JP4197854B2 - Double wall soundproof structure - Google Patents

Double wall soundproof structure Download PDF

Info

Publication number
JP4197854B2
JP4197854B2 JP2001175254A JP2001175254A JP4197854B2 JP 4197854 B2 JP4197854 B2 JP 4197854B2 JP 2001175254 A JP2001175254 A JP 2001175254A JP 2001175254 A JP2001175254 A JP 2001175254A JP 4197854 B2 JP4197854 B2 JP 4197854B2
Authority
JP
Japan
Prior art keywords
soundproof structure
double wall
wall soundproof
resin
rib
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001175254A
Other languages
Japanese (ja)
Other versions
JP2002366158A (en
Inventor
宏樹 上田
伊知郎 山極
明男 杉本
俊光 田中
成一 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2001175254A priority Critical patent/JP4197854B2/en
Priority to US10/160,001 priority patent/US6708626B2/en
Priority to EP02254043A priority patent/EP1266815B1/en
Priority to EP05076965A priority patent/EP1607298A3/en
Priority to DE60210220T priority patent/DE60210220T2/en
Publication of JP2002366158A publication Critical patent/JP2002366158A/en
Application granted granted Critical
Publication of JP4197854B2 publication Critical patent/JP4197854B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • Y02T30/34

Landscapes

  • Soundproofing, Sound Blocking, And Sound Damping (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、音源との間を遮断して騒音を防止するための防音構造体に関する。
【0002】
【従来の技術】
特開平7−164584号公報には、2つの面板とそれらを接続する傾斜したリブからなるトラス型の形材に対し、そのリブ又は面板のいずれか一方又は双方に制振樹脂を貼り付けた制振形材が記載されている。この制振形材は、トラス型であるため断面剛性が高く、制振樹脂を貼り付けることで防音効果を高めることができるので、例えば鉄道車両等の輸送機用構造体として適している。
【0003】
【発明が解決しようとする課題】
トラス型の形材に防音効果を付加するためには制振樹脂を貼り付けるなどの制振処理を行わなくてはならない。しかし、制振処理を行うにはコストがかかり、また、構造体の断面サイズあるいは適用箇所によっては制振処理ができない場合もある。さらに、制振処理した場合でも、トラス型は断面剛性が高く断面変形しにくい構造であるため、リブ又は面板に貼り付けた制振材が歪みにくく、また、制振作用が効果的に発揮されない周波数領域がある。
【0004】
本発明はこのような問題点に鑑みてなされたもので、構造体本体に防音効果を効果的に発現させるための形状及び構造を提供することを主たる目的とする。また、制振処理を行った場合に制振作用が効果的に発揮され、防音効果を高めることができる防音構造体を提供することを他の目的とする。
【0005】
【課題を解決するための手段】
本発明に係る防音構造体は2重壁防音構造体であり、同じ板厚で互いに平行な2つの面板と、それらを垂直に等ピッチで接続し一体化されかつ互いに平行に延びる複数のリブからなり、前記面板のヤング率をE、密度をρ、板厚をtとし、リブのピッチをlとしたとき、次式(1)を満たす。
【数2】

