JP4197389B2 - Directional electrical steel sheet for direct ignition - Google Patents

Directional electrical steel sheet for direct ignition Download PDF

Info

Publication number
JP4197389B2
JP4197389B2 JP2000205733A JP2000205733A JP4197389B2 JP 4197389 B2 JP4197389 B2 JP 4197389B2 JP 2000205733 A JP2000205733 A JP 2000205733A JP 2000205733 A JP2000205733 A JP 2000205733A JP 4197389 B2 JP4197389 B2 JP 4197389B2
Authority
JP
Japan
Prior art keywords
steel sheet
electrical steel
coating
rolling direction
grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000205733A
Other languages
Japanese (ja)
Other versions
JP2002020846A (en
Inventor
和年 竹田
健司 小菅
良 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2000205733A priority Critical patent/JP4197389B2/en
Publication of JP2002020846A publication Critical patent/JP2002020846A/en
Application granted granted Critical
Publication of JP4197389B2 publication Critical patent/JP4197389B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明はダイレクトイグニッションを構成するコアやシールドに用いる方向性電磁鋼板に関するものである。
【0002】
【従来の技術】
近年、省エネルギーの観点から各種電気機器の効率向上が求められている。特に自動車用電装品については二酸化炭素削減要求から各種取組みが試されている。その中の一つとして内燃機関の点火装置の高圧電流発生部をプラグ近傍に設置するいわゆるダイレクトイグニッションがある。
【0003】
従来、イグニッションはエンジンシャフトに付随して設置された発電機を利用し、高圧電流発生装置で電流を昇圧した後、各プラグまで高圧電流を通電していたが、ダイレクトイグニッションでは高圧電流発生部をプラグ直前に設置することにより高圧電流の通電距離を短くして省エネルギー化を図るものである。
【0004】
そこで、高圧電流発生部は従来のものと比較して極めて小型であることが要求される一方、電圧変換、即ちトランスとしての磁気特性も従来と同等の機能が要求されることから、その鉄芯材料としては磁気特性に優れた方向性電磁鋼板が最適である。また、高圧電流発生部は瞬間的に発生させる高電圧に応じて強力な磁力線が発生することから磁気シールドが必要であるが、磁気シールドについても透磁率の高い方向性電磁鋼板が最適である。
【0005】
そこで、ダイレクトイグニッションのコアでは方向性電磁鋼板が良く使用されているが、エンジン内部のスペース効率の観点から様々な形状に加工する必要が有る。例えば開放磁路型のいわゆるペンシルタイプでは、磁気シールドに方向性電磁鋼板を使用されているが、その圧延方向と直角方向に円筒状に加工するといった特殊な加工がなされている。
【0006】
通常、方向性電磁鋼板の表面には1次被膜と呼ばれるフォルステライト層と、2次被膜と呼ばれるりん酸塩、クロム酸塩とシリカを主成分とする混合層が形成されている。これらの被膜層には鋼板を積層した時に漏洩電流を防止して鉄心の磁気特性を向上させるための絶縁性が必要とされるが、絶縁性以外にも耐蝕性やすべり性、密着性など各種被膜特性が求められている。
【0007】
フォルステライト層は、方向性電磁鋼板を所定の板厚に圧延して脱炭焼鈍した後、MgOを主成分とする焼鈍分離剤を表面に塗布することで仕上げ焼鈍時に形成される。この被膜層は絶縁被膜としての機能と2次被膜の下地層として有効である。
【0008】
さらに優れた絶縁性や耐蝕性などの被膜特性が要求される場合、2次被膜層が形成される。特公昭53−28375号公報には仕上げ焼鈍後に鋼板表面に形成されたフォルステライト被膜の上に特定組成のりん酸塩・クロム酸塩・コロイド状シリカ系の絶縁被膜を塗布乾燥することにより、鋼板に張力を付与し方向性電磁鋼板の磁気特性を向上せしむる方法が開示されている。
【0009】
【発明が解決しようとする課題】
ところが、方向性電磁鋼板が通常使用されるトランスでは巻き鉄芯のように圧延方向に曲げ加工するのが一般的で有り、圧延方向と直角方向に曲げ加工されることは従来行われることが無く、被膜の密着性が劣化して剥離が発生する問題が有った。被膜が剥離すると絶縁性が低下したり、加工プレスに付着する等の問題が発生し生産性の低下を生じるものである。
【0010】
方向性電磁鋼板の絶縁被膜の密着性を向上させる技術としては、例えば特開平01−198429号公報に、脱炭焼鈍前または後に鋼板表面に直線状或いは破線上の微細な疵を付ける技術が開示されている。また、特開昭62−133021号公報には脱炭焼鈍前に鋼板表面に微細な凹凸を形成し、脱炭焼鈍または仕上げ焼鈍で酸化物を形成する技術が開示されている。
【0011】
また、2次被膜の密着性を向上させる技術としては、特開平5−279864号公報に、第1回目の塗布としてりん酸或いはりん酸塩と無水クロム酸或いはクロム酸塩およびコロイド状シリカを含む溶液を300〜600℃で30秒以上焼き付け乾燥し、さらに第2回目以降に該溶液を700〜950℃で30秒以上焼き付け乾燥することにより、良好な密着性を保持し、かつ、被膜量を増大せしむる方法が開示されている。上記特開平5−279864号公報に開示された方法により、従来はせいぜい5g/m2 が限度であった絶縁被膜量が6〜8g/m2 もの厚塗布が可能となり、密着性が劣化すること無く大幅な張力の向上効果が得られている。
【0012】
ところが、上記各公報に開示された技術はいずれも巻きトランスなどの通常の方向性電磁鋼板の使用を想定したもので有り、ダイレクトイグニッションのコアやシールドのように圧延方向と直角方向の密着性が必要な場合については何ら解決の手段を明示するものではない。
【0013】
また、電磁鋼板の打抜き性、耐蝕性を改善する技術として、特公昭53−44892号公報に、酸化被膜或いは化成被膜付き電気鉄板の表面0.1〜10mg/dm2 の薄いポリエチレンフィルムを形成することにより打抜き性、耐蝕性に優れた有機被膜付き電気鉄板に関する技術が開示されている。
【0014】
さらに、特開昭58−103107号公報には、電磁鋼板の表面に、下塗りとしてりん酸塩系処理液を乾燥膜厚が0.3〜1.0μmになるよう塗布し、これを焼き付けて非晶質被膜を生成した後、この上にポリエステル系、エポキシエステル系およびアクリル系樹脂の1種または2種以上の水溶性樹脂を乾燥膜厚として3〜12μmとなるよう塗布し、焼付、これにより該表面に打抜き性、電気絶縁性、および耐蝕性、特に耐水性の優れた被膜を形成することを特徴とする技術が開示されている。
【0015】
また、特開昭62−14405号公報にはフォルステライト被膜を有する方向性電磁鋼板の表面に100〜500mg/m3 のアクリル系有機樹脂を主成分とした被膜を形成した2層被膜を有する切断性、すべり性、歪み取り焼鈍性のすぐれた巻き鉄芯用方向性電磁鋼板とフォルステライト被膜上に無機系絶縁被膜を有する方向性電磁鋼板の表面に100〜500mg/m3 のアクリル系有機樹脂を主成分とした被膜を形成した2層被膜を有する切断性、すべり性、歪み取り焼鈍性のすぐれた巻き鉄芯用方向性電磁鋼板についての技術が開示されている。
【0016】
しかし、上記各公報ではダイレクトイグニッションのコアやシールドに使用されるような圧延方向と直角方向の被膜密着性については何ら開示も示唆もされるものではなく、また、各公報において解決される問題点である打抜き性、電気絶縁性、耐蝕性、耐水性、切断性、すべり性、歪み取り焼鈍性と圧延方向と直角方向の密着性については何ら重複するものではない。
【0017】
本発明は、上記表面にフォルステライト層を有する方向性電磁鋼板或いはフォルステライト層の上にリン酸塩系絶縁被膜を有する方向性電磁鋼板の圧延方向と直角方向の曲げ密着性について鋭意検討した結果、特定範囲内にSi濃度を限定し、圧延方向と直角方向の降伏応力を限定することにより、圧延方向と直角方向の曲げ密着性を大幅に向上させることが可能であることを見出し、ダイレクトイグニッションのコアやシールドに用いる方向性電磁鋼板を提供するものである。
【0018】
【課題を解決するための手段】
即ち本発明は、以下の構成を要旨とする。
(1)フォルステライト層を有し、その上層にりん酸塩系絶縁皮膜を形成した方向性電磁鋼板において、重量でSiを3.0〜3.5%含有し、圧延方向と直角方向の降伏応力が362〜370N/mm であることを特徴とするダイレクトイグニッション方向性電磁鋼板。
(2)圧延方向の降伏応力が350N/mm 以下であることを特徴とする前項(1)記載のダイレクトイグニッション用方向性電磁鋼板
【0019】
【発明の実施の態様】
以下に本発明を詳細に説明する。
本発明で使用されるりん酸塩系絶縁被膜としては、上記特公昭53−28375号公報に開示されている被膜構成が好適であり、リン酸アルミ、リン酸マグネシウム、リン酸カルシウムの1種または2種以上から構成されるリン酸塩を主成分とし、適宜コロイド状シリカ、クロム酸塩を添加したものが使用できる。
【0020】
このようなりん酸塩系絶縁被膜を方向性電磁鋼板の表面に形成する場合、所定の処理液を調合した後、ロールコーターなどで鋼板に塗布し、乾燥焼付するのが好適であり、使用する処理液の液組成については特に限定するものではないが、絶縁被膜の特性および塗布時の作業性からりん酸塩:3〜24重量%、クロム酸塩:0.2〜4.5重量%、コロイド状シリカ:4〜16重量%を主成分とする水溶液またはスラリーとするのがよい。また、この水溶液に被膜特性改善のために界面活性剤、ガラス化剤等を添加することは何等差し支えない。
【0021】
りん酸塩系絶縁被膜の塗布量としては、0.5〜5g/m2 の範囲が良く、さらに最適には1〜3g/m2 が良好である。りん酸塩系絶縁被膜を形成することにより、より絶縁性が高められるとともに表面粗度の制御が可能となり、加工時の鋼板表面のすべり性がコントロールできるため必要とするものである。
【0022】
本発明では、特にSi濃度を3.0〜3.5%の範囲にする必要がある。Si濃度をこのような範囲に含有させるのは3.0未満では、必要なダイレクトイグニッションコアの磁気特性が得られず、また、Si濃度が3.5%超では、曲げ加工時にフォルステライト表面やリン酸塩系絶縁被膜表面との解離が発生し改善効果が得られないためである。さらに好ましいSi濃度は、3.1〜3.3%の範囲である。
【0023】
本発明で使用される降伏応力としては、圧延方向と直角方向の降伏応力が362 370N/mm にする必要がある。圧延方向と直角方向の降伏応力が362 N/mm 以上であれば下記表1に示すように被膜密着性が優れる一方、370N/mm 超では、曲げ加工時にフォルステライト表面やリン酸塩系絶縁被膜表面との解離が発生し改善効果が得られないためである。さらに好適には、圧延方向の降伏応力が350N/mm 以下であることが望ましい。350N/mm 超では、圧延と直角方向の降伏応力とのバランスが崩れ、曲げ加工時にフォルステライト表面やリン酸塩系絶縁被膜表面との解離が発生し改善効果が得られないためである。
これら降伏応力を変える要因としては、二次再結晶粒径、二次再結晶粒の形(圧延方向、圧延方向と直角方向の長さ比など)、板厚、Si等の合金元素などが挙げられる。
【0024】
通常、方向性電磁鋼板が使用されるトランスなどの曲げ試験では、20mmφで評価される。しかしながら、ダイレクトイグニッションのコアやシールドの場合には圧延方向と直角方向に曲げるだけでなく、小型化の観点からさらに厳しい15mmφでの評価が必要であり、本発明では、このような厳しい曲げ試験を行われても十分な密着性が確保できるものである。従って、被膜の圧延方向と直角方向の曲げ密着性において15mmφでもフォルステライト層が剥がれないことが必要である。15mmφにおいてフォルステライト層が剥離すれば、ダイレクトイグニッションの小型化が困難となるからである。
【0025】
本発明の詳細なメカニズムは明らかではないが、方向性電磁鋼板を圧延方向と直角方向に曲げ加工をした場合、鋼板表面の圧延溝に沿って鋼板が座屈し易いため非常に微細な座屈が発生し、フォルステライトが破壊され易い。しかし、本発明のようなSi濃度に限定し、かつ圧延方向と直角方向の降伏応力を規制することにより、フォルステライトの地鉄との界面での座屈が生じにくくなり、フォルステライトの破壊と剥離を防止するものと推定される。
【0026】
【実施例】
種々の成分、工程を経た最終冷延板を、脱炭焼鈍後、MgOを主成分とする焼鈍分離剤を塗布し仕上げ焼鈍を行った0.23mmの方向性電磁鋼板の表面に水洗処理して余剰のMgOを落とした後、50%りん酸アルミニウム:70g、20%コロイダルシリカ:120g、クロム酸:6gを主成分とする処理液を塗布し、850℃×70秒で焼き付けた。このときの塗布量は3.5g/m2 とした。
【0027】
得られたもののSi濃度および圧延方向および圧延方向と直角方向の降伏応力と、そのときの被膜密着性を表1に示す。またこれを素材としたダイレクトイグニッションコアの磁気特性を評価したが、比較例5のほかは良好であった。
【0028】
表1からも明らかな如く、本実施例によれば、圧延方向と直角方向の曲げ密着性が大幅に向上する効果が得られている。
【0029】

Figure 0004197389
a):密着性試験として曲げ密着試験を行った。まず、圧延方向と直角方向
に試験片を採取し、15mm径の丸棒に試験片を押し付けながら180度折り
曲げ、折り曲げ部分の被膜の剥離状況を観察し、◎、○、△、×、××の5
段階評価とした。◎は全く剥離の無いもの、○は若干の剥離があるもの、△
は軽度の剥離が有るもの、×は剥離の程度の激しいもの、××は全面剥離し
たもの。
b):圧延方向と直角方向
【0030】
【発明の効果】
本発明により、ダイレクトイグニッションの外筒コアに最適な圧延方向と直角方向の曲げ密着性を大幅に向上させることが可能である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a grain-oriented electrical steel sheet used for a core and a shield constituting a direct ignition.
[0002]
[Prior art]
In recent years, there has been a demand for improved efficiency of various electric devices from the viewpoint of energy saving. In particular, various attempts have been made for automotive electrical components due to the demand for carbon dioxide reduction. One of them is a so-called direct ignition in which a high-voltage current generating part of an ignition device for an internal combustion engine is installed in the vicinity of a plug.
[0003]
Conventionally, the ignition uses a generator attached to the engine shaft, boosts the current with a high-voltage current generator, and then supplies the high-voltage current to each plug. However, with direct ignition, the high-voltage current generator is installed. By installing it immediately before the plug, the energization distance of the high-voltage current is shortened to save energy.
[0004]
Therefore, the high-voltage current generator is required to be extremely small compared with the conventional one, while the voltage conversion, that is, the magnetic characteristics as a transformer is also required to have the same function as the conventional one. As a material, a grain-oriented electrical steel sheet having excellent magnetic properties is optimal. In addition, the magnetic field is necessary because the high-voltage current generator generates a strong magnetic field line according to the instantaneously generated high voltage, and a directional electrical steel sheet having a high magnetic permeability is optimal for the magnetic shield.
[0005]
Therefore, grain-oriented electrical steel sheets are often used in direct ignition cores, but need to be processed into various shapes from the viewpoint of space efficiency inside the engine. For example, in a so-called pencil type of an open magnetic path type, a directional electromagnetic steel sheet is used for a magnetic shield, but a special processing such as processing in a cylindrical shape in a direction perpendicular to the rolling direction is performed.
[0006]
Usually, a forsterite layer called a primary coating and a mixed layer mainly composed of phosphate, chromate and silica called a secondary coating are formed on the surface of the grain-oriented electrical steel sheet. These coating layers require insulation to prevent leakage current when laminating steel sheets and improve the magnetic properties of the iron core. In addition to insulation, there are various types such as corrosion resistance, slipperiness and adhesion. Film properties are required.
[0007]
The forsterite layer is formed at the time of final annealing by rolling a grain-oriented electrical steel sheet to a predetermined thickness and decarburizing and annealing, and then applying an annealing separator mainly composed of MgO to the surface. This coating layer is effective as an insulating coating and as an underlayer for the secondary coating.
[0008]
When film properties such as excellent insulation and corrosion resistance are required, a secondary film layer is formed. Japanese Patent Publication No. 53-28375 discloses a steel sheet by applying a phosphate / chromate / colloidal silica-based insulating film having a specific composition on a forsterite film formed on the surface of the steel sheet after finish annealing and drying. Discloses a method for improving the magnetic properties of a grain-oriented electrical steel sheet by applying tension thereto.
[0009]
[Problems to be solved by the invention]
However, in transformers in which grain-oriented electrical steel sheets are normally used, bending is generally performed in the rolling direction like a wound iron core, and bending in the direction perpendicular to the rolling direction is not conventionally performed. There was a problem that the adhesion of the film deteriorated and peeling occurred. When the coating is peeled off, the insulating properties are lowered, and problems such as adhesion to the processing press occur, resulting in a decrease in productivity.
[0010]
As a technique for improving the adhesiveness of the insulating coating of the grain-oriented electrical steel sheet, for example, Japanese Patent Laid-Open No. 01-198429 discloses a technique for attaching fine wrinkles on the steel sheet surface linearly or on a broken line before or after decarburization annealing. Has been. JP-A-62-133021 discloses a technique for forming fine irregularities on the surface of a steel plate before decarburization annealing and forming oxides by decarburization annealing or finish annealing.
[0011]
As a technique for improving the adhesion of the secondary coating, JP-A-5-279864 includes phosphoric acid or phosphate and chromic anhydride or chromate and colloidal silica as the first coating. The solution is baked and dried at 300 to 600 ° C. for 30 seconds or more, and further, the solution is baked and dried at 700 to 950 ° C. for 30 seconds or more after the second time, thereby maintaining good adhesion and reducing the coating amount. A method of increasing is disclosed. By the method disclosed in JP-A Hei 5-279864, the conventional insulating coating amount was at most 5 g / m 2 are limits becomes possible 6-8 g / m 2 things thick coating, the adhesion is deteriorated There is no significant improvement in tension.
[0012]
However, the technologies disclosed in the above publications all assume the use of ordinary grain-oriented electrical steel sheets such as winding transformers, and have direct adhesion in the direction perpendicular to the rolling direction, such as direct ignition cores and shields. It does not specify any means of solution for the necessary cases.
[0013]
In addition, as a technique for improving the punchability and corrosion resistance of an electromagnetic steel sheet, Japanese Patent Publication No. 53-44892 forms a thin polyethylene film having a surface of 0.1 to 10 mg / dm 2 on an electric iron plate with an oxide film or a chemical conversion film. Therefore, a technique related to an electric iron plate with an organic coating excellent in punchability and corrosion resistance is disclosed.
[0014]
Further, JP-A-58-103107 discloses that a phosphate-based treatment liquid is applied as an undercoat on the surface of a magnetic steel sheet so that the dry film thickness is 0.3 to 1.0 μm, and this is baked to be non-coated. After producing the crystalline film, one or two or more water-soluble resins of polyester, epoxy ester and acrylic resin are applied on this to a dry film thickness of 3 to 12 μm, and baked. A technique characterized by forming a film having excellent punchability, electrical insulation, and corrosion resistance, particularly water resistance, on the surface is disclosed.
[0015]
Japanese Patent Laid-Open No. 62-14405 discloses a cutting having a two-layer coating in which a coating mainly composed of 100 to 500 mg / m 3 of an acrylic organic resin is formed on the surface of a grain-oriented electrical steel sheet having a forsterite coating. 100-500 mg / m 3 acrylic organic resin on the surface of a directional electrical steel sheet for wound iron cores with excellent heat resistance, slipperiness, and strain relief annealing and a directional electrical steel sheet having an inorganic insulating coating on the forsterite coating A technique for a directional electrical steel sheet for a wound iron core having a two-layer coating film in which a coating film mainly composed of bismuth is formed and excellent in cutting property, slipping property, and strain relief annealing is disclosed.
[0016]
However, in each of the above publications, there is no disclosure or suggestion about the film adhesion in the direction perpendicular to the rolling direction as used for the core or shield of the direct ignition, and the problems solved in each publication The punching property, electrical insulation property, corrosion resistance, water resistance, cutting property, slipping property, strain relief annealing property and adhesion in the direction perpendicular to the rolling direction are not overlapping.
[0017]
The present invention is the result of diligent examination on the bending adhesion in the direction perpendicular to the rolling direction of the grain-oriented electrical steel sheet having a forsterite layer on the surface or the grain-oriented electrical steel sheet having a phosphate-based insulating coating on the forsterite layer. By limiting the Si concentration within a specific range and limiting the yield stress in the direction perpendicular to the rolling direction, it was found that the bending adhesion in the direction perpendicular to the rolling direction can be greatly improved. It is intended to provide a grain-oriented electrical steel sheet used for a core and a shield.
[0018]
[Means for Solving the Problems]
That is, the gist of the present invention is as follows.
(1) A grain-oriented electrical steel sheet having a forsterite layer on which a phosphate insulating film is formed, and containing 3.0 to 3.5% by weight of Si, yielding in a direction perpendicular to the rolling direction. A grain- oriented electrical steel sheet for direct ignition , wherein the stress is 362 to 370 N / mm 2 .
(2) Yield stress in the rolling direction is 350 N / mm 2 (1) above the direct ignition for oriented electrical steel sheet, wherein a or less.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
The present invention is described in detail below.
As the phosphate-based insulating coating used in the present invention, the coating composition disclosed in the above Japanese Patent Publication No. 53-28375 is preferable, and one or two of aluminum phosphate, magnesium phosphate, and calcium phosphate are used. A material composed mainly of the above-described phosphate and appropriately added colloidal silica and chromate can be used.
[0020]
When such a phosphate-based insulating coating is formed on the surface of a grain-oriented electrical steel sheet, it is preferable to prepare and apply a predetermined treatment liquid to the steel sheet with a roll coater and dry baking. Although it does not specifically limit about the liquid composition of a process liquid, From the characteristic of an insulating film and workability | operativity at the time of application | coating, phosphate: 3-24 weight%, chromate: 0.2-4.5 weight%, Colloidal silica: An aqueous solution or slurry mainly containing 4 to 16% by weight is preferable. In addition, there is no problem in adding a surfactant, a vitrifying agent and the like to the aqueous solution for improving the film properties.
[0021]
The coating amount of phosphate-based insulating coatings, often in the range of 0.5 to 5 g / m 2, and more optimally good 1 to 3 g / m 2. By forming the phosphate insulating coating, the insulation is further improved and the surface roughness can be controlled, and the slipperiness of the steel sheet surface during processing can be controlled, which is necessary.
[0022]
In the present invention, the Si concentration needs to be in the range of 3.0 to 3.5%. If the Si concentration is less than 3.0, the required direct ignition core magnetic properties cannot be obtained. If the Si concentration exceeds 3.5%, the forsterite surface or This is because dissociation with the surface of the phosphate insulating coating occurs and an improvement effect cannot be obtained. A more preferable Si concentration is in the range of 3.1 to 3.3%.
[0023]
As the yield stress used in the present invention, the yield stress in the direction perpendicular to the rolling direction is 362. ~ 370 N / mm 2 It is necessary to. Yield stress in the direction perpendicular to the rolling direction is 362 N / mm 2 If it is above, as shown in Table 1 below, the film adhesion is excellent, while 370 N / mm 2 This is because if the thickness is too high, dissociation from the forsterite surface or the phosphate insulating coating surface occurs during bending, and an improvement effect cannot be obtained. More preferably, the yield stress in the rolling direction is 350 N / mm 2. The following is desirable. 350 N / mm 2 If the thickness is too high, the balance between rolling and the yield stress in the perpendicular direction will be lost, and dissociation from the forsterite surface and the phosphate insulating coating surface will occur during bending, and an improvement effect will not be obtained.
Factors that change these yield stresses include secondary recrystallized grain size, secondary recrystallized grain shape (rolling direction, length ratio perpendicular to rolling direction, etc.), plate thickness, alloy elements such as Si, etc. It is done.
[0024]
Usually, it is evaluated at 20 mmφ in a bending test such as a transformer in which grain oriented electrical steel sheets are used. However, in the case of direct ignition cores and shields, not only bending in the direction perpendicular to the rolling direction, but also a more stringent evaluation at 15 mmφ is necessary from the viewpoint of miniaturization. Even if it is carried out, sufficient adhesion can be secured. Therefore, it is necessary that the forsterite layer does not peel even at 15 mmφ in the bending adhesion in the direction perpendicular to the rolling direction of the coating. This is because if the forsterite layer peels off at 15 mmφ, it is difficult to reduce the size of the direct ignition.
[0025]
Although the detailed mechanism of the present invention is not clear, when a directional electrical steel sheet is bent in a direction perpendicular to the rolling direction, the steel sheet is likely to buckle along the rolling groove on the steel sheet surface, so that very fine buckling is caused. Occurs and forsterite is easily destroyed. However, by limiting the yield stress in the direction perpendicular to the rolling direction and limiting the Si concentration as in the present invention, buckling at the interface between the forsterite and the ground iron is less likely to occur. It is estimated that peeling is prevented.
[0026]
【Example】
The final cold-rolled sheet that has undergone various components and processes is subjected to a water-washing treatment on the surface of a 0.23 mm grain-oriented electrical steel sheet that has been annealed by applying an annealing separator mainly composed of MgO after decarburization annealing. After removing the excess MgO, a treatment liquid mainly composed of 50% aluminum phosphate: 70 g, 20% colloidal silica: 120 g, and chromic acid: 6 g was applied and baked at 850 ° C. for 70 seconds. The coating amount at this time was 3.5 g / m 2 .
[0027]
Table 1 shows the Si concentration, the rolling direction, the yield stress in the direction perpendicular to the rolling direction, and the film adhesion at that time. Further, the magnetic characteristics of the direct ignition core made of this material were evaluated.
[0028]
As is apparent from Table 1, according to this example, the effect of greatly improving the bending adhesion in the direction perpendicular to the rolling direction is obtained.
[0029]
Figure 0004197389
a): A bending adhesion test was performed as an adhesion test. First, specimens were collected in a direction perpendicular to the rolling direction, bent 180 degrees while pressing the specimen against a 15 mm diameter round bar, and the peeling state of the coating at the bent part was observed. ◎, ○, Δ, ×, XX Of 5
A stage evaluation was made. ◎: no peeling, ○: slight peeling, △
Indicates that there is mild peeling, × indicates that the peeling is severe, and xx indicates that the entire surface is peeled.
b): Direction perpendicular to the rolling direction
【The invention's effect】
According to the present invention, it is possible to greatly improve the bending adhesiveness in the direction perpendicular to the rolling direction that is optimal for the outer cylinder core of the direct ignition.

Claims (2)

フォルステライト層を有し、その上層にりん酸塩系絶縁皮膜を形成した方向性電磁鋼板において、重量でSiを3.0〜3.5%含有し、圧延方向と直角方向の降伏応力が362〜370N/mm であることを特徴とするダイレクトイグニッション方向性電磁鋼板。In a grain oriented electrical steel sheet having a forsterite layer and having a phosphate insulating film formed thereon, Si is contained by 3.0 to 3.5% by weight, and the yield stress in the direction perpendicular to the rolling direction is 362. oriented electrical steel sheet for direct ignition, which is a ~ 370N / mm 2. 圧延方向の降伏応力が350N/mm 以下であることを特徴とする請求項1記載のダイレクトイグニッション方向性電磁鋼板。Yield stress in the rolling direction is 350 N / mm 2 The grain-oriented electrical steel sheet for direct ignition according to claim 1, wherein:
JP2000205733A 2000-07-06 2000-07-06 Directional electrical steel sheet for direct ignition Expired - Fee Related JP4197389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000205733A JP4197389B2 (en) 2000-07-06 2000-07-06 Directional electrical steel sheet for direct ignition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000205733A JP4197389B2 (en) 2000-07-06 2000-07-06 Directional electrical steel sheet for direct ignition

Publications (2)

Publication Number Publication Date
JP2002020846A JP2002020846A (en) 2002-01-23
JP4197389B2 true JP4197389B2 (en) 2008-12-17

Family

ID=18702770

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000205733A Expired - Fee Related JP4197389B2 (en) 2000-07-06 2000-07-06 Directional electrical steel sheet for direct ignition

Country Status (1)

Country Link
JP (1) JP4197389B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434644B2 (en) * 2010-02-08 2014-03-05 Jfeスチール株式会社 Method for producing grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
JP2002020846A (en) 2002-01-23

Similar Documents

Publication Publication Date Title
KR101263139B1 (en) Non-oriented electromagnetic steel sheet and process for production thereof
JP3176933B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent adhesion of insulating coating
US4875947A (en) Method for producing grain-oriented electrical steel sheet having metallic luster and excellent punching property
EP2799566A1 (en) Grain-oriented electrical steel sheet and method for improving iron loss properties thereof
WO2020149321A1 (en) Method for manufacturing grain-oriented electrical steel sheet
WO2020149351A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JPH05279864A (en) Formation of insulated film for grain oriented silicon steel sheet
JP4197389B2 (en) Directional electrical steel sheet for direct ignition
WO2020149337A1 (en) Method for manufacturing grain-oriented electrical steel sheet
JPH08134542A (en) Production of grain oriented silicon steel sheet having excellent blanking property
JP4184578B2 (en) Method for producing grain-oriented electrical steel sheet for direct ignition
JP2002060957A (en) Grain orented silicon steel sheet suitable for direct ignition
JP3979004B2 (en) Method for forming insulating coating on grain-oriented electrical steel sheet
WO2019013354A1 (en) Oriented electromagnetic steel plate
JP2683036B2 (en) Annealing agent
EP3913107B1 (en) Grain-oriented electrical steel sheet and method for manufacturing same
JP3280279B2 (en) Ultra-low iron loss grain-oriented electrical steel sheet
JP2703604B2 (en) Manufacturing method of grain-oriented silicon steel sheet with good magnetic properties
JP4258202B2 (en) Oriented electrical steel sheet having no forsterite coating and method for producing the same
JP2005139481A (en) Method for manufacturing grain-oriented silicon steel sheet having excellent adhesiveness of tension impartable insulation film
RU2776385C1 (en) Anisotropic electrical steel sheet and its production method
RU2776246C1 (en) Anisotropic electrical steel sheet and its production method
JP2002038279A (en) Grain-oriented magnetic steel sheet superior in bend adhesion to long transverse direction and suitable for direct ignition
JP2680529B2 (en) Annealing Separator for Unidirectional Silicon Steel Sheet
JP4081230B2 (en) Electrical steel sheet with excellent magnetic properties suitable for mold cores

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041217

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080814

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080924

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4197389

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees