JP4194905B2 - Support structure for porous cylinder and fixing method for support member - Google Patents

Support structure for porous cylinder and fixing method for support member Download PDF

Info

Publication number
JP4194905B2
JP4194905B2 JP2003294627A JP2003294627A JP4194905B2 JP 4194905 B2 JP4194905 B2 JP 4194905B2 JP 2003294627 A JP2003294627 A JP 2003294627A JP 2003294627 A JP2003294627 A JP 2003294627A JP 4194905 B2 JP4194905 B2 JP 4194905B2
Authority
JP
Japan
Prior art keywords
porous
cylinder
sealing
sealing portion
support member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003294627A
Other languages
Japanese (ja)
Other versions
JP2005058950A (en
Inventor
誠司 山田
エヌ.ナイル バラゴパル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Noritake Co Ltd
Original Assignee
Noritake Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Noritake Co Ltd filed Critical Noritake Co Ltd
Priority to JP2003294627A priority Critical patent/JP4194905B2/en
Priority to US10/852,211 priority patent/US7255729B2/en
Publication of JP2005058950A publication Critical patent/JP2005058950A/en
Application granted granted Critical
Publication of JP4194905B2 publication Critical patent/JP4194905B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、外周面に多孔質膜が設けられた多孔質筒体の支持構造および支持部材の固着方法に関する。   The present invention relates to a support structure for a porous cylinder having a porous film provided on the outer peripheral surface and a fixing method for a support member.

例えば、特定のガスを選択的に透過させ得る多数の細孔(すなわち連通気孔)を周壁に有するガス分離筒体を備えたガス分離装置が知られている。このガス分離筒体は、例えばアルミナ(Al2O3)等のセラミック多孔質材料で構成された多孔質円筒の外周面に例えばアルミナ等から成る多孔質膜が設けられたものであり、例えばそのガス分離筒体の周壁の外部から内部に透過したガスをその一方の端面から取り出して回収することによってガスが分離される。このようなガス分離装置では、上記のガス分離筒体を装置内に固定すると共に、例えば複数本のガス分離筒体が径方向において相互に離隔した状態で束ねられたモジュールの形態で用いられる場合にはそれらの一端を共通の気密室内に開放し他端を閉塞する等の目的で、そのガス分離筒体の両端部すなわち多孔質円筒の両端部に緻密質材料から成る支持部材が気密に固着される(例えば特許文献1乃至3参照)。 For example, there is known a gas separation apparatus including a gas separation cylinder having a large number of pores (that is, continuous vent holes) capable of selectively permeating a specific gas on a peripheral wall. This gas separation cylinder is provided with a porous film made of alumina, for example, on the outer peripheral surface of a porous cylinder made of a ceramic porous material such as alumina (Al 2 O 3 ). The gas that has permeated from the outside to the inside of the peripheral wall of the gas separation cylinder is taken out from one end face and collected, thereby separating the gas. In such a gas separation apparatus, the gas separation cylinder is fixed in the apparatus, and for example, a plurality of gas separation cylinders are used in the form of a module bundled in a state of being separated from each other in the radial direction. For the purpose of opening one end of them in a common airtight chamber and closing the other end, a support member made of a dense material is airtightly fixed to both ends of the gas separation cylinder, that is, both ends of the porous cylinder. (For example, see Patent Documents 1 to 3).

ところで、上記のガス分離装置において多孔質膜は多孔質筒体よりも気孔径の小さいものが用いられるため、その多孔質筒体の外周面が露出していると、分離しようとする気体がその多孔質筒体の露出面を通して通過するので、所期の分離性能が得られない。そのため、多孔質筒体の外周面のうち支持部材が気密に固着されている部分の他の部分は、多孔質膜で覆われていなければならない。   By the way, in the gas separation apparatus, a porous membrane having a pore diameter smaller than that of the porous cylinder is used. Therefore, when the outer peripheral surface of the porous cylinder is exposed, the gas to be separated is Since it passes through the exposed surface of the porous cylinder, the desired separation performance cannot be obtained. Therefore, the other part of the outer peripheral surface of the porous cylinder where the support member is hermetically fixed must be covered with a porous film.

このような支持部材の固着状態および多孔質膜の形成状態を得るために、例えば、上記特許文献1に記載された水素ガス分離装置では、図9に示す支持構造を採用している。この支持構造は、多孔質筒体100を支持部材102にフリットガラス等のシール材を用いて固着した後、そのシール部104から露出している外周面に多孔質膜106を形成したものである。このとき、多孔質膜106は、シール部104との間に隙間が生じて多孔質筒体100の外周面が露出することを避けるため、そのシール部104に僅かに重なるように、図示の例では、更に支持部材102の内周部も覆うように成膜される。   In order to obtain such a fixing state of the support member and a formation state of the porous membrane, for example, the hydrogen gas separation apparatus described in Patent Document 1 employs the support structure shown in FIG. In this support structure, the porous cylindrical body 100 is fixed to the support member 102 using a sealing material such as frit glass, and then a porous film 106 is formed on the outer peripheral surface exposed from the seal portion 104. . At this time, in order to avoid the porous membrane 106 from being exposed to the outer peripheral surface of the porous cylindrical body 100 due to the gap between the porous membrane 100 and the seal portion 104, the example shown in the figure is slightly overlapped with the seal portion 104. Then, it forms into a film so that the inner peripheral part of the supporting member 102 may also be covered.

また、例えば上記特許文献3に記載された水素ガス分離装置では、図10に示す支持構造を採用している。この支持構造は、多孔質筒体100の両端部を除く外周面全体に多孔質膜106を形成した後、支持部材102にシール材を用いて固着したものである。このとき、シール部104は、多孔質膜106との間に隙間が生じることを避けるため、その多孔質膜106に僅かに重なるように設けられる。
特開平7−112111号公報 特開平7−163827号公報 特開平8−299768号公報
Further, for example, the hydrogen gas separation device described in Patent Document 3 employs the support structure shown in FIG. In this support structure, a porous film 106 is formed on the entire outer peripheral surface excluding both ends of the porous cylinder 100, and then fixed to the support member 102 using a sealing material. At this time, the seal portion 104 is provided so as to slightly overlap the porous film 106 in order to avoid a gap from being formed with the porous film 106.
JP 7-112111 A Japanese Patent Laid-Open No. 7-163827 JP-A-8-299768

しかしながら、上記特許文献1に記載された支持構造では、成膜後に多孔質膜106とシール部104との熱膨張係数の相違に起因してそれらの境界部で多孔質膜106が破断し、多孔質筒体100の外周面が露出させられるシール不良が生じ易い問題があった。多孔質膜106は膜厚が例えば1〜100(μm)程度と薄いため容易に破断するのである。また、特許文献3に記載された支持構造では、シール部104が成膜後に形成されることから、その焼成温度を多孔質膜106の成膜時の温度よりも低くする必要がある。そのため、焼成温度が低いことに起因して接合強度を確保できない問題があった。なお、特許文献2および3には、支持部材102を固着する際の焼成温度を多孔質膜106の成膜温度よりも高くする態様が記載されているが、このような製造条件では多孔質膜106が劣化して製造中や使用中に破断し易くなる。また、特許文献2には、多孔質膜106を多孔質筒体100の外周面全面に設けた構造が記載されているが、このような構造では多孔質筒体100が多孔質膜106を介して接合されるので十分な接合強度は得られないのである。このような問題は、ガス分離用途に限られず、多孔質膜106が設けられた多孔質筒体100を支持部材102で支持した構造とする場合には、液体濾過等の種々の用途において同様に生じ得る。   However, in the support structure described in Patent Document 1, the porous film 106 is broken at the boundary due to the difference in thermal expansion coefficient between the porous film 106 and the seal portion 104 after the film formation. There has been a problem that a sealing failure that exposes the outer peripheral surface of the material cylinder 100 is likely to occur. Since the porous film 106 is thin, for example, about 1 to 100 (μm), it is easily broken. Further, in the support structure described in Patent Document 3, since the seal portion 104 is formed after the film formation, it is necessary to make the firing temperature lower than the temperature at the time of forming the porous film 106. Therefore, there is a problem that the bonding strength cannot be ensured due to the low firing temperature. Patent Documents 2 and 3 describe a mode in which the firing temperature at the time of fixing the support member 102 is higher than the film formation temperature of the porous film 106. 106 is deteriorated and easily broken during manufacture or use. Further, Patent Document 2 describes a structure in which the porous film 106 is provided on the entire outer peripheral surface of the porous cylinder 100. In such a structure, the porous cylinder 100 is interposed via the porous film 106. Therefore, sufficient bonding strength cannot be obtained. Such a problem is not limited to gas separation applications. When the porous cylindrical body 100 provided with the porous membrane 106 is supported by the support member 102, it is similarly applied to various applications such as liquid filtration. Can occur.

本発明は、以上の事情を背景として為されたものであって、その目的は、多孔質膜が設けられた多孔質筒体に支持部材を密に且つ高強度で接合し得る支持構造および支持部材の固着方法を提供することにある。   The present invention has been made in the background of the above circumstances, and its purpose is to provide a support structure and a support capable of bonding a support member densely and with high strength to a porous cylinder provided with a porous film. It is in providing the fixing method of a member.

斯かる目的を達成するため、第1発明の要旨とするところは、周壁の外部から内部に連通する多数の連通気孔を備える多孔質筒体の長手方向の一部にその外周面を環状に覆う所定の支持部材が固着された支持構造であって、(a)前記多孔質筒体と前記支持部材とを相互に固着し且つそれらの間を密に封止した第1封着材から成る第1封止部と、(b)前記多孔質筒体の外周面を環状に覆って設けられ且つ前記連通気孔を外部に連通させる多孔質膜と、(c)前記多孔質膜と前記第1封止部との境界部に前記多孔質筒体の外周面が密閉されるように環状に設けられた前記多孔質膜の成膜温度よりも低軟化点の第2封着材から成る第2封止部とを、含むことにある。   In order to achieve such an object, the gist of the first invention is to cover the outer peripheral surface in a ring shape with a part in the longitudinal direction of a porous cylinder having a large number of communicating air holes communicating from the outside to the inside of the peripheral wall. A support structure to which a predetermined support member is fixed, comprising: (a) a first sealing material comprising a first sealing material in which the porous cylinder and the support member are fixed to each other and the space between them is tightly sealed; 1 sealing portion; (b) a porous membrane that is provided so as to cover the outer peripheral surface of the porous cylinder in an annular shape and communicates the communication vent to the outside; (c) the porous membrane and the first seal A second seal made of a second sealing material having a softening point lower than the film forming temperature of the porous film provided in an annular shape so that the outer peripheral surface of the porous cylinder is hermetically sealed at the boundary with the stopper. A stop portion.

また、前記目的を達成するための第2発明の要旨とするところは、周壁の外部から内部に連通する多数の連通気孔を備える多孔質筒体の長手方向の一部にその外周面を環状に覆う所定の支持部材を固着する方法であって、(a)前記多孔質筒体の外周面に前記支持部材を第1封着材で固着することによりその第1封着材から成る第1封止部でそれらの間を密に封止する第1封止工程と、(b)前記支持部材が固着された前記多孔質筒体の外周面を前記連通気孔を外部に連通させる多孔質膜で覆う成膜工程と、(c)前記多孔質膜と前記第1封止部との境界部を前記多孔質膜の成膜温度よりも低軟化点の第2封着材で封止することによりその境界部上においてその第2封着材から成る環状の第2封止部で前記多孔質筒体の外周面を密閉する第2封止工程とを、含むことにある。   Further, the gist of the second invention for achieving the above object is that the outer peripheral surface is annularly formed in a part of the longitudinal direction of the porous cylindrical body having a large number of communicating air holes communicating from the outside to the inside of the peripheral wall. A method for adhering a predetermined supporting member to be covered, comprising: (a) a first sealing member comprising the first sealing material by fixing the supporting member to the outer peripheral surface of the porous cylindrical body with a first sealing material; A first sealing step that tightly seals them with a stopper, and (b) a porous membrane that communicates the outer peripheral surface of the porous cylinder to which the support member is fixed to the outside through the communication vent And (c) sealing the boundary between the porous film and the first sealing portion with a second sealing material having a softening point lower than the film forming temperature of the porous film. A second sealing step of sealing the outer peripheral surface of the porous cylindrical body with an annular second sealing portion made of the second sealing material on the boundary portion The lies in the fact that contain.

このようにすれば、第1封止部で支持部材と多孔質筒体とが相互に固着されると共にそれらの間が密に封止される一方、その第1封止部と多孔質膜との境界部に設けられた環状の第2封止部でその多孔質筒体の外周面が密閉される。支持部材と多孔質筒体との固着強度は第1封止部で確保されるので、多孔質膜と第1封止部との境界部を環状に覆う第2封止部は支持部材と多孔質筒体との固着に寄与しなくとも良い。そのため、多孔質膜を形成した後にその成膜温度よりも低温で焼成できる第2封着材を用いて第2封止部が形成されることから、その多孔質膜を劣化させることなく気密性を確保できる。すなわち、第1封止部および第2封止部に支持部材の固着機能および封止機能と境界部における封止機能とを分担させるので、これらを両立させ得るのである。したがって、多孔質膜が設けられた多孔質筒体に支持部材を密に且つ高強度で接合し得ると共に多孔質筒体の外周面が密閉された支持構造が得られる。   In this way, the support member and the porous cylinder are fixed to each other at the first sealing portion and the space between them is tightly sealed, while the first sealing portion and the porous membrane are The outer peripheral surface of the porous cylinder is hermetically sealed by the annular second sealing portion provided at the boundary. Since the fixing strength between the support member and the porous cylinder is ensured by the first sealing portion, the second sealing portion that covers the boundary portion between the porous membrane and the first sealing portion in an annular shape is the support member and the porous member. It is not necessary to contribute to the fixation with the material cylinder. Therefore, since the second sealing portion is formed using the second sealing material that can be fired at a temperature lower than the film forming temperature after the porous film is formed, the airtightness is maintained without deteriorating the porous film. Can be secured. That is, since the first sealing portion and the second sealing portion share the fixing function and sealing function of the support member and the sealing function at the boundary portion, both can be achieved. Therefore, it is possible to obtain a support structure in which the support member can be bonded densely with high strength to the porous cylinder provided with the porous membrane and the outer peripheral surface of the porous cylinder is sealed.

なお、本願において、「多孔質膜と第1封止部との境界部」は、第1封止部と多孔質膜とが相互に離隔させられているものであっても、接しているものであっても、重ねて形成されているものであってもよい。重ねられている場合には、その重なり範囲全体が「境界部」に相当する。また、「密に」および「密閉して」とは、多孔質筒体の用途に応じた緻密性を有すること、例えば気密性や液密性を有することをいうものである。また、「環状」は多孔質筒体の外周面に沿って周方向に連続していることを意味するものであり、円環状に限られない。   In the present application, the “boundary portion between the porous membrane and the first sealing portion” is in contact with the first sealing portion and the porous membrane even if they are separated from each other. Alternatively, it may be formed by being overlapped. In the case of overlapping, the entire overlapping range corresponds to a “boundary part”. Further, “closely” and “closed” refer to having denseness according to the use of the porous cylinder, for example, having airtightness or liquid tightness. Further, “annular” means continuous in the circumferential direction along the outer peripheral surface of the porous cylinder, and is not limited to an annular shape.

ここで、好適には、前記多孔質膜および前記第1封止部は前記多孔質筒体の長手方向において所定距離だけ相互に隔てて位置するものである。すなわち、多孔質膜は多孔質筒体の長手方向において第1封止部から所定距離だけ離隔した位置に形成されるものである。このようにすれば、多孔質膜と第1封止部とが接していないため、それらの熱膨張係数の差等に起因する応力が多孔質膜に作用し、延いてはこれが破断させられることが一層抑制される。   Here, preferably, the porous membrane and the first sealing portion are located apart from each other by a predetermined distance in the longitudinal direction of the porous cylinder. That is, the porous film is formed at a position separated from the first sealing portion by a predetermined distance in the longitudinal direction of the porous cylinder. In this case, since the porous film and the first sealing portion are not in contact with each other, the stress caused by the difference in the thermal expansion coefficient of the porous film acts on the porous film, which is eventually broken. Is further suppressed.

上記所定距離すなわち隙間の大きさは、好適には10(μm)以上であり、また、好適には1(cm)以下である。また、一層好適には1(mm)以上であり、また、好適には5(mm)以下である。小さい場合には隙間に第2封着材が入り込み難くなるため、第2封止部の固着強度が多孔質筒体の外周面に接している場合に比較して低くなる。反対に大きい場合には多孔質膜の面積が隙間の大きさに応じた大きさだけ小さくなる不都合がある。   The predetermined distance, that is, the size of the gap is preferably 10 (μm) or more, and preferably 1 (cm) or less. Further, it is more preferably 1 (mm) or more, and preferably 5 (mm) or less. When it is small, the second sealing material is less likely to enter the gap, so that the fixing strength of the second sealing portion is lower than that in contact with the outer peripheral surface of the porous cylinder. On the other hand, when it is large, there is a disadvantage that the area of the porous membrane is reduced by a size corresponding to the size of the gap.

また、好適には、前記第1封止部は前記多孔質膜側の端部が前記支持部材から突き出したものであり、前記第2封止部は前記第1封止部および前記支持部材に固着されたものである。このようにすれば、第2封止部が第1封止部および支持部材に共に固着されていることから、それらの一方だけに固着されている場合に比較して多孔質筒体と支持部材との固着強度や、境界部における密閉性が高められる。   Preferably, the first sealing portion has an end on the porous membrane side protruding from the support member, and the second sealing portion is formed on the first sealing portion and the support member. It is fixed. In this case, since the second sealing portion is fixed to the first sealing portion and the support member, the porous cylindrical body and the support member are compared with the case where the second sealing portion is fixed to only one of them. And the sealing strength at the boundary portion are improved.

また、好適には、前記支持部材は、複数本の前記多孔質筒体を支持するものである。例えば、気体分離や液体濾過などの用途では、可及的に小さな容積で高い分離効率や濾過効率を得る目的で複数本の多孔質筒体が束ねられて(すなわちバンドル構造とされて)用いられるが、本発明の支持構造および支持部材の固着方法はこのような場合にも好適に適用される。   Preferably, the support member supports a plurality of the porous cylinders. For example, in applications such as gas separation and liquid filtration, a plurality of porous cylindrical bodies are bundled (that is, made into a bundle structure) for the purpose of obtaining high separation efficiency and filtration efficiency with as small a volume as possible. However, the support structure and the fixing method of the support member of the present invention are also suitably applied to such a case.

また、好適には、前記支持部材は前記多孔質筒体の開放された端部に固着され且つその支持部材で外壁の少なくとも一部が構成された密室内にその開放端を開放するものである。すなわち、支持部材は、単に多孔質筒体を支持するだけでなく、その開放端が開放される密室の外壁を構成しても良いのである。例えば、複数本の多孔質筒体が束ねられて用いられる場合には、それらの一端を閉塞すると共に他端を共通の密室内に開放させ、多孔質筒体の周壁を通ってその内部に入った気体や液体などをその密室に設けられた開口を通して回収するように構成することができる。   Preferably, the support member is fixed to an open end portion of the porous cylinder, and the open end is opened in a closed chamber in which at least a part of the outer wall is configured by the support member. . That is, the support member may not only simply support the porous cylindrical body but also constitute an outer wall of a closed chamber whose open end is opened. For example, when a plurality of porous cylinders are used in a bundle, one end thereof is closed and the other end is opened in a common closed chamber, and enters the inside through the peripheral wall of the porous cylinder. The gas or liquid can be collected through an opening provided in the closed chamber.

また、好適には、前記多孔質筒体は、セラミックスや金属、一層好適には、アルミナやムライト(3Al2O3-2SiO2)から成るものである。 Preferably, the porous cylindrical body is made of ceramics or metal, more preferably alumina or mullite (3Al 2 O 3 -2SiO 2 ).

また、好適には、前記支持部材は、セラミックスや金属、樹脂、一層好適には、アルミナやムライトから成るものである。   Preferably, the support member is made of ceramics, metal, resin, more preferably alumina or mullite.

また、好適には、前記第1封着材および前記第2封着材は、何れもガラス・ペーストから成るものであり、一層好適には、第1封着材は、シリカ(SiO2)・アルミナ・カルシア(CaO)系ガラス等であり、第2封着材は、シリカ系ガラス、シリカ・アルミナ系ガラス、またはシリカ・アルミナ・酸化硼素(B2O3)系ガラス等であり、前記多孔質膜は、シリカまたはアルミナ等から成るものである。 Preferably, both the first sealing material and the second sealing material are made of glass paste, and more preferably, the first sealing material is silica (SiO 2 ) · Alumina / calcia (CaO) glass, etc., and the second sealing material is silica glass, silica / alumina glass, silica / alumina / boron oxide (B 2 O 3 ) glass, etc. The material film is made of silica or alumina.

また、好適には、前記第1封着材は多孔質筒体と支持部材との接合温度が例えば700〜1200(℃)の範囲内、例えば950(℃)程度であり、前記第2封着材は封止のための焼成温度が例えば200〜700(℃)の範囲内、例えば620(℃)程度であり、前記多孔質膜は成膜温度が例えば500〜900(℃)の範囲内、例えば650(℃)程度である。このように、第1封着材、多孔質膜、および第2封着材は、その形成温度がこの順に低くなっていることが好ましい。   Preferably, the first sealing material has a bonding temperature between the porous cylinder and the support member in a range of, for example, 700 to 1200 (° C), for example, about 950 (° C), and the second sealing material. The material has a firing temperature for sealing in the range of, for example, 200 to 700 (° C.), for example, about 620 (° C.), and the porous film has a film forming temperature in the range of, for example, 500 to 900 (° C.), For example, it is about 650 (° C.). Thus, the first sealing material, the porous film, and the second sealing material preferably have lower formation temperatures in this order.

以下、本発明の一実施例を図面を参照して詳細に説明する。なお、以下の実施例において図は適宜簡略化或いは変形されており、各部の寸法比や形状等は必ずしも正確に描かれていない。   Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. In the following embodiments, the drawings are appropriately simplified or modified, and the dimensional ratios, shapes, and the like of the respective parts are not necessarily drawn accurately.

図1は、本発明の一実施例の支持構造が適用された多孔質円筒モジュール(以下、モジュールという)10の全体を示す斜視図であり、図2は、その長手方向に沿った断面を中間部を省略して示す図である。これらの図において、モジュール10は、複数本、例えば6本の多孔質円筒12と、1本の緻密質円筒14と、それら多孔質円筒12および緻密質円筒14の両端部にそれぞれ嵌め合わされたエンドキャップ16,18とを備えて構成されている。本実施例においては、多孔質円筒12が多孔質筒体に相当する。   FIG. 1 is a perspective view showing an entire porous cylindrical module (hereinafter referred to as a module) 10 to which a support structure according to an embodiment of the present invention is applied, and FIG. It is a figure which abbreviate | omits a part and shows. In these drawings, the module 10 includes a plurality of, for example, six porous cylinders 12, one dense cylinder 14, and ends fitted to both ends of the porous cylinder 12 and the dense cylinder 14. Caps 16 and 18 are provided. In this embodiment, the porous cylinder 12 corresponds to a porous cylinder.

上記の多孔質円筒12は、例えば、外径が10(mm)程度、内径が7(mm)程度、長さ寸法が400(mm)程度の大きさを備えて断面が円環状を成し、一端20および他端22がそれぞれ開放されたものである。また、この多孔質円筒12は、例えば気孔率が30〜40(%)程度で熱膨張係数が7.7×10-6(/℃)程度の多孔質のアルミナ・セラミックスやムライト・セラミックスから成るものであって、例えば60(nm)程度の平均細孔径を備えた微細な多数の細孔がその周壁24の表面26から内面28まで連通して形成されており、その周壁24の内外面間を例えば窒素や水素のような気体が透過し得るように構成されている。 The porous cylinder 12 has, for example, an outer diameter of about 10 (mm), an inner diameter of about 7 (mm), a length dimension of about 400 (mm), and a circular cross section. One end 20 and the other end 22 are opened. The porous cylinder 12 is made of, for example, porous alumina ceramics or mullite ceramics having a porosity of about 30 to 40 (%) and a thermal expansion coefficient of about 7.7 × 10 −6 (/ ° C.). Thus, for example, a large number of fine pores having an average pore diameter of about 60 (nm) are formed to communicate from the surface 26 to the inner surface 28 of the peripheral wall 24, and between the inner and outer surfaces of the peripheral wall 24, for example, It is configured so that a gas such as nitrogen or hydrogen can pass therethrough.

また、この多孔質円筒12の外周面には、その両端部を除く略全長に亘る範囲に多孔質膜60が設けられている。多孔質膜60は、例えばアルミナやシリカ等の多孔質セラミックスから成るものであり、例えば1〜5(μm)の範囲内、例えば3(μm)程度の膜厚を以て多孔質円筒12の外周面に強固に固着している。また、多孔質膜60は、気孔率が例えば30〜40(%)程度と多孔質円筒12と略同程度であるが、気孔径がそれよりも極めて小さい4(nm)程度とされたものである。   In addition, a porous film 60 is provided on the outer peripheral surface of the porous cylinder 12 over a substantially entire length excluding both ends. The porous film 60 is made of, for example, porous ceramics such as alumina or silica, and is formed on the outer peripheral surface of the porous cylinder 12 with a film thickness of, for example, about 3 (μm) within a range of 1 to 5 (μm). It is firmly fixed. The porous membrane 60 has a porosity of, for example, about 30 to 40 (%), which is substantially the same as that of the porous cylinder 12, but the pore diameter is about 4 (nm) which is much smaller than that. is there.

また、上記の緻密質円筒14は、例えば外径が10(mm)程度、内径が7(mm)程度、長さ寸法が500(mm)程度の大きさを備えて断面が円環状を成し、一端30および他端32がそれぞれ開放されたものである。また、この緻密質円筒14は、例えば気孔率が0〜5(%)程度すなわち多孔質円筒12よりも十分に緻密な緻密質のアルミナ・セラミックス或いはムライト・セラミックスから成るものであって、その周壁34は気体が透過し得ないように構成されている。   The dense cylinder 14 has, for example, an outer diameter of about 10 (mm), an inner diameter of about 7 (mm), and a length dimension of about 500 (mm), and a circular cross section. The one end 30 and the other end 32 are opened. The dense cylinder 14 is made of, for example, a dense alumina ceramic or mullite ceramic having a porosity of about 0 to 5 (%), that is, sufficiently denser than the porous cylinder 12, and its peripheral wall. 34 is configured so that gas cannot pass therethrough.

また、前記のエンドキャップ16,18は、何れも緻密質円筒14と同様な緻密質のアルミナ・セラミックス或いはムライト・セラミックスから成り、略円板状を成すものである。エンドキャップ16は、中央部に厚み方向に貫通する貫通孔36が備えられると共に、エンドキャップ18側の一面38に開口する例えば6個の有底穴40がその周囲に備えられたものである。上記貫通孔36は、エンドキャップ16の中心に位置し、有底穴40は、その周囲の一円周上に一定の間隔で、すなわち例えば60度程度の間隔で配置されている。   Each of the end caps 16 and 18 is made of a dense alumina ceramic or mullite ceramic similar to the dense cylinder 14 and has a substantially disk shape. The end cap 16 is provided with a through hole 36 penetrating in the thickness direction at the center, and for example, six bottomed holes 40 opened on one surface 38 on the end cap 18 side. The through holes 36 are located at the center of the end cap 16, and the bottomed holes 40 are arranged at a constant interval, that is, for example, at an interval of about 60 degrees on the circumference of the periphery.

また、前記のエンドキャップ18は、エンドキャップ16とは反対側の一面44に環状の段付部46が形成されると共に、更にその内周に凹所48が形成されたものである。この凹所48には、一面44側から他面50に貫通する例えば7個の貫通孔52、53が備えられている。これら7個の貫通孔52、53は、1個(貫通孔53)がエンドキャップ18の中心に位置し、残る6個(貫通孔52)がその周囲の一円周上に一定の間隔で配置されている。この貫通孔52が配置されている円周の直径は、有底穴40が配置されている円周の直径と同じ大きさである。   The end cap 18 has an annular stepped portion 46 formed on one surface 44 opposite to the end cap 16 and a recess 48 formed on the inner periphery thereof. The recess 48 includes, for example, seven through holes 52 and 53 that penetrate from the one surface 44 side to the other surface 50. Of these seven through holes 52 and 53, one (through hole 53) is located at the center of the end cap 18, and the remaining six (through holes 52) are arranged at regular intervals on the circumference of the circumference. Has been. The diameter of the circumference in which the through hole 52 is arranged is the same size as the diameter of the circumference in which the bottomed hole 40 is arranged.

また、上記のエンドキャップ18の一面44には、上記の凹所48を閉じる円板状のエンドカバー54が例えばシール・ガラス等の封着材から成る封止部55で気密に固着されており、それらの間に気体室58が形成されている。このエンドカバー54も、エンドキャップ18と同様に緻密質のアルミナ・セラミックス等で構成され、気体を透過させないものである。なお、上記の封着材は、例えば、シリカ・アルミナ・カルシア系ガラス等から成るものである。   Further, a disk-shaped end cover 54 that closes the recess 48 is airtightly fixed to one surface 44 of the end cap 18 with a sealing portion 55 made of a sealing material such as a seal or glass. A gas chamber 58 is formed between them. The end cover 54 is also made of dense alumina / ceramics and the like, like the end cap 18, and does not allow gas to pass therethrough. The sealing material is made of, for example, silica, alumina, calcia glass or the like.

前記の多孔質円筒12および緻密質円筒14は、このように構成されたエンドキャップ16,18の貫通孔36,52、53に刺し通されると共に、有底穴40に嵌め入れられており、何れもシール・ガラス等の封着材から成る封止部56で気密に固着されている。また、多孔質円筒12を固着する封止部56は、エンドキャップ16,18の一面38,50から僅かに突き出した位置まで設けられている。この突出し量は、例えば1〜10(mm)の範囲内、例えば5(mm)程度である。封止部56と多孔質膜60とは多孔質円筒12の長手方向において相互に僅かに隔てて設けられており、それらの相互間には封止部62が多孔質円筒12の周方向に沿って伸びる環状に固着されている。   The porous cylinder 12 and the dense cylinder 14 are pierced through the through holes 36, 52, 53 of the end caps 16, 18 thus configured, and are fitted into the bottomed hole 40, All are airtightly fixed by a sealing portion 56 made of a sealing material such as seal glass. Further, the sealing portion 56 for fixing the porous cylinder 12 is provided to a position slightly protruding from the one surface 38, 50 of the end caps 16, 18. The protruding amount is, for example, in the range of 1 to 10 (mm), for example, about 5 (mm). The sealing portion 56 and the porous membrane 60 are provided slightly apart from each other in the longitudinal direction of the porous cylinder 12, and the sealing portion 62 is along the circumferential direction of the porous cylinder 12 between them. It is fixed to the ring that extends.

図3は、エンドキャップ18と多孔質円筒12との接合部分を拡大して示す図である。封止部56と多孔質膜60との間には、例えば10(μm)〜1(cm)の範囲内、例えば5(mm)の大きさの隙間64が環状に形成されており、上記の封止部62は、この隙間64よりも僅かに広い範囲に設けられている。すなわち、封止部62は、多孔質膜60および封止部56の両者に重なるように設けられている。エンドキャップ16側においても、接合部分は同様に構成されている。そのため、多孔質円筒12の外周面のうちその隙間64内に位置する部分はその封止部62によって覆われており、外周面の残部は多孔質膜60または封止部56で覆われているので、多孔質円筒12は、その外周面が実質的に多孔質膜60で塞がれた状態にある。本実施例においては、エンドキャップ16,18が支持部材に相当し、封止部56が第1封止部を、封止部62が第2封止部をそれぞれ構成している。なお、封止部56を構成する封着材は、例えば軟化点が850(℃)程度で熱膨張係数が6.1×10-6(/℃)程度のシリカ・アルミナ・カルシア系ガラスから成るものであり、封止部62を構成する封着材は、例えば軟化点が500(℃)程度で熱膨張係数が8.0×10-6(/℃)程度のシリカ系ガラスなどから成るものである。 FIG. 3 is an enlarged view showing a joint portion between the end cap 18 and the porous cylinder 12. A gap 64 having a size of, for example, 5 (mm) is formed in an annular shape between the sealing portion 56 and the porous membrane 60, for example, in the range of 10 (μm) to 1 (cm). The sealing portion 62 is provided in a range slightly wider than the gap 64. That is, the sealing part 62 is provided so as to overlap both the porous film 60 and the sealing part 56. Also on the end cap 16 side, the joint portion is configured similarly. Therefore, a portion of the outer peripheral surface of the porous cylinder 12 located in the gap 64 is covered with the sealing portion 62, and the remaining portion of the outer peripheral surface is covered with the porous film 60 or the sealing portion 56. Therefore, the outer periphery of the porous cylinder 12 is substantially closed with the porous film 60. In this embodiment, the end caps 16 and 18 correspond to support members, the sealing portion 56 constitutes a first sealing portion, and the sealing portion 62 constitutes a second sealing portion. The sealing material constituting the sealing portion 56 is made of, for example, silica, alumina, or calcia glass having a softening point of about 850 (° C.) and a thermal expansion coefficient of about 6.1 × 10 −6 (/ ° C.). The sealing material constituting the sealing portion 62 is made of, for example, silica glass having a softening point of about 500 (° C.) and a thermal expansion coefficient of about 8.0 × 10 −6 (/ ° C.).

この結果、前記の図2から明らかなように、多孔質円筒12は、その一端20が緻密なエンドキャップ16に閉塞されると共に、他端22が緻密なエンドキャップ18とエンドカバー54との間に形成された気体室58内に開放されており、一方、緻密質円筒14は、その他端30がエンドキャップ16の他面42側に突き出して開放されると共に、一端32が上記の気体室58内に開放されている。そのため、上記の多孔質円筒12の周壁24を透過して気体がその内部に入ると、その開放された他端22から気体室58内に向かって流れ、緻密質円筒14にその一端32から流れ込んだものがその内部を他端30に向かって流れ、その開放された他端30から流れ出ることになる。本実施例においては、エンドキャップ16が閉塞封止体に相当し、エンドキャップ18およびエンドカバー54によって中空封止体が構成されている。また、緻密質円筒14が嵌め入れられた貫通孔53が気体通路に相当する。   As a result, as is apparent from FIG. 2, the porous cylinder 12 has one end 20 closed by the dense end cap 16 and the other end 22 between the dense end cap 18 and the end cover 54. On the other hand, the dense cylinder 14 is opened with the other end 30 protruding toward the other surface 42 side of the end cap 16, and the one end 32 is opened in the gas chamber 58. It is open inside. Therefore, when the gas passes through the peripheral wall 24 of the porous cylinder 12 and enters the inside thereof, the gas flows into the gas chamber 58 from the opened other end 22 and flows into the dense cylinder 14 from the one end 32. The material flows through the inside toward the other end 30 and flows out from the opened other end 30. In this embodiment, the end cap 16 corresponds to a closed sealing body, and the end cap 18 and the end cover 54 constitute a hollow sealing body. Further, the through hole 53 into which the dense cylinder 14 is fitted corresponds to a gas passage.

また、上記のように封止部56,62によって封止されることにより、多孔質円筒12とエンドキャップ16、18との接合部分は気密に構成されているため、多孔質膜60および多孔質円筒12の周壁24を透過してその内側に入った気体は、途中で漏れることなくその他端22から気体室58に流れ込むことになる。   In addition, since the joint portion between the porous cylinder 12 and the end caps 16 and 18 is hermetically sealed by being sealed by the sealing portions 56 and 62 as described above, the porous membrane 60 and the porous The gas that has passed through the peripheral wall 24 of the cylinder 12 and entered the inside thereof flows into the gas chamber 58 from the other end 22 without leaking in the middle.

例えば、エンドキャップ16が固着され且つ封止部62で封着された状態で、窒素(N2)ガスを0.5(MPa)程度の圧力で一端22から流し入れたところ、接合部分からのリークは全く認められず、気密性が確保できていることを確認できた。 For example, when nitrogen (N 2 ) gas is flowed from one end 22 with a pressure of about 0.5 (MPa) in a state where the end cap 16 is fixed and sealed with the sealing portion 62, there is no leakage from the joining portion. It was not recognized and it was confirmed that airtightness was secured.

また、室温から600(℃)程度の温度範囲に亘ってモジュール10の使用を重ねたところ、エンドキャップ16,18と多孔質円筒12との固着強度や、その接合部分近傍における気密性は何ら変化せず当初の特性が保たれていることも確かめられた。   In addition, when the module 10 is repeatedly used over a temperature range from room temperature to about 600 (° C.), the fixing strength between the end caps 16 and 18 and the porous cylinder 12 and the airtightness in the vicinity of the joined portion change. It was also confirmed that the original characteristics were maintained.

以上のように構成されたモジュール10は、よく知られたセラミック製造技術を用いて、前述したような各特性を備えたエンドキャップ16,18、エンドカバー54、多孔質円筒12、および緻密質円筒14を作製し、これらを組み合わせて固着することにより製造される。第1エンドキャップ16,18、エンドカバー54は、例えば粉末プレス成形および切削加工等によって成形され、多孔質円筒12および緻密質円筒14は、例えば押出成形や冷間静水圧加圧成形および切削加工等によって成形される。また、原料は、所望とする気孔径などに応じて焼結特性の異なるものや添加物を含むもの等が適宜用いられる。また、必要な寸法・形状精度を得るために、焼結後に適宜研削加工が施される。   The module 10 configured as described above includes the end caps 16 and 18, the end cover 54, the porous cylinder 12, and the dense cylinder having the above-described characteristics using well-known ceramic manufacturing techniques. 14 is manufactured, and these are combined and fixed. The first end caps 16 and 18 and the end cover 54 are formed by, for example, powder press molding and cutting, and the porous cylinder 12 and the dense cylinder 14 are formed by, for example, extrusion molding, cold isostatic pressing and cutting. Etc. As the raw material, materials having different sintering characteristics or materials containing additives depending on the desired pore diameter and the like are appropriately used. In addition, in order to obtain necessary dimensional and shape accuracy, grinding is appropriately performed after sintering.

そして、各部品を製造した後、例えば、図4に示される工程図に従ってエンドキャップ16,18との固着工程等が実施される。すなわち、第1封着材塗布工程R1では、エンドキャップ16,18と多孔質円筒12および緻密質円筒14とを接合するための第1封着材すなわち例えばシリカ・アルミナ・カルシア系のガラスを溶媒等に分散させたガラス分散液をそれらの接合界面に塗布し、それらを嵌め合わせる。この工程は、エンドキャップ16,18の各々について順次に実施してもよく、同時に実施しても良い。また、封着材をエンドキャップ16,18と円筒12,14との間に設ける工程は、この第1封着材塗布工程R1に代えて、封着材を構成するガラス・リングをエンドキャップ16,18と円筒12,14との間に嵌め入れる等の適宜の方法を採り得る。続く焼成工程R2では、そのガラスの焼成温度すなわち例えば950(℃)程度の温度で焼成処理を施すことにより、前記の封止部56を生成してエンドキャップ16、18と多孔質円筒12とを固着する。   And after manufacturing each component, the adhering process with the end caps 16 and 18 etc. are implemented according to the flowchart shown in FIG. 4, for example. That is, in the first sealing material application step R1, the first sealing material for joining the end caps 16, 18 to the porous cylinder 12 and the dense cylinder 14, that is, for example, silica-alumina-calcia glass is used as a solvent. A glass dispersion liquid dispersed in, for example, is applied to the bonding interface and fitted together. This step may be performed sequentially for each of the end caps 16 and 18, or may be performed simultaneously. Further, the step of providing the sealing material between the end caps 16 and 18 and the cylinders 12 and 14 replaces the first sealing material application step R1 with the glass ring constituting the sealing material as the end cap 16. , 18 and the cylinders 12 and 14 can be used as appropriate. In the subsequent firing step R2, the end caps 16, 18 and the porous cylinder 12 are formed by performing the firing treatment at a firing temperature of the glass, that is, a temperature of, for example, about 950 (° C.) to generate the sealing portion 56. Stick.

次いで、多孔質膜材料成膜工程R3では、アルミナ等の粉末材料を溶媒等に分散させた分散液を多孔質円筒12の外周面にディッピングやローラ塗布等の適宜の方法で塗布する。このとき、分散液は封止部56との間に前記の隙間64が生じるようにその塗布範囲が設定される。続く焼成工程R4では、そのアルミナ等の焼成温度、例えば650(℃)程度の温度で焼成処理を施すことにより、多孔質膜60を生成して多孔質円筒12の外周面に固着する。この工程においては、焼成温度が封止部56の焼成処理温度よりも十分に低いため、その接合強度が処理中に不十分となることはない。   Next, in the porous film material film forming step R3, a dispersion obtained by dispersing a powder material such as alumina in a solvent or the like is applied to the outer peripheral surface of the porous cylinder 12 by an appropriate method such as dipping or roller application. At this time, the application range of the dispersion liquid is set so that the gap 64 is generated between the dispersion liquid and the sealing portion 56. In the subsequent firing step R4, the porous film 60 is generated and fixed to the outer peripheral surface of the porous cylinder 12 by performing a firing process at a firing temperature of alumina or the like, for example, a temperature of about 650 (° C.). In this step, since the firing temperature is sufficiently lower than the firing treatment temperature of the sealing portion 56, the bonding strength does not become insufficient during the treatment.

次いで、第2封着材塗布工程R5では、例えばシリカ系ガラスを溶媒等に分散させたガラス分散液を上記の隙間64上に塗布し、焼成工程R6において、そのガラスの焼成温度である例えば620(℃)程度の温度で焼成処理を施す。これにより、分散液から前記の封止部62が生成され、これが封止部56、多孔質膜60、および多孔質円筒12の外周面に固着されることにより、その外周面が気密に密閉される。このとき、焼成温度は650(℃)程度の膜形成温度よりも低いことから、先に形成されている多孔質膜60がこの工程で劣化し或いは破断等することは無い。   Next, in the second sealing material coating step R5, for example, a glass dispersion in which silica glass is dispersed in a solvent or the like is coated on the gap 64, and in the firing step R6, the firing temperature of the glass is, for example, 620. A baking treatment is performed at a temperature of about (° C.). As a result, the sealing portion 62 is generated from the dispersion, and is fixed to the outer peripheral surfaces of the sealing portion 56, the porous membrane 60, and the porous cylinder 12, whereby the outer peripheral surface is hermetically sealed. The At this time, since the firing temperature is lower than the film forming temperature of about 650 (° C.), the previously formed porous film 60 does not deteriorate or break in this step.

前記のモジュール10は、上記のようにしてエンドキャップ16,18を固着し、且つ成膜処理を施した後、エンドキャップ18にエンドカバー54を嵌め合わせて封止部55で固着することにより製造される。   The module 10 is manufactured by fixing the end caps 16 and 18 as described above, and after film-forming processing, fitting the end cover 54 to the end cap 18 and fixing the end cap 54 with the sealing portion 55. Is done.

なお、ガラスは軟化点よりもやや高温に設定される焼成温度よりも例えば250(℃)程度低い温度から焼成温度の間の温度に曝されると、軟化傾向が認められ、例えば封止部56等の固着強度の低下が生じる。そのため、その封止部56で接合する際の焼成温度が950(℃)程度に設定されていることから、例えば700(℃)近傍の温度になると強度が不十分となるが、室温から600(℃)程度の温度範囲では焼成温度よりも十分に低いことから、この温度範囲における使用中にその封止部56による接合強度が不足することはない。   Note that when glass is exposed to a temperature between the firing temperature, for example, about 250 (° C.) lower than the firing temperature set slightly higher than the softening point, a softening tendency is observed, for example, the sealing portion 56. Such a decrease in the fixing strength occurs. Therefore, since the firing temperature at the time of joining at the sealing portion 56 is set to about 950 (° C.), for example, the strength is insufficient when the temperature is close to 700 (° C.). Since the temperature is sufficiently lower than the firing temperature in the temperature range of about ° C.), the bonding strength by the sealing portion 56 is not insufficient during use in this temperature range.

因みに、多孔質膜60の焼成温度は前述したように例えば650(℃)程度であるため、その変質を防止するためには、膜形成後にはそれよりも低温で封着する必要がある。そのため、例えば、図10に示されるように膜形成後にエンドキャップ16,18を固着しようとすると、それよりも低温、例えば620(℃)程度の焼成温度で封止できる封着材を用いなければならないが、その場合には、その固着強度維持のために370(℃)程度が使用温度の上限になるのである。すなわち、本実施例によれば、エンドキャップ16,18との接合を多孔質膜形成前に高温で処理しているため、高温でも使用し得るモジュール10が得られるのである。   Incidentally, since the firing temperature of the porous film 60 is, for example, about 650 (° C.) as described above, it is necessary to seal at a lower temperature after the film formation in order to prevent the alteration. Therefore, for example, as shown in FIG. 10, when the end caps 16 and 18 are fixed after film formation, a sealing material that can be sealed at a lower temperature, for example, a firing temperature of about 620 (° C.) must be used. However, in that case, about 370 (° C.) is the upper limit of the use temperature in order to maintain the fixing strength. That is, according to the present embodiment, since the joining with the end caps 16 and 18 is processed at a high temperature before the formation of the porous film, the module 10 that can be used even at a high temperature is obtained.

要するに、本実施例においては、封止部56でエンドキャップ16,18と多孔質円筒12とが相互に固着されると共にそれらの間が密に封止される一方、その封止部56と多孔質膜60との境界部に設けられた環状の封止部62でその多孔質円筒12の外周面が密閉される。エンドキャップ16,18と多孔質円筒12との固着強度は封止部56で確保されるので、多孔質膜60と封止部56との境界部を環状に覆う封止部62はエンドキャップ16,18と多孔質円筒12との固着に寄与しなくとも良い。そのため、前述したように多孔質膜60の形成後にその成膜温度よりも低温で焼成される封着材を用いて封止部62が形成されることから、その多孔質膜60を劣化させることなく気密性を確保できる。したがって、多孔質膜60が設けられた多孔質円筒12にエンドキャップ16,18を密に且つ高強度で接合し得ると共に多孔質円筒12の外周面が密閉された支持構造が得られる。   In short, in the present embodiment, the end caps 16 and 18 and the porous cylinder 12 are fixed to each other at the sealing portion 56 and tightly sealed between them, while the sealing portion 56 and the porous cylinder 12 are porous. The outer peripheral surface of the porous cylinder 12 is sealed with an annular sealing portion 62 provided at the boundary with the membrane 60. Since the fixing strength between the end caps 16 and 18 and the porous cylinder 12 is ensured by the sealing portion 56, the sealing portion 62 that covers the boundary between the porous film 60 and the sealing portion 56 in an annular shape is the end cap 16. , 18 and the porous cylinder 12 do not have to contribute. Therefore, as described above, since the sealing portion 62 is formed using the sealing material baked at a temperature lower than the film formation temperature after the formation of the porous film 60, the porous film 60 is deteriorated. Airtightness can be secured. Therefore, it is possible to obtain a support structure in which the end caps 16 and 18 can be joined to the porous cylinder 12 provided with the porous membrane 60 densely and with high strength, and the outer peripheral surface of the porous cylinder 12 is sealed.

また、本実施例においては、前記多孔質膜60および前記封止部56は例えば10(μm)〜1(cm)程度だけ相互に隔てて位置し、それらの間には隙間64が形成されていることから、多孔質膜60と封止部56とが接していないため、それらの熱膨張係数の差等に起因する応力が多孔質膜60に作用し、延いてはこれが破断させられることが一層抑制される。   Further, in this embodiment, the porous membrane 60 and the sealing portion 56 are spaced apart from each other by about 10 (μm) to 1 (cm), for example, and a gap 64 is formed between them. Therefore, since the porous film 60 and the sealing portion 56 are not in contact with each other, stress due to a difference in coefficient of thermal expansion or the like acts on the porous film 60, and this can be broken. It is further suppressed.

なお、上述した実施例は、多孔質円筒12とエンドキャップ16,18との気密接合構造の一例を示したものであり、これらの接合構造は、以下に説明するように種々の形態を採り得る。なお、以下の実施例において、前述した実施例と共通する部分には同一の符号を付して説明を省略する。   In addition, the Example mentioned above showed an example of the airtight junction structure of the porous cylinder 12 and the end caps 16 and 18, and these junction structures can take various forms so that it may demonstrate below. . In the following embodiments, the same reference numerals are given to portions common to the above-described embodiments, and description thereof is omitted.

図5に示す接合構造は、封止部66の形状が封止部62と異なる他は、図3に示すものと同様に構成されている。すなわち、前記の封止部62は、エンドキャップ18からやや離隔した位置に形成されていたが、この実施例の封止部66は、エンドキャップ18の一面50にも接して形成されている。そのため、封止部66は、封止部56に加えてエンドキャップ18にも固着されていることから、固着強度や、気密性が高められる利点がある。   The joining structure shown in FIG. 5 has the same configuration as that shown in FIG. 3 except that the shape of the sealing portion 66 is different from that of the sealing portion 62. That is, the sealing portion 62 is formed at a position slightly separated from the end cap 18, but the sealing portion 66 of this embodiment is also formed in contact with the one surface 50 of the end cap 18. Therefore, since the sealing part 66 is fixed to the end cap 18 in addition to the sealing part 56, there is an advantage that the fixing strength and the airtightness are improved.

また、図6に示す接合構造は、封止部68が封止部66と同様な形状に設けられているが、多孔質膜60が封止部56に接する位置まで形成されることにより、隙間64が存在しないものである。このような構造であっても、封止部68が封止部56やエンドキャップ18に強固に固着されると共に、多孔質膜60と封止部56との境界部がその封止部68で密閉されていることから、十分な固着強度および気密性を確保できる。すなわち、隙間64が存在すれば一層高い強度を得ることができるが、これは必須ではない。   In the bonding structure shown in FIG. 6, the sealing portion 68 is provided in the same shape as the sealing portion 66, but the gap is formed by forming the porous film 60 to a position in contact with the sealing portion 56. 64 is not present. Even in such a structure, the sealing portion 68 is firmly fixed to the sealing portion 56 and the end cap 18, and the boundary between the porous film 60 and the sealing portion 56 is the sealing portion 68. Since it is sealed, sufficient fixing strength and airtightness can be secured. That is, if the gap 64 exists, higher strength can be obtained, but this is not essential.

また、図7に示す接合構造は、多孔質膜60が封止部56に僅かに重ねて形成され、その重ね合わせ部70をそれよりも広い範囲で、すなわち図示の向きにおいて左端が封止部56の左端よりも左方に位置し、且つ右端が多孔質膜60の右端よりも右方に位置するように、封止部72が形成されている。多孔質膜60がこのように封止部56に重なる場合にも、封止部72でその重なり部分の全体を覆うことにより、前述した各実施例と同様な固着強度や気密性を確保することができる。   Further, the bonding structure shown in FIG. 7 is formed by slightly overlapping the porous film 60 on the sealing portion 56, and the overlapping portion 70 in a wider range, that is, the left end in the illustrated direction is the sealing portion. The sealing portion 72 is formed so that it is located on the left side of the left end of 56 and the right end is located on the right side of the right end of the porous membrane 60. Even when the porous film 60 overlaps with the sealing portion 56 in this way, by covering the entire overlapping portion with the sealing portion 72, the same fixing strength and airtightness as those of the above-described embodiments are ensured. Can do.

また、図8に示す接合構造は、封止部56がエンドキャップ18の端面50よりも引っ込んで設けられる共に、封止部74が多孔質膜60、多孔質円筒12の外周面、およびエンドキャップ18に固着されるように形成されたものである。この例では封止部56、74間に隙間76が生じているが、その隙間76は多孔質円筒12、封止部74、およびエンドキャップ18によって密閉されていると共に、封止部74はエンドキャップ18と多孔質円筒12に強固に固着されているため、このような構成でも、前述した各実施例と同様な固着強度や気密性を確保することができるのである。   In the joining structure shown in FIG. 8, the sealing portion 56 is provided so as to be retracted from the end face 50 of the end cap 18, and the sealing portion 74 is provided with the porous membrane 60, the outer peripheral surface of the porous cylinder 12, and the end cap. 18 is formed so as to be fixed to 18. In this example, a gap 76 is formed between the sealing portions 56 and 74. The gap 76 is sealed by the porous cylinder 12, the sealing portion 74, and the end cap 18, and the sealing portion 74 is at the end. Since the cap 18 and the porous cylinder 12 are firmly fixed to each other, even with such a configuration, it is possible to ensure the same fixing strength and airtightness as in the above-described embodiments.

以上、本発明を図面を参照して詳細に説明したが、本発明は更に別の態様でも実施できる。   As mentioned above, although this invention was demonstrated in detail with reference to drawings, this invention can be implemented also in another aspect.

例えば、実施例においては、多孔質円筒12はアルミナまたはムライトで構成されていたが、用途に応じた通気性や強度、耐熱性等を有するものであれば、他のセラミック材料で構成することもでき、また、使用環境に応じた金属や樹脂等の種々の他の材料で構成することもできる。   For example, in the embodiment, the porous cylinder 12 is made of alumina or mullite. However, the porous cylinder 12 may be made of other ceramic materials as long as it has air permeability, strength, heat resistance, etc. according to the application. Moreover, it can also be comprised with various other materials, such as a metal and resin according to use environment.

また、緻密質円筒14等の構成材料は、多孔質円筒12、エンドキャップ16,18等の構成材料と同一或いは同一系統である必要もなく、樹脂や金属材料等で構成しても良い。但し、モジュール10が例えば温度変化の生じ得る環境で用いられる場合には、他の構成材料と可及的に熱膨張係数の相違の小さい材料で構成することが望ましい。例えば、コバール等の金属が好適に用いられる。   Further, the constituent material such as the dense cylinder 14 does not need to be the same or the same system as the constituent material such as the porous cylinder 12 and the end caps 16 and 18, and may be made of resin, metal material, or the like. However, when the module 10 is used, for example, in an environment in which a temperature change may occur, it is desirable that the module 10 be made of a material having as small a difference in thermal expansion coefficient as possible. For example, a metal such as Kovar is preferably used.

また、実施例においては、両端の開放された多孔質円筒12が用いられ、その一端20がエンドキャップ16で閉じられていたが、これに代えて有底の多孔質円筒を用いれば、エンドキャップ16は無用である。このような場合にも、少なくとも長手方向の一箇所には装置に組込み保持する等のための支持体を固着することが必要であり、その固着部分に密閉性が求められる場合には、本発明を同様に適用し得る。また、緻密質のエンドキャップ16に代えて、多孔質円筒12の周壁24よりも十分に気孔率の小さい多孔質材料から成るエンドキャップを用いることもできる。   Further, in the embodiment, the porous cylinder 12 having both ends opened is used and one end 20 thereof is closed by the end cap 16. However, if a bottomed porous cylinder is used instead, the end cap is used. 16 is useless. Even in such a case, it is necessary to fix a support for mounting and holding in the apparatus at least at one place in the longitudinal direction. Can be applied as well. Instead of the dense end cap 16, an end cap made of a porous material having a sufficiently smaller porosity than the peripheral wall 24 of the porous cylinder 12 can be used.

また、実施例においては、エンドキャップ16が多孔質円筒12の一端20を完全に閉じるものであったが、エンドキャップ18と同様に構成されることにより、複数本の多孔質円筒12内に流入した気体がその一端20側でも相互に流通し得るように構成されていても良い。   In the embodiment, the end cap 16 completely closes the one end 20 of the porous cylinder 12. However, the end cap 16 flows into the plurality of porous cylinders 12 by being configured similarly to the end cap 18. It is also possible to configure the gas so as to be able to circulate on the one end 20 side.

また、実施例においては、多孔質円筒12の本数が6本、緻密質円筒14の本数が1本とされると共に、何れも外径10(mm)、内径7(mm)とされていたが、これらの本数や大きさはモジュール10の用途に応じて適宜変更され、また、多孔質円筒12と緻密質円筒14とが同一の断面寸法・断面形状に形成されている必要もない。また、円筒に限られず、角筒状等の種々の断面形状の筒体も同様に用いられ得る。   In the embodiment, the number of the porous cylinders 12 is 6, the number of the dense cylinders 14 is 1, and the outer diameter is 10 (mm) and the inner diameter is 7 (mm). These numbers and sizes are appropriately changed according to the use of the module 10, and the porous cylinder 12 and the dense cylinder 14 do not need to be formed in the same cross-sectional dimension and cross-sectional shape. Moreover, it is not restricted to a cylinder, The cylinder of various cross-sectional shapes, such as a square cylinder shape, can be used similarly.

また、実施例においては、モジュール10が多孔質円筒12と緻密質円筒14との組合せで構成されていたが、緻密質円筒14は、用途に応じて適宜設けられるものであり、必ずしも設けられなくとも良い。   Further, in the embodiment, the module 10 is composed of the combination of the porous cylinder 12 and the dense cylinder 14, but the dense cylinder 14 is appropriately provided according to the use and is not necessarily provided. Good.

また、実施例においては、封止部56が950(℃)程度、多孔質膜60が650(℃)程度、封止部62が620(℃)程度でそれぞれ形成されていたが、これらの温度は用途に応じて定められる材料に応じて、この順序で低温となるように適宜変更される。   In the embodiment, the sealing portion 56 is formed at about 950 (° C.), the porous film 60 is formed at about 650 (° C.), and the sealing portion 62 is formed at about 620 (° C.). Is appropriately changed so that the temperature is lowered in this order according to the material determined according to the application.

また、実施例においては、気体分離に用いられるモジュール10に本発明が適用された場合について説明したが、本発明は、多孔質筒体の外周面に多孔質膜が設けられ且つ適宜の支持体で支持される構造体であれば、液体濾過等の他の種々の用途に用いられる多孔質筒体の支持構造に同様に適用される。   Further, in the examples, the case where the present invention is applied to the module 10 used for gas separation has been described. However, the present invention is provided with a porous film on the outer peripheral surface of the porous cylinder and an appropriate support. If it is a structure supported by (2), it is similarly applied to the support structure of the porous cylinder used for other various uses, such as liquid filtration.

また、実施例においては、多孔質円筒12を支持するためにも機能するエンドキャップ16,18がその両端に設けられていたが、中間部で多孔質筒体を支持する場合にも、本発明は同様に適用される。   Further, in the embodiment, the end caps 16 and 18 that function also to support the porous cylinder 12 are provided at both ends, but the present invention is also applicable to the case where the porous cylinder is supported at the intermediate portion. Applies as well.

また、実施例においては、円形の有底穴40や貫通孔52等を有するエンドキャップ16,18が支持部材として用いられていたが、多孔質筒体に気密に固着されるのであれば、これが周方向において分割されたような支持部材であっても差し支えない。   Further, in the embodiment, the end caps 16 and 18 having the circular bottomed hole 40, the through hole 52, and the like are used as the support members. However, if the end caps are airtightly fixed to the porous cylinder body, The support member may be divided in the circumferential direction.

その他、一々例示はしないが、本発明は、その主旨を逸脱しない範囲で種々変更を加え得るものである。   In addition, although not illustrated one by one, the present invention can be variously modified without departing from the gist thereof.

本発明の一実施例の支持構造を備えた多孔質円筒モジュールの全体を示す斜視図である。It is a perspective view which shows the whole porous cylindrical module provided with the support structure of one Example of this invention. 図1の多孔質円筒モジュールの縦断面を示す図である。It is a figure which shows the longitudinal cross-section of the porous cylindrical module of FIG. 図1の多孔質円筒モジュールのエンドキャップの接合構造を説明するための要部断面を拡大して示す図である。It is a figure which expands and shows the principal part cross section for demonstrating the joining structure of the end cap of the porous cylindrical module of FIG. 図1の多孔質円筒モジュールの製造方法の要部を説明するための工程図である。It is process drawing for demonstrating the principal part of the manufacturing method of the porous cylindrical module of FIG. エンドキャップの接合構造の他の例を説明するための図3に対応する図である。It is a figure corresponding to FIG. 3 for demonstrating the other example of the joining structure of an end cap. エンドキャップの接合構造の更に他の例を説明するための図3に対応する図である。It is a figure corresponding to FIG. 3 for demonstrating the further another example of the joining structure of an end cap. エンドキャップの接合構造の更に他の例を説明するための図3に対応する図である。It is a figure corresponding to FIG. 3 for demonstrating the further another example of the joining structure of an end cap. エンドキャップの接合構造の更に他の例を説明するための図3に対応する図である。It is a figure corresponding to FIG. 3 for demonstrating the further another example of the joining structure of an end cap. 従来のエンドキャップの接合構造の一例を説明するための断面図である。It is sectional drawing for demonstrating an example of the joining structure of the conventional end cap. 従来のエンドキャップの接合構造の他の一例を説明するための断面図である。It is sectional drawing for demonstrating another example of the joining structure of the conventional end cap.

符号の説明Explanation of symbols

10:多孔質円筒モジュール、12:多孔質円筒、16,18:エンドキャップ、56:封止部、60:多孔質膜、62:封止部、64:隙間 10: Porous cylindrical module, 12: Porous cylinder, 16, 18: End cap, 56: Sealed part, 60: Porous membrane, 62: Sealed part, 64: Gap

Claims (7)

周壁の外部から内部に連通する多数の連通気孔を備える多孔質筒体の長手方向の一部にその外周面を環状に覆う所定の支持部材が固着された支持構造であって、
前記多孔質筒体と前記支持部材とを相互に固着し且つそれらの間を密に封止した第1封着材から成る第1封止部と、
前記多孔質筒体の外周面を環状に覆って設けられ且つ前記連通気孔を外部に連通させる多孔質膜と、
前記多孔質膜と前記第1封止部との境界部に前記多孔質筒体の外周面が密閉されるように環状に設けられた前記多孔質膜の成膜温度よりも低軟化点の第2封着材から成る第2封止部と
を、含むことを特徴とする多孔質筒体の支持構造。
A support structure in which a predetermined support member that annularly covers an outer peripheral surface thereof is fixed to a part of a longitudinal direction of a porous cylindrical body including a plurality of continuous air holes communicating from the outside to the inside of the peripheral wall,
A first sealing portion made of a first sealing material that fixes the porous cylinder and the support member to each other and tightly seals between them;
A porous membrane that is provided so as to cover the outer peripheral surface of the porous cylinder in an annular shape and communicates the communication vent to the outside;
The first softening point is lower than the film forming temperature of the porous film provided in an annular shape so that the outer peripheral surface of the porous cylinder is sealed at the boundary between the porous film and the first sealing part. A support structure for a porous cylindrical body, comprising: a second sealing portion made of two sealing materials.
前記多孔質膜および前記第1封止部は前記多孔質筒体の長手方向において所定距離だけ相互に隔てて位置するものである請求項1の多孔質筒体の支持構造。 2. The support structure for a porous cylinder according to claim 1, wherein the porous film and the first sealing portion are spaced apart from each other by a predetermined distance in the longitudinal direction of the porous cylinder. 前記第1封止部は前記多孔質膜側の端部が前記支持部材から突き出したものであり、
前記第2封止部は前記第1封止部および前記支持部材に固着されたものである請求項1または請求項2の多孔質筒体の支持構造。
The first sealing portion has an end on the porous membrane side protruding from the support member,
The support structure for a porous cylindrical body according to claim 1 or 2, wherein the second sealing portion is fixed to the first sealing portion and the support member.
前記支持部材は、複数本の前記多孔質筒体を支持するものである請求項1乃至請求項3の何れかの多孔質筒体の支持構造。 The support structure for a porous cylinder according to any one of claims 1 to 3, wherein the support member supports a plurality of the porous cylinders. 前記支持部材は前記多孔質筒体の開放された端部に固着され且つその支持部材で外壁の少なくとも一部が構成された密室内にその開放端を開放するものである請求項1乃至請求項4の何れかの多孔質筒体の支持構造。 The support member is fixed to an open end portion of the porous cylindrical body and opens the open end into a closed chamber in which at least a part of the outer wall is formed by the support member. 4. A support structure for any one of the porous cylinders. 周壁の外部から内部に連通する多数の連通気孔を備える多孔質筒体の長手方向の一部にその外周面を環状に覆う所定の支持部材を固着する方法であって、
前記多孔質筒体の外周面に前記支持部材を第1封着材で固着することによりその第1封着材から成る第1封止部でそれらの間を密に封止する第1封止工程と、
前記支持部材が固着された前記多孔質筒体の外周面を前記連通気孔を外部に連通させる多孔質膜で覆う成膜工程と、
前記多孔質膜と前記第1封止部との境界部を前記多孔質膜の成膜温度よりも低軟化点の第2封着材で封止することによりその境界部上においてその第2封着材から成る環状の第2封止部で前記多孔質筒体の外周面を密閉する第2封止工程と
を、含むことを特徴とする多孔質筒体の支持部材の固着方法。
A method of adhering a predetermined support member that annularly covers the outer peripheral surface to a part of the longitudinal direction of a porous cylinder having a large number of communicating air holes communicating from the outside to the inside of the peripheral wall,
A first seal that tightly seals the support member to the outer peripheral surface of the porous cylinder with a first sealing member made of the first sealing material by fixing the supporting member with the first sealing material. Process,
A film forming step of covering the outer peripheral surface of the porous cylinder to which the support member is fixed with a porous film that communicates the communication vent to the outside;
The boundary between the porous film and the first sealing portion is sealed with a second sealing material having a softening point lower than the deposition temperature of the porous film, whereby the second seal is formed on the boundary. And a second sealing step of sealing the outer peripheral surface of the porous cylinder with an annular second sealing portion made of a dressing material.
前記多孔質膜は前記多孔質筒体の長手方向において前記第1封止部から所定距離だけ離隔した位置に形成されるものである請求項6の多孔質筒体の支持部材の固着方法。 The method for fixing a support member for a porous cylinder according to claim 6, wherein the porous film is formed at a position separated from the first sealing portion by a predetermined distance in the longitudinal direction of the porous cylinder.
JP2003294627A 2003-05-30 2003-08-18 Support structure for porous cylinder and fixing method for support member Expired - Lifetime JP4194905B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003294627A JP4194905B2 (en) 2003-08-18 2003-08-18 Support structure for porous cylinder and fixing method for support member
US10/852,211 US7255729B2 (en) 2003-05-30 2004-05-25 Porous cylindrical-body module, structure for supporting porous cylindrical bodies, and method for fastening a supporting member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003294627A JP4194905B2 (en) 2003-08-18 2003-08-18 Support structure for porous cylinder and fixing method for support member

Publications (2)

Publication Number Publication Date
JP2005058950A JP2005058950A (en) 2005-03-10
JP4194905B2 true JP4194905B2 (en) 2008-12-10

Family

ID=34371140

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003294627A Expired - Lifetime JP4194905B2 (en) 2003-05-30 2003-08-18 Support structure for porous cylinder and fixing method for support member

Country Status (1)

Country Link
JP (1) JP4194905B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7826649B2 (en) 2000-05-03 2010-11-02 Aperio Technologies, Inc. Data management in a linear-array-based microscope slide scanner
US8456522B2 (en) 2000-05-03 2013-06-04 Aperio Technologies, Inc. Achieving focus in a digital pathology system
US8565480B2 (en) 2004-05-27 2013-10-22 Leica Biosystems Imaging, Inc. Creating and viewing three dimensional virtual slides
US8582849B2 (en) 2000-05-03 2013-11-12 Leica Biosystems Imaging, Inc. Viewing digital slides
US8743195B2 (en) 2008-10-24 2014-06-03 Leica Biosystems Imaging, Inc. Whole slide fluorescence scanner
US8805050B2 (en) 2000-05-03 2014-08-12 Leica Biosystems Imaging, Inc. Optimizing virtual slide image quality
US9235041B2 (en) 2005-07-01 2016-01-12 Leica Biosystems Imaging, Inc. System and method for single optical axis multi-detector microscope slide scanner

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4571059B2 (en) * 2005-10-24 2010-10-27 株式会社ノリタケカンパニーリミテド Method for manufacturing porous cylindrical module
JP4490383B2 (en) * 2006-03-13 2010-06-23 日本碍子株式会社 Hydrogen gas separator fixing structure and hydrogen gas separator using the same
JP4990076B2 (en) * 2007-09-13 2012-08-01 日立造船株式会社 Zeolite separation membrane, method for producing the same, and bonding agent
CN102170962B (en) * 2008-10-01 2016-01-06 日立造船株式会社 Zeolitic separation membrane, its manufacture method and binding agent
CN102005443B (en) * 2009-09-02 2014-02-19 鸿富锦精密工业(深圳)有限公司 Light-emitting diode (LED) packaging structure and manufacturing method thereof
JP5888188B2 (en) * 2012-08-29 2016-03-16 日本特殊陶業株式会社 Hydrogen separator
JP7136722B2 (en) * 2019-03-04 2022-09-13 公益財団法人地球環境産業技術研究機構 Gas separator and membrane reactor
KR20220020968A (en) * 2019-08-13 2022-02-21 디아이씨 가부시끼가이샤 Tube unit and degassing module
CN111424306B (en) * 2020-04-13 2021-02-19 厦门通富微电子有限公司 Bubble stripping device and electroplating solution electroplating system
WO2021251144A1 (en) * 2020-06-08 2021-12-16 Dic株式会社 Tube unit, deaeration module, and method for producing tube unit

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8731260B2 (en) 2000-05-03 2014-05-20 Leica Biosystems Imaging, Inc. Data management in a linear-array-based microscope slide scanner
US9851550B2 (en) 2000-05-03 2017-12-26 Leica Biosystems Imaging, Inc. Fully automatic rapid microscope slide scanner
US7826649B2 (en) 2000-05-03 2010-11-02 Aperio Technologies, Inc. Data management in a linear-array-based microscope slide scanner
US8055042B2 (en) 2000-05-03 2011-11-08 Aperio Technologies, Inc. Fully automatic rapid microscope slide scanner
US8385619B2 (en) 2000-05-03 2013-02-26 Aperio Technologies, Inc. Fully automatic rapid microscope slide scanner
US8456522B2 (en) 2000-05-03 2013-06-04 Aperio Technologies, Inc. Achieving focus in a digital pathology system
US9729749B2 (en) 2000-05-03 2017-08-08 Leica Biosystems Imaging, Inc. Data management in a linear-array-based microscope slide scanner
US8582849B2 (en) 2000-05-03 2013-11-12 Leica Biosystems Imaging, Inc. Viewing digital slides
US7978894B2 (en) 2000-05-03 2011-07-12 Aperio Technologies, Inc. Fully automatic rapid microscope slide scanner
US7949168B2 (en) 2000-05-03 2011-05-24 Aperio Technologies, Inc. Data management in a linear-array-based microscope slide scanner
US8805050B2 (en) 2000-05-03 2014-08-12 Leica Biosystems Imaging, Inc. Optimizing virtual slide image quality
US8755579B2 (en) 2000-05-03 2014-06-17 Leica Biosystems Imaging, Inc. Fully automatic rapid microscope slide scanner
US9535243B2 (en) 2000-05-03 2017-01-03 Leica Biosystems Imaging, Inc. Optimizing virtual slide image quality
US9386211B2 (en) 2000-05-03 2016-07-05 Leica Biosystems Imaging, Inc. Fully automatic rapid microscope slide scanner
US9521309B2 (en) 2000-05-03 2016-12-13 Leica Biosystems Imaging, Inc. Data management in a linear-array-based microscope slide scanner
US8565480B2 (en) 2004-05-27 2013-10-22 Leica Biosystems Imaging, Inc. Creating and viewing three dimensional virtual slides
US9235041B2 (en) 2005-07-01 2016-01-12 Leica Biosystems Imaging, Inc. System and method for single optical axis multi-detector microscope slide scanner
US9523844B2 (en) 2008-10-24 2016-12-20 Leica Biosystems Imaging, Inc. Whole slide fluorescence scanner
US8743195B2 (en) 2008-10-24 2014-06-03 Leica Biosystems Imaging, Inc. Whole slide fluorescence scanner

Also Published As

Publication number Publication date
JP2005058950A (en) 2005-03-10

Similar Documents

Publication Publication Date Title
JP4194905B2 (en) Support structure for porous cylinder and fixing method for support member
US20050011358A1 (en) Porous cylindrical-body module, structure for supporting porous cylindrical bodies, and method for fastening a supporting member
US9969645B2 (en) Method for sealing an oxygen transport membrane assembly
EP3124097B1 (en) Method for producing monolithic separation membrane structure
JP4748730B2 (en) Ceramic filter and end face sealing method thereof
US20030184954A1 (en) Separation module and method for producing the same
JP2000312811A (en) Gas separation module
JP2003112019A (en) Method for producing porous ceramic hollow fiber membrane
JP6588622B2 (en) Monolith type separation membrane structure
US20080142432A1 (en) Bag tube shaped body with porous multilayer structure
KR20190090803A (en) Membrane tube
US10449484B2 (en) Monolithic substrate, monolithic separation membrane structure, and method for producing monolithic substrate
JP7136722B2 (en) Gas separator and membrane reactor
JP4961641B2 (en) Ceramic hollow fiber membrane module
JP6264692B2 (en) Manufacturing method of substrate tube
JP2009195866A (en) Oxygen separating membrane element, joining method of this element and joining material
JP3747996B2 (en) Gas filter manufacturing method
JP4857538B2 (en) Hollow fiber membrane module
JP4013794B2 (en) Porous ceramic hollow fiber membrane module
JP2006007165A (en) Fluid separation filter structure and fluid separation module using the same
JP4342214B2 (en) Porous cylindrical module
JP2018079455A (en) Zeolite membrane element
JP6479534B2 (en) Separation membrane structure and method for producing the same
JP6421139B2 (en) Monolith type separation membrane structure
JP6279891B2 (en) Filter structure and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080924

R150 Certificate of patent or registration of utility model

Ref document number: 4194905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term