanism, processing and observation from any direction becomes possible.
[0019]
3A and 3B show a sample stage 18 and a sample stage 19 which are an embodiment of the present invention. The sample stage 18 has a main body in a columnar shape, and a tip portion is shaped into a conical shape. The sample stage 19 has a main body in a prismatic shape, and a tip portion is shaped in a pyramid shape. The columnar sample stage and the prismatic sample stage are properly used according to the shape of the sample.
[0020]
The cylindrical sample stage 18 and the sample stage 19 (rectangular columnar shape) have the same dimensions as the diameter of the cylindrical sample stage and the maximum diameter of the pyramidal sample stage so that they can be used for the same sample holder 10. FIG. 3C shows a flatly bonded sample bonding surface 20 for fixing the sample 9 provided at the most distal portions of the sample table 18 and the sample table 19. The sample 9 extracted from the bulk material using the probe 12 is moved to the sample bonding surface 20 and bonded and fixed by metal deposition.
[0021]
In FIG. 3D, the sample 9 fixed by the sample 21 to the sample bonding surface 20 provided at the most distal portion of the sample stage 18 and the sample stage 19 is processed by the Ar ion beam 22 in the FIB processing apparatus 1. Indicates the state.
[0022]
The Ar ion beam 22 that travels downward while sputtering the side surface of the sample 9 passes through the side surface of the sample 9 and is then irradiated onto the sample stage 18. Since the portion of the sample stage 18 irradiated with the Ar ion beam 22 is inclined, the Ar ion beam 22 hitting the sample stage 18 travels downward along the slope without being reflected upward. Thus, by devising the shape of the tip of the sample stage 18, the material of the sample stage 18 sputtered by the Ar ion beam 22 can be prevented from adhering to the processed surface of the sample 9. Further, by making the size of the surface of the sample bonding surface 20 equal to or smaller than the bottom surface of the sample 9, it is possible to prevent the sample stage 18 from being sputtered by the Ar ion beam 22.
[0023]
FIG. 4 shows the function of the sample stage when the ion beam damage layer generated on the sample surface during FIB processing is removed by another sample pretreatment method. In particular, when a liquid metal is used for the ion source, an ion beam damage layer may be formed. However, according to this embodiment, the damage can be easily eliminated.
[0024]
FIG. 4A shows the sample 9 and the sample stage 18 when the Ga ion beam irradiation damaged layer existing on the surface of the sample 9 once processed by using the FIB processing apparatus is removed by the ion sputtering method using the Ar ion beam 22. And the positional relationship between the Ar ion beam 22 and FIG. In this case as well, as with the FIB processing, the Ar ion beam 22 travels straight in the traveling direction while being slightly refracted without being reflected by the sample stage 18, so that contamination adheres to the processed surface of the sample 9 due to the reflected ion beam, etc. do not do.
[0025]
FIG. 4B shows the sample 9, the sample stage 18, the chemical polishing liquid container 23, and the polishing liquid 24 when the surface of the sample 9 once processed using the FIB processing apparatus is additionally etched by the chemical polishing method. In this case, since the etching solution containing a strong acid such as sulfuric acid or hydrochloric acid is used for the polishing solution 24, a material having excellent corrosion resistance such as ceramics is used for the sample stage 18. Thereby, contamination of the sample 9 due to elution of the sample stage 18 during chemical polishing can be prevented.
[0026]
FIG. 4 (c) shows the sample 9 and the sample stage 18, the electrolytic polishing liquid container 25, the electrolytic polishing liquid 26, the direct current power supply 27, and the direct current power source 27 when the surface of the sample 9 once processed using the FIB processing apparatus is etched by the electrolytic polishing method. A cathode plate 28 is shown.
[0027]
In this case, since the sample stage 18 is required to act as a conductor for transmitting the current from the DC power source 27 to the sample 9, a metal is used for the sample stage 18. This method is used when the sample 9 is a metal. When it is expected that elution of the sample stage 18 into the electropolishing liquid 26 will cause contamination of the sample 9, the material of the sample stage 18 is the same as that of the sample 9. Shall.
[0028]
Metal cations eluted from the sample 9 move to the cathode plate 28 through the polishing liquid 24. Unlike the FIB processing method or the ion milling method in which the electrolytic polishing method directly irradiates a sample surface with a high voltage in a vacuum in a vacuum, stress that causes crystal defects is not applied. Therefore, it has the most excellent characteristics as a method for producing a clean thin film sample for evaluating the microstructure near the surface of the metal material.
[0029]
However, the etching amount is small and the specific region cannot be thinned selectively. The combination with the FIB processing method makes it possible to produce a clean thin film sample quickly.
[0030]
【The invention's effect】
By using the sample holder sample holder for the FIB processing apparatus of the present invention, it is possible to minimize sample contamination and ion beam damage that occur during FIB processing. Even if contamination or damage occurs during FIB processing, it is possible to completely remove the processed sample by another sample polishing method, and the FIB processed sample, which has been considered impossible in the past, is free from contamination and damage. Is realized.
[Brief description of the drawings]
FIG. 1 is a basic configuration diagram of an FIB processing apparatus for explaining the technology of the present invention.
FIG. 2 is an FIB processing apparatus sample table for explaining the technology of the present invention.
FIG. 3 is a side view of a sample table according to an embodiment of the present invention.
FIG. 4 is a conceptual diagram of an example of using a sample stage according to an embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... FIB processing apparatus, 2 ... Ion gun, 3 ... Condenser lens, 4 ... Diaphragm, 5 ... Scan electrode, 6 ... Objective lens, 7 ... Secondary electron detector, 8, 10 ... Sample holder, 9, 21 ... Sample DESCRIPTION OF SYMBOLS 11 ... Sample holder control part, 12 ... Microprobe, 13 ... Scanning image display apparatus, 14 ... Scanning electrode control part, 15 ... Microprobe control apparatus, 16 ... Ion beam, 17 ... Sample stand insertion part, 18 ... Sample stand (Cylindrical shape), 19 ... sample stand (prism shape), 20 ... sample adhesion surface, 22 ... Ar ion beam, 23 ... chemical polishing liquid container, 24, 26 ... chemical polishing liquid, 25 ... electrolytic polishing liquid container, 27 ... Power source, 28 ... cathode plate.

Claims (5)

円錐形状の試料支持部を含む試料ホールダを準備し、
前記円錐形状の先端部に試料を保持し、
前記試料ホールダに保持された前記試料にイオンビームを照射し前記試料を加工し、
前記円錐形状の先端部側から、前記試料ホールダに保持された前記試料にArイオンビームを照射しイオンビーム照射ダメージ層を除去する、試料加工方法。
Prepare a sample holder with a conical sample support,
Holding the sample at the conical tip,
The sample held in the sample holder is irradiated with an ion beam to process the sample,
Wherein the front end portion of the conical shape by irradiating the Ar ion beam to remove the ion beam irradiation damage layer on the sample held on the sample holder, the method sample processing.
角錐形状の試料支持部を含む試料ホールダを準備し、
前記角錐形状の先端部に試料を保持し、
前記試料ホールダに保持された前記試料にイオンビームを照射し前記試料を加工し、
前記円錐形状の先端部側から、前記試料ホールダに保持された前記試料にArイオンビームを照射しイオンビーム照射ダメージ層を除去する、試料加工方法。
Prepare a sample holder including a pyramid-shaped sample support,
Holding the sample at the tip of the pyramid shape,
The sample held in the sample holder is irradiated with an ion beam to process the sample,
Wherein the front end portion of the conical shape by irradiating the Ar ion beam to remove the ion beam irradiation damage layer on the sample held on the sample holder, the method sample processing.
試料を保持できる試料支持部と、試料支持部を保持できる保持部と、を備え、当該試料支持部の先端部が細く、当該試料支持部の前記保持部に保持される被保持部が太く形成され、前記先端部に試料を保持する試料ホールダを準備し、
前記試料支持部の先端部に試料を保持し、
前記試料ホールダに保持された前記試料にイオンビームを照射し前記試料を加工し、
前記試料支持部の先端部側から、前記試料ホールダに保持された前記試料にArイオンビームを照射しイオンビーム照射ダメージ層を除去する、試料加工方法。
A sample support part capable of holding the sample and a holding part capable of holding the sample support part, wherein the tip end part of the sample support part is thin and the held part held by the holding part of the sample support part is formed thick Preparing a sample holder for holding the sample at the tip ,
Holding the sample at the tip of the sample support,
The sample held in the sample holder is irradiated with an ion beam to process the sample,
Wherein the front end portion of the specimen support part, by irradiating the Ar ion beam to remove the ion beam irradiation damage layer on the sample held on the sample holder, the method sample processing.
請求項1−3何れか記載の試料加工方法であって、
前記ホールダの先端部における、試料接着面の面の大きさが、前記試料の底面と同等または小さいことを特徴とする方法。
The sample processing method according to any one of claims 1 to 3,
The method according to claim 1, wherein the size of the surface of the sample bonding surface at the tip of the holder is equal to or smaller than the bottom surface of the sample.
請求項1−4何れか記載の試料加工方法に用いられる試料ホールダであって、A sample holder used in the sample processing method according to claim 1,
試料を保持できる試料支持部の先端部が細く形成されている試料ホールダ。A sample holder in which the tip of a sample support portion capable of holding a sample is formed thin.
JP2002366018A 2002-12-18 2002-12-18 Sample holder for charged particle beam equipment Expired - Lifetime JP4199996B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366018A JP4199996B2 (en) 2002-12-18 2002-12-18 Sample holder for charged particle beam equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366018A JP4199996B2 (en) 2002-12-18 2002-12-18 Sample holder for charged particle beam equipment

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008200325A Division JP4896096B2 (en) 2008-08-04 2008-08-04 Sample holder for charged particle beam equipment

Publications (2)

Publication Number Publication Date
JP2004199969A JP2004199969A (en) 2004-07-15
JP4199996B2 true JP4199996B2 (en) 2008-12-24

Family

ID=32763351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366018A Expired - Lifetime JP4199996B2 (en) 2002-12-18 2002-12-18 Sample holder for charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP4199996B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008262929A (en) * 2008-08-04 2008-10-30 Hitachi High-Technologies Corp Sample holder for charged particle beam device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4988175B2 (en) * 2005-07-11 2012-08-01 株式会社日立ハイテクノロジーズ Sample table for charged particle equipment
JP5142240B2 (en) * 2006-01-17 2013-02-13 株式会社日立ハイテクノロジーズ Charged beam apparatus and charged beam processing method
US7834315B2 (en) 2007-04-23 2010-11-16 Omniprobe, Inc. Method for STEM sample inspection in a charged particle beam instrument
JP2009026688A (en) * 2007-07-23 2009-02-05 Renesas Technology Corp Sample mounting member, and sample holder
JP2010009774A (en) * 2008-06-24 2010-01-14 Nippon Steel Corp Sample stand and sample holder
JP5409685B2 (en) 2011-03-31 2014-02-05 株式会社日立ハイテクノロジーズ Ion beam apparatus and processing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008262929A (en) * 2008-08-04 2008-10-30 Hitachi High-Technologies Corp Sample holder for charged particle beam device

Also Published As

Publication number Publication date
JP2004199969A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
US8723144B2 (en) Apparatus for sample formation and microanalysis in a vacuum chamber
US6914244B2 (en) Ion beam milling system and method for electron microscopy specimen preparation
JP5908964B2 (en) Compound focused ion beam system
US6300631B1 (en) Method of thinning an electron transparent thin film membrane on a TEM grid using a focused ion beam
JP2011124162A (en) Charged particle beam device, and sample observation method
JP4654216B2 (en) Sample holder for charged particle beam equipment
JP4199996B2 (en) Sample holder for charged particle beam equipment
JP2010002308A (en) Tem sample preparation method, tem sample, and thin section sample
JP2009216534A (en) Thin-film sample preparation method
JP2010181339A (en) Micromanipulator apparatus
CA2543396A1 (en) Method for manipulating microscopic particles and analyzing the composition thereof
JP4654018B2 (en) Focused ion beam processing apparatus, sample stage, and sample observation method
JP4896096B2 (en) Sample holder for charged particle beam equipment
JP2004087214A (en) Sample holder for charged particle beam device
JP3106846U (en) Sample holder for charged particle beam equipment
JP2987417B2 (en) In-situ preparation and observation method of thin film sample for transmission electron microscope and its apparatus
JPH10154480A (en) Microanalysis device
JP2004309499A (en) Apparatus for preparing testpiece and method for preparing testpiece
WO2012060056A1 (en) Sampling device
JP5152111B2 (en) Probe for focused ion beam processing apparatus, probe apparatus, and probe manufacturing method
US20110180707A1 (en) Microsampling apparatus and sampling method thereof
WO2023032080A1 (en) Charged particle beam device
JP2005044570A (en) Semiconductor processing/observing device
JP2011204367A (en) Sample stand for electron microscope
JP2001242051A (en) Specimen table for focused ion beam machining unit and specimen fixing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040927

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060515

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071005

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080811

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081006

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4199996

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term