Figure 0004197854
【0006】
【発明の実施の形態】
上記2重壁防音構造体の基本構造は、図1に例示するように、同じ板厚で互いに平行な2つの面板1、2と、それを垂直に等ピッチで接続し、かつ長さ方向(紙面に垂直)に互いに平行に延びる複数のリブ3からなる。断面形状は長さ方向のどの位置でも本質的に同一である。ここで、本質的にと表現したのは、長さ方向の全長にわたり全幅が同一である必要はなく、長さ方向で全幅の広いところと狭いところがあってもよいという意味である。
【0007】
この2重壁防音構造体は、例えばアルミニウム又はアルミニウム合金押出材、あるいは樹脂又は樹脂を主成分とする成形品からなる。しかし、鋼など他の素材で構成することもできる。また、面板1、2は同じ材質又は特性とされるが、リブ3は必ずしも面板1、2と同じ材質又は特性でなくてもよい。さらに、面板1、2とリブ3は接続し一体化されているが、これは溶接、接着等により一体化されたものでもよい。
【0008】
なお、アルミニウム合金としては、例えば、AA又はJISの規格に含まれる2000系、5000系、6000系、7000系の成分規格のアルミニウム合金が挙げられる。ただし、AA又はJISの規格に含まれる上記以外のアルミニウム合金あるいは上記の成分規格以外のアルミニウム合金も、構造部材としての用途の要求特性を満足するのであれば使用できる。
さらに、本発明に係るアルミニウム又はアルミニウム合金押出材は、常法による押出加工により製造することができる。例えば、溶解調整されたアルミニウム又はアルミニウム合金溶湯を通常の溶解鋳造法を適宜選択して鋳造し、その鋳塊に均質化処理を施し、押出加工−調質処理(焼鈍、溶体化処理、時効処理、安定化処理など)により、所定断面形状の押出材とする。押出材の場合、両面板及びリブが一体化した押出材が望ましい。
あるいは、両面板及びリブが一体化した押出材を製造する代わりに、例えば熱間圧延−冷間圧延−調質処理により製造したアルミニウム又はアルミニウム合金圧延板材を溶接や接着により一体化して所定の断面形状にすること、又は押出材と圧延板材を溶接や接着により一体化して所定の断面形状にすることも考えられる。
【0009】
樹脂成形品からなる場合、樹脂は熱可塑性樹脂でも熱硬化性樹脂でもよい。熱可塑性樹脂の例としては、ポリエチレン、ポリプロピレン、ポリスチレン、AS樹脂、ABS樹脂、ポリ塩化ビニル、ポリアミド(ナイロン)、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリアセタール、ポリフェニレンオキサイド、ポリサルフォン、PPS樹脂等が挙げられ、熱硬化性樹脂の例としては、不飽和ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ビニルエルテル樹脂、ポリイミド樹脂、ポリウレタン等が挙げられるが、これらに限定されるものではない。また、これら樹脂は好適に相溶するものであれば、2種類あるいはそれ以上がブレンドあるいはアロイ化されて用いられていてもよい。さらには、それら樹脂の機械的物性を向上させるために、ガラス繊維、炭素繊維、アラミド繊維、及びナイロン繊維等の有機繊維などと複合されて用いられてもよく、それらは連続長繊維であってもチョップドあるいはミルドファイバーと呼ばれる短繊維であってもよい。成形性の調節や機械的物性の改善のため炭酸カルシウム粉末やタルク等の充填材や各種添加剤が加えられることもある。
上記樹脂又は樹脂複合材にて前記2重壁防音構造体を製造するには、一般に用いられている樹脂成形法が用いられるが、特に熱可塑性樹脂及びその複合材においては押出成形法、熱硬化性樹脂及びその複合材においてはプルトルージョン(引抜き)成形法が好適に使用される。
【0010】
図2に例示するのは、面板1、2又はリブ3に制振樹脂4を貼り付けた2重壁防音構造体である。制振樹脂4としては、先に示した特開平7−164584号公報に記載されたと同様、アスファルト系樹脂やブチルゴム系特殊合成ゴム、その他が使用できる。これは接着又は加熱融着により面板1、2又はリブ3に貼り付けられる。これにより、2重壁防音構造体の制振性が向上して防音効果をより高めることができる。そのほか、2重壁防音構造体の中空部に発泡樹脂制振材等の制振材を充填することもできる。
【0011】
さて、上記(1)式の中辺は上記2重壁防音構造体の面板1、2の最低次の固有振動数fを表す。つまり、本発明では、面板の固有振動数fが250〜5000Hzの範囲内になるように、面板の材質、板厚及びリブピッチを設定するということである。この2重壁防音構造体の一方の面板側に固有振動数f以上の振動数の音波が入射すると、2重壁防音構造体はある特定の変形モードで固有振動を起こす。その変形モードを有限要素法により解析した。その結果を従来のトラス型の構造体と比較して次に示す。
【0012】
解析の対象とした構造体は、図3に示すように、(a)厚さ30mm、幅600mm、リブピッチ75mm、面板の板厚2mm、リブの板厚1.5mmのアルミニウム合金押出材、(b)その面板に板厚3mmの制振樹脂を貼り付けたもの、(c)厚さ30mm、幅600mm、リブピッチ37.5mm、面板及びリブの板厚2mmのトラス型アルミニウム合金押出材とした。アルミニウム合金のヤング率Eは69GPa、密度ρは2700kg/m、制振樹脂のヤング率Eは2GPa、密度ρは1500kg/mとした。
【0013】
この構造体に対し、図4に示す有限要素法による解析モデルを作成し、図4に示す節点a、bを固定し、面板上の節点cを下から加振し、各構造体を振動させた。なお、節点とは有限要素法による解析モデル上の点を意味する。また、図4(a)〜(c)はそれぞれ図3(a)〜(c)に対応する。
加振周波数は図3(a)、(b)の場合は2200Hz、(c)の場合は2030Hzといずれも高次の固有振動数付近の周波数とした。
解析結果を図5に示す。図5(a)〜(c)はそれぞれ図3(a)〜(c)の構造材の振動時の変形モードである。(a)の構造材では上下面板が同じように変形し、かつ変形が左右にほぼ規則正しく伝搬し、(b)の構造材ではその形態をほぼ保つが振幅が減衰した状態となり、(c)の構造材では両面板が全く異なる変形を示し、かつ変形が左右にきわめて不規則に伝搬している。
【0014】
図5(a)の振動時の変形モードを模式的に示したのが図6である。音の放射に関係する上側の面板の変形モードは、リブの付近の変形(破線より上の部分)と中間部分の変形(破線より下の部分)が対称的となっている。従って、面板の振動の振幅自体は大きくても、それにより放射される音波が隣接する部位同士で互いにキャンセレーションを起こして音響放射効率が小さくなり、結果として音が小さくなる。図5(b)については、リブの付近の変形と中間部分の変形が対称的となるだけでなく、振動自体が小さくなるため、さらに音響放射効率が小さく音が小さくなる。
これに対し、図5(c)の場合、上側の面板の変形モードは左右に不規則(下側も面板も不規則)であるため、放射される音波がキャンセレーションを起こさず、音響放射効率が大きく音が小さくならない。
【0015】
このような音波のキャンセレーションを起こさせるためには、この2重壁防音構造体を、前記のとおり、同じ板厚で互いに平行な2つの面板と、両面板を垂直にほぼ等ピッチで接続するリブで構成する必要がある。なお、リブは両面板に対し数学的な意味で垂直である必要はなく、実質的な意味で垂直であればよい(防音性能を阻害しない範囲での多少の傾斜は許容される)。そのほか、平行あるいは等ピッチという要件についても同様に実質的に解釈すべきである。
【0016】
ここで、本発明の2重壁防音構造体において、面板の固有振動数fが250〜5000Hzの範囲内になるように、面板の材質、板厚及びリブピッチを設定する理由を説明する。
先に述べたように本発明の2重壁防音構造体に面板の固有振動数f以上の振動数の音波が入射したとき、当該構造体は前記の変形モードで振動し、音波のキャンセレーションにより防音効果を発揮する。いいかえれば固有振動数f以上の音波に対して防音効果がある。従って、固有振動数fを小さく設定することで、広い振動数領域で防音効果が得られるが、その場合、同じ材質であれば板厚tを小さく及び/又はリブピッチlを大きく設定する必要があり、構造体の断面剛性が低下する。
【0017】
一方、人間の耳にぎりぎり聞こえる音圧レベル(実効値)を最小可聴値といい、その値は振動数によって大きく変わる。一般に500Hz以下では振動数が少ないほど耳の感度が悪くなり、特に250Hz以下では最小可聴値が大きくなるため、効率のよい防音構造体を得るには、固有振動数fを250Hz以上に設定するのが現実的であるといえる。構造体の断面剛性等、他の要因を考慮して500Hz以上に設定してもよい。また、5000Hz以上では振動数が大きくなるほど耳の感度が悪くなり、その最小可聴値は大きくなる。従って、5000Hzを越える固有振動数fに設定するのは余り意味がない。このような理由から本発明の2重壁防音構造体の固有振動数fを250〜5000Hzとした。なお、最小可聴値が一般に最も小さくなる3000〜4000Hzの範囲を確実にカバーするため、固有振動数fを3000Hz以下、あるいは2000Hz以下の範囲に設定することが一般には望ましいともいえる。
【0018】
【発明の効果】
本発明の2重壁防音構造体によれば、放射される音波が互いにキャンセレーションするため音響放射効率が小さく、高い防音効果が得られる。また、制振処理を行った場合に制振作用が効果的に発揮され、さらに防音効果を高めることができる。
【図面の簡単な説明】
【図1】 本発明に係る2重壁防音構造体の断面図である。
【図2】 制振処理した2重壁防音構造体の断面図である。
【図3】 有限要素法による解析の対象とした2重壁防音構造体の断面模式図である。
【図4】 その解析モデルである。
【図5】 2重壁防音構造体の変形モードの解析結果である。
【図6】 変形モードの解析結果を模式的に示す説明図である。
【符号の説明】
1、2 面板
3 リブ
4 制振材[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a soundproof structure for preventing noise by blocking a sound source.
[0002]
[Prior art]
Japanese Patent Laid-Open No. 7-164484 discloses a damping structure in which a damping resin is attached to either or both of the ribs and the face plate to a truss-type profile composed of two face plates and an inclined rib connecting them. Shading material is described. Since this vibration damping material is a truss type, it has a high cross-sectional rigidity and can improve the soundproofing effect by affixing a vibration damping resin, so it is suitable as a structural body for a transportation machine such as a railway vehicle.
[0003]
[Problems to be solved by the invention]
In order to add a soundproofing effect to the truss-type shape material, it is necessary to perform a vibration damping process such as attaching a vibration damping resin. However, it is expensive to perform the vibration damping process, and the vibration damping process may not be possible depending on the cross-sectional size of the structure or the application location. Furthermore, even when the vibration control treatment is performed, since the truss type has a structure with high cross-sectional rigidity and is difficult to deform, the vibration damping material attached to the ribs or face plate is not easily distorted, and the vibration control action is not effectively exhibited. There is a frequency domain.
[0004]
This invention is made | formed in view of such a problem, and makes it a main objective to provide the shape and structure for making a structure main body express a soundproofing effect effectively. It is another object of the present invention to provide a soundproof structure that can effectively improve the soundproofing effect when the vibration damping process is performed.
[0005]
[Means for Solving the Problems]
Soundproof structure according to the present invention is a double-walled sound insulation structure, and two surface plates parallel to each other on the same plate thickness, a plurality of ribs extending them to connect at equal pitches perpendicularly integrated and parallel to each other When the Young's modulus of the face plate is E, the density is ρ, the plate thickness is t, and the rib pitch is 1, the following equation (1) is satisfied.
[Expression 2]
Figure 0004197854
[0006]
DETAILED DESCRIPTION OF THE INVENTION
As shown in FIG. 1, the basic structure of the above-mentioned double wall soundproof structure is formed by connecting two face plates 1 and 2 parallel to each other with the same thickness, and vertically connecting them at an equal pitch, and in the length direction ( It consists of a plurality of ribs 3 extending in parallel to each other (perpendicular to the paper surface). The cross-sectional shape is essentially the same at any position in the length direction. Here, the expression “essentially” means that the entire width does not have to be the same over the entire length in the length direction, and there may be a portion where the width is wide and a portion where the width is narrow in the length direction.
[0007]
This double-wall soundproof structure is made of, for example, aluminum or an aluminum alloy extruded material, or a molded product mainly composed of resin or resin. However, other materials such as steel can be used. Further, although the face plates 1 and 2 are made of the same material or characteristic, the rib 3 is not necessarily made of the same material or characteristic as the face plates 1 and 2. Furthermore, although the face plates 1 and 2 and the rib 3 are connected and integrated, this may be integrated by welding, adhesion, or the like.
[0008]
Examples of the aluminum alloy include 2000-series, 5000-series, 6000-series, and 7000-series component-standard aluminum alloys included in AA or JIS standards. However, aluminum alloys other than those described above in the AA or JIS standards or aluminum alloys other than the above-described component standards can be used as long as they satisfy the required characteristics for applications as structural members.
Furthermore, the aluminum or aluminum alloy extruded material according to the present invention can be produced by extrusion processing according to a conventional method. For example, melt-adjusted aluminum or aluminum alloy molten metal is cast by appropriately selecting a normal melting casting method, and the ingot is homogenized, and extrusion-tempering treatment (annealing, solution treatment, aging treatment) The extruded material has a predetermined cross-sectional shape by a stabilization treatment or the like. In the case of an extruded material, an extruded material in which a double-sided plate and a rib are integrated is desirable.
Alternatively, instead of producing an extruded material in which both side plates and ribs are integrated, for example, an aluminum or aluminum alloy rolled plate produced by hot rolling-cold rolling-tempering treatment is integrated by welding or bonding to obtain a predetermined cross section. It is also conceivable to form a shape, or to integrate the extruded material and the rolled plate material by welding or bonding into a predetermined cross-sectional shape.
[0009]
In the case of a resin molded product, the resin may be a thermoplastic resin or a thermosetting resin. Examples of thermoplastic resins include polyethylene, polypropylene, polystyrene, AS resin, ABS resin, polyvinyl chloride, polyamide (nylon), polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyacetal, polyphenylene oxide, polysulfone, PPS resin, and the like. Examples of the thermosetting resin include, but are not limited to, unsaturated polyester resins, epoxy resins, phenol resins, vinyl ertel resins, polyimide resins, polyurethanes, and the like. In addition, two or more of these resins may be blended or alloyed as long as they are suitably compatible. Furthermore, in order to improve the mechanical properties of these resins, they may be used in combination with glass fibers, carbon fibers, aramid fibers, organic fibers such as nylon fibers, etc., which are continuous long fibers. Also, short fibers called chopped or milled fibers may be used. Fillers such as calcium carbonate powder and talc and various additives may be added to adjust moldability and improve mechanical properties.
In order to manufacture the double-wall soundproof structure with the resin or the resin composite material, a generally used resin molding method is used. In particular, in a thermoplastic resin and a composite material thereof, an extrusion molding method, thermosetting is used. In the conductive resin and its composite material, a pultrusion (pulling) molding method is preferably used.
[0010]
Illustrated in FIG. 2 is a double-walled soundproof structure in which damping resin 4 is attached to face plates 1, 2 or rib 3. As the damping resin 4, as described in the above-mentioned Japanese Patent Application Laid-Open No. 7-164484, an asphalt resin, a butyl rubber special synthetic rubber, or the like can be used. This is affixed to the face plates 1, 2 or the ribs 3 by adhesion or heat fusion. Thereby, the damping property of the double wall soundproof structure is improved, and the soundproofing effect can be further enhanced. In addition, the hollow portion of the double wall soundproof structure can be filled with a damping material such as a foamed resin damping material.
[0011]
The middle side of the expression (1) represents the lowest natural frequency f of the face plates 1 and 2 of the double wall soundproof structure. That is, in the present invention, the face plate material, plate thickness, and rib pitch are set so that the natural frequency f of the face plate is in the range of 250 to 5000 Hz. When a sound wave having a frequency greater than or equal to the natural frequency f is incident on one face plate side of the double-wall soundproof structure, the double-wall soundproof structure causes natural vibration in a specific deformation mode. Its deformation mode was analyzed by finite element method. The results are shown below in comparison with a conventional truss structure.
[0012]
As shown in FIG. 3, the structure to be analyzed is (a) an aluminum alloy extruded material having a thickness of 30 mm, a width of 600 mm, a rib pitch of 75 mm, a face plate thickness of 2 mm, and a rib plate thickness of 1.5 mm. ) A vibration-resistant resin having a plate thickness of 3 mm attached to the face plate, and (c) a truss-type aluminum alloy extruded material having a thickness of 30 mm, a width of 600 mm, a rib pitch of 37.5 mm, and a plate thickness of the face plate and rib of 2 mm. Young's modulus E of the aluminum alloy is 69 GPa, a density ρ 2700kg / m 3, the Young's modulus E of the damping resin is 2 GPa, the density [rho was 1500 kg / m 3.
[0013]
An analysis model by the finite element method shown in FIG. 4 is created for this structure, the nodes a and b shown in FIG. 4 are fixed, the node c on the face plate is vibrated from below, and each structure is vibrated. It was. The node means a point on the analysis model by the finite element method. 4A to 4C correspond to FIGS. 3A to 3C, respectively.
The excitation frequency was 2200 Hz in FIGS. 3A and 3B, and 2030 Hz in FIG. 3C, and both were frequencies near the high-order natural frequency.
The analysis results are shown in FIG. FIGS. 5A to 5C are deformation modes during vibration of the structural members of FIGS. 3A to 3C, respectively. In the structural material of (a), the upper and lower surface plates are deformed in the same manner, and the deformation propagates almost regularly to the left and right. In the structural material of (b), the shape is almost maintained but the amplitude is attenuated. In the structural material, the double-sided plates exhibit completely different deformations, and the deformations propagate very irregularly from side to side.
[0014]
FIG. 6 schematically shows the deformation mode during vibration in FIG. In the deformation mode of the upper face plate related to sound radiation, the deformation near the rib (the part above the broken line) and the deformation at the intermediate part (the part below the broken line) are symmetrical. Therefore, even if the amplitude of the vibration of the face plate itself is large, the sound waves emitted thereby cancel each other between adjacent parts, and the acoustic radiation efficiency is reduced, resulting in a reduced sound. In FIG. 5B, not only the deformation in the vicinity of the rib and the deformation in the intermediate portion are symmetrical, but also the vibration itself is reduced, so that the sound radiation efficiency is further reduced and the sound is reduced.
On the other hand, in the case of FIG. 5C, the deformation mode of the upper face plate is irregular to the left and right (both the lower and face plates are irregular), so that the radiated sound wave does not cancel, and the acoustic radiation efficiency The sound is loud and the sound is not low.
[0015]
In order to cause such acoustic wave cancellation, as described above, the double wall soundproof structure is connected to two faceplates having the same plate thickness and parallel to each other, and the both faceplates at a substantially equal pitch. It is necessary to compose with ribs. The ribs do not need to be perpendicular to the double-sided plate in a mathematical sense, and may be perpendicular to each other in a substantial sense (slight inclination in a range not impairing the soundproof performance is allowed). In addition, the requirement of parallel or equal pitch should be substantially interpreted similarly.
[0016]
Here, in the double wall soundproof structure of the present invention, the reason why the face plate material, plate thickness and rib pitch are set so that the natural frequency f of the face plate is in the range of 250 to 5000 Hz will be described.
As described above, when a sound wave having a frequency greater than or equal to the natural frequency f of the face plate is incident on the double wall soundproof structure of the present invention, the structure vibrates in the deformation mode, and the sound wave cancels. Demonstrates soundproofing effect. In other words, it has a soundproofing effect on sound waves having a natural frequency f or higher. Accordingly, by setting the natural frequency f small, a soundproofing effect can be obtained in a wide frequency range. In this case, it is necessary to set the plate thickness t small and / or the rib pitch l large if the same material is used. The cross-sectional rigidity of the structure is reduced.
[0017]
On the other hand, the sound pressure level (effective value) that can be heard at the ear of the human ear is called the minimum audible value, and the value varies greatly depending on the frequency. Generally, the sensitivity of the ear becomes worse as the frequency is lower at 500 Hz or lower, and the minimum audible value becomes larger especially at 250 Hz or lower. Therefore, in order to obtain an efficient soundproof structure, the natural frequency f is set to 250 Hz or higher. Can be said to be realistic. It may be set to 500 Hz or more in consideration of other factors such as the cross-sectional rigidity of the structure. Also, at 5000 Hz or higher, the ear sensitivity decreases as the frequency increases, and the minimum audible value increases. Therefore, it does not make much sense to set the natural frequency f exceeding 5000 Hz. For this reason, the natural frequency f of the double wall soundproof structure according to the present invention is set to 250 to 5000 Hz. In order to reliably cover the range of 3000 to 4000 Hz where the minimum audible value is generally the smallest, it can be said that it is generally desirable to set the natural frequency f to a range of 3000 Hz or less or 2000 Hz or less.
[0018]
【The invention's effect】
According to the double wall soundproof structure of the present invention, the sound waves emitted cancel each other, so that the sound radiation efficiency is low and a high soundproofing effect is obtained. Further, when the vibration damping process is performed, the vibration damping action is effectively exhibited, and the soundproofing effect can be further enhanced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a double wall soundproof structure according to the present invention.
FIG. 2 is a cross-sectional view of a double wall soundproof structure subjected to vibration damping processing.
FIG. 3 is a schematic cross-sectional view of a double wall soundproof structure that is an object of analysis by a finite element method.
FIG. 4 is an analysis model thereof.
FIG. 5 is an analysis result of a deformation mode of a double wall soundproof structure.
FIG. 6 is an explanatory diagram schematically showing the analysis result of the deformation mode.
[Explanation of symbols]
1, 2 Face plate 3 Rib 4 Damping material

Claims (4)

同じ板厚で互いに平行な2つの面板と、それらを垂直にほぼ等ピッチで接続し一体化されかつ互いに平行に延びる複数のリブからなり、前記面板のヤング率をE、密度をρ、板厚をtとし、リブのピッチをlとしたとき、次式(1)を満たすことを特徴とする2重壁防音構造体。
Figure 0004197854
And two face plates parallel to each other with the same thickness, they vertically connected by substantially equal pitch made integral and a plurality of ribs extending parallel to one another, E the Young's modulus of the surface plate, the density [rho, thickness Where t is t and rib pitch is l, the double wall soundproof structure satisfies the following formula (1).
Figure 0004197854
アルミニウム又はアルミニウム合金押出材からなることを特徴とする請求項1に記載された2重壁防音構造体。  2. The double wall soundproof structure according to claim 1, wherein the double wall soundproof structure is made of an aluminum or aluminum alloy extruded material. 樹脂又は樹脂を主成分とする複合材料の成形品からなることを特徴とする請求項1に記載された2重壁防音構造体。  2. The double wall soundproof structure according to claim 1, wherein the double wall soundproof structure is made of a resin or a molded article made of a resin-based composite material. 面板又はリブのいずれか又は双方に制振材が貼り付けられているか、面板の間の中空部に制振材が充填されていることを特徴とする請求項1〜3のいずれかに記載された2重壁防音構造体。  The damping material is affixed on either or both of the face plate and the rib, or the hollow portion between the face plates is filled with the damping material. Double wall soundproof structure.
JP2001175254A 2001-06-11 2001-06-11 Double wall soundproof structure Expired - Fee Related JP4197854B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001175254A JP4197854B2 (en) 2001-06-11 2001-06-11 Double wall soundproof structure
US10/160,001 US6708626B2 (en) 2001-06-11 2002-06-04 Double-walled damping structure
EP02254043A EP1266815B1 (en) 2001-06-11 2002-06-11 Double-walled damping structure
EP05076965A EP1607298A3 (en) 2001-06-11 2002-06-11 Double-walled damping structure
DE60210220T DE60210220T2 (en) 2001-06-11 2002-06-11 Double-walled damping structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001175254A JP4197854B2 (en) 2001-06-11 2001-06-11 Double wall soundproof structure

Publications (2)

Publication Number Publication Date
JP2002366158A JP2002366158A (en) 2002-12-20
JP4197854B2 true JP4197854B2 (en) 2008-12-17

Family

ID=19016427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001175254A Expired - Fee Related JP4197854B2 (en) 2001-06-11 2001-06-11 Double wall soundproof structure

Country Status (1)

Country Link
JP (1) JP4197854B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008095590A (en) * 2006-10-11 2008-04-24 Denso Corp Internal combustion engine starter

Also Published As

Publication number Publication date
JP2002366158A (en) 2002-12-20

Similar Documents

Publication Publication Date Title
US6135541A (en) Automobile door to provide high-quality closing sound
US5509247A (en) Vibration-damping inside roof construction
JP5056385B2 (en) Sound absorber
US6617002B2 (en) Microperforated polymeric film for sound absorption and sound absorber using same
US6708626B2 (en) Double-walled damping structure
JP2009040071A (en) Sound absorbing material, and sound absorbing structure equipped with sound absorbing material
JP2006292946A (en) Sound absorption structure and sound absorption panel for automobile
US5031721A (en) Sound absorption barriers
US20050194202A1 (en) Speaker insulator and a speaker apparatus
WO2020099222A1 (en) Loudspeaker, motor vehicle comprising a loudspeaker and use
JP5104190B2 (en) Interior materials for vehicles
JP2005266399A (en) Resonator type muffling structure
JP4197854B2 (en) Double wall soundproof structure
JP2000170123A (en) Sound absorbing panel and panel strengthening body used therefor
JP2016200668A (en) Sound absorption resin structure
JP4019820B2 (en) Sound absorbing structure
HU218513B (en) Multilayer building unit
JP2017116706A (en) Resonance absorption structure
JP2012049653A (en) Sound producing device and vehicle presence notification apparatus
JP2006349191A (en) Double wall damping structure
JP3908214B2 (en) Soundproof side wall of current collector
JP4222267B2 (en) Roof panel damping bracket
JP6865068B2 (en) Interior panels and vehicle interior panels
JPS6125160B2 (en)
JP6135606B2 (en) Car exterior structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040922

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050506

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050506

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050622

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4197854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees