JP4194515B2 - Two-dimensional optical waveguide device and optoelectronic wiring board using the same - Google Patents

Two-dimensional optical waveguide device and optoelectronic wiring board using the same Download PDF

Info

Publication number
JP4194515B2
JP4194515B2 JP2004097933A JP2004097933A JP4194515B2 JP 4194515 B2 JP4194515 B2 JP 4194515B2 JP 2004097933 A JP2004097933 A JP 2004097933A JP 2004097933 A JP2004097933 A JP 2004097933A JP 4194515 B2 JP4194515 B2 JP 4194515B2
Authority
JP
Japan
Prior art keywords
optical waveguide
light
light receiving
core layer
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004097933A
Other languages
Japanese (ja)
Other versions
JP2005283970A (en
Inventor
達朗 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004097933A priority Critical patent/JP4194515B2/en
Publication of JP2005283970A publication Critical patent/JP2005283970A/en
Application granted granted Critical
Publication of JP4194515B2 publication Critical patent/JP4194515B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Structure Of Printed Boards (AREA)
  • Optical Integrated Circuits (AREA)

Description

本発明は、二次元光導波装置(二次元光導波路回路)、及びそれを用いた光電融合配線基板(電気配線層と光配線層(光導波装置)が混載された配線基板)に関するものである。 The present invention relates to a two-dimensional optical waveguide device (two-dimensional optical waveguide circuit) and a photoelectric fusion wiring substrate using the same (a wiring substrate in which an electric wiring layer and an optical wiring layer (optical waveguide device) are mixedly mounted). .

今日の携帯電話や個人情報端末の急速な普及に伴い、機器の更なる小型・軽量化また高機能化が求められている。しかし、小型・軽量化また高機能化により回路基板の高速化と高集積化が進み、信号遅延、EMI(Electromagnetic Interference:電磁干渉ノイズ)の発生などの問題への対応が急務となっている。これらの問題を解決する手段として、従来の電気配線において問題となっていた信号遅延、信号劣化、及び配線から放射される電磁干渉ノイズが克服ないし低減され、かつ高速伝送が可能である光配線技術が期待されている。この光配線の利点を用いた装置として次の様なものがある。 With the rapid spread of today's mobile phones and personal information terminals, there is a demand for further downsizing, weight reduction and higher functionality of devices. However, miniaturization, weight reduction, and higher functionality have led to higher speed and higher integration of circuit boards, and there is an urgent need to deal with problems such as signal delay and EMI (Electromagnetic Interference). As a means to solve these problems, optical wiring technology that can overcome or reduce signal delay, signal degradation, and electromagnetic interference noise radiated from wiring, which has been a problem in conventional electrical wiring, and enables high-speed transmission. Is expected. There are the following devices using the advantages of this optical wiring.

1つの光回路基板では、光配線部と電気配線部を分離し、電子機器からの電圧信号により基体上に設けられた光スイッチ或いは光変調器を駆動させて該基体上に設けられた光導波路を伝播する光を変調し、こうして電気信号を光信号に変換して伝送し、さらに該基体或いは他の基体上に設けられた受光素子により光信号を電気信号に変換して、他の電子機器または同一の電子機器に信号を伝達する(特許文献1参照)。また、他の光導波装置においては、光導波路に対して垂直に出入射される光を効率良く結合させるために、線状のポリマー導波路に45度傾いたミラーを形成している(特許文献2参照)。
特開平9-96746号公報 特開2000-199827号公報
In one optical circuit board, the optical wiring section and the electrical wiring section are separated, and an optical switch or optical modulator provided on the substrate is driven by a voltage signal from an electronic device to provide an optical waveguide provided on the substrate. The light propagating light is modulated, thus converting the electric signal into an optical signal and transmitting it, and further converting the optical signal into an electric signal by a light receiving element provided on the base body or another base body. Alternatively, a signal is transmitted to the same electronic device (see Patent Document 1). In other optical waveguide devices, a mirror tilted by 45 degrees is formed in a linear polymer waveguide in order to efficiently combine light incident / exit perpendicular to the optical waveguide (Patent Document). 2).
JP 9-96746 A Japanese Unexamined Patent Publication No. 2000-199827

上記特許文献1の方法は、電気配線における問題点を光配線(光インターコネクト)で補ったものであるが、光配線が伝送線路(線状のポリマー導波路)であるため、電気/光信号或いは光/電気信号変換を行う場所が規定されてしまう。また、上記特許文献2の方法では、端部に45度傾いたミラーを有した線状光導波路に光信号が効率良く結合するように発光素子を実装すること、及び線状光導波路を伝播してきた光信号を効率良く受光するように受光器を実装することは、高度なアライメント精度が要求され、困難である。また、線状の光導波路であるため、複数の光導波路を形成する場合には、発光素子及び受光素子の位置が制限され設計の自由度が小さい。さらには、光信号の伝送効率及び伝送速度が小さくなることについては考慮されていない。 The method of Patent Document 1 described above is a method in which problems in electrical wiring are compensated by optical wiring (optical interconnect). However, since the optical wiring is a transmission line (linear polymer waveguide), an electrical / optical signal or A place to perform optical / electrical signal conversion is defined. In the method of Patent Document 2, a light-emitting element is mounted so that an optical signal is efficiently coupled to a linear optical waveguide having a mirror inclined at 45 degrees at the end, and the linear optical waveguide is propagated. It is difficult to mount a photoreceiver so as to efficiently receive an optical signal because a high degree of alignment accuracy is required. Moreover, since it is a linear optical waveguide, when forming a some optical waveguide, the position of a light emitting element and a light receiving element is restrict | limited, and the freedom degree of design is small. Furthermore, it is not considered that the transmission efficiency and transmission speed of the optical signal are reduced.

そこで上記課題に鑑み、本出願に係る第1の発明の二次元光導波装置は、シート状のコア層を少なくとも含み、発光素子及び受光素子の配置されるべき個所の近傍に光路変換用の構造体が配置された二次元光導波装置であって、前記発光素子近傍に配置された光路変換用の構造体の高さと、前記受光素子近傍に配置された光路変換用の構造体の高さがほぼ同じであり、発光素子の配置されるべき個所に対応するコア層の厚さが、受光素子の配置されるべき個所に対応するコア層の厚さより厚く、かつ該受光素子近傍に配置された光路変換用の構造体の最上部と該受光素子の受光面が接していることを特徴とする。ここにおいて、発光素子及び受光素子がコア層上に配置された構造で言えば、発光素子の出射口から発光素子から出射された光が結合して光路変換される構造体の最上部までの距離が、コア層を伝播した光が結合して光路変換される構造体の最上部から受光素子の受光面までの距離より大きくなる様に設定されている。この構成では、発光素子より出射された光をより多く光導波路層に導波することができ、また光導波路層を伝播した光を効率良く受光素子に結合することができる。 Accordingly, in view of the above problems, the two-dimensional optical waveguide device of the first invention according to the present application includes at least a sheet-like core layer, and an optical path changing structure in the vicinity of a place where the light emitting element and the light receiving element are to be disposed. A two-dimensional optical waveguide device in which a body is disposed, wherein the height of the optical path converting structure disposed in the vicinity of the light emitting element and the height of the optical path converting structure disposed in the vicinity of the light receiving element are The thickness of the core layer corresponding to the place where the light emitting element is to be arranged is substantially the same as the thickness of the core layer corresponding to the place where the light receiving element is to be arranged , and is disposed in the vicinity of the light receiving element . The uppermost part of the optical path changing structure is in contact with the light receiving surface of the light receiving element . Here, in the structure in which the light emitting element and the light receiving element are arranged on the core layer, the distance from the light emitting element exit to the top of the structure where the light emitted from the light emitting element is combined to change the optical path. However, the distance is set to be larger than the distance from the uppermost part of the structure to which the light propagated through the core layer is combined to change the optical path to the light receiving surface of the light receiving element. In this configuration, more light emitted from the light emitting element can be guided to the optical waveguide layer, and light propagated through the optical waveguide layer can be efficiently coupled to the light receiving element.

また、本出願に係る第2の発明の二次元光導波装置の製造方法は、コア層の厚さを変える工程を含み、該工程において、コア層の一部をエッチングすることにより、コア層の厚さを変えることを特徴としたり、コア層の厚さを変える工程を含み、該工程において、コア層を形成する材料として感光性を有するものを用い、該コア層を形成する材料の一部を露光・現像することにより、コア層の厚さを変えることを特徴としたりする。これらの製造方法において、コア層の厚さを変える工程を精度良く行うことができ、特に感光性を有した材料を用いた場合では、少ない工程で製造を行うことが可能である。 The method for manufacturing a two-dimensional optical waveguide device according to the second invention of the present application includes a step of changing the thickness of the core layer, and in this step, by etching a part of the core layer, Including a step of changing the thickness or changing the thickness of the core layer, wherein a material having photosensitivity is used as a material for forming the core layer, and a part of the material for forming the core layer It is characterized by changing the thickness of the core layer by exposing and developing the film. In these manufacturing methods, the step of changing the thickness of the core layer can be performed with high accuracy, and in particular, when a material having photosensitivity is used, the manufacturing can be performed with fewer steps.

また、本出願に係る第3の発明の光電融合配線基板は、上記の二次元光導波装置を電気回路基板と電気的に接続が得られるように形成した光電融合配線基板であって、電気回路基板の信号の一部または全てを二次元光導波装置を用いた光信号の授受によって配線させる様に構成されたことを特徴とする。 Further, a photoelectric fusion wiring board according to a third aspect of the present invention is a photoelectric fusion wiring board formed so that the above-described two-dimensional optical waveguide device can be electrically connected to an electric circuit board. The present invention is characterized in that a part or all of the signals on the substrate are wired by transmitting and receiving an optical signal using a two-dimensional optical waveguide device.

上記構成を有する本発明によれば、二次元光導波装置ないし二次元光導波路回路において、発光素子の出射口から発光素子用の光路変換構造体の頂点までの距離と、受光素子用の光路変換構造体の頂点から受光素子の受光面までの距離とを制御することにより、二次元光導波路層への光結合効率を上げることが可能となり、また二次元光導波路層内を伝播した光を受光素子へ効率良く結合させることが可能となり、結果として光信号伝送の伝送効率(信頼性)及び伝送速度を上げることが可能となる。 According to the present invention having the above-described configuration, in the two-dimensional optical waveguide device or the two-dimensional optical waveguide circuit, the distance from the emission port of the light emitting element to the apex of the optical path conversion structure for the light emitting element, and the optical path conversion for the light receiving element By controlling the distance from the top of the structure to the light-receiving surface of the light-receiving element, it is possible to increase the optical coupling efficiency to the two-dimensional optical waveguide layer, and to receive the light propagated in the two-dimensional optical waveguide layer As a result, it is possible to efficiently couple to the element, and as a result, it is possible to increase the transmission efficiency (reliability) and transmission speed of optical signal transmission.

本発明の二次元光導波装置、光電融合配線基板は上記の如き基本構成を有するが、この基本構成に基づいて次の様な形態も可能である。本発明の実施の形態を説明する。本発明では二次元光導波路回路におけるコア層に発光素子より出射された光を結合させるとき、またコア層を導波した光を受光素子に結合させるときに、それぞれの結合効率を上げる方法を、発光素子及び受光素子近傍に配置した光路変換構造体と発光素子の出射口及び受光素子の受光面との距離を制御することで行っている。   The two-dimensional optical waveguide device and optoelectronic interconnection substrate of the present invention have the basic configuration as described above, but the following modes are possible based on this basic configuration. An embodiment of the present invention will be described. In the present invention, when the light emitted from the light emitting element is coupled to the core layer in the two-dimensional optical waveguide circuit, and when the light guided through the core layer is coupled to the light receiving element, a method of increasing each coupling efficiency, This is done by controlling the distance between the light path conversion structure disposed in the vicinity of the light emitting element and the light receiving element and the light emitting surface of the light emitting element and the light receiving surface of the light receiving element.

より具体的には、発光素子の配置されるべき個所に対応するコア層の厚さを、受光素子の配置されるべき個所に対応するコア層の厚さより厚くできる。これにより、発光素子の出射口から発光素子から出射された光が結合して光路変換される構造体の最上部までの距離と、コア層を伝播した光が結合して光路変換される構造体の最上部から受光素子の受光面までの距離を異なるものとできる。ここにおいて、コア層の厚さは、徐々に変化するようにできる。こうした構成の場合、発光素子用光路変換構造体と受光素子用光路変換構造体はほぼ同じ高さとできる。 More specifically, the thickness of the core layer corresponding to the place where the light emitting element is to be arranged can be made larger than the thickness of the core layer corresponding to the place where the light receiving element is to be arranged. Thereby, the distance from the exit of the light emitting element to the top of the structure where the light emitted from the light emitting element is combined and the optical path is changed, and the structure where the light propagated through the core layer is combined and the optical path is changed The distance from the uppermost part of the light receiving element to the light receiving surface of the light receiving element can be different. Here, the thickness of the core layer can be changed gradually. In such a configuration, the light path conversion structure for the light emitting element and the light path conversion structure for the light receiving element can be substantially the same height.

また、発光素子から出射される光が結合して光路変換される構造体の形状と、コア層を伝播する光が結合して光路変換される構造体の形状が異なるようにもできる。これにより、発光素子の出射口から発光素子から出射された光が結合して光路変換される構造体の最上部までの距離と、コア層を伝播した光が結合して光路変換される構造体の最上部から受光素子の受光面までの距離を異なるものとできて、受光効率を上げられる。この場合、コア層の厚さをほぼ均一であるようにできる。 In addition, the shape of the structure in which light emitted from the light emitting element is combined to change the optical path may be different from the shape of the structure in which light propagating through the core layer is combined to change the optical path. Thereby, the distance from the exit of the light emitting element to the top of the structure where the light emitted from the light emitting element is combined and the optical path is changed, and the structure where the light propagated through the core layer is combined and the optical path is changed The distance from the uppermost part of the light receiving element to the light receiving surface of the light receiving element can be made different so that the light receiving efficiency can be increased. In this case, the thickness of the core layer can be made substantially uniform.

また、受光素子の配置されるべき個所に対応するコア層の厚さを、コア層を伝播する光が結合して光路変換される構造体の高さと同じにして、かつ受光素子近傍に配置された光路変換用の構造体の最上部と受光素子の受光面が接しているようにもできる。これにより、受光効率を上げることが可能となる。 In addition, the thickness of the core layer corresponding to the location where the light receiving element is to be arranged is the same as the height of the structure in which the light propagating through the core layer is combined and the optical path is changed, and is disposed in the vicinity of the light receiving element. Further, the uppermost part of the optical path changing structure and the light receiving surface of the light receiving element may be in contact with each other. As a result, the light receiving efficiency can be increased.

また、発光素子及び受光素子は単一でも複数でも配置され得る(例えば、アレイ状に配置)。さらに、光路変換構造体の形状が半球形状、円錐形状、或いは多角錐形状をなしており、光路変換構造体が発光素子からの出射光が結合するように発光素子の近傍に形成され、発光素子はその放射角を変化させ得る様に構成され、さらに光路変換構造体は、これに結合した発光素子からの出射光をビーム光、或いは放射角に対応した広がり角を持つ拡散光として二次元光導波路内部に伝播するように光路変換する様に構成することもできる。 Further, the light emitting element and the light receiving element may be arranged as a single element or a plurality of elements (for example, arranged in an array). Furthermore, the optical path conversion structure has a hemispherical shape, a conical shape, or a polygonal pyramid shape, and the optical path conversion structure is formed in the vicinity of the light emitting element so that the light emitted from the light emitting element is coupled. Is configured so that the radiation angle can be changed, and the optical path conversion structure is a two-dimensional light beam that emits light emitted from the light emitting element coupled thereto as beam light or diffused light having a spread angle corresponding to the radiation angle. The optical path can be changed so as to propagate inside the waveguide.

光導波路として二次元光導波路層を用いることにより、電気信号を光信号に変換するための発光素子や光信号を電気信号に変換するための受光素子の配置があまり制限されることなく、かつ二次元光導波路層全域を使い柔軟に光信号を再構成できる二次元光導波装置や光電融合配線基板を容易に実現できる。 By using a two-dimensional optical waveguide layer as the optical waveguide, the arrangement of light emitting elements for converting electrical signals into optical signals and light receiving elements for converting optical signals into electrical signals is not so limited, and two A two-dimensional optical waveguide device and an optoelectronic wiring board that can flexibly reconfigure an optical signal using the entire two-dimensional optical waveguide layer can be easily realized.

以下に、添付図面を参照し、より具体的な実施例を挙げて本発明の実施の形態を具体的に説明する。
(実施例1)
図1は実施例1による二次元光導波路回路を示した図である。図1において、100は発光素子、102は受光素子、104は入射側光路変換構造体、106は出射側光路変換構造体、108はクラッド層、そして110はコア層である。発光素子100と受光素子102と光路変換構造体104と106は、発光素子100より出射された光が入射側光路変換構造体104により光路変換され、光路変換された光が二次元光導波路のコア層110内を伝播し、伝播した光が出射側光路変換構造体106により光路変換され、受光素子102に結合するような位置関係にある。シート状の二次元光導波路層は、屈折率の異なる材料の組み合わせによりコア層110(屈折率の比較的大きい部分)とクラッド層108(屈折率の比較的小さい部分)より構成される。なお、図1ではコア層110の上部にクラッド層を形成していないが必要に応じて形成してもよい。本実施例では、屈折率1.60のポリシラン系樹脂をコア層110に用い、屈折率1.55のポリシラン系樹脂をクラッド層108に用いた。また、光路変換構造体として、半径25μmの半球状の構造体を用いた。本実施例では、受光素子102の受光面と出射側光路変換構造体106の頂点との距離がなくなるように(受光素子102と出射側光路変換構造体106は接している)、かつ発光素子100の出射口と入射側光路変換構造体104の頂点との距離が少なくとも75μm以上となるようにコア層110の厚さを制御している。後者について、この程度の距離があれば、或る程度の放射角を持つ発光素子100からの光が、あまり発光素子100側に戻ることなく、光路変換され、二次元光導波路のコア層110内を伝播して行くようになる。
Embodiments of the present invention will be specifically described below with reference to the accompanying drawings and more specific examples.
(Example 1)
FIG. 1 is a diagram showing a two-dimensional optical waveguide circuit according to the first embodiment. In FIG. 1, 100 is a light emitting element, 102 is a light receiving element, 104 is an incident side optical path changing structure, 106 is an outgoing side optical path changing structure, 108 is a cladding layer, and 110 is a core layer. The light emitting element 100, the light receiving element 102, and the optical path conversion structures 104 and 106 are configured such that light emitted from the light emitting element 100 is optically converted by the incident-side optical path conversion structure 104, and the optical path converted light is the core of the two-dimensional optical waveguide. The light propagates through the layer 110, and the propagated light is optically path-converted by the exit-side optical path conversion structure 106 and is coupled to the light receiving element 102. The sheet-like two-dimensional optical waveguide layer is composed of a core layer 110 (a portion having a relatively high refractive index) and a clad layer 108 (a portion having a relatively low refractive index) by a combination of materials having different refractive indexes. In FIG. 1, a clad layer is not formed on the core layer 110, but may be formed if necessary. In this example, a polysilane resin having a refractive index of 1.60 was used for the core layer 110, and a polysilane resin having a refractive index of 1.55 was used for the cladding layer 108. A hemispherical structure with a radius of 25 μm was used as the optical path changing structure. In the present embodiment, the distance between the light receiving surface of the light receiving element 102 and the apex of the emission side optical path changing structure 106 is eliminated (the light receiving element 102 and the emission side optical path changing structure 106 are in contact), and the light emitting element 100 The thickness of the core layer 110 is controlled so that the distance between the light exit and the apex of the incident-side optical path conversion structure 104 is at least 75 μm or more. With respect to the latter, if there is such a distance, the light from the light emitting element 100 having a certain radiation angle is optically changed without returning to the light emitting element 100 side so much, and is within the core layer 110 of the two-dimensional optical waveguide. Will begin to propagate.

次に、本実施例で示した二次元光導波装置の作製方法を説明する。図2は、二次元光導波装置の製造方法を説明する模式図である。同図において、200は基板、202はクラッド層、204は光路変換構造体材料、206はフォトマスク、208は第1形状を有する構造体、210は第2形状を有する構造体、212は反射膜材料、214は反射膜、216はコア層、218は発光素子、220は受光素子、そして222は素子駆動用パッドである。 Next, a method for manufacturing the two-dimensional optical waveguide device shown in this embodiment will be described. FIG. 2 is a schematic diagram for explaining a method of manufacturing a two-dimensional optical waveguide device. In the figure, 200 is a substrate, 202 is a cladding layer, 204 is an optical path changing structure material, 206 is a photomask, 208 is a structure having a first shape, 210 is a structure having a second shape, and 212 is a reflective film. Material, 214 is a reflective film, 216 is a core layer, 218 is a light emitting element, 220 is a light receiving element, and 222 is an element driving pad.

まず図2(a)に示すように、傾斜のついた基板(例えばSiウエハ)200上にクラッド層材料であるポリシラン系樹脂をスピンコーターを用いて塗布し、ベーキングを行い膜厚20μmのクラッド層202を形成する。その後、図2(b)に示すように、光路変換構造体材料である感光性を有した熱可塑性材料204をスピンコーターを用いて塗布し、フォトマスク206(半径25μmの円形パターン光透過部を有する)を用いて露光する。これらの材料は、各材料の粘度に応じた適当な回転速度でスピンコートすることで、図示のごとく、ほぼ均一な厚さで形成される。   First, as shown in FIG. 2 (a), a polysilane-based resin, which is a clad layer material, is applied onto a tilted substrate (for example, Si wafer) 200 using a spin coater and baked to form a clad layer having a thickness of 20 μm. 202 is formed. Thereafter, as shown in FIG. 2 (b), a photosensitive thermoplastic material 204, which is an optical path changing structure material, is applied using a spin coater, and a photomask 206 (a circular pattern light transmitting portion having a radius of 25 μm is formed). Exposure). These materials are formed with a substantially uniform thickness as shown in the figure by spin coating at an appropriate rotational speed corresponding to the viscosity of each material.

その後、図2(c)に示すように、現像過程を経て半径25μm、高さ17μmの円柱状の第1形状を有する構造体208を形成する。この状態で、図2(d)に示すように、150
℃のホットプレート上で4分間加熱し、感光性を有した熱可塑性材料で形成した前記第1形状を有する構造体208に対して熱処理による溶融・再固化を行い、半径25μmの半球状に変形した第2形状を有する構造体210を形成する。
Thereafter, as shown in FIG. 2 (c), a structure 208 having a first cylindrical shape having a radius of 25 μm and a height of 17 μm is formed through a development process. In this state, as shown in FIG.
Heated for 4 minutes on a hot plate at ℃, melted and re-solidified the structure 208 with the above first shape made of photosensitive thermoplastic material, transformed into a hemisphere with a radius of 25μm The structure 210 having the second shape is formed.

次に、図2(e)に示すように、電子ビーム蒸着装置を用いて反射膜材料212であるCr / Auを蒸着する。この反射膜により、波長660 nmの光において反射率90%以上を得ることができる。続いて、図2(f)に示すように、スピンコーターを用いてフォトレジストを塗布し、露光・現像過程を経た後、半球状に変形した第2形状を有する構造体210の表面のみを覆うようにレジストマスク(図示せず)を形成し、その後Au、Crの順でウエットエッチングを行い、半球状に変形した第2形状を有する構造体210の表面のみに反射膜214が形成される。 Next, as shown in FIG. 2 (e), Cr / Au as the reflective film material 212 is vapor-deposited using an electron beam vapor deposition apparatus. With this reflective film, it is possible to obtain a reflectance of 90% or more for light having a wavelength of 660 nm. Subsequently, as shown in FIG. 2 (f), a photoresist is applied using a spin coater, and after the exposure / development process, only the surface of the structure 210 having the second shape deformed into a hemisphere is covered. Thus, a resist mask (not shown) is formed, and then wet etching is performed in the order of Au and Cr, and the reflective film 214 is formed only on the surface of the structure 210 having the second shape deformed into a hemisphere.

続いて、図2(g)に示すように、クラッド層202よりも屈折率の大きいポリシラン系樹脂をスピンコーターを用いて塗布し、ベーキングを行いコア層218を形成する。ここでは、コア層218の材料は、材料の粘度に応じた適当な回転速度でスピンコートすることで、図示のごとく、入射側(左側)光路変換構造体210の方で比較的厚く、出射側(右側)光路変換構造体210の方で比較的薄く形成され得る。 Subsequently, as shown in FIG. 2 (g), a polysilane resin having a refractive index larger than that of the clad layer 202 is applied using a spin coater and baked to form the core layer 218. Here, the material of the core layer 218 is spin-coated at an appropriate rotation speed according to the viscosity of the material, and as shown in the drawing, the incident side (left side) optical path changing structure 210 is relatively thick and the emission side. (Right side) The optical path changing structure 210 can be formed relatively thin.

次に、図2(h)に示すように、半球状の第2形状を有する構造体210に発光素子218からの出射光が結合するように、また半球状の第2形状を有する構造体210に結合した伝播光が受光素子220に結合するように、発光素子218及び受光素子220をコア層216上に実装するため、コア層216上に素子駆動用パッド(Ti/Au)222を形成する。続いて、図2(i)に示すように、発光素子218及び受光素子220を素子駆動用パッド222上にフリップチップボンダーを用いて実装し、二次元光導波路回路を得る。 Next, as shown in FIG. 2 (h), the structure 210 having the hemispherical second shape is coupled so that the emitted light from the light emitting element 218 is coupled to the structure 210 having the hemispherical second shape. An element driving pad (Ti / Au) 222 is formed on the core layer 216 in order to mount the light emitting element 218 and the light receiving element 220 on the core layer 216 such that the propagation light coupled to the light receiving element 220 is coupled. . Subsequently, as shown in FIG. 2 (i), the light emitting element 218 and the light receiving element 220 are mounted on the element driving pad 222 by using a flip chip bonder to obtain a two-dimensional optical waveguide circuit.

この様にして作製される二次元光導波路回路は、図3に示す如く、従来のものと比較して、外部へ放出される光を減少させられるため、光信号の伝送効率を上げることが可能となる(図3(a)が従来のものを示し、
図3(b)が本実施例のものを示す)。また、反射膜214を有した半球状に変形した第2形状を有する構造体210が配置されているため、半球状の構造体210の上面から入射された光は、効率良く散乱され、コア層216全域に伝搬させられる。一方、コア層216を伝搬してきた光が半球状に変形した第2形状を有する構造体210により散乱され、半球状の構造体210の上方へ光を出射させられる。
As shown in FIG. 3, the two-dimensional optical waveguide circuit manufactured in this way can reduce the amount of light emitted to the outside as compared with the conventional one, so that the transmission efficiency of the optical signal can be increased. (Figure 3 (a) shows the conventional one,
FIG. 3 (b) shows this example). In addition, since the structure 210 having the second shape deformed into a hemisphere having the reflective film 214 is disposed, the light incident from the upper surface of the hemisphere structure 210 is efficiently scattered, and the core layer Propagated throughout 216. On the other hand, the light propagating through the core layer 216 is scattered by the structure 210 having the second shape deformed into a hemisphere, and the light is emitted above the hemisphere structure 210.

本実施例では、クラッド層及びコア層材料の組み合わせとして、それぞれ屈折率の異なるポリシラン系樹脂を用いたが、これに限定されなく、コア層材料がクラッド層材料と比較して屈折率が大きい材料であれば、ポリイミド樹脂やアクリル樹脂などを用いた組み合わせであってもよい。また、屈折率の値も実施例の上記値に限定されない。   In this embodiment, polysilane resins having different refractive indexes were used as the combination of the cladding layer and the core layer material. However, the present invention is not limited to this, and the core layer material has a higher refractive index than the cladding layer material. If so, a combination using a polyimide resin or an acrylic resin may be used. Further, the value of the refractive index is not limited to the above value of the embodiment.

また、本実施例では、基板としてSiウエハを用いたが、これに限定されなくガラス基板やセラミック基板であってもよい。また、基板は、コア層材料と比較して屈折率の小さな樹脂フィルムであってもよく、この樹脂フィルム自身をクラッド層として機能させ、折り曲げ可能な二次元光導波装置を得られる。また、クラッド層の層厚を20μmとしたが、これに限定されなく任意の層厚であってもよい。 In this embodiment, the Si wafer is used as the substrate. However, the present invention is not limited to this, and a glass substrate or a ceramic substrate may be used. Further, the substrate may be a resin film having a refractive index smaller than that of the core layer material, and the resin film itself functions as a cladding layer to obtain a foldable two-dimensional optical waveguide device. In addition, although the thickness of the cladding layer is 20 μm, the thickness is not limited to this and may be any layer thickness.

また、本実施例では、第1形状を有する構造体208を半径25μm、高さ17μmの円柱形状としたが、これに限定されなく、楕円柱、角柱などの形状、また任意のサイズでもよい。また、半径25μmの半球状の光路変換構造体210を用いたが、これに限定されるものではなく、発光素子の放射角、光導波路層の屈折率及び光導波路層厚との兼ね合いにより、任意の大きさを選定できる。また、光路変換構造体を半球状としたがこれに限定されなく、楔形形状、円錐形状或いは多角錐形状であってもよい。 In this embodiment, the structure 208 having the first shape has a cylindrical shape with a radius of 25 μm and a height of 17 μm. However, the present invention is not limited to this, and may be a shape such as an elliptical column or a rectangular column or any size. In addition, the hemispherical optical path conversion structure 210 having a radius of 25 μm was used, but the invention is not limited to this, and it may be arbitrarily determined depending on the emission angle of the light emitting element, the refractive index of the optical waveguide layer, and the optical waveguide layer thickness. Can be selected. Moreover, although the optical path changing structure is hemispherical, it is not limited to this, and may be a wedge shape, a conical shape, or a polygonal pyramid shape.

また、本実施例では、光導波路層を二次元光導波路層(フィルム状の光導波路)としたがこれに限定されなく、ライン導波路(一次元光導波路)、或いは該二次元光導波路層(フィルム状の光導波路)と該ライン導波路(一次元光導波路)の両者を混載した構造を有する光導波路層であってもよい。ライン導波路は、例えば、フィルム状の光導波路層内に有効屈折率の比較的大きいライン状部分を作製して(例えば、光導波路層上に凸状ライン状部を形成する)得られる。 In this embodiment, the optical waveguide layer is a two-dimensional optical waveguide layer (film-shaped optical waveguide). However, the present invention is not limited to this, and the line waveguide (one-dimensional optical waveguide) or the two-dimensional optical waveguide layer ( An optical waveguide layer having a structure in which both a film-shaped optical waveguide) and the line waveguide (one-dimensional optical waveguide) are mixed may be used. The line waveguide is obtained, for example, by producing a line-shaped portion having a relatively large effective refractive index in the film-shaped optical waveguide layer (for example, forming a convex line-shaped portion on the optical waveguide layer).

本実施例では、一方の端部から他方の端部に向かって徐々に傾斜した面を持つ基板を用いて、徐々に厚さが変化するコア層を形成したが、次の様な形態も可能である。例えば、両側或いは四方から中央部に向かって徐々に下降した傾斜面を持つ基板を用いて、そこに、中央部から端部に向かって徐々に厚さが薄くなっていくコア層(緩やかに屋根状または円錐状に厚さが変化するコア層)を形成する。そして、中央部の厚いコア層のところに発光素子を配置し、端部の方の薄いコア層のところに受光素子を配置する形態である。更には、こうした屋根状または円錐状の緩やかな傾斜部を複数(例えば、2つ)有する面を持つ基板を用い、そこに上記の如くコア層を形成して、コア層の薄い境界部分(例えば、厚さをゼロにした境界部分)を境に、発光素子と受光素子の間で光を授受する領域を複数に分割するような形態も可能である。   In this example, a core layer having a gradually changing thickness was formed using a substrate having a surface gradually inclined from one end portion toward the other end portion, but the following forms are also possible. It is. For example, using a substrate having an inclined surface that gradually descends from both sides or from four sides to the center, there is a core layer that gradually decreases in thickness from the center to the end (slowly roof A core layer whose thickness varies in the shape of a cone or a cone. Then, the light emitting element is arranged at the thick core layer at the center and the light receiving element is arranged at the thin core layer at the end. Furthermore, using a substrate having a surface having a plurality of (for example, two) gently sloping portions having a roof shape or a cone shape, a core layer is formed thereon as described above, and a thin boundary portion of the core layer (for example, In addition, it is also possible to divide the region for transmitting and receiving light between the light emitting element and the light receiving element into a plurality of parts with a boundary of the thickness of zero).

以上、実施例1の構成をとることにより、従来の構成(図3(a)参照)と比べ、発光素子から出射された光が光導波路層に導波され、光導波路層を伝播した光が受光素子へ結合する効率が増し、光信号伝送の信頼性及び伝送速度が向上する。 As described above, by adopting the configuration of Example 1, light emitted from the light emitting element is guided to the optical waveguide layer and light propagated through the optical waveguide layer is compared with the conventional configuration (see FIG. 3A). The efficiency of coupling to the light receiving element is increased, and the reliability and transmission speed of optical signal transmission are improved.

(実施例2)
図4は実施例2による二次元光導波装置を示した図である。図4において、400は発光素子、402は受光素子、404は入射側光路変換構造体、406は出射側光路変換構造体、408はクラッド層、そして410はコア層である。発光素子400と受光素子402と入射側光路変換構造体404及び出射側光路変換構造体406は、発光素子500より出射された光が入射側光路変換構造体404により光路変換され、光路変換された光が二次元光導波路のコア層410内を伝播し、伝播した光が出射側光路変換構造体406により光路変換され、受光素子402に結合するような位置関係にある。シート状の二次元光導波路層は、屈折率の異なる材料の組み合わせによりコア層410(屈折率の比較的大きい部分)とクラッド層408(屈折率の比較的小さい部分)より構成される。本実施例でも、屈折率1.60のポリシラン系樹脂をコア層410に用い、屈折率1.55のポリシラン系樹脂をクラッド層408に用いた。また光路変換構造体として、半径25μmの半球状の構造体を用いた。本実施例では、受光素子402の受光面と出射側光路変換構造体406の頂点との距離がなくなるように、かつ発光素子400の出射口と入射側光路変換構造体404の頂点との距離が少なくとも75μm以上となるように、コア層410の厚さはほぼ均一にしつつ、入射側光路変換構造体404及び出射側光路変換構造体406の大きさ、形状を制御している。
(Example 2)
FIG. 4 is a diagram illustrating a two-dimensional optical waveguide device according to the second embodiment. In FIG. 4, 400 is a light emitting element, 402 is a light receiving element, 404 is an incident side optical path changing structure, 406 is an outgoing side optical path changing structure, 408 is a cladding layer, and 410 is a core layer. In the light emitting element 400, the light receiving element 402, the incident side optical path changing structure 404, and the outgoing side optical path changing structure 406, the light emitted from the light emitting element 500 is optically changed by the incident side optical path changing structure 404, and the optical path is changed. The light is propagated through the core layer 410 of the two-dimensional optical waveguide, and the propagated light is optically path-converted by the exit-side optical path converting structure 406 and coupled to the light receiving element 402. The sheet-like two-dimensional optical waveguide layer is composed of a core layer 410 (portion having a relatively high refractive index) and a clad layer 408 (portion having a relatively low refractive index) by a combination of materials having different refractive indexes. Also in this example, a polysilane resin having a refractive index of 1.60 was used for the core layer 410, and a polysilane resin having a refractive index of 1.55 was used for the clad layer 408. A hemispherical structure with a radius of 25 μm was used as the optical path changing structure. In this embodiment, the distance between the light receiving surface of the light receiving element 402 and the apex of the emission side optical path conversion structure 406 is eliminated, and the distance between the exit of the light emitting element 400 and the apex of the incident side optical path conversion structure 404 is The size and shape of the incident-side optical path conversion structure 404 and the emission-side optical path conversion structure 406 are controlled while making the thickness of the core layer 410 substantially uniform so as to be at least 75 μm or more.

次に、本実施例で示した二次元光導波路層の作製方法を説明する。図5は、二次元光導波路回路の製造方法を説明する模式図である。同図において、500は基板、502はクラッド層、504は光路変換構造体材料、506はフォトマスク、508及び510は第1形状を有する構造体、512及び514は第2形状を有する構造体、516は反射膜材料、518は反射膜、520はコア層、522は発光素子、524は受光素子、そして526は素子駆動用パッドである。   Next, a method for manufacturing the two-dimensional optical waveguide layer shown in this embodiment will be described. FIG. 5 is a schematic diagram for explaining a method of manufacturing a two-dimensional optical waveguide circuit. In the figure, 500 is a substrate, 502 is a cladding layer, 504 is an optical path changing structure material, 506 is a photomask, 508 and 510 are structures having a first shape, 512 and 514 are structures having a second shape, 516 is a reflective film material, 518 is a reflective film, 520 is a core layer, 522 is a light emitting element, 524 is a light receiving element, and 526 is an element driving pad.

まず図5(a)に示すように、均一な厚さの基板(例えばSiウエハ)500上にクラッド層材料であるポリシラン系樹脂をスピンコーターを用いて塗布し、ベーキングを行い膜厚20μmのクラッド層502を形成する。その後、図5(b)に示すように、光路変換構造体材料である感光性を有した熱可塑性材料504をスピンコーターを用いて塗布し、フォトマスク506(半径25μmの円形パターン光透過部及び半径125μmの円形パターン光透過部を有する)を用いて露光する。その後、図5(c)に示すように、現像過程を経て半径25μm、高さ17μm、及び半径125μm、高さ17μmの円柱状の第1形状を有する構造体508と510を形成する。この状態で、図5(d)に示すように、150 ℃のホットプレート上で4分間加熱し、感光性を有した熱可塑性材料で形成した前記第1形状を有する構造体508と510に対して熱処理による溶融・再固化を行い、半径25μmの半球状に変形した第2形状を有する構造体512と、底面半径125μm、高さ75μmの略半楕円球状に変形した第2形状を有する構造体514を形成する。   First, as shown in FIG. 5 (a), a polysilane resin, which is a clad layer material, is coated on a substrate (for example, Si wafer) 500 having a uniform thickness using a spin coater and baked to form a clad having a thickness of 20 μm. Layer 502 is formed. Thereafter, as shown in FIG. 5 (b), a photosensitive thermoplastic material 504, which is an optical path changing structure material, is applied using a spin coater, and a photomask 506 (a circular pattern light transmitting portion having a radius of 25 μm and Exposure is performed using a circular pattern light transmission portion having a radius of 125 μm. Thereafter, as shown in FIG. 5 (c), structures 508 and 510 having a cylindrical first shape with a radius of 25 μm, a height of 17 μm, a radius of 125 μm, and a height of 17 μm are formed through a development process. In this state, as shown in FIG. 5 (d), the structures 508 and 510 having the first shape formed of the thermoplastic material having photosensitivity are heated on a hot plate at 150 ° C. for 4 minutes. A structure 512 having a second shape deformed into a hemisphere with a radius of 25 μm by melting and resolidifying by heat treatment and a structure having a second shape deformed into a substantially semi-elliptical sphere with a bottom radius of 125 μm and a height of 75 μm 514 is formed.

次に、図5(e)に示すように、電子ビーム蒸着装置を用いて反射膜材料516であるCr / Au(Crの厚さ:50 nm、Auの厚さ:300 nm)を蒸着する。続いて、図5(f)に示すように、スピンコーターを用いてフォトレジストを塗布し、露光・現像過程を経た後、半球状、略半楕円球状に変形した第2形状を有する構造体512と514の表面のみを覆うようにレジストマスク(図示せず)を形成し、その後Au、Crの順でエッチングを行い、半球状、略半楕円球状に変形した第2形状を有する構造体512と514の表面のみに反射膜518が形成される。続いて、図5(g)に示すように、クラッド層502よりも屈折率の大きいポリシラン系樹脂をスピンコーターを用いて塗布し、ベーキングを行いコア層520を形成する。この際、材料の粘度に応じた適当な回転速度でスピンコートすることで、図示のごとく、ほぼ均一な厚さでコア層520を形成する。 Next, as shown in FIG. 5 (e), Cr / Au (Cr thickness: 50 nm, Au thickness: 300 nm), which is the reflective film material 516, is deposited using an electron beam deposition apparatus. Subsequently, as shown in FIG. 5 (f), a photoresist 512 is applied using a spin coater, and after undergoing an exposure / development process, a structure 512 having a second shape deformed into a hemispherical shape and a substantially semi-elliptical spherical shape. A resist mask (not shown) is formed so as to cover only the surface of 514 and 514, and then etching is performed in the order of Au and Cr, and a structure 512 having a second shape deformed into a hemispherical shape and a substantially semi-elliptical spherical shape, A reflective film 518 is formed only on the surface of 514. Subsequently, as shown in FIG. 5 (g), a polysilane-based resin having a refractive index larger than that of the cladding layer 502 is applied using a spin coater and baked to form the core layer 520. At this time, the core layer 520 is formed with a substantially uniform thickness as shown in the figure by spin coating at an appropriate rotation speed according to the viscosity of the material.

次に、図5(h)に示すように、半球状の第2形状を有する構造体512に発光素子522からの出射光が結合するように、また略半楕円球状の第2形状を有する構造体514に結合した伝播光が受光素子524に結合するように発光素子522及び受光素子524をコア層520上に実装するため、コア層520上に素子駆動用パッド(Ti/Au)526を形成する。続いて、図5(i)に示すように、発光素子522及び受光素子524を素子駆動用パッド526上にフリップチップボンダーを用いて実装し、二次元光導波路回路を得る。 Next, as shown in FIG. 5 (h), the structure 512 having a semispherical second shape is formed so that the emitted light from the light emitting element 522 is coupled to the structure 512 having a semispherical second shape. An element driving pad (Ti / Au) 526 is formed on the core layer 520 to mount the light emitting element 522 and the light receiving element 524 on the core layer 520 so that the propagating light coupled to the body 514 is coupled to the light receiving element 524. To do. Subsequently, as shown in FIG. 5 (i), the light emitting element 522 and the light receiving element 524 are mounted on the element driving pad 526 using a flip chip bonder to obtain a two-dimensional optical waveguide circuit.

この様にして作製される二次元光導波路回路においても、図6に示すように、従来のものと比較して、外部へ放出される光を減少させられるため、光信号の伝送効率を上げることが可能となる(図6(a)が従来のものを示し、
図6(b)が本実施例のものを示す)。また、反射膜518を有した半球状に変形した第2形状を有する構造体512が配置されているため、半球状の構造体512の上面から入射された光は、効率良く散乱され、コア層520全域に伝搬させられる。一方、コア層520を伝搬してきた光は、略半楕円球状に変形した第2形状を有する構造体514により散乱され、略半楕円球状の構造体514の上方へ出射させられる。
In the two-dimensional optical waveguide circuit fabricated in this way, as shown in FIG. 6, the light emitted to the outside can be reduced compared to the conventional one, so that the transmission efficiency of the optical signal is increased. (Fig. 6 (a) shows the conventional one,
FIG. 6 (b) shows the example. In addition, since the structure 512 having the second shape deformed into a hemisphere having the reflective film 518 is disposed, the light incident from the upper surface of the hemisphere structure 512 is efficiently scattered and the core layer Propagated throughout 520. On the other hand, the light propagating through the core layer 520 is scattered by the structure 514 having the second shape deformed into a substantially semi-elliptical sphere, and is emitted above the structure 514 having a substantially semi-elliptical sphere.

本実施例においても、実施例1のところで述べた様な変更が可能である。また、本実施例で示した光路変換構造体の形成方法は一例であり、必ずしもこの形成方法に限られない。 Also in the present embodiment, the changes described in the first embodiment can be made. In addition, the method of forming the optical path conversion structure shown in this embodiment is an example, and is not necessarily limited to this formation method.

以上、実施例2の構成をとることにより、従来の構成(図6(a)参照)と比べ、発光素子から出射された光が光導波路層に導波され、光導波路層を伝播した光が受光素子へ結合する効率が増し、光信号伝送の信頼性及び伝送速度が向上する。また、平坦な基板を用いることで、再現性良く二元光導波路装置を作製できる。 As described above, by adopting the configuration of Example 2, the light emitted from the light emitting element is guided to the optical waveguide layer and the light propagated through the optical waveguide layer is compared with the conventional configuration (see FIG. 6A). The efficiency of coupling to the light receiving element is increased, and the reliability and transmission speed of optical signal transmission are improved. Further, by using a flat substrate, a binary optical waveguide device can be manufactured with good reproducibility.

(実施例3)
図7は実施例3による二次元光導波装置を示した図である。図7において、700は発光素子、702は受光素子、704は入射側光路変換構造体、706は出射側光路変換構造体、708はクラッド層、そして710はコア層である。発光素子700と受光素子702と入射側光路変換構造体704及び出射側光路変換構造体706は、発光素子700より出射された光が入射側光路変換構造体704により光路変換され、光路変換された光が二次元光導波路のコア層810内を伝播し、伝播した光が出射側光路変換構造体706により光路変換され、受光素子702に結合するような位置関係にある。シート状の二次元光導波路層、光路変換構造体は、上記実施例のものと同様な構成を有する。本実施例では、受光素子702の受光面と出射側光路変換構造体706の頂点との距離がなくなるように(受光素子702と出射側光路変換構造体706は接している)、かつ発光素子700の出射口と入射側光路変換構造体704の頂点との距離が少なくとも75μm以上となるように、入射側光路変換構造体704の近くのコア層810を比較的厚くし、出射側光路変換構造体706側のコア層810を比較的薄くしている。
(Example 3)
FIG. 7 is a view showing a two-dimensional optical waveguide device according to Example 3. FIG. In FIG. 7, 700 is a light emitting element, 702 is a light receiving element, 704 is an incident side optical path changing structure, 706 is an outgoing side optical path changing structure, 708 is a cladding layer, and 710 is a core layer. In the light emitting element 700, the light receiving element 702, the incident side optical path conversion structure 704, and the emission side optical path conversion structure 706, the light emitted from the light emitting element 700 is optically converted by the incident side optical path conversion structure 704, and the optical path is converted. The light propagates through the core layer 810 of the two-dimensional optical waveguide, and the propagated light is optically path-converted by the exit-side optical path conversion structure 706 and coupled to the light receiving element 702. The sheet-like two-dimensional optical waveguide layer and the optical path changing structure have the same configuration as that of the above embodiment. In the present embodiment, the distance between the light receiving surface of the light receiving element 702 and the apex of the emission side optical path changing structure 706 is eliminated (the light receiving element 702 and the emission side optical path changing structure 706 are in contact), and the light emitting element 700 The core layer 810 near the incident-side optical path conversion structure 704 is made relatively thick so that the distance between the exit opening of the optical path and the apex of the incident-side optical path conversion structure 704 is at least 75 μm or more, and the output-side optical path conversion structure The core layer 810 on the 706 side is relatively thin.

次に、本実施例で示した二次元光導波路層の作製方法を説明する。図8は、二次元光導波路回路の製造方法を説明する模式図である。同図において、800は基板、802はクラッド層、804は光路変換構造体材料、806はフォトマスク、808及び810は第1形状を有する構造体、812及び814は第2形状を有する構造体、816は反射膜材料、818は反射膜、820はコア層、822は厚いコア層、824は発光素子、826は受光素子、そして928は素子駆動用パッドである。   Next, a method for manufacturing the two-dimensional optical waveguide layer shown in this embodiment will be described. FIG. 8 is a schematic diagram for explaining a method of manufacturing a two-dimensional optical waveguide circuit. In the figure, 800 is a substrate, 802 is a cladding layer, 804 is an optical path changing structure material, 806 is a photomask, 808 and 810 are structures having a first shape, 812 and 814 are structures having a second shape, 816 is a reflective film material, 818 is a reflective film, 820 is a core layer, 822 is a thick core layer, 824 is a light emitting element, 826 is a light receiving element, and 928 is an element driving pad.

まず図8(a)に示すように、均一な厚さの基板(例えばSiウエハ)800上にクラッド層材料であるポリシラン系樹脂をスピンコーターを用いて塗布し、ベーキングを行い膜厚20μmのクラッド層802を形成する。その後、図8(b)に示すように、光路変換構造体材料である感光性を有した熱可塑性材料804をスピンコーターを用いて塗布し、フォトマスク806を用いて露光する。その後、図8(c)に示すように、現像過程を経て半径25μm、高さ17μm及び円柱状の第1形状を有する構造体808と810を形成する。この状態で、図8(d)に示すように、150 ℃のホットプレート上で4分間加熱し、形成した前記第1形状を有する構造体808と810に対して熱処理による溶融・再固化を行い、半径25μmの半球状に変形した第2形状を有する構造体812と814を形成する。次に、図8(e)に示すように、電子ビーム蒸着装置を用いて反射膜材料816であるCr
/ Auを蒸着する。続いて、図8(f)に示すように、スピンコーターを用いてフォトレジストを塗布し、露光・現像過程を経た後、半球状に変形した第2形状を有する構造体812と814の表面のみを覆うようにレジストマスク(図示せず)を形成し、その後Au、Crの順でエッチングを行い、半球状に変形した第2形状を有する構造体812と814の表面のみに反射膜818が形成される。
First, as shown in FIG. 8 (a), a polysilane resin, which is a clad layer material, is applied onto a substrate (for example, Si wafer) 800 having a uniform thickness using a spin coater and baked to form a clad having a thickness of 20 μm. Layer 802 is formed. Thereafter, as shown in FIG. 8B, a photosensitive thermoplastic material 804 that is an optical path changing structure material is applied using a spin coater, and exposed using a photomask 806. Thereafter, as shown in FIG. 8 (c), structures 808 and 810 having a radius of 25 μm, a height of 17 μm, and a cylindrical first shape are formed through a development process. In this state, as shown in FIG. 8 (d), heating is performed on a hot plate at 150 ° C. for 4 minutes, and the formed structures 808 and 810 having the first shape are melted and re-solidified by heat treatment. Then, the structures 812 and 814 having the second shape deformed into a hemisphere having a radius of 25 μm are formed. Next, as shown in FIG. 8 (e), Cr is a reflective film material 816 using an electron beam evaporation apparatus.
/ Evaporate Au. Subsequently, as shown in FIG. 8 (f), only the surfaces of the structures 812 and 814 having the second shape deformed into a hemisphere after applying a photoresist using a spin coater and undergoing an exposure / development process. A resist mask (not shown) is formed so as to cover the surface, and then etching is performed in the order of Au and Cr, and the reflective film 818 is formed only on the surfaces of the structures 812 and 814 having the second shape deformed into a hemisphere. Is done.

続いて、図8(g)に示すように、クラッド層802よりも屈折率の大きいポリシラン系樹脂をスピンコーターを用いて均一な厚さで塗布し、ベーキングを行いコア層820を形成する。次に、図8(h)に示すように、適当なパターンを持つマスクを用いてコア層820の一部をエッチングすることにより厚いコア層822を形成する。ここにおいて、コア層820上に、厚さが徐々に変化するマスクを形成して、これをコア層とともにエッチングすればコア層の厚さを徐々に滑らかに変えることもできる。こうすれば、光の伝播をより光損失少なく行なうことができる。 Subsequently, as shown in FIG. 8 (g), a polysilane resin having a refractive index larger than that of the cladding layer 802 is applied with a uniform thickness using a spin coater, and baked to form a core layer 820. Next, as shown in FIG. 8H, a thick core layer 822 is formed by etching a part of the core layer 820 using a mask having an appropriate pattern. Here, if a mask whose thickness changes gradually is formed on the core layer 820 and is etched together with the core layer, the thickness of the core layer can be gradually changed smoothly. In this way, light can be propagated with less optical loss.

次に、図8(i)に示すように、半球状の第2形状を有する構造体812に発光素子824からの出射光が結合するように、また半球状の第2形状を有する構造体814に結合した伝播光が受光素子826に結合するように、発光素子824を厚いコア層822上に及び受光素子826をコア層820上に実装するため、コア層820及び厚いコア層822上に素子駆動用パッド(Ti/Au)828を形成する。続いて、図8(j)に示すように、発光素子824及び受光素子826を素子駆動用パッド828上にフリップチップボンダーを用いて実装し、二次元光導波路回路を得る。 Next, as shown in FIG. 8 (i), the structure 814 having the hemispherical second shape is coupled so that the emitted light from the light emitting element 824 is coupled to the structure 812 having the hemispherical second shape. The light emitting element 824 is mounted on the thick core layer 822 and the light receiving element 826 is mounted on the core layer 820 so that the propagating light coupled to the light receiving element 826 is coupled. A driving pad (Ti / Au) 828 is formed. Subsequently, as shown in FIG. 8 (j), the light emitting element 824 and the light receiving element 826 are mounted on the element driving pad 828 using a flip chip bonder to obtain a two-dimensional optical waveguide circuit.

この様にして作製される二次元光導波路回路においても、図9に示すように、従来のものと比較して、外部へ放出される光を減少させられるため、光信号の伝送効率を上げることが可能となる(図9(a)が従来のものを示し、
図9(b)が本実施例のものを示す)。また、半球状の構造体812の上面から入射された光は、効率良く散乱され、コア層820全域に伝搬させられる。また、コア層820を伝搬してきた光は、半球状に変形した第2形状を有する構造体814により散乱され、半球状の構造体814の上方へ出射させられる。
In the two-dimensional optical waveguide circuit manufactured in this way, as shown in FIG. 9, the light emitted to the outside can be reduced compared to the conventional one, so that the transmission efficiency of the optical signal is increased. (Figure 9 (a) shows the conventional one,
FIG. 9 (b) shows this example). Further, light incident from the upper surface of the hemispherical structure 812 is efficiently scattered and propagated throughout the core layer 820. The light propagating through the core layer 820 is scattered by the structure 814 having the second shape deformed into a hemispherical shape, and is emitted upward of the hemispherical structure 814.

本実施例においても、実施例1のところで述べた様な変更が可能である。また、本実施例で示したコア層の形成方法は一例であり、必ずしもこの形成方法に限られない。本実施例では、コア層820をエッチングすることにより厚いコア層822を形成したが、図10に示す方法で形成してもよい。 Also in the present embodiment, the changes described in the first embodiment can be made. Further, the method for forming the core layer shown in this embodiment is an example, and is not necessarily limited to this method. In this embodiment, the thick core layer 822 is formed by etching the core layer 820, but may be formed by the method shown in FIG.

この方法では、まず図10(a)に示すように、感光性を有したポリシラン系樹脂を用いてコア層1000を形成する。このコア層1000形成前までの工程は図8と同様である。続いて、図10(b)に示すように、コア層1000を形成した感光性を有したポリシラン系樹脂1002をスピンコーター用いて塗布する。次に、図10(c)に示すように、感光性を有したポリシラン系樹脂1002をフォトマスク1004を用いて露光する。その後、図10(d)に示すように現像工程を行うことで、厚いコア層1006を形成する。ここにおいて、階調を持つフォトマスクを用いてコア層となる感光性樹脂を階調を伴って露光し、現像することで、該樹脂コア層の厚さを徐々に滑らかに変えることもできる。 In this method, first, as shown in FIG. 10 (a), the core layer 1000 is formed using a polysilane resin having photosensitivity. The steps up to the formation of the core layer 1000 are the same as those in FIG. Subsequently, as shown in FIG. 10B, a photosensitive polysilane-based resin 1002 on which the core layer 1000 is formed is applied using a spin coater. Next, as shown in FIG. 10C, the polysilane resin 1002 having photosensitivity is exposed using a photomask 1004. Thereafter, a thick core layer 1006 is formed by performing a developing process as shown in FIG. Here, the thickness of the resin core layer can be gradually and smoothly changed by exposing and developing the photosensitive resin as the core layer with gradation using a photomask having gradation.

以上、実施例3の構成をとることにより、従来の構成(図9(a)参照)と比べ、発光素子から出射された光が光導波路層に導波され、光導波路層を伝播した光が受光素子へ結合する効率が増し、光信号伝送の信頼性及び伝送速度が向上する。また、本実施例の構成では常に平坦な面での加工のため、実施例1或いは実施例2と比べ二次元光導波路回路の作製が容易であり、かつ再現性良く作製することができる。 As described above, the configuration of Example 3 allows the light emitted from the light emitting element to be guided to the optical waveguide layer and to propagate the light through the optical waveguide layer, compared to the conventional configuration (see FIG. 9A). The efficiency of coupling to the light receiving element is increased, and the reliability and transmission speed of optical signal transmission are improved. In addition, since the structure of this example is always processed on a flat surface, it is easier to produce a two-dimensional optical waveguide circuit than in Example 1 or Example 2, and it can be produced with good reproducibility.

(実施例4)
実施例1乃至3に示した二次元光導波路回路と電気回路基板を組み合わせて作製した実施例4の光電融合基板を図11に示す。図11において1100はCPU、1102、1104、1106および1108はRAM、1110および1112は電子デバイス(LSI)、1114は発光素子、1116は受光素子、1118は伝送線路(電気配線)、1120はビーム光、1122は拡散光、1124は本発明の二次元光導波路層、1126および1128は電気回路基板である。図11(a)は、図11(b)の光電融合基板を矢印の方向から見た図であり、図11(a)では二次元光導波路層1124および電気回路基板1128は図示していない。
(Example 4)
FIG. 11 shows a photoelectric fusion substrate of Example 4 manufactured by combining the two-dimensional optical waveguide circuit shown in Examples 1 to 3 and an electric circuit substrate. In FIG. 11, 1100 is a CPU, 1102, 1104, 1106 and 1108 are RAMs, 1110 and 1112 are electronic devices (LSIs), 1114 is a light emitting element, 1116 is a light receiving element, 1118 is a transmission line (electrical wiring), 1120 is a beam light , 1122 are diffused light, 1124 is a two-dimensional optical waveguide layer of the present invention, and 1126 and 1128 are electric circuit boards. FIG. 11 (a) is a view of the optoelectronic substrate of FIG. 11 (b) as viewed from the direction of the arrow. In FIG. 11 (a), the two-dimensional optical waveguide layer 1124 and the electric circuit substrate 1128 are not shown.

図12は光電融合基板の一部の断面図である。CPU1200は、電気回路基板1202上にハンダボール1204を用いてフリップチップボンディングされている。CPU1200と二次元光導波路層1206に実装された発光素子1208との接続は、電気回路基板1202に形成された内部配線1210を通して行われている。 FIG. 12 is a cross-sectional view of a part of the photoelectric fusion substrate. The CPU 1200 is flip-chip bonded on the electric circuit board 1202 using solder balls 1204. Connection between the CPU 1200 and the light emitting element 1208 mounted on the two-dimensional optical waveguide layer 1206 is made through an internal wiring 1210 formed on the electric circuit board 1202.

従来の電気配線基板では、低速でのデータ転送においては問題とならないが、大容量・高速での伝送が必要となる場合には、EMIの影響や配線遅延などにより、常に安定したデータ転送をすることに困難が生じる場合がある。このような場合に、図11に示したように光電融合基板を用いることで安定した大容量・高速伝送が可能となる。例えば、CPUからの電気信号を発光素子を介して光信号に変換し、その信号をRAMやLSIと電気的に接続された受光器へ伝送する信号伝送方法を説明する。図11に示すように、CPU1100に電気的に接続された発光素子1114は二次元光導波路層内に埋め込まれており、発光素子1114から出射されたレーザ光が光路変換構造体(図示せず)に結合し二次元光導波路層1124内を伝播する。 With conventional electrical wiring boards, there is no problem with low-speed data transfer, but when high-capacity and high-speed transmission is required, stable data transfer is always possible due to the effects of EMI and wiring delays. Can be difficult. In such a case, stable large-capacity and high-speed transmission is possible by using a photoelectric fusion substrate as shown in FIG. For example, a signal transmission method will be described in which an electrical signal from a CPU is converted into an optical signal via a light emitting element and the signal is transmitted to a light receiver electrically connected to a RAM or LSI. As shown in FIG. 11, the light emitting element 1114 electrically connected to the CPU 1100 is embedded in the two-dimensional optical waveguide layer, and the laser beam emitted from the light emitting element 1114 is an optical path conversion structure (not shown). And propagates in the two-dimensional optical waveguide layer 1124.

図11においては、発光素子1114として1×2面発光レーザアレイを用い、それぞれの面発光レーザの注入電流を制御することにより、指向性を有したビーム光伝播或いは拡散光伝播、または両方の伝播を選択できる。このようにして二次元光導波路層1124内を伝播したレーザ光は受光素子1116近傍に設けられた光路変換構造体(図示せず)に結合し、受光素子1116へと導かれる。受光素子1116は、それぞれのRAMやLSIと接続されており、光信号を電気信号へと変換する。図11においては、RAM1102へは高速の信号をビーム光1120の伝播で送信し、またRAM1104、RAM1106、RAM1108へは拡散光1122の伝播として3つのRAMへ同時に伝送している。また、図示していないが、注入電流を制御することで、拡散光伝播の広がり角を更に広げ、LSI1110及びLSI1112へも信号を伝送することができる。 In FIG. 11, a 1 × 2 surface-emitting laser array is used as the light-emitting element 1114, and by controlling the injection current of each surface-emitting laser, the beam light propagation having the directivity or the propagation of the diffused light, or the both propagations are performed. Can be selected. The laser light propagating through the two-dimensional optical waveguide layer 1124 in this way is coupled to an optical path conversion structure (not shown) provided near the light receiving element 1116 and guided to the light receiving element 1116. The light receiving element 1116 is connected to each RAM or LSI, and converts an optical signal into an electric signal. In FIG. 11, a high-speed signal is transmitted to the RAM 1102 by propagation of the beam light 1120, and is simultaneously transmitted to the three RAMs as propagation of the diffused light 1122 to the RAM 1104, RAM 1106, and RAM 1108. Although not shown, by controlling the injection current, the spread angle of the diffused light propagation can be further widened, and the signal can be transmitted to the LSI 1110 and the LSI 1112.

本実施例では、1×2面発光レーザアレイを用いたが、これに限定されるものではなく、より多くの面発光レーザをアレイ化したもの或いは単一の面発光レーザを用いてもよい。また、本実施例では二次元光導波路層が電気回路基板の間に内蔵された形状となっているが、これに限定されなく、電気回路基板の上部あるいは下部に二次元光導波路層がある形態、またはそれぞれの組み合わせの形状を取ってもよい。また、二次元光導波路層は単層であったが、多層としてもよい。なお、信号は必ず光により伝送する必要はなく、電気配線1018を介しても伝送できるように、選択の柔軟性を持たせてある。 In this embodiment, a 1 × 2 surface emitting laser array is used, but the present invention is not limited to this, and an array of more surface emitting lasers or a single surface emitting laser may be used. In the present embodiment, the two-dimensional optical waveguide layer is built in between the electric circuit boards. However, the present invention is not limited to this, and there is a form in which the two-dimensional optical waveguide layer is provided on the upper or lower part of the electric circuit board. , Or a combination of each. The two-dimensional optical waveguide layer is a single layer, but may be a multilayer. Note that the signal does not necessarily have to be transmitted by light, and selection flexibility is provided so that the signal can also be transmitted through the electrical wiring 1018.

このように二次元光導波路層を用いることにより、従来の信号線で問題となっていた配線自身がアンテナとなりコモンモードノイズ輻射による回路の誤動作などを生じていた電磁放射ノイズを大幅に低減でき、EMIの問題を改善することができる。 By using the two-dimensional optical waveguide layer in this way, the electromagnetic radiation noise that caused the malfunction of the circuit due to common mode noise radiation etc. can be greatly reduced by the wiring itself that has become a problem with conventional signal lines becoming an antenna, EMI problem can be improved.

また、それぞれの面発光レーザへの注入電流を制御することにより、ビーム光伝播と拡散光伝播のいずれかを選択することが可能となり、ビーム光伝播においては光パワーロスを抑制して高速伝送が可能となり、拡散光伝播では注入電流を変えることにより拡散光伝播の広がり角を変えられ、光信号伝送領域の再構成が可能となる。 In addition, by controlling the injection current to each surface emitting laser, it is possible to select either light beam propagation or diffused light propagation. In light beam propagation, optical power loss is suppressed and high-speed transmission is possible. Thus, in diffused light propagation, the spread angle of diffused light propagation can be changed by changing the injection current, and the optical signal transmission region can be reconfigured.

本発明の第1実施例における二次元光導波路回路を説明する断面図である。1 is a cross-sectional view illustrating a two-dimensional optical waveguide circuit according to a first embodiment of the present invention. 本発明の第1の実施例における二次元光導波路回路の製造方法を説明する断面図である。FIG. 3 is a cross-sectional view illustrating a method for manufacturing a two-dimensional optical waveguide circuit in the first example of the present invention. 従来例と本発明の第1の実施例における二次元光導波路回路の比較を説明する断面図である。FIG. 6 is a cross-sectional view illustrating a comparison between a conventional example and a two-dimensional optical waveguide circuit in the first example of the present invention. 本発明の第2実施例における二次元光導波路回路を説明する断面図である。FIG. 6 is a cross-sectional view illustrating a two-dimensional optical waveguide circuit according to a second embodiment of the present invention. 本発明の第2の実施例における二次元光導波路回路の製造方法を説明する断面図である。FIG. 10 is a cross-sectional view illustrating a method for manufacturing a two-dimensional optical waveguide circuit in a second example of the present invention. 従来例と本発明の第2の実施例における二次元光導波路回路の比較を説明する断面図である。FIG. 6 is a cross-sectional view illustrating a comparison between a conventional example and a two-dimensional optical waveguide circuit in a second example of the present invention. 本発明の第3実施例における二次元光導波路回路を説明する断面図である。FIG. 10 is a cross-sectional view illustrating a two-dimensional optical waveguide circuit in a third example of the present invention. 本発明の第3の実施例における二次元光導波路回路の製造方法を説明する断面図である。FIG. 10 is a cross-sectional view illustrating a method for manufacturing a two-dimensional optical waveguide circuit in a third example of the present invention. 従来例と本発明の第3の実施例における二次元光導波路回路の比較を説明する断面図である。FIG. 10 is a cross-sectional view illustrating a comparison between a conventional example and a two-dimensional optical waveguide circuit in a third example of the present invention. 本発明の第3の実施例における二次元光導波路回路の製造方法の一部を説明する断面図である。FIG. 10 is a cross-sectional view for explaining a part of the manufacturing method of the two-dimensional optical waveguide circuit in the third embodiment of the present invention. 本発明の第4の実施例における光電融合配線基板を説明する図である。FIG. 10 is a diagram for explaining an optoelectronic interconnection board in a fourth embodiment of the present invention. 本発明の第4の実施例における光電融合配線基板の内部を説明する断面図である。FIG. 10 is a cross-sectional view illustrating the inside of a photoelectric fusion wiring board in a fourth embodiment of the present invention.

符号の説明Explanation of symbols

100, 218, 400, 522, 700, 824, 1114, 1208:発光素子
102, 220, 402, 524, 702, 826, 1116:受光素子
104, 404, 704:入射側光路変換構造体
106, 406, 706:出射側光路変換構造体
108, 202, 408, 502, 708, 802:クラッド層
110, 216, 410, 520, 710, 820, 1000:コア層
100, 218, 400, 522, 700, 824, 1114, 1208: Light emitting element
102, 220, 402, 524, 702, 826, 1116: Light receiving element
104, 404, 704: Incident side optical path conversion structure
106, 406, 706: Output side optical path conversion structure
108, 202, 408, 502, 708, 802: Clad layer
110, 216, 410, 520, 710, 820, 1000: Core layer

Claims (3)

シート状のコア層を少なくとも含み、発光素子及び受光素子の配置されるべき個所の近傍に光路変換用の構造体が配置された二次元光導波装置であって、
前記発光素子近傍に配置された光路変換用の構造体の高さと、前記受光素子近傍に配置された光路変換用の構造体の高さがほぼ同じであり、該発光素子の配置されるべき個所に対応するコア層の厚さが、該受光素子の配置されるべき個所に対応するコア層の厚さより厚く、かつ該受光素子近傍に配置された光路変換用の構造体の最上部と該受光素子の受光面が接していることを特徴とする二次元光導波装置。
A two-dimensional optical waveguide device including at least a sheet-shaped core layer, wherein a structure for optical path conversion is disposed in the vicinity of a position where a light emitting element and a light receiving element are to be disposed;
The height of the optical path changing structure disposed in the vicinity of the light emitting element is substantially the same as the height of the optical path converting structure disposed in the vicinity of the light receiving element, and the portion where the light emitting element is to be disposed. thickest of Turkey a layer be correspondingly thicker than the thickness of Turkey a layer to correspond to locations to be arranged in the light receiving element, and the structure of the optical path conversion disposed near the light receiving element A two-dimensional optical waveguide device characterized in that an upper portion and a light receiving surface of the light receiving element are in contact with each other .
前記コア層の厚さが徐々に変化していることを特徴とする請求項記載の二次元光導波装置。 Two-dimensional optical waveguide device according to claim 1, wherein the thickness of the core layer is gradually changed. 請求項1または2に記載の二次元光導波装置を電気回路基板と電気的に接続が得られるように形成した光電融合配線基板であって、該電気回路基板の信号の一部または全てを該二次元光導波装置を用いた光信号の授受によって配線させる様に構成されたことを特徴とする光電融合配線基板。 An optoelectronic interconnection substrate, wherein the two-dimensional optical waveguide device according to claim 1 or 2 is formed so as to be electrically connected to an electric circuit substrate, wherein a part or all of the signals of the electric circuit substrate are An optoelectronic wiring board, wherein wiring is performed by transmission and reception of an optical signal using a two-dimensional optical waveguide device.
JP2004097933A 2004-03-30 2004-03-30 Two-dimensional optical waveguide device and optoelectronic wiring board using the same Expired - Fee Related JP4194515B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004097933A JP4194515B2 (en) 2004-03-30 2004-03-30 Two-dimensional optical waveguide device and optoelectronic wiring board using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004097933A JP4194515B2 (en) 2004-03-30 2004-03-30 Two-dimensional optical waveguide device and optoelectronic wiring board using the same

Publications (2)

Publication Number Publication Date
JP2005283970A JP2005283970A (en) 2005-10-13
JP4194515B2 true JP4194515B2 (en) 2008-12-10

Family

ID=35182410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004097933A Expired - Fee Related JP4194515B2 (en) 2004-03-30 2004-03-30 Two-dimensional optical waveguide device and optoelectronic wiring board using the same

Country Status (1)

Country Link
JP (1) JP4194515B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5458682B2 (en) * 2009-06-05 2014-04-02 日立化成株式会社 Optical waveguide forming resin film, optical waveguide using the same, manufacturing method thereof, and photoelectric composite wiring board

Also Published As

Publication number Publication date
JP2005283970A (en) 2005-10-13

Similar Documents

Publication Publication Date Title
US10254476B1 (en) Stackable optoelectronics chip-to-chip interconnects and method of manufacturing
US7430127B2 (en) Electronic circuit board
JP5313849B2 (en) Optical waveguide device and manufacturing method thereof
JP4690870B2 (en) Opto-electric integrated wiring board and opto-electric integrated wiring system
JPH0567770A (en) Photoelectronic integrated circuit device
US8737781B2 (en) Optical waveguide and method of manufacturing the same, and optical waveguide device
JP2005062557A (en) Optical element device, two-dimensional optical waveguide element using the same and optoelectronic fusion wiring substrate
JP2004061799A (en) Two-dimensional waveguide apparatus and opto-electronic fusion wiring board using same
JP3833180B2 (en) Manufacturing method of two-dimensional optical waveguide
JP4211188B2 (en) Method for forming optical waveguide and method for manufacturing optical transceiver
JP4194515B2 (en) Two-dimensional optical waveguide device and optoelectronic wiring board using the same
JPH1152198A (en) Optical connecting structure
JP2005148129A (en) Method for manufacturing optical wiring system, and optical wiring system
JP5409441B2 (en) Optical transmission board and optical module
EP1020749A1 (en) Optical waveguide with micromirror, its manufacturing method, and optical information processor
JP4789423B2 (en) Optical waveguide device
JP2006140178A (en) Method of manufacturing circuit board, and photoelectric fusion circuit board
JP2006310417A (en) Photoelectric converter, its manufacturing method and optical information processor
JP2006140177A (en) Optical waveguide circuit and its manufacturing method, and optical fusion wiring board using it
JP4698728B2 (en) Opto-electric integrated wiring board and opto-electric integrated wiring system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060620

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080922

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees