JP4196991B2 - Method of piercing and rolling in the manufacture of seamless pipes - Google Patents

Method of piercing and rolling in the manufacture of seamless pipes Download PDF

Info

Publication number
JP4196991B2
JP4196991B2 JP2005506775A JP2005506775A JP4196991B2 JP 4196991 B2 JP4196991 B2 JP 4196991B2 JP 2005506775 A JP2005506775 A JP 2005506775A JP 2005506775 A JP2005506775 A JP 2005506775A JP 4196991 B2 JP4196991 B2 JP 4196991B2
Authority
JP
Japan
Prior art keywords
roll
piercing
diameter
rolling
expansion ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005506775A
Other languages
Japanese (ja)
Other versions
JPWO2004108310A1 (en
Inventor
千博 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Publication of JPWO2004108310A1 publication Critical patent/JPWO2004108310A1/en
Application granted granted Critical
Publication of JP4196991B2 publication Critical patent/JP4196991B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B19/00Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work
    • B21B19/02Tube-rolling by rollers arranged outside the work and having their axes not perpendicular to the axis of the work the axes of the rollers being arranged essentially diagonally to the axis of the work, e.g. "cross" tube-rolling ; Diescher mills, Stiefel disc piercers or Stiefel rotary piercers
    • B21B19/04Rolling basic material of solid, i.e. non-hollow, structure; Piercing, e.g. rotary piercing mills

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
  • Control Of Metal Rolling (AREA)

Description

本発明は、継目無管の製造工程の中のビレットの穿孔圧延方法に関する。特にビレットから高加工度で薄肉の素管(ホローピース)を製造することのできる穿孔圧延方法に関する。   The present invention relates to a method for piercing and rolling a billet in a manufacturing process of a seamless pipe. In particular, the present invention relates to a piercing-rolling method capable of producing a thin-walled raw tube (hollow piece) with high workability from a billet.

継目無管の製造方法として最も一般的に採用されている方法には、マンネスマン−プラグミル法およびマンネスマン−マンドレルミル法がある。これらの方法では、加熱炉で所定の温度に加熱した中実ビレットを穿孔圧延機で穿孔して中空棒状のホローピースとし、これをプラグミル、マンドレルミルなどの延伸圧延機によって主として肉厚を減じてホローシェルとする。次いで、サイザまたはストレッチレデューサなどの絞り圧延機で主として外径を減じて、所定の寸法の継目無管とする。本発明は、上記の工程の中の最初の穿孔圧延工程に関する。   The most commonly employed methods for producing seamless pipes include the Mannesmann-plug mill method and the Mannesmann-mandrel mill method. In these methods, a solid billet heated to a predetermined temperature in a heating furnace is pierced by a piercing and rolling machine to form a hollow rod-shaped hollow piece, which is mainly reduced in thickness by a rolling mill such as a plug mill and a mandrel mill to reduce the thickness of the hollow shell. And Next, the outer diameter is mainly reduced by a drawing mill such as a sizer or stretch reducer to obtain a seamless pipe having a predetermined size. The present invention relates to the first piercing and rolling step in the above steps.

まず、従来技術として、本発明者らが特許文献1および特許文献2で提案した発明について述べる。
特公平5−23842号公報 特公平8−4811号公報
First, the inventions proposed by the present inventors in Patent Document 1 and Patent Document 2 will be described as conventional techniques.
Japanese Patent Publication No. 5-23842 Japanese Patent Publication No. 8-4811

特許文献1の発明(以下「第1の先行発明」という)は、ビレットおよびホローピースが通過するパスラインを挟んで左右または上下に対設された両端支持のコーン型主ロールの傾斜角βと、この主ロールの交叉角γとを下記の式(1)〜式(3)の範囲に保持し、かつ中実ビレットの直径d0と穿孔圧延後のホローピースの外径dおよび肉厚tとが下記式(4)を満足するようにし、穿孔比を4.0以上、拡管比を1.15以上または「肉厚/外径」比を6.5以下とする継目無管の製造方法の発明である。 The invention of Patent Document 1 (hereinafter referred to as “first prior invention”) includes an inclination angle β of a cone-type main roll supported on both ends, which is opposed to left and right or up and down across a pass line through which a billet and a hollow piece pass, The crossing angle γ of the main roll is maintained in the range of the following formulas (1) to (3), and the diameter d 0 of the solid billet, the outer diameter d of the hollow piece after piercing and rolling, and the wall thickness t are It is an invention of a method for producing a seamless pipe that satisfies the following formula (4) and has a perforation ratio of 4.0 or more, a tube expansion ratio of 1.15 or more, or a “wall thickness / outer diameter” ratio of 6.5 or less.

上記の傾斜角βとは、ロールの軸芯線がパスラインの水平面または垂直面に対してなす角度である。また、交叉角γとは、ロールの軸芯線がパスラインの垂直面または水平面に対してなす角度である。
8°≦β≦20° ・・・(1)
5°≦γ≦35° ・・・(2)
15°≦β+γ≦50° ・・・(3)
1.5≦−Ψr/Ψθ≦4.5 ・・・(4)
但し、Ψr=ln(2t/d0
Ψθ=ln{2(d−t)/d0
The inclination angle β is an angle formed by the roll axis and the horizontal or vertical plane of the pass line. Further, the crossing angle γ is an angle formed by the roll axis line with respect to a vertical plane or a horizontal plane of the pass line.
8 ° ≦ β ≦ 20 ° (1)
5 ° ≦ γ ≦ 35 ° (2)
15 ° ≦ β + γ ≦ 50 ° (3)
1.5 ≦ −Ψ r / Ψ θ ≦ 4.5 (4)
However, Ψ r = ln (2t / d 0 )
Ψ θ = ln {2 (dt) / d 0 }

上記第1の先行発明の方法は、ロールの傾斜角βと交叉角γを適正な範囲に保持することによって、穿孔圧延工程、なかんずく高加工度の薄肉穿孔圧延工程で顕著に発生する回転鍛造効果と附加剪断変形を可能な限り抑制する方法である。そして、ステンレス鋼や高合金鋼の製管で発生する内面疵やラミネーション(肉厚中央部で発生する二枚割れ)を防止し、かつ、円周方向ひずみΨθと肉厚方向ひずみΨrの配分を適正化し、前記式(4)の関係を満足させることによって、管肉のフレアリングやピーリング、あるいは尻詰まりなどの操業上のトラブルを減少させることを特徴とする方法である。 In the method of the first prior invention, the roll forging effect that is noticeably generated in the piercing and rolling process, especially the thin piercing and rolling process of high workability, by maintaining the roll inclination angle β and the crossing angle γ within an appropriate range. And a method of suppressing the additional shear deformation as much as possible. In addition, it prevents internal flaws and lamination (double cracks that occur at the center of the wall thickness) that occur in stainless steel and high alloy steel pipes, and the circumferential strain Ψ θ and the thickness direction strain Ψ r By optimizing the distribution and satisfying the relationship of the above formula (4), operational troubles such as flare and peeling of the flesh or clogging of the bottom are reduced.

上記の第1の先行発明は、従来、ユジーン押出し製管法で製管せざるを得なかった難加工性材料の製管を、マンネスマン製管法で行うことを可能にした。それに加えて、高加工度の薄肉穿孔圧延を可能にしたので、後続する延伸圧延工程、絞り圧延工程での工程省略あるいは工程短縮が可能になった。従って、この発明は、継目無管の製造工程の合理化に大きく貢献する発明であった。   The above-mentioned first prior invention has made it possible to perform the pipe making of difficult-to-process materials, which has conventionally been forced to be piped by the Eugene extrusion pipe making process, by the Mannesmann pipe making method. In addition, since thin piercing and rolling with a high workability is possible, it is possible to omit or shorten processes in the subsequent drawing and drawing processes. Therefore, the present invention has greatly contributed to rationalization of the seamless pipe manufacturing process.

例えば、マンネスマン−プラグミル方式の工程で使用するマンネスマンピアサおよびロータリエロンゲータは、交叉穿孔圧延機1基に替わり、ダブルピアシングをシングルピアシングにすることが可能になった。マンネスマン−プラグミル方式とは、マンネスマンピアサ→ロータリエロンゲータ→プラグミル→リーラ→サイザの工程を経る方式である。   For example, Mannesmann piercers and rotary longatores used in the Mannesmann-plug mill process can replace single piercing and rolling mills with single piercing instead of double piercing. The Mannesmann-plug mill method is a method in which Mannesmann piercer → rotary longator → plug mill → reeler → sizer process.

また、マンネスマン−マンドレルミル方式では、マンネスマンピアサを交叉穿孔圧延機に置き替えることにより、マンドレルミルの少数スタンド化が可能となった。このマンネスマン−マンドレルミル方式とは、マンネスマンピアサ→マンドレルミル→ストレッチレデューサの工程を経る方式である。   In the Mannesmann-Mandrel mill system, the Mandrel Mill can be made into a small number of stands by replacing the Mannesmann Piercer with a cross-piercing and rolling mill. The Mannesmann-mandrel mill method is a method in which a process of Mannesmann piercer → mandrel mill → stretch reducer is performed.

さらに、マンネスマン−アッセルミル方式、即ち、マンネスマンピアサ→アッセルミル→ストレッチレデューサの工程を経る方式、の工程でも、交叉穿孔圧延機の導入が相継ぐこととなった。交叉穿孔圧延機によればプラグを替えるだけで単一サイズのビレットから多サイズのホローピースを製造する、いわゆる「サイズフリー圧延」が可能になるので、ビレットサイズの統合、段取り替え時間の短縮などの操業上の利点が大きい。   Furthermore, the introduction of the cross piercing rolling mill has been succeeded even in the process of Mannesmann-Assel mill system, that is, the process of Mannesmann piercer → Assel mill → stretch reducer. According to the cross piercing and rolling mill, so-called “size-free rolling” is possible, in which multi-size hollow pieces can be manufactured from a single-sized billet by simply changing the plug, so billet size integration, shortening of setup change time, etc. There are significant operational advantages.

特許文献2の発明(以下「第2の先行発明」という)は、更にコーン型主ロールの直径と中実ビレットの直径との関係を最適化することを目的としてなされた発明である。この発明では、回転鍛造効果を極力抑制し、かつ附加剪断変形をも極力抑制するために、コーン型主ロールのゴージ部直径(即ち、ロールゴージ径)Dgとビレット直径d0とを下記の式(a)を満足せしめることを特徴とする。
2.5≦Dg/d0≦4.5 ・・・(a)
The invention of Patent Document 2 (hereinafter referred to as “second prior invention”) is an invention made for the purpose of further optimizing the relationship between the diameter of the cone-type main roll and the diameter of the solid billet. In the present invention, rotary forging effect was minimized, and to be suppressed as much as possible redundant shear strain, cone-type main roll gorge portion diameter (i.e., roll gorge diameter) formula and D g and billet diameter d 0 of the following It is characterized by satisfying (a).
2.5 ≦ D g / d 0 ≦ 4.5 (a)

上記第2の先行発明では、ステンレス鋼、高合金鋼などの難加工性材料を内面疵やラミネーションを発生させることなく安定して穿孔するためには、ビレット径に対してロールゴージ径をできるだけ小さくすべきであるとしている。しかし、ロールゴージ径を小さくするには、ロール構造上、入側と出側のロールの軸径も小さくしなければならない。そうすると、ロール軸を支承するベアリングの強度が不足し、特にコーン型ロールの場合は入側のベアリングの疲労強度が不足して、耐久性が問題になる。従って、ロールゴージ径の過度な縮小は、実操業では推奨できない。   In the second prior invention, in order to stably perforate difficult-to-work materials such as stainless steel and high alloy steel without generating internal flaws or lamination, the roll gorge diameter is made as small as possible relative to the billet diameter. It should be. However, in order to reduce the roll gorge diameter, the shaft diameters of the entrance and exit rolls must be reduced due to the roll structure. If it does so, the intensity | strength of the bearing which supports a roll axis | shaft will be insufficient, especially in the case of a cone type roll, the fatigue strength of the bearing of an entrance side is insufficient, and durability becomes a problem. Therefore, excessive reduction of the roll gorge diameter cannot be recommended in actual operation.

本発明の目的は、ロールゴージ径をあまり小さくすることなしに回転鍛造効果を極力抑制し、かつ附加剪断変形をも極力抑制することのできる穿孔圧延方法の提供にある。   An object of the present invention is to provide a piercing-rolling method capable of suppressing the rotational forging effect as much as possible and suppressing the additional shear deformation as much as possible without reducing the roll gorge diameter so much.

本発明者は、上記の目的を達成すべく研究を重ね、下記の穿孔圧延方法の発明に到った。なお、以下の説明における符号の意味を図1に示した。   The present inventor has repeatedly studied to achieve the above-described object, and has arrived at the invention of the following piercing and rolling method. In addition, the meaning of the code | symbol in the following description was shown in FIG.

パスラインを挟んで左右または上下に対設された両端支持のコーン型主ロールの傾斜角βと交叉角γを下記の式(1)から式(3)までを満足する範囲に保持し、中実ビレットの外径d0と穿孔圧延後のホローピースの外径dおよび肉厚tとの関係が下記の式(4)を満たすようにし、さらに、主ロールの入口直径D1、出口直径D2、上記のd0、dおよびγが下記の(5)式を満たすようにすることを特徴とする継目無管製造における穿孔圧延方法。
8°≦β≦20° ・・・(1)
5°≦γ≦35° ・・・(2)
15°≦β+γ≦50° ・・・(3)
1.5≦−Ψr/Ψθ≦4.5 ・・・(4)
(d/d0)/(0.75+0.025γ)≦D2/D1 ・・・(5)
但し、式(4)において、Ψr=ln(2t/d0
Ψθ=ln{2(d−t)/d0
である。
Maintaining the inclination angle β and crossing angle γ of the cone-type main roll supported at both ends across the pass line in the range satisfying the following formulas (1) to (3) The relationship between the outer diameter d 0 of the actual billet and the outer diameter d and the wall thickness t of the hollow piece after piercing and rolling satisfies the following formula (4), and further, the inlet diameter D 1 and the outlet diameter D 2 of the main roll A piercing-rolling method in seamless pipe production, wherein the above d 0 , d and γ satisfy the following expression (5).
8 ° ≦ β ≦ 20 ° (1)
5 ° ≦ γ ≦ 35 ° (2)
15 ° ≦ β + γ ≦ 50 ° (3)
1.5 ≦ −Ψ r / Ψ θ ≦ 4.5 (4)
(D / d 0 ) / (0.75 + 0.025γ) ≦ D 2 / D 1 (5)
However, in Formula (4), Ψ r = ln (2t / d 0 )
Ψ θ = ln {2 (dt) / d 0 }
It is.

前記のとおり、傾斜角βとは、ロールの軸芯線がパスラインの水平面または垂直面に対してなす角度であり、交叉角γとは、ロールの軸芯線がパスラインの垂直面または水平面に対してなす角度である。   As described above, the inclination angle β is an angle formed by the roll axis center line with respect to the horizontal plane or vertical plane of the pass line, and the crossing angle γ is the roll axis axis line with respect to the vertical plane or horizontal plane of the pass line. It is the angle to be made.

上記の本発明方法においては、主ロールの入口直径D1、出口直径D2と上記のd0、dおよびγの関係が下記の(6)式を満足するのが望ましい。
2/D1≦(d/d0)/(1.00−0.027γ) ・・・(6)
また、上記本発明方法の効果は、回転鍛造効果および付加変形が顕著になる、穿孔圧延比が4.0以上、拡管比が1.15以上、またはホローピースの「肉厚/外径比」が6.5以下という穿孔圧延においても十分得られる。
In the above-described method of the present invention, it is desirable that the relationship between the inlet diameter D 1 and outlet diameter D 2 of the main roll and the above d 0 , d and γ satisfies the following expression (6).
D 2 / D 1 ≦ (d / d 0 ) / (1.00−0.027γ) (6)
Further, the effect of the above-described method of the present invention is that the rotary forging effect and additional deformation become remarkable, the piercing-rolling ratio is 4.0 or more, the tube expansion ratio is 1.15 or more, or the hollow piece “thickness / outer diameter ratio” is 6.5 or less. Sufficiently obtained in rolling.

本発明方法における傾斜角βおよび交叉角γの値の範囲は、前記の特許文献1および特許文献2の発明における範囲と同じである。これらの範囲は、回転鍛造効果を減殺し、附加剪断変形をできるだけ抑制する観点から決定された。   The ranges of the values of the inclination angle β and the crossing angle γ in the method of the present invention are the same as the ranges in the inventions of Patent Document 1 and Patent Document 2 described above. These ranges were determined from the viewpoint of reducing the rotary forging effect and suppressing the additional shear deformation as much as possible.

半径方向対数ひずみΨrと円周方向対数ひずみΨθの比、即ち「−Ψr/Ψθ」の範囲は、特許文献1の発明におけるそれと同じである。これは、穿孔圧延における圧下量を長手方向と円周方向に如何に配分するかという原理、原則から決められており、その原理、原則からはずれると、管肉のフレアリング(はみ出し現象)やピーリング、あるいは尻詰まりが発生し、穿孔圧延そのものが停止する。 The ratio of the logarithmic strain Ψ r in the radial direction and the logarithmic strain Ψ θ in the circumferential direction, that is, the range of “−Ψ r / Ψ θ ” is the same as that in the invention of Patent Document 1. This is determined from the principle and principle of how to distribute the amount of reduction in piercing and rolling in the longitudinal direction and circumferential direction. If the principle and principle are not met, flare ringing (peeling phenomenon) and peeling will occur. Or clogging occurs, and piercing and rolling itself stops.

本発明の大きな特徴は、ビレット径に対するロール形状が主として回転鍛造効果に大きな影響を及ぼすことに着目したことである。以下、この点について説明する。   A major feature of the present invention is that attention is paid to the fact that the roll shape with respect to the billet diameter largely affects the rotary forging effect. Hereinafter, this point will be described.

まず、コーン型ロールの、管材料と主ロールとの接触限界位置での入口直径D1と出口直径D2との比、即ち、拡径比「D2/D1」、ホローピースの外径dとビレット外径d0との比、即ち、管材料の拡管比「d/d0」および交叉角γの関係を、回転鍛造効果と附加剪断変形を抑制する観点から究明した。 First, the ratio of the inlet diameter D 1 and the outlet diameter D 2 of the cone type roll at the contact limit position between the pipe material and the main roll, that is, the expansion ratio “D 2 / D 1 ”, the outer diameter d of the hollow piece the ratio of the billet outside diameter d 0 and, i.e., the pipe expansion ratio "d / d 0" and relationships cross angle γ of the tubing was investigated from the viewpoint of suppressing the rotary forging effects and the redundant shear deformation.

実験に先立って、ロール形状を表す指標(指数)の選定を行った。そして、考えられる種々の指標が、果たして回転鍛造効果や附加剪断変形との関係を表す指標となり得るか否かを検討した。その結果、管材料の拡管比「d/d0」とコーン型ロールの拡径比「D2/D1」との比、即ち、(d/d0)/(D2/D1)をその指標とすることにした。 Prior to the experiment, an index (index) representing the roll shape was selected. Then, it was examined whether or not various possible indexes could be an index indicating the relationship with the rotary forging effect and the additive shear deformation. As a result, the ratio between the tube material expansion ratio “d / d 0 ” and the cone-type roll expansion ratio “D 2 / D 1 ”, that is, (d / d 0 ) / (D 2 / D 1 ) I decided to use it as an index.

図1に示すロールのゴージ位置を挟んで入側のバレル幅L1、即ち、管材料のロール噛み込み開始点からロールゴージまでの距離と出側のバレル幅L2とのバレル幅比「L2/L1」も指標と考えられるが、これは、回転鍛造効果および附加剪断変形には直接的には無関係であり、これの適正範囲は別の観点から決定した。なお、バレル幅には不必要な余長をつけるのが一般的であり、バレル幅比は、定義すること自体に難点がある。 Barrel width L 1 of the input side across the gorge position of the roll shown in FIG. 1, i.e., barrel width ratio of the barrel width L 2 of the distance and the exit side from the starting point biting roll tube material to the roll gorge "L 2 / L 1 ”is also considered as an index, but this is not directly related to the rotary forging effect and the applied shear deformation, and the appropriate range thereof was determined from another viewpoint. In general, an unnecessary extra length is added to the barrel width, and it is difficult to define the barrel width ratio itself.

一般に、ロール交叉角γが大きくなるほどロール拡径比「D2/D1」は大きくなり、より著しいコーン形状となる。しかし、上記出側のバレル幅L2が同一のときは、同一ロール交叉角であることを前提として比較すれば、管材料の拡管比「d/d0」が大きくなるほどロールの拡径比「D2/D1」は小さくならざるを得ず、「d/d0」を考慮して適正な「D2/D1」となるロール設計を行う必要があり、ロール設計の難しさはここにある。 In general, as the roll crossing angle γ increases, the roll expansion ratio “D 2 / D 1 ” increases, resulting in a more conical shape. However, when the barrel width L 2 on the outlet side is the same, if the comparison is made on the assumption that they have the same roll crossing angle, the larger the tube expansion ratio “d / d 0 ” of the tube material, the larger the roll expansion ratio “ D 2 / D 1 "is inevitably reduced, it is necessary to perform a made roll design" proper in consideration of the d / d 0 "" D 2 / D 1 ", the difficulty of the roll design here It is in.

ロール設計は、穿孔圧延時のプラグ前における回転鍛造効果を減殺し、プラグ穿孔圧延後の円周方向剪断ひずみγに代表される附加剪断変形を極力抑制する観点からなされなければならない。回転鍛造効果による管材料の脆化が、管の内面疵発生の原因であり、附加剪断変形が内面疵伝播の要因だからである。 The roll design must be made from the viewpoint of reducing the rotational forging effect before the plug during piercing rolling and suppressing the additional shear deformation represented by the circumferential shear strain γ after the plug piercing rolling as much as possible. This is because the embrittlement of the pipe material due to the rotary forging effect is the cause of the internal flaws of the pipe, and the additional shear deformation is the cause of the propagation of the internal flaws.

本発明者は、実験用交叉穿孔圧延機を用いて炭素鋼ビレットを供試材とし、ロール形状を変えて穿孔圧延の実験を行い、回転鍛造効果および附加剪断変形に及ぼすロール形状の影響を詳細に検討した。実験条件を表1および表2に示す。穿孔圧延後のホローピースの肉厚tは、「肉厚/外径」比、即ち、(t/d)×100が2.5〜3%となるように設定した。   The present inventor conducted an experiment of piercing and rolling using a carbon steel billet as a test material using an experimental cross piercing and rolling mill, changing the roll shape, and detailed the influence of the roll shape on the rotary forging effect and the additional shear deformation. It was examined. Experimental conditions are shown in Tables 1 and 2. The thickness t of the hollow piece after piercing and rolling was set so that the “thickness / outer diameter” ratio, that is, (t / d) × 100 was 2.5 to 3%.

Figure 0004196991
Figure 0004196991

Figure 0004196991
Figure 0004196991

回転鍛造効果に及ぼす拡径比「D2/D1」および拡管比「d/d0」の影響の一例を図2の(a)および(b)に示す。また、附加剪断変形に及ぼす拡径比「D2/D1」および拡管比「d/d0」の影響の一例を図3の(a)および(b)に示す。 An example of the influence of the expansion ratio “D 2 / D 1 ” and the expansion ratio “d / d 0 ” on the rotary forging effect is shown in FIGS. An example of the influence of the expansion ratio “D 2 / D 1 ” and the expansion ratio “d / d 0 ” on the applied shear deformation is shown in FIGS. 3 (a) and 3 (b).

回転鍛造効果に及ぼすロール形状の影響は、穿孔圧延の途中で主ロールおよびディスクロールを停止して「途中止め材」を作り、プラグの先端位置より軸方向に直角に直径方向(ガイドの方向)に平行部が25mm、厚みが3mmの板状の微小引張試験片を採取し、常温で引張試験を行い、絞り値(%)に及ぼすロール形状の影響を調べて評価した。なお、回転鍛造効果は、引張試験の伸び値(%)よりも絞り値(%)に鮮明に現れる。   The effect of the roll shape on the rotary forging effect is that the main roll and disk roll are stopped in the middle of piercing and rolling to create an "intermediate stop material", and the diameter direction (guide direction) perpendicular to the axial direction from the tip position of the plug A plate-like minute tensile test piece having a parallel part of 25 mm and a thickness of 3 mm was collected and subjected to a tensile test at room temperature, and the influence of the roll shape on the drawing value (%) was examined and evaluated. The rotary forging effect appears more clearly in the drawing value (%) than the elongation value (%) in the tensile test.

附加剪断変形としては円周方向剪断歪みγに着目し、その測定はピン埋め込み法によった。即ち、中実ビレットの直径に沿って軸芯に平行に複数本のピンを埋め込み、穿孔圧延後のホローピースを横断して円周方向剪断ひずみγを測定した。 As the additional shear deformation, attention was paid to the circumferential shear strain γ , and the measurement was performed by a pin embedding method. That is, a plurality of pins were embedded parallel to the axis along the diameter of the solid billet, and the circumferential shear strain γ was measured across the hollow piece after piercing and rolling.

図2から明らかなように、例えば、ロール交叉角γを固定して考えれば、拡管比「d/d0」が小さいほど、また拡径比「D2/D1」が大きいほど、絞り値を大きくすることができる。即ち、回転鍛造効果を減殺することができる。言い換えれば、母材の絞り値よりプラグ前の管材料の絞り値の方が大きくなる傾斜角βの範囲が広くなる。
また、図3から分かるように、拡管比が小さく、拡径比が大きいほど、円周方向剪断ひずみを小さくすることができる。即ち、附加剪断変形を抑制することができる。従って、拡管比を大きくした場合でも、拡径比が大きくなるようにロール交叉角度γを十分大きくして、ロール形状を適切にすれば、円周方向剪断変形が大きくなりすぎることはない。
As apparent from FIG. 2, for example, when the roll crossing angle γ is fixed, the aperture value decreases as the tube expansion ratio “d / d 0 ” decreases and as the diameter expansion ratio “D 2 / D 1 ” increases. Can be increased. That is, the rotary forging effect can be reduced. In other words, the range of the inclination angle β in which the aperture value of the tube material before plug is larger than the aperture value of the base material becomes wider.
Further, as can be seen from FIG. 3, the circumferential shear strain can be reduced as the tube expansion ratio is smaller and the diameter expansion ratio is larger. That is, additional shear deformation can be suppressed. Therefore, even when the pipe expansion ratio is increased, if the roll crossing angle γ is sufficiently increased so that the diameter expansion ratio is increased and the roll shape is made appropriate, the circumferential shear deformation does not become too large.

ところで、ロール形状が不適切な場合、即ち、拡管比に対してロール交叉角が小さい場合、拡管比を取るために拡径比が小さくなりすぎて、ロールの出口径D2がゴージ径Dgに接近し、管材離脱点での出側ロールの周速度の低下により、管材料を出側に引き出す作用が弱まる。これによって、ロールと管材料との間のスリップ現象が顕著になる。このスリップ現象はビレット径にも影響され、入側においてもスリップが大きくなり、回転鍛造回数の増加によって回転鍛造効果が現れはじめ、プラグ前の管材料が母材よりも脆化する傾斜角βの範囲が拡大する。回転鍛造回数とはビレットがロールに噛み込まれてからプラグ先端に到達するまでのビレットの回転数である。 Incidentally, if the roll shape is inappropriate, that is, when the roll cross angle is smaller than the pipe expansion ratio, the expansion ratio becomes too small to take the pipe expansion ratio, out of the roll diameter D 2 is gorge diameter D g The action of pulling out the pipe material to the outlet side is weakened due to the decrease in the peripheral speed of the outlet roll at the pipe material separation point. Thereby, the slip phenomenon between the roll and the pipe material becomes remarkable. This slip phenomenon is also affected by the billet diameter, the slip becomes larger on the entry side, the rotary forging effect begins to appear with the increase in the number of rotary forging, and the slope angle β at which the tube material before the plug becomes more brittle than the base metal The range expands. The number of rotation forgings is the number of rotations of the billet from when the billet is bitten into the roll until it reaches the plug tip.

勿論、附加剪断変形も大きく現れるようになる。その極端な場合は、ロールの出口径D2が入口径D1に接近する場合である。なお、附加剪断変形とは、円周方向剪断ひずみγ、表面捻れ剪断ひずみγθlおよび長手方向剪断ひずみγlrの総称である。 Of course, additional shear deformation also appears greatly. If the extreme is when the diameter D 2 out of the roll approaches the inlet diameter D 1. The additive shear deformation is a general term for circumferential shear strain γ , surface torsional shear strain γ θl, and longitudinal shear strain γ lr .

図4および図5に拡管比「d/d0」、ロールの拡径比「D2/D1」およびロール交叉角γの関係を示す。これらの図にはロール形状の良否判定の結果も示してある。即ち、○印はロール形状が適切であること、●印は不適切であることを示す。
ロール形状の適、不適は、回転鍛造効果で判定する必要がある。そこで、プラグ前の管材料の延性(絞り値)を母材(ビレット)の絞り値よりも大きくできるか否かを判定の基準とした。そして、傾斜角(β)を12°として穿孔圧延を行い、前記のように、プラグ前の管材横断面内から採取した平行部が25mm、厚みが3mmの板状微小引張り試験片を用いて引張り試験を行い、プラグ前の管材料の絞り値が母材の絞り値よりも大きくなっているか否かを調査した。大きくなっている場合が、前記の○印、そうでない場合が●印である。図4および図5から、適切なロール形状の条件は、下記のとおりである。
(5/6)+(1/3)(d/d0)≦(D2/D1
1+0.03γ≦(D2/D1
4 and 5 show the relationship between the tube expansion ratio “d / d 0 ”, the roll diameter expansion ratio “D 2 / D 1 ”, and the roll crossing angle γ. These figures also show the results of the roll shape quality determination. That is, a circle indicates that the roll shape is appropriate, and a circle indicates that it is inappropriate.
Whether the roll shape is appropriate or not needs to be determined by the rotary forging effect. Therefore, whether or not the ductility (drawing value) of the tube material before the plug can be made larger than the drawing value of the base material (billet) was used as a criterion for determination. Then, piercing and rolling was performed with an inclination angle (β) of 12 °, and as described above, a tensile test was performed using a plate-like micro-tensile test piece having a parallel part of 25 mm and a thickness of 3 mm taken from the cross section of the tube material before the plug. A test was conducted to investigate whether or not the aperture value of the tube material before the plug was larger than the aperture value of the base material. The case where it is large is the above-mentioned circle mark, and the case where it is not is the circle mark. From FIG. 4 and FIG. 5, the conditions for an appropriate roll shape are as follows.
(5/6) + (1/3) (d / d 0 ) ≦ (D 2 / D 1 )
1 + 0.03γ ≦ (D 2 / D 1 )

上記のように「D2/D1」をロール形状指数として採用すれば、グラフでは「D2/D1」、「d/d0」およびγの相関関係は明瞭になるが、3つの変数の関係を同時に数式化することが難しくなる。この問題を回避するため、本発明者はロール形状指数として管材料の拡管比「d/d0」とロールの拡径比「D2/D1」の比率、即ち「(d/d0)/(D2/D1)」を選定した。 If “D 2 / D 1 ” is adopted as the roll shape index as described above, the correlation between “D 2 / D 1 ”, “d / d 0 ” and γ becomes clear in the graph, but three variables It becomes difficult to formulate the relationship of In order to avoid this problem, the present inventor has calculated the ratio of the pipe material expansion ratio “d / d 0 ” and the roll diameter expansion ratio “D 2 / D 1 ” as the roll shape index, ie, “(d / d 0 )”. / (D 2 / D 1 ) ”was selected.

図6は、上記のロール形状指数「(d/d0)/(D2/D1)」、拡管比「d/d0」および交叉角γの関係を示す図である。縦軸に「(d/d0)/(D2/D1)」を、横軸にγをそれぞれとっても「d/d0」がパラメータとして残るが、ロール形状が適切となる条件は、一つの不等式で表すことができる。即ち、
(d/d0)/(D2/D1)≦0.75+0.025γ
であり、これより
(d/d0)/(0.75+0.025γ)≦(D2/D1) ・・・(5)
となる。
FIG. 6 is a diagram showing the relationship between the roll shape index “(d / d 0 ) / (D 2 / D 1 )”, the tube expansion ratio “d / d 0 ”, and the crossing angle γ. Even if “(d / d 0 ) / (D 2 / D 1 )” is plotted on the vertical axis and “γ” is plotted on the horizontal axis, “d / d 0 ” remains as a parameter. Can be represented by two inequalities. That is,
(D / d 0 ) / (D 2 / D 1 ) ≦ 0.75 + 0.025γ
, And the than this (d / d 0) / ( 0.75 + 0.025γ) ≦ (D 2 / D 1) ··· (5)
It becomes.

ここで、軸受の強度、寿命等の設備上の問題点を解消するため、入側ロール径をあまり小さくすることなく、最適ロール形状を得るために、ロールのゴージ径Dgをビレット径d0の4.5倍以上とすれば、
1.00−0.027γ≦(d/d0)/(D2/D1
これより、
2/D1≦(d/d0)/(1.00−0.027γ) ・・・(6)
となる。この式(6)と前記の式(5)から、
(d/d0)/(0.75+0.025γ)≦(D2/D1)≦(d/d0)/(1.00−0.027γ)・・・(7)
を満たすのが望ましいロール形状の条件となる。
Here, in order to overcome the strength of the bearing, the problems in equipment life, etc., without excessively reducing the entry side roll diameter, in order to obtain an optimum roll shape, the roll gorge diameter D g billet diameter d 0 If it is 4.5 times or more,
1.00−0.027γ ≦ (d / d 0 ) / (D 2 / D 1 )
Than this,
D 2 / D 1 ≦ (d / d 0) / (1.00-0.027γ) ··· (6)
It becomes. From this equation (6) and the above equation (5),
(d / d 0 ) / (0.75 + 0.025γ) ≦ (D 2 / D 1 ) ≦ (d / d 0 ) / (1.00−0.027γ) (7)
It is a desirable roll shape condition to satisfy.

表1、表2および図2から図6までのグラフにおいて(a)はロールのゴージ径Dg=400mmの場合であり、(b)はDg=500mmの場合である。従って、(a)と(b)の比較は、特許文献2に開示されている第2の先行発明の内容を論じることになる。なお、上記の不等式(式(7))の上限は、Dg=315mmとして表1、表2と同様の計算を行えば、容易に導かれる。 In Tables 1 and 2 and the graphs of FIGS. 2 to 6, (a) shows the case where the roll gorge diameter D g = 400 mm, and (b) shows the case where D g = 500 mm. Therefore, the comparison between (a) and (b) will discuss the content of the second prior invention disclosed in Patent Document 2. Note that the upper limit of the above inequality (formula (7)) can be easily derived by performing the same calculations as in Tables 1 and 2 with D g = 315 mm.

付言すれば、D1およびD2はコーン型主ロールの入口径および出口径であるが、管材料が主ロールの入口面で噛み込まれ、出口面でロールを離れる場合を前提としており、正確にはビレットがロールに噛み込まれた位置における主ロールの径がD1であり、ホローピースがロールを離れる位置における主ロール径がD2である。 In other words, D 1 and D 2 are the inlet diameter and outlet diameter of the cone-type main roll, but it is assumed that the pipe material is caught at the inlet face of the main roll and leaves the roll at the outlet face. the diameter of the main roll in position billet is bitten roll is the D 1, the main roll diameter at the position where hollow piece leaves the rolls is D 2.

最後にロールのバレル幅について述べる。バレル幅Lは図1のL1とL2の合計である。このバレル幅に必要以上の余長をつけることは、圧延機の全体構造を必要以上に大きくすることにつながる。従って、入側バレル幅L1は噛み込みの安定性を損なわない範囲で、出側バレル幅L2は仕上げのリーリング回数を考慮して決定すべきであり、バレル幅比「L2/L1」は下記の範囲に収めるのがよい。
1.0≦L2/L1≦2.0
Finally, the barrel width of the roll will be described. The barrel width L is the sum of L 1 and L 2 in FIG. Adding an extra length to the barrel width more than necessary leads to an unnecessarily large overall structure of the rolling mill. Therefore, the entry-side barrel width L 1 should be determined within the range that does not impair the biting stability, and the exit-side barrel width L 2 should be determined in consideration of the number of finishing reelings, and the barrel width ratio “L 2 / L 1 ”should be within the following range.
1.0 ≦ L 2 / L 1 ≦ 2.0

[実施例1]
18%Cr−8%Niのオーステナイト系ステンレス鋼の60mm径のビレットを供試材として、ガイドシューを使用して拡管比1.5の高加工度薄肉穿孔圧延を行った。ビレットの加熱温度は1250℃とした。なお、ステンレス鋼の熱間加工性は炭素鋼のそれに較べてはるかに劣悪である。
[Example 1]
Using a 60 mm diameter billet of 18% Cr-8% Ni austenitic stainless steel as a test material, high-workability thin-wall piercing rolling with a tube expansion ratio of 1.5 was performed using a guide shoe. The heating temperature of the billet was 1250 ° C. The hot workability of stainless steel is much worse than that of carbon steel.

1.ロールの条件
交叉角… γ=25°
ゴージ径…Dg=400mm
傾斜角… β=12°
入口径… D1=240mm
出口径… D2=550mm
ロール拡径比… D2/D1=2.29
入側バレル幅… L1=300mm
出側バレル幅… L2=460mm
バレル幅 … L1+L2=760mm
バレル幅比 … L2/L1=1.53
1. Roll conditions Crossing angle ... γ = 25 °
Gorge diameter ... D g = 400mm
Inclination angle ... β = 12 °
Inlet diameter ... D 1 = 240mm
Exit diameter ... D 2 = 550mm
Roll expansion ratio ... D 2 / D 1 = 2.29
Entry side barrel width ... L 1 = 300mm
Outer barrel width ... L 2 = 460mm
Barrel width: L 1 + L 2 = 760mm
Barrel width ratio ... L 2 / L 1 = 1.53

2.穿孔圧延条件
プラグ径… dp=80mm
ビレット径…d0=60mm
ホローシェル径… d=90mm
ホローシェル肉厚…t=2.7mm
拡管比… d/d0=1.50
穿孔圧延比… d0 2/4t(d−t)=3.82
「肉厚/外径」比… (t/d)×100=3.0%
ロール形状指数… (d/d0)/(D2/D1)=0.655
肉厚方向対数ひずみ…Ψr=ln(2t/d0)=ln0.09=−2.408
円周方向対数ひずみ…Ψθ=ln{2(d−t)/d0}=ln2.91=1.068
圧下配分比… −Ψr/Ψθ=2.255
2. Piercing rolling conditions plug diameter ... d p = 80 mm
Billet diameter ... d 0 = 60mm
Hollow shell diameter d = 90mm
Hollow shell thickness ... t = 2.7mm
Pipe expansion ratio ... d / d 0 = 1.50
Punch rolling ratio ... d 0 2 / 4t (dt) = 3.82
“Thickness / outer diameter” ratio (t / d) × 100 = 3.0%
Roll shape index (d / d 0 ) / (D 2 / D 1 ) = 0.655
Logarithmic strain in the thickness direction: Ψ r = ln (2t / d 0 ) = ln0.09 = −2.408
Logarithmic strain in the circumferential direction: Ψ θ = ln {2 (dt) / d 0 } = ln2.91 = 1.068
Reduction distribution ratio… −Ψ r / Ψ θ = 2.255

上記のとおり、円周方向と肉厚方向の圧下配分比、即ち、長手方向と円周方向の圧下配分比が適切であったために、フレアリングもピーリングも発生することなく穿孔圧延ができた。ロール形状も適正化されているので、難加工性の材料の高加工度超薄肉穿孔圧延であっても、内面疵やラミネーションの発生は見られなかった。   As described above, since the rolling distribution ratio in the circumferential direction and the wall thickness direction, that is, the rolling distribution ratio in the longitudinal direction and the circumferential direction was appropriate, piercing and rolling could be performed without causing flaring and peeling. Since the roll shape is also optimized, there was no occurrence of internal flaws or lamination even in the high workability ultra-thin wall piercing and rolling of difficult-to-work materials.

[実施例2]
高合金鋼の熱間加工性は、ステンレス鋼のそれよりもなお劣悪であり、穿孔圧延温度が1275℃を超えるとラミネーションを発生することが多い。そこで、この実施例では、25%Cr−35%Ni−3Moの高合金鋼の70mm径のビレットを供試材としてディスクロールを使用して1200℃の温度で拡管比2の高加工度薄肉穿孔圧延を行った。
[Example 2]
The hot workability of high alloy steel is still inferior to that of stainless steel, and lamination often occurs when the piercing and rolling temperature exceeds 1275 ° C. Therefore, in this example, a 70% diameter billet of high alloy steel of 25% Cr-35% Ni-3Mo was used as a test material, and a high rollability thin hole drilling with a tube expansion ratio of 2 at a temperature of 1200 ° C. Rolled.

1.ロールの条件
交叉角… γ=30°
傾斜角… β=12°
ゴージ径…Dg=500mm
入口径… D1=300mm
出口径… D2=670mm
ロール拡径比… D2/D1=2.23
入側バレル幅… L1=300mm
出側バレル幅… L2=460mm
バレル幅 … L1+L2=760mm
バレル幅比 … L2/L1=1.53
1. Roll conditions Crossing angle ... γ = 30 °
Inclination angle ... β = 12 °
Gorge diameter ... D g = 500mm
Inlet diameter ... D 1 = 300mm
Exit diameter ... D 2 = 670mm
Roll expansion ratio ... D 2 / D 1 = 2.23
Entry side barrel width ... L 1 = 300mm
Outer barrel width ... L 2 = 460mm
Barrel width: L 1 + L 2 = 760mm
Barrel width ratio ... L 2 / L 1 = 1.53

2.穿孔圧延条件
プラグ径… dp= 130mm
ビレット径…d0=70mm
ホローシェル径… d=140mm
ホローシェル肉厚…t=3.5mm
拡管比… d/d0=2.00
穿孔圧延比… d0 2/4t(d−t)=2.56
「肉厚/外径」比… (t/d)×100=2.5%
ロール形状指数… (d/d0)/(D2/D1)=0.897
肉厚方向対数ひずみ…Ψr=ln(2t/d0)=ln0.10=−2.303
円周方向対数ひずみ…Ψθ=ln{2(d−t)/d0}=ln3.90=1.361
圧下配分比… −Ψr/Ψθ=1.692
2. Piercing rolling conditions plug diameter ... d p = 130 mm
Billet diameter ... d 0 = 70 mm
Hollow shell diameter d = 140mm
Hollow shell thickness t = 3.5mm
Tube expansion ratio: d / d 0 = 2.00
Punch rolling ratio ... d 0 2 / 4t (dt) = 2.56
“Thickness / outer diameter” ratio (t / d) × 100 = 2.5%
Roll shape index (d / d 0 ) / (D 2 / D 1 ) = 0.897
Logarithmic strain in the thickness direction: Ψ r = ln (2t / d 0 ) = ln0.10 = −2.303
Logarithmic strain in the circumferential direction: Ψ θ = ln {2 (dt) / d 0 } = ln3.90 = 1.361
Reduction distribution ratio… −Ψ r / Ψ θ = 1.692

上記のとおり、円周方向と肉厚方向の圧下配分は適切であり、また、ロール形状も適正化されているので、熱間加工性の劣悪な高合金鋼の高加工度薄肉穿孔圧延であっても、何の問題もなく穿孔圧延できた。   As described above, the rolling distribution in the circumferential direction and the wall thickness direction is appropriate, and the roll shape is also optimized, so this is a high workability thin wall piercing and rolling of high alloy steel with poor hot workability. However, piercing and rolling was possible without any problems.

本発明の穿孔圧延方法では、管材料の拡管比とコーン型主ロールの拡径比の相対的関係を適正化している。従って、穿孔圧延過程における回転鍛造効果は編著に抑制され、ステンレス鋼、高合金鋼などの難加工性材料の高加工度薄肉穿孔圧延において発生しやすい内面疵やラミネーションをより確実に抑えることができる。本発明方法によれば、拡管比2.0までの拡管穿孔圧延が可能である。   In the piercing and rolling method of the present invention, the relative relationship between the tube material expansion ratio and the cone-type main roll expansion ratio is optimized. Therefore, the rotary forging effect in the piercing and rolling process is suppressed by editing, and it is possible to more reliably suppress internal flaws and lamination that are likely to occur in high-workability thin-wall piercing rolling of difficult-to-work materials such as stainless steel and high alloy steel. . According to the method of the present invention, pipe piercing and rolling up to a pipe expansion ratio of 2.0 is possible.

先に述べたとおり、本発明者は、回転鍛造効果を殺し、附加剪断変形を抑制する観点から高交叉角穿孔圧延法を提唱し、これまでにも幾つかの発明を行った。しかし、高交叉角化は、回転鍛造効果を殺し、附加剪断変形を抑制するための必要条件であるが、十分条件ではない。必要かつ十分な条件は、ロール形状の最適化であり、高交叉角化はロール形状最適化の必要条件なのである。   As described above, the present inventor has proposed a high cross angle piercing rolling method from the viewpoint of killing the rotary forging effect and suppressing the additive shear deformation, and has made several inventions so far. However, the high crossover angle is a necessary condition for killing the rotary forging effect and suppressing the additive shear deformation, but it is not a sufficient condition. The necessary and sufficient condition is the optimization of the roll shape, and the high crossing angle is a necessary condition for the optimization of the roll shape.

穿孔圧延の態様を示す図である。It is a figure which shows the aspect of piercing-rolling. 回転鍛造効果(微小引張試験の絞り値)に及ぼす拡径比(D2/D1)および拡管比(d/dp)の影響を示す図である。It is a diagram showing the effect of rotary forging effect expansion ratio on the (aperture of micro tensile test) (D 2 / D 1) and the pipe expansion ratio (d / d p). 附加剪断ひずみ(円周方向剪断ひずみ)に及ぼす拡径比(D2/D1)および拡管比(d/dp)の影響を示す図である。It is a diagram showing the effect of the redundant shear strain expansion ratio on the (circumferential shear strain) (D 2 / D 1) and the pipe expansion ratio (d / d p). 拡径比(D2/D1)、拡管比(d/dp)およびロール傾斜角(γ)の関係を示す図である。Expansion ratio (D 2 / D 1), is a diagram showing the relationship between the pipe expansion ratio (d / d p) and roll inclination angle (gamma). 拡径比(D2/D1)、拡管比(d/dp)およびロール交叉角(γ)の関係を示す図である。Expansion ratio (D 2 / D 1), is a diagram showing the relationship between the pipe expansion ratio (d / d p) and roll cross angle (gamma). ロール形状指数、即ち、(d/d0)/(D2/D1)とロール交叉角(γ)との関係を示す図である。Roll shape index, i.e., a diagram showing the relationship between (d / d 0) / ( D 2 / D 1) and the roll cross angle (gamma).

符号の説明Explanation of symbols

γ:ロール交叉角
1:ロール入口直径
2:ロール出口直径
g:ロールゴージ直径
1:ロールの入側バレル幅
2:ロールの出側バレル幅
0:ビレットの外径
d:ホローピースの外径
t:ホローピースの肉厚
γ: roll crossing angle D 1 : roll inlet diameter D 2 : roll outlet diameter D g : roll gorge diameter L 1 : roll inlet barrel width L 2 : roll outlet barrel width d 0 : billet outer diameter d: hollow piece Outside diameter t: Thickness of hollow piece

Claims (3)

パスラインを挟んで左右または上下に対設された両端支持のコーン型主ロールの傾斜角βと交叉角γを下記の式(1)から式(3)までを満足する範囲に保持し、中実ビレットの外径d0と穿孔圧延後のホローピースの外径dおよび肉厚tとの関係を下記の式(4)を満たすようにし、さらに、主ロールの入口直径D1、出口直径D2、上記のd0、dおよびγが下記の(5)式を満たすようにすることを特徴とする継目無管製造における穿孔圧延方法。
8°≦β≦20° ・・・(1)
5°≦γ≦35° ・・・(2)
15°≦β+γ≦50° ・・・(3)
1.5≦−Ψr/Ψθ≦4.5 ・・・(4)
(d/d0)/(0.75+0.025γ)≦D2/D1 ・・・(5)
但し、式(4)において、Ψr=ln(2t/d0
Ψθ=ln{2(d−t)/d0
である。
Maintaining the inclination angle β and crossing angle γ of the cone-type main roll supported at both ends across the pass line in the range satisfying the following formulas (1) to (3) The relationship between the outer diameter d 0 of the actual billet, the outer diameter d of the hollow piece after piercing and rolling, and the wall thickness t is set so as to satisfy the following formula (4). Further, the inlet diameter D 1 and the outlet diameter D 2 of the main roll A piercing-rolling method in seamless pipe production, wherein the above d 0 , d and γ satisfy the following expression (5).
8 ° ≦ β ≦ 20 ° (1)
5 ° ≦ γ ≦ 35 ° (2)
15 ° ≦ β + γ ≦ 50 ° (3)
1.5 ≦ −Ψ r / Ψ θ ≦ 4.5 (4)
(D / d 0 ) / (0.75 + 0.025γ) ≦ D 2 / D 1 (5)
However, in Formula (4), Ψ r = ln (2t / d 0 )
Ψ θ = ln {2 (dt) / d 0 }
It is.
主ロールの入口直径D1、出口直径D2と上記のd0、dおよびγの関係が下記の(6)式を満たすことを特徴とする請求項1に記載の穿孔圧延方法。
2/D1≦(d/d0)/(1.00−0.027γ) ・・・(6)
2. The piercing and rolling method according to claim 1, wherein the relationship between the inlet diameter D 1 and the outlet diameter D 2 of the main roll and the above d 0 , d, and γ satisfies the following expression (6).
D 2 / D 1 ≦ (d / d 0 ) / (1.00−0.027γ) (6)
穿孔圧延比を4.0以上、拡管比を1.15以上、またはホローピースの「肉厚/外径比」を6.5以下として実施することを特徴とする請求項1または請求項2に記載の穿孔圧延方法。  The piercing and rolling method according to claim 1 or 2, wherein the piercing and rolling ratio is 4.0 or more, the expansion ratio is 1.15 or more, or the "thickness / outer diameter ratio" of the hollow piece is 6.5 or less.
JP2005506775A 2003-06-06 2004-06-03 Method of piercing and rolling in the manufacture of seamless pipes Expired - Fee Related JP4196991B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003162416 2003-06-06
JP2003162416 2003-06-06
PCT/JP2004/007698 WO2004108310A1 (en) 2003-06-06 2004-06-03 Drilling/rolling method in manufacturing seamless tube

Publications (2)

Publication Number Publication Date
JPWO2004108310A1 JPWO2004108310A1 (en) 2006-07-20
JP4196991B2 true JP4196991B2 (en) 2008-12-17

Family

ID=33508663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005506775A Expired - Fee Related JP4196991B2 (en) 2003-06-06 2004-06-03 Method of piercing and rolling in the manufacture of seamless pipes

Country Status (6)

Country Link
EP (1) EP1649945B1 (en)
JP (1) JP4196991B2 (en)
CN (1) CN100509192C (en)
DE (1) DE602004031232D1 (en)
RU (1) RU2309810C2 (en)
WO (1) WO2004108310A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106102941A (en) * 2014-03-19 2016-11-09 新日铁住金株式会社 The manufacture method of seamless metal pipe

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1707280B1 (en) 2004-01-16 2016-08-31 Nippon Steel & Sumitomo Metal Corporation Method for producing seamless pipe
EA012898B1 (en) * 2006-08-14 2009-12-30 Сумитомо Метал Индастриз, Лтд. Method for producing seamless pipes
JP5003151B2 (en) * 2006-12-28 2012-08-15 住友金属工業株式会社 Manufacturing method of seamless steel pipe made of high Cr-high Ni base alloy steel
CN101708511B (en) * 2007-12-13 2011-09-28 攀钢集团四川长城特殊钢有限责任公司 Method for manufacturing pure titanium seamless tubes
JP5177261B2 (en) * 2011-08-01 2013-04-03 新日鐵住金株式会社 Controlled rolling method of seamless steel pipe with excellent strength and low temperature toughness
CN105170654B (en) * 2015-09-15 2019-04-16 鑫鹏源智能装备集团有限公司 The Multi-functional rolling for having the function of pierced billet one roll shape

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA919958A (en) * 1969-11-05 1973-01-30 Sumitomo Metal Industries, Ltd. Piercing rolling apparatus for producing rolled material free from surface torsion
JPS6059042B2 (en) * 1981-04-10 1985-12-23 住友金属工業株式会社 Manufacturing method of seamless steel pipe
JPS63238909A (en) * 1987-03-27 1988-10-05 Sumitomo Metal Ind Ltd Piercing method for seamless tube
DE3844802C2 (en) * 1987-03-27 1995-05-11 Sumitomo Metal Ind Method of piercing and manufacturing seamless tubes
JPH084811B2 (en) * 1987-05-29 1996-01-24 住友金属工業株式会社 Seamless pipe drilling method
JPS6431505A (en) * 1987-07-24 1989-02-01 Sumitomo Metal Ind Piercing method for seamless pipe
JP2996077B2 (en) * 1993-11-02 1999-12-27 住友金属工業株式会社 Piercing method of seamless metallic tube
CN1061569C (en) * 1995-01-10 2001-02-07 住友金属工业株式会社 Method and appts. for piercing seamless metal pipe
US5699690A (en) * 1995-06-19 1997-12-23 Sumitomo Metal Industries, Ltd. Method and apparatus for manufacturing hollow steel bars

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106102941A (en) * 2014-03-19 2016-11-09 新日铁住金株式会社 The manufacture method of seamless metal pipe
US10232418B2 (en) 2014-03-19 2019-03-19 Nippon Steel & Sumitomo Metal Corporation Method for producing seamless metal pipe

Also Published As

Publication number Publication date
DE602004031232D1 (en) 2011-03-10
RU2309810C2 (en) 2007-11-10
EP1649945B1 (en) 2011-01-26
RU2005141132A (en) 2006-06-27
WO2004108310A1 (en) 2004-12-16
EP1649945A4 (en) 2007-04-18
EP1649945A1 (en) 2006-04-26
CN100509192C (en) 2009-07-08
JPWO2004108310A1 (en) 2006-07-20
CN1795060A (en) 2006-06-28

Similar Documents

Publication Publication Date Title
JP4438960B2 (en) Seamless pipe manufacturing method
JP4155267B2 (en) Manufacturing method of seamless metal pipe
CN101605616B (en) Process for producing seamless steel pipe made of high-chromium high-nickel alloy steel
JP4359783B2 (en) Seamless steel pipe manufacturing method
JP4315155B2 (en) Seamless pipe manufacturing method
JP5273231B2 (en) Manufacturing method of seamless metal pipe
JP4196991B2 (en) Method of piercing and rolling in the manufacture of seamless pipes
JP4471134B2 (en) Manufacturing method for seamless pipes for automobile parts
JP3823762B2 (en) Seamless metal pipe manufacturing method
JP4371247B2 (en) Manufacturing method of high alloy seamless steel pipe
JP5858206B1 (en) Manufacturing method of seamless metal pipe
JP2013094819A (en) MANUFACTURING METHOD FOR SEAMLESS PIPE MADE FROM HIGH Cr-HIGH Ni BASED ALLOY
WO2013065554A1 (en) Seamless-metal-pipe manufacturing method
JP2012121045A (en) Method for manufacturing seamless pipe
JPH0729127B2 (en) Method for producing seamless austenitic stainless steel pipe
JP6241432B2 (en) Manufacturing method for seamless steel pipes that are difficult to process
JP7549212B2 (en) Manufacturing method of seamless metal pipe
JP3407704B2 (en) Manufacturing method of high carbon seamless steel pipe
JP6579166B2 (en) Method for rolling seamless steel pipe and method for producing seamless steel pipe
JP4375180B2 (en) Method for constant diameter rolling of pipes
JPH07308703A (en) Rolling method with elongator
JP2005177771A (en) Control method for thickness of end part of steel pipe
JP2004082174A (en) Method for manufacturing seamless steel tube
JP2007260685A (en) Piercer plug and piercing and rolling method
JPH06190408A (en) Device for manufacturing seamless steel tube and its manufacture

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4196991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees