JP4196587B2 - Water refrigerant evaporative natural circulation cooling system with water vapor compression refrigerator - Google Patents

Water refrigerant evaporative natural circulation cooling system with water vapor compression refrigerator Download PDF

Info

Publication number
JP4196587B2
JP4196587B2 JP2002129556A JP2002129556A JP4196587B2 JP 4196587 B2 JP4196587 B2 JP 4196587B2 JP 2002129556 A JP2002129556 A JP 2002129556A JP 2002129556 A JP2002129556 A JP 2002129556A JP 4196587 B2 JP4196587 B2 JP 4196587B2
Authority
JP
Japan
Prior art keywords
water
pipe
condenser
cooling
compression refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002129556A
Other languages
Japanese (ja)
Other versions
JP2003322423A (en
Inventor
賢 本郷
俊雄 大倉
泰洋 戸室
敏 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanken Setsubi Kogyo Co Ltd
Original Assignee
Sanken Setsubi Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanken Setsubi Kogyo Co Ltd filed Critical Sanken Setsubi Kogyo Co Ltd
Priority to JP2002129556A priority Critical patent/JP4196587B2/en
Publication of JP2003322423A publication Critical patent/JP2003322423A/en
Application granted granted Critical
Publication of JP4196587B2 publication Critical patent/JP4196587B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、例えば建物の空調に輻射パネル等の熱交換手段を用いて、水蒸気圧縮冷凍機からの冷水により輻射冷房し、当該水蒸気圧縮冷凍機を高効率で運転させて、冷媒である冷水を気化させることにより自然循環させる技術に関するものである。
【0002】
【従来の技術】
従来、この種の水蒸気圧縮冷凍機によるポンプ式循環冷房システムは、例えば、図3に示すような構成であった。これについて説明すれば、1は水蒸気圧縮冷凍機であって、蒸発器1a、圧縮機1b及び凝縮器1cを備えている。該蒸発器1aは往き管2及び帰り管3を備えており、該往き管2にはポンプ4を介在させ前記往き管2及び帰り管3内の循環冷水を流送し、建物等の冷房機能を果している。そして、蒸発器1aは補給水5を導入すると共に前記圧縮機1bの運転によって低圧に保持しつつ当該循環冷水の一部を蒸発させる。
該凝縮器1cは該圧縮機1bで加圧され高温になった水蒸気を導入し、これを外部に設置した冷却塔6からポンプ9を介して導いた冷却水7で冷却し凝縮する。図中、8は該凝縮器1cに於ける水蒸気及び水に含まれていた空気の一部を排出するための真空ポンプ、10は前記凝縮器1cからの冷却水を前記冷水塔6に流送するためのポンプである。
【0003】
また、他の従来の技術について説明すると、当該従来の技術は、空調する建物例えば屋外や室外等の高所に冷熱源として蓄熱槽が設けられ、各被空調室内あるいは被空調領域に室内機としての空調機が設置されている。そして、前記蓄熱槽と当該空調機との間は重力式ヒートパイプで接続されており、この重力式ヒートパイプはフロン等の冷媒を使用し、この冷媒の相変化と重力とを利用することにより被空調室内の空調機と冷熱源との間を冷媒が流動して冷熱移動を行う。
そして、当該従来の技術に於いては、冷房運転時に被空調室内の熱負荷を空調機内の熱交換器で冷媒が液相から気相に変化し、上記重力式ヒートパイプ内を上昇して冷熱源の蓄熱槽に至る。そして、気相の冷媒は、該蓄熱槽内で冷却されて凝縮し、液相の冷媒が重力により上記重力式ヒートパイプ内を下降して当該空調機へ戻る動作を有する。
【0004】
【発明が解決しようとする課題】
従来の技術は叙上の構成であるので、次の課題が存在した。
(1)前者によれば、冷房システム内にポンプ4等を備え、この働きにより循環冷水を往き管2及び帰り管3へ流送する技術であるので、ポンプ4自体及びポンプ4等の設置工数や設置費用はもとより、ポンプを駆動する制御スイッチや搬送動力又は電気エネルギーが必要とされ、冷房システムが大規模化し、冷房システム全体の設置工数や設備費用又はランニングコストが増大するという問題点があった。
(2)後者によれば、フロン等の冷媒を使用するので、漏れ現象の惧れやそれに基づく冷媒充填が必要となり、これが大気に放出されることとなれば成層圏に於いて、紫外線に分解され塩素原子を生成して連鎖反応によりオゾン層を破壊する可能性や地球の温暖化を促進するという弊害があった。
そして、当該従来の技術では、フロン等の冷媒を使用しているので、間接熱交換となり蒸発器で製造された冷水を直接利用することができず、冷凍機の効率が低下するという欠点があった。
【0005】
【課題を解決するための手段】
本発明は、建物の空調に熱交換手段を使用すると共に、この熱交換手段内に於いて冷水が気化放熱した後、気化した水蒸気を水蒸気管にて流送させることにより当該冷水を自然循環させること、及び、水蒸気圧縮冷凍機を高効率で運転させるシステムを提供することを目的としたものであって、次の構成、手段から成立するものである。
【0006】
請求項1記載の発明によれば、水蒸気を導く蒸発器、圧縮機、補給水を取り入れた凝縮器から構成された水蒸気圧縮冷凍機と、該水蒸気圧縮冷凍機の凝縮器に冷却水を導く冷却塔とでなる装置に於いて、建物の各階にボールタップ方式液面制御器及び熱交換手段を設置すると共に該建物の最下階から最上階で前記蒸発器に竪管でなる水蒸気管を前記凝縮器に冷水管をそれぞれ連結し、ボールタップ方式液面制御器内の液相を前記熱交換手段に及びボールタップ方式液面制御器内の気相を水蒸気管に繋がれたことを特徴とする水冷媒気化自然循環冷房システムである。
【0007】
請求項2記載の発明によれば、水蒸気を導く蒸発器、圧縮機、熱交換器を備えかつ補給水を取り入れた凝縮器から構成された水蒸気圧縮冷凍機と、該水蒸気圧縮冷凍機の凝縮器に冷却水を導く冷却塔とでなる装置に於いて、建物の各階にボールタップ方式液面制御器及び熱交換手段を設置すると共に該建物の最下階から最上階で前記蒸発器に竪管でなる水蒸気管を前記凝縮器に冷水管をそれぞれ連結し、ボールタップ方式液面制御器内の液相を前記熱交換手段に及びボールタップ方式液面制御器内の気相を水蒸気管に繋がれたことを特徴とする水冷媒気化自然循環冷房システムである。
【0008】
【発明の実施の形態】
以下、添付図面に基づき、本発明に係る水蒸気圧縮冷凍機による水冷媒気化自然循環冷房システムの実施の形態について詳細に説明する。
【0009】
【発明の実施の形態1】
図1は、本発明に係る水蒸気圧縮冷凍機による水冷媒気化自然循環冷房システムの実施の形態1の一例を示す構成配置図である。
9は水蒸気圧縮冷凍機であって、蒸発器9a、圧縮機9b及び凝縮器9cを備えている。該蒸発器9aは補給水10を取入れた冷水11a及び水蒸気11bを導くと共に、前記圧縮機9bの運転によって低圧に保持しつつ当該冷水11aの一部を蒸発させる。該圧縮機9bは当該蒸発器9aから導入された水蒸気を所定の条件で加圧する。前記凝縮器9cは前記圧縮機9bで加圧されかつ高温になった水蒸気を導入し、これを外部に設置した冷却塔12から導いた冷却水13で冷却し凝縮する。9dは真空ポンプであり該凝縮器9cに蓄積された水蒸気及び水に含まれていた空気の一部を排出する。
図中、13a、13bはそれぞれ冷却水ポンプであり、前記冷却塔12から凝縮器9cへ冷却水13を流送する。
【0010】
尚、前記補給水10は、海水、河川水、下水処理水、廃水処理水、工業用水または上水等各種の水が適用される。
【0011】
前記冷却塔12は、前記水蒸気圧縮冷凍機9の付帯設備であり、前記凝縮器9cから導かれた冷却水13を冷却水ポンプ13aで流送する。そして、該冷却塔12は冷却水13を冷却水ポンプ13bで前記凝縮器9cへ導入する。また、前記冷却塔12は前記凝縮器9cに於いて、水蒸気を凝縮することで温度上昇した冷却水13の熱を大気に放出する機能を有する。
【0012】
14は冷水管であって、その経路には冷水11aが前記蒸発器9aから流送され、建物の各階層に設置された冷水液面制御手段17及び熱交換手段15としての冷房用輻射パネルを介在させている。そして、冷水管14の一端は該冷水管14の上部に位置する前記蒸発器9aに連結され、その他端は水蒸気管16に連結されている。該熱交換手段15は熱交換コイルや汎用の熱交換器で構成してもよい。該水蒸気管16は前記冷水管14又は前記熱交換手段15と接続してあって、その上端は前記水蒸気管16の上部に位置する前記蒸発器9aに連結している。
前記冷水液面制御手段17は、例えばボールタップ方式液面制御器で構成されており、該ボールタップ方式液面制御器は、液相は前記熱交換手段15に繋がれ、気相は前記水蒸気管16に繋がれている。
【0013】
前記冷水管14は建物の最上階から最下階又は地階まで一連に垂下配管されており、前記冷水液面制御手段17及び熱交換手段15を介して前記水蒸気管16が建物の最下階から最上階まで竪管として立設配管されるものである。そして、該冷水液面制御手段17及び熱交換手段15も建物の各階に設置されてなる。18は複数又は単一で構成された絞り機構であって、前記熱交換手段15に備えており、また、水蒸気の水蒸気管16の流送量は調整弁等でなる該絞り機構18を動作させることにより行う。
尚、図中、19は冷水管14の最下部に設置したドレン弁であって、冷水管14内の冷水11aを一部放出する機能を有する。
【0014】
次に、本発明に係る水蒸気圧縮冷凍機による水冷媒自然循環冷房システムの実施の形態1の動作について説明する。
【0015】
前記水蒸気圧縮冷凍機9の圧縮機9bが運転すると、該蒸発器9aが冷水11aを冷水管14に流送させる。ここで、建物の各階の被空調室を冷房すべく熱交換手段15として輻射パネルを用いれば、蒸発器9aからの冷水11aの水温を例えば18℃程度とし、該冷水11aと凝縮器9cの冷却水13の水温差を小さくすることで水蒸気圧縮冷凍機9を高効率で運転することができる。試算によれば、該水蒸気圧縮冷凍機9の出口冷却水水温を34℃とすると、冷水11aの水温18℃から、その水蒸気圧縮冷凍機9の該単体の成績係数は8〜10程度となる。本発明のシステムでは、熱交換手段15としての冷房用輻射パネルに送る冷水11aは水蒸気圧縮冷凍機9の蒸発器9a内で冷却したものであり、該冷水11aが冷房に利用される。
【0016】
そして、該冷水11aが前記冷水管14内を流送し、該冷水11aが熱交換手段15としての冷房用輻射パネルに導入される際、前記冷水液面制御手段17により冷房用輻射パネル内の水位が調節されていることにより、冷房用輻射パネル内に導入された冷水が冷房用輻射パネル内で蒸発することで気化熱が当該冷水11aから奪われ、冷水11aが冷却されて輻射冷房が行われることとなる。
尚、前記冷水液面制御手段17に代えて各種の分配器を使用し、その取付位置を変えることにより水位の調節を行ってもよく、更に、制御弁や水圧調整機構を備えて当該冷房用輻射パネル内の水位を調整することができる。
【0017】
また、熱交換手段15としての冷房用輻射パネルまで重力により自然流下してきた冷水11aが輻射冷房され気化放熱して水蒸気となり、この水蒸気が自然上昇し、水蒸気管16を経由して水蒸気圧縮冷凍機9内の蒸発器9aへ戻ることとなり、前記冷水11aの自然循環作用の動作を行う。
【0018】
【発明の実施の形態2】
図2は、本発明に係る水蒸気圧縮冷凍機による水冷媒自然循環冷房システムの実施の形態2の一例を示す構成配置図である。
9は水蒸気圧縮冷凍機であって、蒸発器9a、圧縮機9b及び凝縮器9cを備えている。該蒸発器9aは補給水10を取入れた冷水11aを導くと共に、前記圧縮機9bの運転によって低圧に保持しつつ当該冷水11aの一部を蒸発させる。該圧縮機9bは当該蒸発器9aから導入された水蒸気を所定の条件で加圧する。前記凝縮器9cは前記圧縮機9bで加圧されかつ高温になった水蒸気を導入し、これを外部に設置した冷却塔12から導いた冷却水13で冷却し凝縮する。9dは真空ポンプであり該凝縮器9cに蓄積された水蒸気及び水に含まれていた空気の一部を排出する。
【0019】
ここに於いて、20は前記水蒸気圧縮冷凍機9と冷却塔12間に介置された熱交換器であって、熱交換作用をさせながらその冷却塔12からの冷却水ポンプ13dの循環流送に基づき冷却水13を冷却水ポンプ13cで凝縮器9cに流送する。
尚、前記補給水10は、海水、河川水、下水処理水、廃水処理水、工業用水または上水等各種の水が適用される。
【0020】
前記冷却塔12は、前記水蒸気圧縮冷凍機9の付帯設備であり、前記凝縮器9cから冷却水ポンプ13cで流送された冷却水13を前記熱交換器20を介して冷却水ポンプ13dにより循環冷却する。また、前記冷却塔12は前記凝縮器9cに於いて、水蒸気を凝縮することで温度上昇した冷却水13の熱を大気に放出する機能を有する。
【0021】
14は冷水管であって、その経路には冷水11aが前記蒸発器9aから流送され、建物の各階層に設置された冷水液面制御手段17及び熱交換手段15としての冷房用輻射パネルを介在させている。そして、冷水管14の一端は該冷水管14の上部に位置する前記蒸発器9aに連結され、その他端は水蒸気管16に連結されている。該熱交換手段15は熱交換コイルや汎用の熱交換器で構成してもよい。該水蒸気管16は前記冷水管14又は前記熱交換手段15と接続してあって、その上端は前記水蒸気管16の上部に位置する前記蒸発器9aの入力側に連結している。
【0022】
前記冷水管14は建物の最上階から最下階又は地階まで一連に垂下配管されており、前記冷水液面制御手段17及び熱交換手段15を介して前記水蒸気管16が建物の最下階から最上階まで竪管として立設配管されるものである。そして、該冷水液面制御手段17及び熱交換手段15も建物の各階に設置されてなる。18は複数又は単一で構成された絞り機構であって、前記熱交換手段15備えており、また、水蒸気の水蒸気管16の流送量は調整弁等でなる該絞り機構18を動作させることにより行う。
尚、本発明に係る実施の形態2の他の構成は前記本発明に係る実施の形態1と略同一であるので、その説明を省略する。
【0023】
本発明に係る水蒸気圧縮冷凍機による水冷媒気化自然循環冷房システムの実施の形態2の動作は、前記本発明による実施の形態1と略同一であるので、その相違点のみ説明し、他の説明は省略する。
【0024】
本発明に係る実施の形態2は、特に、本発明に係る実施の形態1の構成に熱交換器20を設置した実施の形態である。当該実施の形態2によれば、前記蒸発器9aから圧縮機9b、凝縮器9c及び蒸発器9aの閉回路が形成されており、前記水蒸気圧縮冷凍機9の蒸発器9aで蒸発した水蒸気を圧縮機9bを経由して前記凝縮器9cに流送する。そして、該凝縮器9cで凝縮した水を該蒸発器9aに流送する。
【0025】
本発明の実施の形態2によれば、前記凝縮器9cから前記真空ポンプ9dを介して水蒸気又は水の一定量が排出される。そこで、補給水10により蒸発器9aに補給する。この補給水10の中にはミネラル分が包含されており、前記真空ポンプ9dの動作により、本発明に係るシステム内のミネラル分が濃縮されることとなるが、本発明の実施の形態1のように、前記蒸発器9aで蒸発した水がすべて前記凝縮器9cから排出される構成に比較して、当該ミネラル分の濃縮速度が緩慢であり、冷水の水質が向上すると共に水質管理が容易となる動作をする。
【0026】
【発明の効果】
本発明に係る水蒸気圧縮冷凍機による水冷媒気化自然循環冷房システムは、叙上の構成、動作を有するので次の効果がある。
【0027】
請求項1記載の発明によれば、水蒸気を導く蒸発器、圧縮機、補給水を取り入れた凝縮器から構成された水蒸気圧縮冷凍機と、該水蒸気圧縮冷凍機の凝縮器に冷却水を導く冷却塔とでなる装置に於いて、建物の各階にボールタップ方式液面制御器及び熱交換手段を設置すると共に該建物の最下階から最上階で前記蒸発器に竪管でなる水蒸気管を前記凝縮器に冷水管をそれぞれ連結し、ボールタップ方式液面制御器内の液相を前記熱交換手段に及びボールタップ方式液面制御器内の気相を水蒸気管に繋がれたことを特徴とする水冷媒気化自然循環冷房システムを提供する。
このような構成としたので、水蒸気圧縮冷凍機を利用したうえで更に建物等の各階に於ける被空調室内を冷房する際、凝縮器からの冷水管の経路にボールタップ式液面制御器を介在させ、各階の水頭圧が熱交換手段に拘らず、容易に水位が安定して維持され、しかも、各々の熱交換手段の蒸発量に見合った量の冷水のみ補給することができると共に、約18℃程度の冷水により当該水蒸気圧縮冷凍機を高効率で運転可能とし、ポンプを使用することなく冷媒である冷水を水蒸気管に取入れることにより自然循環させる効果がある。また、本発明のシステムのように、冷媒水の自然循環方式によるシステムを構築するための設備費や設置スペースを大幅に削減して小規模化を実現し、更に、当該水蒸気圧縮冷凍機の夏季に於ける運転に際し、本システムの稼動に於けるランニングコストの低減を図れる効果がある。
【0028】
請求項2記載の発明によれば、水蒸気を導く蒸発器、圧縮機、熱交換器を備えかつ補給水を取り入れた凝縮器から構成された水蒸気圧縮冷凍機と、該水蒸気圧縮冷凍機の凝縮器に冷却水を導く冷却塔とでなる装置に於いて、建物の各階にボールタップ方式液面制御器及び熱交換手段を設置すると共に該建物の最下階から最上階で前記蒸発器に竪管でなる水蒸気管を前記凝縮器に冷水管をそれぞれ連結し、ボールタップ方式液面制御器内の液相を前記熱交換手段に及びボールタップ方式液面制御器内の気相を水蒸気管に繋がれたことを特徴とする水冷媒気化自然循環冷房システムを提供する。
このような構成としたので、前述の請求項1の効果に加えて、熱交換器を前記水蒸気圧縮冷凍機と前記冷却塔との間に介在させてあり、冷凍サイクルと負荷側の配管が密閉状態に構成され循環冷水の水質を高品質に保持できる効果がある。
【図面の簡単な説明】
【図1】本発明に係る水蒸気圧縮冷凍機による水冷媒気化自然循環冷房システムの実施の形態1の一例を示す構成配置図である。
【図2】本発明に係る水蒸気圧縮冷凍機による水冷媒気化自然循環冷房システムの実施の形態2の一例を示す構成配置図である。
【図3】従来の技術に於ける水蒸気圧縮冷凍機によるポンプ式循環冷房システムの構成配置図である。
【符号の説明】
9 水蒸気圧縮冷凍機
9a 蒸発器
9b 圧縮機
9c 凝縮器
9d 真空ポンプ
10 補給水
11a 冷水
11b 水蒸気
12 冷却塔
13 冷却水
13a 冷却水ポンプ
13b 冷却水ポンプ
13c 冷却水ポンプ
13d 冷却水ポンプ
14 冷水管
15 熱交換手段
16 水蒸気管
17 冷水液面制御手段
18 絞り機構
19 ドレン弁
20 熱交換器
[0001]
BACKGROUND OF THE INVENTION
The present invention uses, for example, a heat exchange means such as a radiant panel for air conditioning of a building, radiantly cools with cold water from a steam compression refrigeration machine, operates the steam compression refrigeration machine with high efficiency, and cools cold water as a refrigerant. It relates to the technology of natural circulation by vaporization.
[0002]
[Prior art]
Conventionally, a pump-type circulation cooling system using this type of steam compression refrigerator has a configuration as shown in FIG. 3, for example. To explain this, reference numeral 1 denotes a steam compression refrigerator, which includes an evaporator 1a, a compressor 1b, and a condenser 1c. The evaporator 1a is provided with a forward pipe 2 and a return pipe 3. A pump 4 is interposed in the forward pipe 2 to circulate the chilled water in the forward pipe 2 and the return pipe 3, thereby cooling a building or the like. Is fulfilling. The evaporator 1a introduces the makeup water 5 and evaporates a part of the circulating cold water while maintaining the low pressure by the operation of the compressor 1b.
The condenser 1c introduces water vapor that has been pressurized by the compressor 1b to a high temperature, and cools and condenses it with cooling water 7 introduced from a cooling tower 6 installed outside through a pump 9. In the figure, 8 is a vacuum pump for discharging a part of the air contained in the water vapor and water in the condenser 1c, and 10 is a flow of cooling water from the condenser 1c to the cold water tower 6. It is a pump to do.
[0003]
Further, to explain other conventional techniques, the conventional technique is provided with a heat storage tank as a cold heat source at a high place such as outdoors or outdoors, and is used as an indoor unit in each air-conditioned room or air-conditioned area. Air conditioners are installed. And the said thermal storage tank and the said air conditioner are connected by the gravity-type heat pipe, and this gravity-type heat pipe uses refrigerant | coolants, such as Freon, By utilizing the phase change and gravity of this refrigerant | coolant. The refrigerant flows between the air conditioner in the air-conditioned room and the cold heat source to move cold.
In the prior art, during the cooling operation, the heat load in the air-conditioned room is changed from the liquid phase to the gas phase by the heat exchanger in the air conditioner, and the refrigerant is raised in the gravity heat pipe to cool the heat. It reaches the source heat storage tank. The gas-phase refrigerant is cooled and condensed in the heat storage tank, and the liquid-phase refrigerant descends through the gravity heat pipe by gravity and returns to the air conditioner.
[0004]
[Problems to be solved by the invention]
Since the conventional technology has the above configuration, the following problems existed.
(1) According to the former, since the cooling system is equipped with a pump 4 and the like, and the circulating cold water is sent to the outgoing pipe 2 and the return pipe 3 by this function, the number of man-hours for installing the pump 4 and the pump 4 etc. As well as installation costs, control switches for driving the pump, transport power or electrical energy are required, and the cooling system becomes large-scale, which increases the installation man-hours, facility costs, and running costs of the entire cooling system. It was.
(2) According to the latter, since refrigerants such as chlorofluorocarbons are used, there is a possibility of leakage phenomenon and refrigerant filling based on them is required. If this is released to the atmosphere, it is decomposed into ultraviolet rays in the stratosphere. There was a harmful effect of generating chlorine atoms and destroying the ozone layer by a chain reaction and promoting global warming.
And since the conventional technology uses a refrigerant such as chlorofluorocarbon, indirect heat exchange occurs and the cold water produced by the evaporator cannot be used directly, and the efficiency of the refrigerator is reduced. It was.
[0005]
[Means for Solving the Problems]
The present invention uses heat exchanging means for air conditioning of a building, and after the chilled water is vaporized and radiated in the heat exchanging means, the vaporized water vapor is flowed through a steam pipe to naturally circulate the cold water. It is intended to provide a system for operating a steam compression refrigerator with high efficiency, and is composed of the following configurations and means.
[0006]
According to the first aspect of the present invention, a steam compression refrigerator composed of an evaporator that guides steam, a compressor, and a condenser that takes in makeup water, and cooling that guides cooling water to the condenser of the steam compression refrigerator In an apparatus consisting of a tower, a ball tap type liquid level controller and heat exchange means are installed on each floor of the building, and a steam pipe consisting of a vertical pipe is connected to the evaporator from the bottom floor to the top floor of the building. the cold water pipe is connected respectively to the vessel, the water coolant, characterized in that the the ball tap method liquid level controller in the liquid phase to said heat exchange means and the ball tap system liquid level controller in the gas phase were connected to the steam pipe It is a vaporization natural circulation cooling system.
[0007]
According to the invention described in claim 2, a steam compression refrigerator comprising an evaporator for introducing steam, a compressor, a heat exchanger and a condenser incorporating makeup water, and a condenser of the steam compression refrigerator In the apparatus comprising a cooling tower for introducing cooling water to the building, a ball tap type liquid level controller and a heat exchange means are installed on each floor of the building , and a vertical pipe is connected to the evaporator from the bottom floor to the top floor of the building. The water vapor pipe is connected to the condenser and the cold water pipe is connected, the liquid phase in the ball tap type liquid level controller is connected to the heat exchange means, and the gas phase in the ball tap type liquid level controller is connected to the water vapor pipe. It is a water refrigerant vaporization natural circulation cooling system characterized by the above.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a water refrigerant vaporization natural circulation cooling system using a water vapor compression refrigerator according to the present invention will be described in detail with reference to the accompanying drawings.
[0009]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1
FIG. 1 is a configuration layout diagram showing an example of Embodiment 1 of a water refrigerant vaporization natural circulation cooling system using a steam compression refrigerator according to the present invention.
A steam compression refrigerator 9 includes an evaporator 9a, a compressor 9b, and a condenser 9c. The evaporator 9a guides the cold water 11a and the water vapor 11b into which the makeup water 10 is taken, and evaporates a part of the cold water 11a while maintaining a low pressure by the operation of the compressor 9b. The compressor 9b pressurizes the water vapor introduced from the evaporator 9a under predetermined conditions. The condenser 9c introduces water vapor that has been pressurized by the compressor 9b and has reached a high temperature, and cools and condenses it with the cooling water 13 introduced from the cooling tower 12 installed outside. A vacuum pump 9d discharges a part of the air contained in the water vapor and water accumulated in the condenser 9c.
In the figure, reference numerals 13a and 13b denote cooling water pumps, respectively, which feed the cooling water 13 from the cooling tower 12 to the condenser 9c.
[0010]
The makeup water 10 may be various types of water such as seawater, river water, sewage treated water, wastewater treated water, industrial water or tap water.
[0011]
The cooling tower 12 is an incidental facility for the water vapor compression refrigerator 9, and the cooling water 13 guided from the condenser 9c is fed by a cooling water pump 13a. And the cooling tower 12 introduces the cooling water 13 into the condenser 9c by the cooling water pump 13b. Further, the cooling tower 12 has a function of releasing heat of the cooling water 13 whose temperature has been increased by condensing water vapor in the condenser 9c.
[0012]
Reference numeral 14 denotes a cold water pipe, in which a cold water 11a is flowed from the evaporator 9a, and a cooling water level control means 17 and a cooling radiation panel as a heat exchange means 15 installed at each level of the building are provided. Intervene. One end of the cold water pipe 14 is connected to the evaporator 9 a located above the cold water pipe 14, and the other end is connected to the water vapor pipe 16. The heat exchange means 15 may be constituted by a heat exchange coil or a general-purpose heat exchanger. The water vapor pipe 16 is connected to the cold water pipe 14 or the heat exchange means 15, and the upper end thereof is connected to the evaporator 9 a located above the water vapor pipe 16.
The cold water liquid level control means 17 is composed of, for example, a ball tap type liquid level controller, and the ball tap type liquid level controller is connected to the heat exchange means 15 in the liquid phase and the steam pipe 16 is in the gas phase. It is connected to.
[0013]
The cold water pipe 14 is continuously suspended from the top floor to the bottom floor or the basement of the building, and the steam pipe 16 is connected to the bottom floor of the building via the cold water liquid level control means 17 and the heat exchange means 15. It is erected as a vertical pipe up to the top floor. The cold water level control means 17 and the heat exchange means 15 are also installed on each floor of the building. Reference numeral 18 denotes a plurality or a single throttle mechanism provided in the heat exchanging means 15, and the flow rate of the water vapor steam pipe 16 is operated by the throttle mechanism 18 comprising a regulating valve or the like. By doing.
In the drawing, reference numeral 19 denotes a drain valve installed at the lowermost part of the cold water pipe 14 and has a function of partially discharging the cold water 11a in the cold water pipe 14.
[0014]
Next, operation | movement of Embodiment 1 of the water refrigerant natural circulation cooling system by the water vapor | steam compression refrigerator which concerns on this invention is demonstrated.
[0015]
When the compressor 9b of the steam compression refrigerator 9 is operated, the evaporator 9a causes the cold water 11a to flow to the cold water pipe 14. Here, if a radiant panel is used as the heat exchange means 15 to cool the air-conditioned rooms on each floor of the building, the water temperature of the cold water 11a from the evaporator 9a is set to about 18 ° C., for example, and the cold water 11a and the condenser 9c are cooled. By reducing the water temperature difference of the water 13, the steam compression refrigerator 9 can be operated with high efficiency. According to a trial calculation, when the outlet cooling water temperature of the steam compression refrigerator 9 is 34 ° C., the coefficient of performance of the single unit of the steam compression refrigerator 9 is about 8 to 10 from the water temperature 18 ° C. of the cold water 11a. In the system of the present invention, the cold water 11a sent to the cooling radiation panel as the heat exchange means 15 is cooled in the evaporator 9a of the steam compression refrigerator 9, and the cold water 11a is used for cooling.
[0016]
Then, when the cold water 11a flows through the cold water pipe 14 and the cold water 11a is introduced into the cooling radiation panel as the heat exchanging means 15, the cold water liquid level control means 17 causes the inside of the cooling radiation panel. By adjusting the water level, the cold water introduced into the cooling radiation panel evaporates in the cooling radiation panel, so that the heat of vaporization is taken away from the cold water 11a, and the cooling water 11a is cooled to perform the radiation cooling. Will be.
It should be noted that various distributors may be used in place of the cold water liquid level control means 17 and the water level may be adjusted by changing the mounting position thereof, and further provided with a control valve and a water pressure adjusting mechanism. The water level in the radiation panel can be adjusted.
[0017]
Further, the cold water 11a that has naturally flowed down by gravity to the cooling radiation panel as the heat exchange means 15 is radiantly cooled and vaporized and dissipated to become steam, and this steam naturally rises, and the steam compression refrigerator through the steam pipe 16 9 is returned to the evaporator 9a in the inside 9, and the natural circulation action of the cold water 11a is performed.
[0018]
Second Embodiment of the Invention
FIG. 2 is a structural layout diagram showing an example of a second embodiment of the water refrigerant natural circulation cooling system using the steam compression refrigerator according to the present invention.
A steam compression refrigerator 9 includes an evaporator 9a, a compressor 9b, and a condenser 9c. The evaporator 9a guides the cold water 11a containing the makeup water 10 and evaporates a part of the cold water 11a while maintaining a low pressure by the operation of the compressor 9b. The compressor 9b pressurizes the water vapor introduced from the evaporator 9a under predetermined conditions. The condenser 9c introduces water vapor that has been pressurized by the compressor 9b and has reached a high temperature, and cools and condenses it with the cooling water 13 introduced from the cooling tower 12 installed outside. A vacuum pump 9d discharges a part of the air contained in the water vapor and water accumulated in the condenser 9c.
[0019]
Here, reference numeral 20 denotes a heat exchanger interposed between the steam compression refrigerator 9 and the cooling tower 12, and circulates and flows the cooling water pump 13d from the cooling tower 12 while performing heat exchange. Based on the above, the cooling water 13 is sent to the condenser 9c by the cooling water pump 13c.
The makeup water 10 may be various types of water such as seawater, river water, sewage treated water, wastewater treated water, industrial water or tap water.
[0020]
The cooling tower 12 is incidental to the steam compression refrigerator 9 and circulates the cooling water 13 fed from the condenser 9c by the cooling water pump 13c by the cooling water pump 13d through the heat exchanger 20. Cooling. Further, the cooling tower 12 has a function of releasing heat of the cooling water 13 whose temperature has been increased by condensing water vapor in the condenser 9c.
[0021]
Reference numeral 14 denotes a cold water pipe, in which a cold water 11a is flowed from the evaporator 9a, and a cooling water level control means 17 and a cooling radiation panel as a heat exchange means 15 installed at each level of the building are provided. Intervene. One end of the cold water pipe 14 is connected to the evaporator 9 a located above the cold water pipe 14, and the other end is connected to the water vapor pipe 16. The heat exchange means 15 may be constituted by a heat exchange coil or a general-purpose heat exchanger. The steam pipe 16 is connected to the cold water pipe 14 or the heat exchanging means 15, and its upper end is connected to the input side of the evaporator 9 a located above the steam pipe 16.
[0022]
The cold water pipe 14 is continuously suspended from the top floor to the bottom floor or the basement of the building, and the steam pipe 16 is connected to the bottom floor of the building via the cold water liquid level control means 17 and the heat exchange means 15. It is erected as a vertical pipe up to the top floor. The cold water level control means 17 and the heat exchange means 15 are also installed on each floor of the building. Reference numeral 18 denotes a plurality of or a single throttle mechanism, which is provided with the heat exchanging means 15 and operates the throttle mechanism 18 comprising a regulating valve or the like for the flow rate of the steam pipe 16 for steam. To do.
In addition, since the other structure of Embodiment 2 which concerns on this invention is substantially the same as Embodiment 1 which concerns on the said this invention, the description is abbreviate | omitted.
[0023]
The operation of the second embodiment of the water refrigerant vaporization natural circulation cooling system using the steam compression refrigerator according to the present invention is substantially the same as that of the first embodiment of the present invention. Is omitted.
[0024]
The second embodiment according to the present invention is an embodiment in which the heat exchanger 20 is installed in the configuration of the first embodiment according to the present invention. According to the second embodiment, a closed circuit of the compressor 9b, the condenser 9c and the evaporator 9a is formed from the evaporator 9a, and the steam evaporated by the evaporator 9a of the steam compression refrigerator 9 is compressed. It is sent to the condenser 9c via the machine 9b. Then, the water condensed by the condenser 9c is sent to the evaporator 9a.
[0025]
According to Embodiment 2 of the present invention, a certain amount of water vapor or water is discharged from the condenser 9c through the vacuum pump 9d. Therefore, the evaporator 9a is replenished with the makeup water 10. The replenishing water 10 contains minerals, and the operation of the vacuum pump 9d concentrates the minerals in the system according to the present invention. As described above, compared to the configuration in which all the water evaporated in the evaporator 9a is discharged from the condenser 9c, the concentration rate of the mineral is slow, and the quality of the cold water is improved and the water quality is easily managed. The operation becomes.
[0026]
【The invention's effect】
The water refrigerant vaporization natural circulation cooling system using the steam compression refrigerator according to the present invention has the following effects because it has the above-described configuration and operation.
[0027]
According to the first aspect of the present invention, a steam compression refrigerator composed of an evaporator that guides steam, a compressor, and a condenser that takes in makeup water, and cooling that guides cooling water to the condenser of the steam compression refrigerator In an apparatus consisting of a tower, a ball tap type liquid level controller and heat exchange means are installed on each floor of the building, and a steam pipe consisting of a vertical pipe is connected to the evaporator from the bottom floor to the top floor of the building. the cold water pipe is connected respectively to the vessel, the water coolant, characterized in that the the ball tap method liquid level controller in the liquid phase to said heat exchange means and the ball tap system liquid level controller in the gas phase were connected to the steam pipe A vaporized natural circulation cooling system is provided.
With this configuration, when using a steam compression refrigerator and further cooling the air-conditioned room on each floor of the building, etc., a ball tap type liquid level controller is interposed in the path of the chilled water pipe from the condenser. In addition, the water head pressure of each floor is easily maintained regardless of the heat exchanging means, and the water level is easily maintained stably. Moreover, only the amount of cold water corresponding to the evaporation amount of each heat exchanging means can be replenished, and about 18 The water vapor compression refrigerator can be operated with high efficiency by cold water of about 0 ° C., and there is an effect of allowing natural water to circulate by incorporating cold water as a refrigerant into the water vapor pipe without using a pump. In addition, as in the system of the present invention, the facility cost and installation space for constructing a system using a natural circulation system of refrigerant water are greatly reduced, and the scale can be reduced. There is an effect that it is possible to reduce the running cost in the operation of this system.
[0028]
According to the invention described in claim 2, a steam compression refrigerator comprising an evaporator for introducing steam, a compressor, a heat exchanger and a condenser incorporating makeup water, and a condenser of the steam compression refrigerator In the apparatus comprising a cooling tower for introducing cooling water to the building, a ball tap type liquid level controller and a heat exchange means are installed on each floor of the building , and a vertical pipe is connected to the evaporator from the bottom floor to the top floor of the building. The water vapor pipe is connected to the condenser and the cold water pipe is connected, the liquid phase in the ball tap type liquid level controller is connected to the heat exchange means, and the gas phase in the ball tap type liquid level controller is connected to the water vapor pipe. A water refrigerant vaporization natural circulation cooling system is provided.
Since such a configuration is adopted, in addition to the effect of the first aspect described above, a heat exchanger is interposed between the steam compression refrigerator and the cooling tower, and the refrigeration cycle and the load side piping are sealed. Constructed in a state, there is an effect that the quality of the circulating cold water can be kept high.
[Brief description of the drawings]
FIG. 1 is a configuration layout diagram showing an example of Embodiment 1 of a water refrigerant vaporization natural circulation cooling system using a steam compression refrigerator according to the present invention.
FIG. 2 is a configuration layout diagram showing an example of a second embodiment of a water refrigerant vaporization natural circulation cooling system using a steam compression refrigerator according to the present invention.
FIG. 3 is a configuration layout diagram of a pump-type circulation cooling system using a steam compression refrigerator in the prior art.
[Explanation of symbols]
9 steam compression refrigerator 9a evaporator 9b compressor 9c condenser 9d vacuum pump 10 makeup water 11a cold water 11b steam 12 cooling tower 13 cooling water 13a cooling water pump 13b cooling water pump 13c cooling water pump 13d cooling water pump 14 cooling water pipe 15 Heat exchange means 16 Steam pipe 17 Cold water level control means 18 Throttle mechanism 19 Drain valve 20 Heat exchanger

Claims (2)

水蒸気を導く蒸発器、圧縮機、補給水を取り入れた凝縮器から構成された水蒸気圧縮冷凍機と、該水蒸気圧縮冷凍機の凝縮器に冷却水を導く冷却塔とでなる装置に於いて、建物の各階にボールタップ方式液面制御器及び熱交換手段を設置すると共に該建物の最下階から最上階で前記蒸発器に竪管でなる水蒸気管を前記凝縮器に冷水管をそれぞれ連結し、ボールタップ方式液面制御器内の液相を前記熱交換手段に及びボールタップ方式液面制御器内の気相を水蒸気管に繋がれたことを特徴とする水冷媒気化自然循環冷房システム。In an apparatus comprising: an evaporator for introducing water vapor; a compressor; a water vapor compression refrigerator comprising a condenser incorporating makeup water; and a cooling tower for introducing cooling water to the condenser of the water vapor compression refrigerator. A ball tap type liquid level controller and heat exchange means are installed on each floor of the building, and a steam pipe consisting of a vertical pipe is connected to the evaporator from the bottom floor to the top floor of the building , and a cold water pipe is connected to the condenser, respectively. A water refrigerant vaporization natural circulation cooling system, characterized in that the liquid phase in the system level controller is connected to the heat exchange means, and the gas phase in the ball tap system level controller is connected to a steam pipe. 水蒸気を導く蒸発器、圧縮機、熱交換器を備えかつ補給水を取り入れた凝縮器から構成された水蒸気圧縮冷凍機と、該水蒸気圧縮冷凍機の凝縮器に冷却水を導く冷却塔とでなる装置に於いて、建物の各階にボールタップ方式液面制御器及び熱交換手段を設置すると共に該建物の最下階から最上階で前記蒸発器に竪管でなる水蒸気管を前記凝縮器に冷水管をそれぞれ連結し、ボールタップ方式液面制御器内の液相を前記熱交換手段に及びボールタップ方式液面制御器内の気相を水蒸気管に繋がれたことを特徴とする水冷媒気化自然循環冷房システム。A steam compression refrigerator that includes an evaporator for introducing water vapor, a compressor, a heat exchanger, and a condenser that takes in makeup water, and a cooling tower that guides cooling water to the condenser of the water vapor compression refrigerator in a combination, cold water pipe steam pipe made of vertical tubes to the evaporator at the top floor from the lowest floor of該建thereof with installing the ball tap method liquid level controller and a heat exchange means in each floor of the building to the condenser Are connected to each other, the liquid phase in the ball tap type liquid level controller is connected to the heat exchanging means, and the gas phase in the ball tap type liquid level controller is connected to a water vapor pipe. system.
JP2002129556A 2002-05-01 2002-05-01 Water refrigerant evaporative natural circulation cooling system with water vapor compression refrigerator Expired - Lifetime JP4196587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002129556A JP4196587B2 (en) 2002-05-01 2002-05-01 Water refrigerant evaporative natural circulation cooling system with water vapor compression refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002129556A JP4196587B2 (en) 2002-05-01 2002-05-01 Water refrigerant evaporative natural circulation cooling system with water vapor compression refrigerator

Publications (2)

Publication Number Publication Date
JP2003322423A JP2003322423A (en) 2003-11-14
JP4196587B2 true JP4196587B2 (en) 2008-12-17

Family

ID=29542928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002129556A Expired - Lifetime JP4196587B2 (en) 2002-05-01 2002-05-01 Water refrigerant evaporative natural circulation cooling system with water vapor compression refrigerator

Country Status (1)

Country Link
JP (1) JP4196587B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4958628B2 (en) * 2007-05-07 2012-06-20 株式会社ササクラ Evaporative air conditioner
JP5708992B2 (en) * 2011-04-08 2015-04-30 清水建設株式会社 Piping system
JP5624654B2 (en) * 2013-07-26 2014-11-12 株式会社ササクラ Air conditioner
JP6608586B2 (en) * 2014-08-21 2019-11-20 株式会社ササクラ Cooling system and control method thereof
CN107192055A (en) * 2017-04-20 2017-09-22 广东申菱环境系统股份有限公司 The cooling-water machine and its control method of a kind of separate modular

Also Published As

Publication number Publication date
JP2003322423A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
US20110174003A1 (en) Evaporative Cooling Tower Performance Enhancement Through Cooling Recovery
CA2898424C (en) Cooling mechanism for data center
KR950003785B1 (en) Air conditioning system
JP4885481B2 (en) Cooling device operation method
WO2015004920A1 (en) Cooling system, and method for controlling refrigerant supply volume in cooling systems
JPH1019305A (en) Cooling system
KR20080034296A (en) An air conditioning system using recycled condensate
KR100867619B1 (en) Cooling/Heating and hot water supply system by using heat pump
JP2007292352A (en) Ice heat storage type air conditioning system
JP4196587B2 (en) Water refrigerant evaporative natural circulation cooling system with water vapor compression refrigerator
JP4052867B2 (en) Water refrigerant natural circulation cooling system with water vapor compression refrigerator
JP2007093203A (en) Exhaust heat recovery system
US6581405B2 (en) Airconditioning system utilizing absorption chiller cell
JP2003314916A (en) Water cooling medium evaporation natural circulation cooling system by water vapor compression refrigerating machine
US20140165627A1 (en) Method for chilling a building
KR20110059568A (en) Cooling system of natural circulation by low temperature boiling of water
US20080302121A1 (en) Air conditioning system
US11466189B2 (en) Absorption cycle apparatus and related method
KR100963545B1 (en) Power Generation System using Air - conditioning Equipment
JP2003322364A (en) Water refrigerant natural circulation air-conditioning system using adsorption refrigerator or absorption refrigerator
JP2003322365A (en) Water refrigerant vaporizing natural circulation air- conditioning system using adsorption refrigerator or absorption refrigerator
JP2008121930A (en) Refrigeration system
JP2022026757A (en) Air-cooled type refrigerator
KR200208125Y1 (en) Annual cycle energy system utilizing multiple heat source ice maker heat pump
JP2016080300A (en) Cooling unit and cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080625

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080922

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4196587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111010

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121010

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131010

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term