JP4199370B2 - Flame retardant fiber composite - Google Patents

Flame retardant fiber composite Download PDF

Info

Publication number
JP4199370B2
JP4199370B2 JP10856799A JP10856799A JP4199370B2 JP 4199370 B2 JP4199370 B2 JP 4199370B2 JP 10856799 A JP10856799 A JP 10856799A JP 10856799 A JP10856799 A JP 10856799A JP 4199370 B2 JP4199370 B2 JP 4199370B2
Authority
JP
Japan
Prior art keywords
fiber
weight
parts
flame retardant
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10856799A
Other languages
Japanese (ja)
Other versions
JP2000303306A (en
Inventor
優之 足立
正晴 藤井
利光 森
章雄 小西
渡 見尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP10856799A priority Critical patent/JP4199370B2/en
Publication of JP2000303306A publication Critical patent/JP2000303306A/en
Application granted granted Critical
Publication of JP4199370B2 publication Critical patent/JP4199370B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Woven Fabrics (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、含ハロゲン繊維と溶融型可燃性繊維からなり、高度な難燃性を有し、かつ耐光性に優れた難燃性複合体に関する。
【0002】
【従来の技術】
近年、衣食住の安全性確保の要求が強まり、難燃素材の必要性が高まってきている。そのような状況の中、汎用的な可燃性繊維(ここで可燃性繊維とは、例えば木綿、羊毛などの天然繊維やレーヨン、ビニロン、アクリル、ナイロン、ポリエステル、ポリプロピレン、ジアセテートおよびトリアセテートなどをいう)と高度な難燃性を有する難燃性繊維を複合させて、可燃性繊維の特性を維持したまま、これに難燃性を付与する方法が試みられている。可燃性繊維に、高度な難燃性を有する繊維を混合することにより複合繊維製品とすることは、コスト、意匠性の面で非常に有利であり、木綿繊維やポリエステル繊維などに含ハロゲン繊維を混合した複合体が難燃素材の中心となりつつある。
【0003】
このような複合体で、例えば含ハロゲン繊維とポリエステル繊維とを複合させる場合において、含ハロゲン繊維に含有させる難燃剤としては、アンチモン化合物(以下、Sb化合物という)が難燃性能の面から広く用いられている。
【0004】
しかし、Sb化合物は難燃性に優れる反面、含ハロゲン繊維の一種であるモダクリル繊維に添加すると、モダクリル繊維の長時間での耐光性を低下させる傾向にあった。また一部で、Sb化合物の環境への影響を調査する動きもあり、今般Sb系化合物に頼らないで、高度な難燃性を確保しかつ耐光性に優れた難燃繊維複合体が望まれている。
【0005】
【発明が解決しようとする課題】
本発明の目的は、Sb系難燃剤を含有しない含ハロゲン繊維と可燃性繊維とを混合し複合体としても、難燃性が低下せずに耐光性に優れた難燃繊維複合体を得ることにある。
【0006】
【課題を解決するための手段】
本発明者らは、Sb系化合物を含有しない含ハロゲン繊維としてのモダクリル繊維と可燃性繊維との複合体製品を検討した結果、モダクリル繊維に用いる共重合体の比粘度を高くし、Sn系化合物からなる難燃剤との組み合わせによって、高い難燃性を維持し、優れた耐光性が得られることを見出し、本発明を完成するに至った。すなわち、本発明は、(A)アクリロニトリル30〜70重量%、ハロゲン含有ビニル系単量体70〜30重量%、およびこれらと共重合可能なビニル系単量体0〜10重量%よりなり、且つ比粘度0.3以上の共重合体にSn系化合物からなる難燃剤を含有させた(ただし、Sb系化合物を含有させない)繊維70〜30重量部と、(B)溶融型可燃性繊維30〜70重量部とを複合してなる難燃繊維複合体であり、(A)の共重合体に対する難燃剤含有量が3〜30重量%であることを特徴とする
【0007】
前記難燃剤はSn系化合物から選ばれればよく、(A)の共重合体の比粘度は0.3〜0.8の範囲であるのが好ましく、また前記難燃剤は共重合体に1〜30重量%含有させるのが好ましい。更に溶融型易撚性繊維(B)はポリエステル繊維、ポリプロピレン繊維、ポリアミド繊維よりなる群から選ばれた少なくとも1種であるのが好ましい。
【0008】
【発明の実施の形態】
以下に本発明を詳細に説明する。
本発明は(A)アクリロニトリル30〜70重量%、ハロゲン含有ビニル系単量体70〜30重量%、およびこれらと共重合可能なビニル系単量体0〜10重量部よりなり、且つ比粘度0.3以上の共重合体に難燃剤を含有させた繊維70〜30重量部と、(B)溶融型可燃性繊維30〜70重量部とを複合してなる難燃繊維複合体であり、前記(A)のハロゲン含有ビニル系単量体の具体例としては、塩化ビニル、塩化ビニリデン、臭化ビニル、等が挙げられ、これらの1種または2種以上とアクリロニトリルとを共重合させて用いることができるが、上記に限らずハロゲンを含有するビニル系単量体であれば、いずれも用いることができる。
【0009】
また、前記ハロゲン含有単量体と共重合可能なビニル系単量体としては、例えば、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、アクリルアミド、酢酸ビニル、ビニルスルホン酸、ビニルスルホン酸塩、スチレンスルホン酸、スチレンスルホン酸塩などが挙げられ、それらの1種または2種以上を用いることができる。
【0010】
これらのハロゲン含有単量体あるいはこれらと共重合可能な単量体と共重合して重合体を得る方法としては、通常のビニル重合法、即ち、スラリー重合、乳化重合、溶液重合などいずれの方法も適用でき、特に制限はない。
(A)の共重合体に対する難燃剤含有量は、1〜30重量%、好ましくは3〜10重量%である。難燃剤含有量が1重量%未満では、単独繊維としての難燃性能が劣り、複合体としての難燃性が確保できない傾向となる、また逆に30重量%を超えると、(A)の繊維自体の物性(強度、伸度など)や、製造時のノズル詰まりなどの問題が生じ、好ましくない。
【0011】
(A)の共重合体に難燃剤を含有させる方法としては、共重合体を溶解できる溶媒に共重合体を溶解して得た溶液に難燃剤を混合分散して繊維を製造する方法の他、難燃剤を含んだバインダー水溶液に(A)の共重合体から得た繊維を浸漬させ、絞り、乾燥、熱処理を行い付与するなどの後加工により難燃剤を含有させる方法などが挙げられるが、これらに制限されるものではなく、その他の公知の方法を用いることができる。
【0012】
本発明に使用する難燃剤は、酸化第2スズ、メタスズ酸、オキシハロゲン化第1スズ、オキシハロゲン化第2スズ、水酸化第1スズ、4塩化スズなどのSn系化合物であるが、錫酸マグネシウム、錫酸ジルコニウムなどの複合化合物を使用しても良い。また、これらは、単独で使用しても2種以上組み合わせて使用しても良い。なお、本発明でいう比粘度とは、共重合体(A)をジメチルホルムアミド(DMF)に0.04g/DMF20mlで溶解したDMF溶液の30℃での値である。本発明の(A)の共重合体の比粘度は0.3以上であることが好ましいが、より好ましくは0.3〜0.8である。さらに、より安定的な難燃性、生産性の面で好ましくは0.4〜0.6である。
【0013】
比粘度が0.3未満の場合は、燃焼時の含ハロゲン繊維の収縮特性が低下し、充分な難燃性が得られない傾向がある。逆に比粘度が0.8を越えると、(A)の共重合体を得る場合に重合時間が長くなる傾向にあり、また沸水失透性などのファイバー品質も低下する傾向がある。
【0014】
上記の比粘度0.3〜0.8を得る方法としては、重合時に開始剤と連鎖移動剤の仕込量を調整することで製造することが望ましい。比粘度0.3〜0.8を得る具体例として、例えば、開始剤の過硫酸アンモニウムを0.01〜0.13重量部、連鎖移動剤の2−メルカプトエタノールを0.001〜0.085重量部、好ましくは過硫酸アンモニウムを0.03〜0.11、2−メルカプトエタノールを0.01〜0.06の範囲で仕込み製造する方法を用いることができる。
【0015】
過硫酸アンモニウムが0.13重量部以上または、2−メルカプトエタノールが0.085重量部以上になると比粘度が0.3より低くなり不十分である。逆に過硫酸アンモニウムが0.01重量部未満になると、収率の低下、2−メルカプトエタノールが0.01未満になると、沸水失透性などのファイバー品質は低下する傾向がある。
【0016】
本発明に用いられる溶融型可燃性繊維(B)としては、ポリエステル繊維、ポロプロピレン繊維、ポリアミド繊維、ポリエチレン繊維などがあげられるが、これらに限定されるものではない。特に本発明の目的である難燃性の確保の面からポリエステル繊維、ポリプロピレン繊維、ポリアミド繊維よりなる群から選ばれた少なくとも1種であるのが好ましい。更に耐熱性の面からすれば、ポリエステル繊維が好ましい。
【0017】
本発明に係る難燃繊維複合体は、繊維(A)と溶融型可燃性繊維(B)とを、繊維(A)が70〜30重量部、溶融型可燃性繊維(B)を30〜70重量部となるように複合するのが好ましい。繊維(A)が30重量部より少ない場合は、充分な難燃性が得られない傾向にある。逆に繊維(A)が70重量部を越えると、溶融型可燃性繊維(B)の特徴を活かすことができない。
【0018】
また繊維(A)と溶融型可燃性繊維(B)との複合体とは、(A)と(B)とを混紡または混綿したもの、(A)と(B)とを交撚したもの、或いは(A)からなる糸と(B)からなる糸を交編織したもの、前記混紡もしくは混綿したものを用いて製造した糸または前記交撚したものを用いて製造した糸または前記交撚したものを用いて製造した交織または交編したもの、さらにはこれらの組み合わせによってえられるものを含む概念であり、具体的には混紡や混綿した紡績糸、これらを用いた織物や編み物、あるいは長繊維を撚りあわせたフィラメント糸や紡績糸とを交織したりした織布などを挙げることができるがこれらに限定されるものではない。
【0019】
本発明による難燃繊維複合体が優れた難燃性を有する理由は定かでないが、燃焼試験の着炎時に、所定の比粘度を有する含ハロゲン繊維が素早く収縮し、着炎バーナーから難燃繊維複合体が速やかに遠ざかるためと推察される。
【0020】
【実施例】
以下、実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例に限定されるものではない。なお実施例に先立ち繊維複合体の難燃性、耐光性の評価方法を以下に示す。
【0021】
[難燃性]
繊維複合体の難燃性の評価方法は、消防検定法45゜ミクロバーナー法タルマセ法(JIS L 1091 A−1法)に基づき実施した。なお、繊維複合体の洗濯は上記法に基づき水洗を実施した。繊維複合体の燃焼方向は経緯表裏の4方向からとし、合否を判定した。
【0022】
[耐光性]
繊維複合体の耐光性は、スガ試験機(株)製のフェードメータ耐光試験機FA−3型を使用、ブラックパネル温度63℃×160時間の条件下で照射し、未照射と160時間照射後の色差ΔEを倉敷紡績(株)製のカラー7で評価した。
ΔEは、下式で算出した。
ΔE=〔(ΔL)2+(Δa)2+(Δb)21/2
ΔL:照射前後のL値の差
Δa:照射前後のa値の差
Δb:照射前後のb値の差
(1)含ハロゲン繊維の製造
(実施例1)アクリロニトリル12重量部、塩化ビニリデン3重量部、ドデシル硫酸ソーダ1.1重量部、亜硫酸ガス0.35重量部、硫酸第一鉄7水和物0.002重量部、水200重量部、過硫酸アンモニウム0.0045重量部、および、2−メルカプトエタノール0.047重量部をオートクレーブに仕込み、重合温度50℃で、アクリロニトリルを43.5重量部、塩化ビニリデン41.1重量部、スチレンスルホン酸ソーダ1.4重量部、過硫酸アンモニウム0.0405重量部をそれぞれ重合開始から均等に追加しながら6時間重合を行った。
得られた重合体の組成は、アクリロニトリル51重量部、塩化ビニリデン49重量部で、ジメチルホルムアミド0.2重量%溶液での比粘度は0.45であった。前記重合体の22%アセトン溶液に、重合体に対し3重量部のメタスズ酸を加え紡糸原液を得た。これを孔径0.08mm、孔数15000個のノズルを用い、25℃の38%のアセトン溶液に押し出し、水洗後、120℃で8分間乾燥した後、150℃で2.2倍に延伸、175℃で30秒間熱処理を行い、繊度2.2dtex(デシテックス、2デニール相当)の含ハロゲン繊維を得た。この含ハロゲン繊維に紡績用仕上げ油剤を添付、クリンプを付け、38mmの長さにカットした。このカットした繊維を、メートル番手17番手で紡績を行った。
【0023】
(実施例2)
アクリロニトリル12重量部、塩化ビニリデン3重量部、ドデシル硫酸ソーダ1.1重量部、亜硫酸ガス0.35重量部、硫酸第一鉄7水和物0.002重量部、水200重量部、過硫酸アンモニウム0.008重量部、および、2−メルカプトエタノール0.047重量部をオートクレーブに仕込み、重合温度50℃で、アクリロニトリルを43.5重量部、塩化ビニリデン41.1重量部、スチレンスルホン酸ソーダ1.4重量部、過硫酸アンモニウム0.072重量部をそれぞれ重合開始から均等に追加しながら6時間重合を行った。
得られた重合体の組成は、アクリロニトリル50重量部、塩化ビニリデン50重量部で、ジメチルホルムアミド0.2重量%溶液での比粘度は0.38であった。得られた重合体を前記の実施例1と同様の方法で、3重量部のメタスズ酸を加え、38mmカット繊維を作成した。この繊維を紡績し、メートル番手17番の紡績糸を得た。
【0024】
(比較例1)
難燃剤として五酸化アンチモンの添加量を樹脂に対して、3重量部とした以外は、前記の実施例1と同様の条件で38mmカット繊維を作成した。この繊維を紡績し、メートル番手17番の紡績糸を得た。
【0025】
(比較例2)
アクリロニトリル11重量部、塩化ビニリデン4.5重量部、ドデシル硫酸ソーダ1.1重量部、亜硫酸ガス0.1重量部、酸化第一鉄7水和物0.002重量部、水230重量部、過硫酸アンモニウム0.0115重量部、亜硫酸水素ナトリウム0.166重量部、および2−メルカプトエタノール0.091重量部をオートクレーブに仕込み、重合温度55℃でアクリロニトリルを43.5重量部、塩化ビニリデン41.1重量部、スチレンスルホン酸ソーダ1.2重量部、および過硫酸アンモニウム0.1324重量部をそれぞれ重合開始から均等に追加しながら6時間重合を行った。
得られた重合体の組成は、アクリロニトリル51重量部、塩化ビニリデン49重量部で、ジメチルホルムアミド0.2重量%溶液での比粘度は、0.22であった。
前記重合体の30%アセトン溶液に、重合体に対して3重量部のメタスズ酸を加え紡糸原液を得た。これを孔径0.08mm、孔数15000個のノズルを用い、25℃の38%のアセトン溶液に押し出し、水洗後、120℃で8分間乾燥した後、125℃で2.5倍に延伸、175℃で30秒間熱処理を行い、繊度2.2dtexの含ハロゲン繊維を得た。この含ハロゲン繊維に紡績用仕上げ油剤を添付、クリンプを付け、38mmの長さにカットした。このカットした繊維を、メートル番手17番手で紡績を行った。
【0026】
(2)織布の作成
経糸のポリエステル150dウーリー糸130本/インチ、緯糸に上記の方法で製造した前記繊維(A)紡績糸を60本/インチの打ち込みで、5枚朱子組織の織布を作成した。この織布の難燃性の結果を表1に示した。
【0027】
【表1】

Figure 0004199370
表1から明らかなように、前記難燃剤を1%以上含有し、比粘度が0.3以上の前記繊維(A)からなる紡績糸とポリエステルウーリー糸を用いて作成した実施例1と実施例2の織布は、Sb系化合物を含有しないにかかわらず高い難燃性を示している。これに対して、前記繊維(A)にSb化合物を添加した比較例1の場合は、高い難燃性を示すが、160時間後の耐光性は大きく低下している。また、実施例と同様に前記難燃剤を1%以上含有し、比粘度が0.3未満の前記繊維(A)からなる紡績糸とポリエステルウーリー糸を用いて作成した比較例2の織布は、難燃性が著しく低下し全焼が発生している。このように、同じ難燃剤を同量添加した繊維(A)であっても、比粘度の違いにより、繊維(A)と溶融型可燃性繊維(B)との繊維複合体における難燃性に大きな影響を与える。
【0028】
参考例1)難燃剤として四塩化錫の添加量を樹脂に対して、2.1重量部とした以外は、前記の実施例と同様の条件で38mmカット繊維を作成した。この繊維を紡績し、メートル番手17番の紡績糸を得た。
【0029】
(比較例3)実施例と同様の条件で、難燃剤を添加せずに、38mmカット繊維を作成した。この繊維を紡績し、メートル番手17番の紡績糸を得た。参考例1、比較例3の難燃性の結果を表2に示す。表2に示した織布は、表1と同様に経糸のポリエステル150dウーリー糸130本/インチ、緯糸に上記の方法で製造した前記繊維(A)紡績糸を60本/インチの打ち込みで、5枚朱子組織の織布を作成した。この織布の難燃性の結果を表2に示した。
【0030】
【表2】
Figure 0004199370
表2の結果から、前記難燃剤を1%以上含有し、比粘度が0.3以上の前記繊維(A)からなる紡績糸を用いて作成した参考例1の織布は、Sb系化合物を含有しないにかかわらず高い難燃性を示している。これに対して、繊維(A)の難燃剤添加量が1%未満の比較例3の織布は、高い比粘度を有しているにもかかわらず、著しく難燃性が低下し、全焼が発生している。このように、同じ組成、0.3以上の高い比粘度の繊維(A)であっても、難燃剤添加量が1重量%未満になると、繊維(A)と溶融型可燃性繊維(B)との繊維複合体において十分な難燃性が得られない。
【0031】
【発明の効果】
本発明は、Sb系難燃剤を含有しなくても高度な難燃性を有すると共に、耐光性に優れた複合難燃繊維を得ることを可能とするものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flame retardant composite comprising a halogen-containing fiber and a melt-type flammable fiber, having high flame retardancy and excellent light resistance.
[0002]
[Prior art]
In recent years, the demand for ensuring the safety of clothing, food and housing has increased, and the need for flame retardant materials has increased. Under such circumstances, general-purpose flammable fibers (herein, flammable fibers are, for example, natural fibers such as cotton and wool, rayon, vinylon, acrylic, nylon, polyester, polypropylene, diacetate, and triacetate). ) And a flame retardant fiber having a high degree of flame retardancy, and a method of imparting flame retardancy to this while maintaining the properties of the combustible fiber has been attempted. Combining flammable fibers with highly flame retardant fibers to make composite fiber products is extremely advantageous in terms of cost and design. Halogen-containing fibers are used in cotton fibers and polyester fibers. Mixed composites are becoming the center of flame retardant materials.
[0003]
For example, when a halogen-containing fiber and a polyester fiber are combined in such a composite, an antimony compound (hereinafter referred to as Sb compound) is widely used as a flame retardant to be contained in the halogen-containing fiber in terms of flame retardancy. It has been.
[0004]
However, the Sb compound is excellent in flame retardancy, but when added to a modacrylic fiber which is a kind of halogen-containing fiber, the light resistance of the modacrylic fiber tends to be lowered for a long time. There is also a movement to investigate the influence of Sb compounds on the environment, and flame retardant fiber composites that ensure high flame retardancy and have excellent light resistance without relying on Sb compounds are now desired. ing.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to obtain a flame retardant fiber composite excellent in light resistance without reducing flame retardancy even when a halogen-containing fiber not containing an Sb-based flame retardant and a flammable fiber are mixed. It is in.
[0006]
[Means for Solving the Problems]
As a result of studying a composite product of modacrylic fiber and combustible fiber as a halogen-containing fiber not containing an Sb compound, the present inventors have increased the specific viscosity of the copolymer used for the modacrylic fiber, It has been found that the combination with the flame retardant comprising the above can maintain high flame retardancy and provide excellent light resistance, and has completed the present invention. That is, the present invention comprises (A) 30 to 70% by weight of acrylonitrile, 70 to 30% by weight of a halogen-containing vinyl monomer, and 0 to 10% by weight of a vinyl monomer copolymerizable therewith, and 70-30 parts by weight of a fiber containing a flame retardant composed of a Sn-based compound in a copolymer having a specific viscosity of 0.3 or more (but not containing a Sb-based compound) , and (B) a melt-type combustible fiber 30- and 70 parts by weight of Ri flame retardant fiber composite der formed by composing, characterized in that 3 to 30% by weight flame retardant content relative to the copolymer of (a).
[0007]
The flame retardant may if selected from Sn-based compound is preferably specific viscosity of the copolymer (A) is in the range of 0.3 to 0.8 and said flame retardant is 1 to the copolymer It is preferable to contain 30% by weight. Further, the melt-type easily twistable fiber (B) is preferably at least one selected from the group consisting of polyester fiber, polypropylene fiber and polyamide fiber.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is described in detail below.
The present invention comprises (A) 30 to 70% by weight of acrylonitrile, 70 to 30% by weight of a halogen-containing vinyl monomer, and 0 to 10 parts by weight of a vinyl monomer copolymerizable therewith and having a specific viscosity of 0. A flame retardant fiber composite comprising 70 to 30 parts by weight of a fiber containing a flame retardant in a copolymer of 3 or more and 30 to 70 parts by weight of (B) a melt-type flammable fiber, Specific examples of the halogen-containing vinyl monomer (A) include vinyl chloride, vinylidene chloride, vinyl bromide, etc., and one or more of these may be copolymerized with acrylonitrile. However, not limited to the above, any vinyl monomer containing halogen can be used.
[0009]
Examples of the vinyl monomer copolymerizable with the halogen-containing monomer include acrylic acid, acrylic ester, methacrylic acid, methacrylic ester, acrylamide, vinyl acetate, vinyl sulfonic acid, and vinyl sulfonate. , Styrene sulfonic acid, styrene sulfonate, and the like, and one or more of them can be used.
[0010]
As a method of obtaining a polymer by copolymerizing with these halogen-containing monomers or monomers copolymerizable therewith, any method such as usual vinyl polymerization method, that is, slurry polymerization, emulsion polymerization, solution polymerization, etc. Can be applied, and there is no particular limitation.
The flame retardant content for the copolymer (A) is 1 to 30% by weight, preferably 3 to 10% by weight. If the flame retardant content is less than 1% by weight, the flame retardant performance as a single fiber tends to be inferior, and the flame retardancy as a composite tends not to be secured. Conversely, if it exceeds 30% by weight, the fiber of (A) Problems such as physical properties (strength, elongation, etc.) and nozzle clogging during production occur, which is not preferable.
[0011]
As a method of adding a flame retardant to the copolymer (A), a method of producing a fiber by mixing and dispersing a flame retardant in a solution obtained by dissolving the copolymer in a solvent capable of dissolving the copolymer. In addition, a method in which a fiber obtained from the copolymer (A) is immersed in an aqueous binder solution containing a flame retardant, and a flame retardant is contained by post-processing such as drawing, drying, and heat treatment is given. It is not limited to these, and other known methods can be used.
[0012]
Flame retardant agent used in the present invention, stannic oxide, metastannic acid, oxyhalide stannous, stannic oxyhalide, stannous hydroxide, is a Sn-based compound such as 4 tin chloride, magnesium stannate, may be used complex compounds such as stannate zirconium. These may be used alone or may be used in combination of two or more. The specific viscosity referred to in the present invention is a value at 30 ° C. of a DMF solution obtained by dissolving the copolymer (A) in dimethylformamide (DMF) at 0.04 g / DMF 20 ml. The specific viscosity of the copolymer (A) of the present invention is preferably 0.3 or more, more preferably 0.3 to 0.8. Furthermore, it is preferably 0.4 to 0.6 in terms of more stable flame retardancy and productivity.
[0013]
When specific viscosity is less than 0.3, the shrinkage | contraction characteristic of the halogen-containing fiber at the time of combustion falls, and there exists a tendency for sufficient flame retardance not to be obtained. Conversely, if the specific viscosity exceeds 0.8, the polymerization time tends to be longer when the copolymer (A) is obtained, and the fiber quality such as boiling water devitrification tends to be lowered.
[0014]
As a method for obtaining the above specific viscosity of 0.3 to 0.8, it is desirable to prepare by adjusting the amount of the initiator and the chain transfer agent charged during the polymerization. Specific examples of obtaining a specific viscosity of 0.3 to 0.8 include, for example, 0.01 to 0.13 parts by weight of an initiator ammonium persulfate and 0.001 to 0.085 parts by weight of a chain transfer agent 2-mercaptoethanol. Part, preferably a method in which ammonium persulfate is charged in the range of 0.03 to 0.11, 2-mercaptoethanol in the range of 0.01 to 0.06.
[0015]
When ammonium persulfate is 0.13 parts by weight or more or 2-mercaptoethanol is 0.085 parts by weight or more, the specific viscosity is lower than 0.3, which is insufficient. Conversely, when the ammonium persulfate is less than 0.01 parts by weight, the yield decreases, and when the 2-mercaptoethanol is less than 0.01, the fiber quality such as boiling water devitrification tends to decrease.
[0016]
Examples of the melt-type combustible fiber (B) used in the present invention include, but are not limited to, polyester fiber, polypropylene fiber, polyamide fiber, and polyethylene fiber. In particular, at least one selected from the group consisting of polyester fiber, polypropylene fiber and polyamide fiber is preferable from the viewpoint of ensuring flame retardancy, which is the object of the present invention. Furthermore, polyester fiber is preferable from the viewpoint of heat resistance.
[0017]
The flame-retardant fiber composite according to the present invention comprises a fiber (A) and a meltable combustible fiber (B), a fiber (A) of 70 to 30 parts by weight, and a meltable combustible fiber (B) of 30 to 70. It is preferable to combine so that it may become a weight part. When the fiber (A) is less than 30 parts by weight, sufficient flame retardancy tends not to be obtained. Conversely, if the fiber (A) exceeds 70 parts by weight, the characteristics of the meltable combustible fiber (B) cannot be utilized.
[0018]
The composite of the fiber (A) and the meltable combustible fiber (B) is a blend or blend of (A) and (B), a twist of (A) and (B), Alternatively, yarns made from (A) and yarns made from (B) are knitted or knitted, yarns made using the blended or blended yarns, yarns made using the twisted yarns, or yarns twisted It is a concept including union or knitting produced using knitted fabric, and those obtained by a combination of these. Examples thereof include, but are not limited to, a woven fabric obtained by interweaving twisted filament yarn and spun yarn.
[0019]
Although the reason why the flame retardant fiber composite according to the present invention has excellent flame retardancy is not clear, the halogen-containing fiber having a predetermined specific viscosity quickly shrinks at the time of flame test, and the flame retardant fiber from the flame burner. It is assumed that the complex moves away quickly.
[0020]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated in more detail, this invention is not limited to these Examples. Prior to the examples, methods for evaluating the flame retardancy and light resistance of the fiber composite are shown below.
[0021]
[Flame retardance]
The evaluation method of the flame retardancy of the fiber composite was carried out based on the fire fighting test method 45 ° micro burner method Talmase method (JIS L 1091 A-1 method). The fiber composite was washed with water based on the above method. The combustion direction of the fiber composite was determined from four directions on the front and back of the background, and pass / fail was determined.
[0022]
[Light resistance]
The light resistance of the fiber composite was measured using a fade meter light resistance tester FA-3 manufactured by Suga Test Instruments Co., Ltd., and irradiated with black panel temperature of 63 ° C. × 160 hours. The color difference ΔE was evaluated with a color 7 manufactured by Kurashiki Boseki Co., Ltd.
ΔE was calculated by the following equation.
ΔE = [(ΔL) 2 + (Δa) 2 + (Δb) 2 ] 1/2
ΔL: Difference in L value before and after irradiation Δa: Difference in a value before and after irradiation Δb: Difference in b value before and after irradiation (1) Production of halogen-containing fiber (Example 1) 12 parts by weight of acrylonitrile, 3 parts by weight of vinylidene chloride , 1.1 parts by weight of sodium dodecyl sulfate, 0.35 parts by weight of sulfurous acid gas, 0.002 parts by weight of ferrous sulfate heptahydrate, 200 parts by weight of water, 0.0045 parts by weight of ammonium persulfate, and 2-mercapto 0.047 parts by weight of ethanol was charged into an autoclave, and at a polymerization temperature of 50 ° C., 43.5 parts by weight of acrylonitrile, 41.1 parts by weight of vinylidene chloride, 1.4 parts by weight of sodium styrenesulfonate, 0.0405 parts by weight of ammonium persulfate The polymerization was carried out for 6 hours while each was added evenly from the start of polymerization.
The composition of the obtained polymer was 51 parts by weight of acrylonitrile and 49 parts by weight of vinylidene chloride, and the specific viscosity in a 0.2% by weight dimethylformamide solution was 0.45. To a 22% acetone solution of the polymer, 3 parts by weight of metastannic acid was added to the polymer to obtain a spinning dope. This was extruded into a 38% acetone solution at 25 ° C. using a nozzle having a hole diameter of 0.08 mm and 15000 holes, washed with water, dried at 120 ° C. for 8 minutes, stretched 2.2 times at 150 ° C., and 175 Heat treatment was carried out at 30 ° C. for 30 seconds to obtain a halogen-containing fiber having a fineness of 2.2 dtex (decitex, equivalent to 2 denier). A finishing oil for spinning was attached to this halogen-containing fiber, crimped, and cut into a length of 38 mm. This cut fiber was spun at a metric count of 17th.
[0023]
(Example 2)
12 parts by weight of acrylonitrile, 3 parts by weight of vinylidene chloride, 1.1 parts by weight of sodium dodecyl sulfate, 0.35 parts by weight of sulfurous acid gas, 0.002 parts by weight of ferrous sulfate heptahydrate, 200 parts by weight of water, ammonium persulfate 0 0.008 part by weight and 0.047 part by weight of 2-mercaptoethanol were charged into an autoclave, and at a polymerization temperature of 50 ° C., 43.5 parts by weight of acrylonitrile, 41.1 parts by weight of vinylidene chloride, sodium styrenesulfonate 1.4 Polymerization was carried out for 6 hours while adding equal parts by weight and 0.072 parts by weight of ammonium persulfate from the start of polymerization.
The composition of the obtained polymer was 50 parts by weight of acrylonitrile and 50 parts by weight of vinylidene chloride, and the specific viscosity in a 0.2% by weight solution of dimethylformamide was 0.38. 3 parts by weight of metastannic acid was added to the obtained polymer in the same manner as in Example 1 to prepare a 38 mm cut fiber. This fiber was spun to obtain a spun yarn with a metric count of 17.
[0024]
(Comparative Example 1)
A 38 mm cut fiber was prepared under the same conditions as in Example 1 except that the amount of antimony pentoxide added as a flame retardant was 3 parts by weight with respect to the resin. This fiber was spun to obtain a spun yarn with a metric count of 17.
[0025]
(Comparative Example 2)
11 parts by weight of acrylonitrile, 4.5 parts by weight of vinylidene chloride, 1.1 parts by weight of sodium dodecyl sulfate, 0.1 part by weight of sulfurous acid gas, 0.002 part by weight of ferrous oxide heptahydrate, 230 parts by weight of water, 0.0115 parts by weight of ammonium sulfate, 0.166 parts by weight of sodium hydrogen sulfite and 0.091 parts by weight of 2-mercaptoethanol were charged into an autoclave, and at a polymerization temperature of 55 ° C., 43.5 parts by weight of acrylonitrile and 41.1 parts by weight of vinylidene chloride Polymerization was performed for 6 hours while adding 1.2 parts by weight of sodium styrenesulfonate and 0.1324 parts by weight of ammonium persulfate equally from the start of polymerization.
The composition of the obtained polymer was 51 parts by weight of acrylonitrile and 49 parts by weight of vinylidene chloride, and the specific viscosity in a 0.2% by weight solution of dimethylformamide was 0.22.
3 parts by weight of metastannic acid with respect to the polymer was added to a 30% acetone solution of the polymer to obtain a spinning dope. This was extruded into a 38% acetone solution at 25 ° C. using a nozzle having a hole diameter of 0.08 mm and 15000 holes, washed with water, dried at 120 ° C. for 8 minutes, and then stretched 2.5 times at 125 ° C. Heat treatment was carried out at 30 ° C. for 30 seconds to obtain a halogen-containing fiber having a fineness of 2.2 dtex. A finishing oil for spinning was attached to this halogen-containing fiber, crimped, and cut into a length of 38 mm. This cut fiber was spun at a metric count of 17th.
[0026]
(2) Fabrication of woven fabric A polyester 150d wooly yarn of 130 warps / inch for warp, and the fiber (A) spun yarn produced by the above method into a weft of 60 yarns / inch, and a woven fabric with a 5 satin structure Created. The results of flame retardancy of this woven fabric are shown in Table 1.
[0027]
[Table 1]
Figure 0004199370
As is apparent from Table 1, Example 1 and Example prepared using spun yarn and polyester wooly yarn comprising the fiber (A) containing 1% or more of the flame retardant and having a specific viscosity of 0.3 or more. The woven fabric of 2 shows high flame retardancy regardless of whether it contains no Sb-based compound. On the other hand, although the comparative example 1 which added the Sb compound to the said fiber (A) shows high flame retardance, the light resistance after 160 hours is falling significantly. Moreover, the woven fabric of the comparative example 2 produced using the spun yarn which consists of the said fiber (A) which contains the said flame retardant 1% or more similarly to an Example, and whose specific viscosity is less than 0.3, and a polyester wooly yarn is the The flame retardancy is remarkably reduced, and total burning occurs. Thus, even in the fiber (A) to which the same amount of the same flame retardant is added, due to the difference in specific viscosity, the flame retardant in the fiber composite of the fiber (A) and the meltable combustible fiber (B) It has a big impact.
[0028]
Reference Example 1 A 38 mm cut fiber was prepared under the same conditions as in the above example except that the amount of tin tetrachloride added as a flame retardant was 2.1 parts by weight with respect to the resin. This fiber was spun to obtain a spun yarn with a metric count of 17.
[0029]
(Comparative Example 3) Under the same conditions as in the example, 38 mm cut fiber was prepared without adding a flame retardant. This fiber was spun to obtain a spun yarn with a metric count of 17. Table 2 shows the results of flame retardancy of Reference Example 1 and Comparative Example 3 . As in Table 1, the woven fabric shown in Table 2 is a warp polyester 150d wooly yarn of 130 yarns / inch, and the weft yarn of the fiber (A) produced by the above method is driven by 60 yarns / inch. We created a woven fabric with a sheet structure. The results of flame retardancy of this woven fabric are shown in Table 2.
[0030]
[Table 2]
Figure 0004199370
From the results of Table 2, the woven fabric of Reference Example 1 prepared using a spun yarn comprising the above-mentioned fiber (A) containing 1% or more of the flame retardant and having a specific viscosity of 0.3 or more contains an Sb-based compound. High flame retardancy is shown regardless of whether it is contained. On the other hand, the woven fabric of Comparative Example 3 in which the amount of the flame retardant added to the fiber (A) is less than 1%, although having a high specific viscosity, the flame retardancy is remarkably reduced, It has occurred. Thus, even if the fiber (A) has the same composition and a high specific viscosity of 0.3 or more, when the flame retardant addition amount is less than 1% by weight, the fiber (A) and the meltable combustible fiber (B) In the fiber composite, sufficient flame retardancy cannot be obtained.
[0031]
【The invention's effect】
The present invention makes it possible to obtain a composite flame retardant fiber having high flame retardancy and excellent light resistance without containing an Sb flame retardant.

Claims (3)

(A)アクリロニトリル30〜70重量%、ハロゲン含有ビニル系単量体70〜30重量%およびこれらと共重合可能なビニル系単量体0〜10重量%よりなり、且つ比粘度0.3以上の共重合体に難燃剤を含有させた繊維70〜30重量部と、(B)溶融型可燃性繊維30〜70重量部とを複合してなるものであって、前記難燃剤としてSb系化合物を使用することなく、Sn系化合物を使用すること、及び(A)の共重合体に対する難燃剤含有量が3〜30重量%であることを特徴とする難燃繊維複合体。(A) 30 to 70% by weight of acrylonitrile, 70 to 30% by weight of a halogen-containing vinyl monomer and 0 to 10% by weight of a vinyl monomer copolymerizable therewith, and having a specific viscosity of 0.3 or more A composite of 70 to 30 parts by weight of a fiber containing a flame retardant in a copolymer and 30 to 70 parts by weight of (B) a melt-type flammable fiber, wherein an Sb compound is used as the flame retardant. A flame retardant fiber composite characterized in that an Sn-based compound is used without being used, and the flame retardant content in the copolymer (A) is 3 to 30% by weight . (A)の共重合体の比粘度が0.3〜0.8である請求項1記載の難燃繊維複合体。The flame retardant fiber composite according to claim 1, wherein the copolymer (A) has a specific viscosity of 0.3 to 0.8. 溶融型可撚性繊維(B)がポリエステル繊維、ポリプロピレン繊維、ポリアミド繊維よりなる群から選ばれた少なくとも1種である請求項1または2に記載の難燃繊維複合体。The flame-retardant fiber composite according to claim 1 or 2 , wherein the melt-type twistable fiber (B) is at least one selected from the group consisting of polyester fiber, polypropylene fiber, and polyamide fiber.
JP10856799A 1999-04-15 1999-04-15 Flame retardant fiber composite Expired - Fee Related JP4199370B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10856799A JP4199370B2 (en) 1999-04-15 1999-04-15 Flame retardant fiber composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10856799A JP4199370B2 (en) 1999-04-15 1999-04-15 Flame retardant fiber composite

Publications (2)

Publication Number Publication Date
JP2000303306A JP2000303306A (en) 2000-10-31
JP4199370B2 true JP4199370B2 (en) 2008-12-17

Family

ID=14488109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10856799A Expired - Fee Related JP4199370B2 (en) 1999-04-15 1999-04-15 Flame retardant fiber composite

Country Status (1)

Country Link
JP (1) JP4199370B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110241620A (en) * 2019-05-10 2019-09-17 宁波先锋新材料股份有限公司 A kind of high heat-insulating flame-retardant fiber line, preparation method and high heat-insulating flame-retardant shading fabric and preparation method based on the fiber line

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7279220B2 (en) 2003-11-26 2007-10-09 Kaneka Corporation Highly flame-retardant cross-linked acrylic fiber and highly flame-retardant composite
WO2006008958A1 (en) * 2004-07-15 2006-01-26 Kaneka Corporation Flame-retardant synthetic fiber, flame-retardant fiber composite, and upholstered furniture product made with flame-retardant fiber composite
WO2014046087A1 (en) * 2012-09-21 2014-03-27 株式会社カネカ Halogen-containing flameproof fibers, method for producing same, and flameproof fiber product using same
JP6131080B2 (en) * 2013-03-28 2017-05-17 株式会社クラレ Flame retardant polyvinyl alcohol fiber and flame retardant composite
CN105034496A (en) * 2015-05-12 2015-11-11 长兴圣帆纺织有限公司 High-strength adhesive interlining base cloth

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110241620A (en) * 2019-05-10 2019-09-17 宁波先锋新材料股份有限公司 A kind of high heat-insulating flame-retardant fiber line, preparation method and high heat-insulating flame-retardant shading fabric and preparation method based on the fiber line

Also Published As

Publication number Publication date
JP2000303306A (en) 2000-10-31

Similar Documents

Publication Publication Date Title
US7365032B1 (en) Flame-retardant union fabric
US4863797A (en) Flame-retarded composite fiber
JP2593987B2 (en) Manufacturing method of flame retardant fiber composite
EP1498522B1 (en) Flame resistant union fabric
JP3477991B2 (en) Flame retardant fabric with improved heat resistance
JP4199370B2 (en) Flame retardant fiber composite
US20050130535A1 (en) High flame resistant union fabric
JP2693129B2 (en) Flame-retardant fiber composite and fabric manufactured using the same
JP3900539B2 (en) Flame retardant fabric
JP3777707B2 (en) Fabric with excellent flame resistance
JP2593989B2 (en) Interior textile products
JP2593988B2 (en) Textile products for clothing
JP3004107B2 (en) Flame retardant fiber composite
JP2898563B2 (en) Flame retardant method for combustible fibers
WO2024185346A1 (en) Modacrylic fiber, flame-retardant fiber assembly containing same, and method for manufacturing same
JP2812672B2 (en) Manufacturing method of flame retardant fiber composite
JP2505377B2 (en) Composite flame retardant fiber
JPS6336367B2 (en)
JP2003301323A (en) Flame-retardant fiber and flame-retardant fiber composite therefrom
JPH0611930B2 (en) Composite flame retardant fiber
JPS59204918A (en) Flame-retardant acrylic synthetic yarn
JPH04209823A (en) Flame-retardant composite yarn

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060703

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080910

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081003

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees