JP4194022B2 - 光ファイバの非線形屈折率測定方法および測定装置 - Google Patents

光ファイバの非線形屈折率測定方法および測定装置 Download PDF

Info

Publication number
JP4194022B2
JP4194022B2 JP2002260658A JP2002260658A JP4194022B2 JP 4194022 B2 JP4194022 B2 JP 4194022B2 JP 2002260658 A JP2002260658 A JP 2002260658A JP 2002260658 A JP2002260658 A JP 2002260658A JP 4194022 B2 JP4194022 B2 JP 4194022B2
Authority
JP
Japan
Prior art keywords
optical fiber
refractive index
frequency
nonlinear refractive
nonlinear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002260658A
Other languages
English (en)
Other versions
JP2003254863A (ja
Inventor
隆 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP2002260658A priority Critical patent/JP4194022B2/ja
Publication of JP2003254863A publication Critical patent/JP2003254863A/ja
Application granted granted Critical
Publication of JP4194022B2 publication Critical patent/JP4194022B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光ファイバの非線形屈折率を、簡単な構成で高速に測定するための技術に関する。
【0002】
【従来の技術】
光信号を伝搬するための媒体として光ファイバが用いられているが、この光ファイバにも他の媒体と同様に損失があるため、ファイバ長が大きくなる程、末端の光信号の強度が低下して、S/Nが悪化し情報を正確に伝達することができない。
【0003】
このために入力側で大きな強度の光信号を入力する必要があるが、光ファイバの伝搬特性を決める重要な要素である屈折率は光の強度に対する依存性を示し、通過する光の強度が大きくなると屈折率が増加する。これを光ファイバの屈折率の非線形と呼び、屈折率増加の割合を非線形屈折率と呼んでいる。
【0004】
この非線形屈折率を有する光ファイバに対して、大きな強度の光信号を入力すると、屈折率の非線形作用により光信号に波形歪みが発生し、隣接波長からの悪影響が発生して、正しく通信を行なうことができなくなる。
【0005】
したがって、例えば光ファイバを媒体とする通信システムを構築する際には、予めその光ファイバの非線形屈折率を測定しておく必要がある。
【0006】
このように光ファイバの非線形屈折率を測定するための従来方法として、短パルス光の自己位相変調効果を利用したものや、2つの光源を用いた相互位相変調効果を利用した方法がある。
【0007】
前者の方法は、測定対象の光ファイバに強度を可変できる特定波形の短パルス光を入射し、その光ファイバの出射光のスペクトラムを観測して、そのスペクトラムのピーク数が所定数となるように短パルス光の入力強度を調整し、このときの短パルス光の時間波形を観測してそのピークパワーを求め、このピークパワーとスペクトラムのピーク数とに基づいて非線形屈折率を求める方法である。
【0008】
また、後者の方法は、周波数(波長)が異なる2つの連続光を合成して光ファイバの一端側に入力し、その光ファイバの出射光のスペクトラムを観測し、2つの連続光のパワーとそれらの相互位相変調効果によって現れる2つの周波数の光のパワー比を測定し、入力光強度とパワー比とから非線形屈折率を求める方法である。
【0009】
しかし、前者の測定方法は、入射光の周波数チャープ(パルスの立ち上がりや立ち下がりにおける周波数変化)や光ファイバの分散の影響を受け、また、後者の測定方法も光ファイバの分散の影響を受けて、測定誤差が大きくなるという問題があった。
【0010】
これを解決するための技術として、例えば、特開平8−285728には、図20に示すように、パルス光源10から測定対象の光ファイバ1にパルス光を入射し、この入射光と、光ファイバ1の出射光についての時間波形および周波数チャープ特性をそれぞれ時間波形測定部11と周波数チャープ測定部12によって測定し、演算部13において、入射光の測定で得られた時間波形、周波数チャープ特性、光ファイバの既知のデータおよび非線形屈折率の暫定値を用いて、非線形シュレディンガ方程式に基づいてスプリットステップフーリエ法の数値計算で、出射光の時間波形、周波数チャープ特性を算出し、この算出結果と実際の出射光の測定結果とを比較するという処理を、暫定値を変えながら繰り返して、算出結果と測定結果とが十分な精度で一致する非線形屈折率を求める測定方法が提案されている。
【0011】
【発明が解決しようとする課題】
しかしながら、上記方法では、測定光として用いるパルス光の時間波形、周波数チャープ特性およびパワーを精度よく測定する必要がり、このために、極めて高速な受光器や測定回路が必要となり、装置が高価で大掛かりなものになるという問題がある。
【0012】
また、パルス光に対する非線形シュレディンガ方程式の数値計算は、その計算量が多くなり、速やかに測定結果が得られないという問題があった。
【0013】
本発明は、この問題を解決し、簡単な構成で速やかに測定結果を得ることができる非線形屈折率測定方法および測定装置を提供することを目的としている。
【0014】
【課題を解決するための手段】
前記目的を達成するために、本発明の請求項1の光ファイバの非線形屈折率測定方法は、
指定された周波数の正弦波の変調信号によって強度変調されパワーが既知の光を測定対象の光ファイバの一端側に入射する段階(S1、S11)と、
該光ファイバの他端側から出射される光を電気信号に変換し、該電気信号から前記変調信号の周波数と等しい周波数を有する信号成分のレベルが極小となる点の周波数を求める段階(S1、S11)と、
演算に必要な既知のパラメータおよび非線形屈折率の暫定値を指定する段階(S2、S3、S12、S13)と、
前記指定されたパラメータと非線形屈折率の暫定値を用いて、前記光ファイバの波長分散を表す定数と前記光ファイバの損失または利得を表す定数と前記光ファイバの非線形性を表す定数とを含み光の電場の振幅変化を表す非線形シュレディンガ方程式に基づいて前記信号成分のレベルが極小となる点の周波数を計算で求める計算段階(S4、S14)と、
前記計算で求めた周波数と前記測定で得られた周波数とが所定の許容範囲内で一致するか否かを判定する判定段階(S5、S15)と、
前記判定段階で一致が判定されるまで、前記非線形屈折率の暫定値を変えて前記計算段階および判定段階を繰り返し、前記判定段階で一致が判定されたときの非線形屈折率の暫定値を前記測定対象の光ファイバの非線形屈折率と決定する段階(S6、S7、S16、S17)とを含んでいる。
【0015】
また、本発明の請求項2の光ファイバの非線形屈折率測定方法は、請求項1記載の光ファイバの非線形屈折率測定方法において、
前記非線形シュレディンガ方程式は、次式で表されることを特徴とする。
∂A/∂z
=j(β /2)(∂ A/∂t )+α A−jγ|A|

ここで、γ=n ω /(cA eff

A:光ファイバを透過する強度変調光の電場の振幅
β :光ファイバの波長分散を表す定数
α :光ファイバの損失または利得を表す定数
γ:光ファイバの非線形性を表す定数
:光ファイバの非線形屈折率の暫定値
ω :光ファイバを透過する強度変調光の角周波数
c:光速
eff :光ファイバの有効コア面積
【0016】
また、本発明の請求項3の光ファイバの非線形屈折率測定方法は、請求項1または請求項2記載の光ファイバの非線形屈折率測定方法において、
前記信号成分のレベルが極小となる点の周波数を計算で求める際に、前記非線形シュレディンガ方程式をスプリットステップフーリエ法で解くことを特徴としている。
【0017】
また、本発明の請求項4の光ファイバの非線形屈折率測定方法は、請求項1または請求項2記載の光ファイバの非線形屈折率測定方法において、
前記信号成分のレベルが極小となる点の周波数を計算によって求める際に、前記変調信号について小信号近似を行なうことを特徴としている。
【0018】
また、本発明の請求項5の光ファイバの非線形屈折率測定方法は、請求項1または請求項2または請求項3または請求項4の光ファイバの非線形屈折率測定方法において、
前記測定対象の光ファイバに入射する光または該光ファイバから出射された光に既知の波長分散を与える段階を含み、前記測定対象の光ファイバの波長分散の絶対値よりも前記測定対象の光ファイバの波長分散と前記既知の波長分散との和の絶対値を大きくすることを特徴としている。
【0019】
また、本発明の請求項6の光ファイバの非線形屈折率測定方法は、請求項1または請求項2または請求項3または請求項4または請求項5の光ファイバの非線形屈折率測定方法において、
前記測定対象の光ファイバに入射する光に前記強度変調の周波数の整数分の1と異なる周波数の位相変調を与える段階を含み、誘導ブリルアン散乱を抑制することを特徴としている。
【0020】
また、本発明の請求項7の光ファイバの非線形屈折率測定装置は、
指定された周波数の正弦波の信号を変調信号として出力する正弦波発生器(21)と、
前記変調信号で強度変調されパワーが既知の光を、測定対象の光ファイバの一端側に入射する光送信部(22)と、
前記光ファイバの他端側から出射される光を電気信号に変換する光電変換器(30)と、
前記光電変換器から出力される電気信号から前記変調信号の周波数と等しい周波数を有する信号成分を抽出し、該信号成分のレベルを検出する検波器(31)と、
前記検波器の出力と前記変調信号の周波数とに基づいて、前記信号成分のレベルが極小となる点の周波数を求める周波数特性測定手段(32)と、
既知のパラメータと非線形屈折率の暫定値と設定するパラメータ設定手段(34)と、
前記パラメータ設定手段によって設定された既知パラメータと非線形屈折率の暫定値を用いて、前記光ファイバの波長分散を表す定数と前記光ファイバの損失または利得を表す定数と前記光ファイバの非線形性を表す定数とを含み光の電場の振幅変化を表す非線形シュレディンガ方程式に基づいて前記信号成分のレベルが極小となる点の周波数を計算で求める特性計算手段(S4、S14)と、前記特性計算手段で求めた周波数と前記周波数特性測定手段で得られた周波数とが所定の許容範囲内で一致するか否かを判定する判定手段(S5、S15)と、前記判定手段で不一致が判定される毎に、非線形屈折率の暫定値を変更する暫定値変更手段(S6、S16)とを有する演算部(33、33′)とを含み、
前記判定手段で一致が判定されたときの非線形屈折率の暫定値を前記測定対象の光ファイバの非線形屈折率と決定するように構成されていることを特徴としている。
【0021】
また、本発明の請求項8の光ファイバの非線形屈折率測定装置は、請求項7記載の光ファイバの非線形屈折率測定装置において、
前記非線形シュレディンガ方程式は、次式で表されることを特徴とする。
∂A/∂z
=j(β /2)(∂ A/∂t )+α A−jγ|A|

ここで、γ=n ω /(cA eff

A:光ファイバを透過する強度変調光の電場の振幅
β :光ファイバの波長分散を表す定数
α :光ファイバの損失または利得を表す定数
γ:光ファイバの非線形性を表す定数
:光ファイバの非線形屈折率の暫定値
ω :光ファイバを透過する強度変調光の角周波数
c:光速
eff :光ファイバの有効コア面積
【0022】
また、本発明の請求項9の光ファイバの非線形屈折率測定装置は、請求項7または請求項8記載の光ファイバの非線形屈折率測定装置において、
前記演算部の特性計算手段は、
前記非線形シュレディンガ方程式をスプリットステップフーリエ法で解くことを特徴としている。
【0023】
また、本発明の請求項10の光ファイバの非線形屈折率測定装置は、請求項7または請求項8記載の光ファイバの非線形屈折率測定装置において、
前記演算部の特性計算手段は、
前記変調信号に対して小信号近似を行なって前記信号成分のレベルが極小となる点の周波数を求めることを特徴としている。
【0024】
また、本発明の請求項11の光ファイバの非線形屈折率測定装置は、請求項8または請求項9または請求項10の光ファイバの非線形屈折率測定装置において、
前記測定対象の光ファイバに入射する光または該光ファイバから出射された光に既知の波長分散を与える分散制御器(40)を有し、前記測定対象の光ファイバの波長分散の絶対値よりも前記測定対象の光ファイバの波長分散と前記既知の波長分散との和の絶対値を大きくすることを特徴としている。
【0025】
また、本発明の請求項12の光ファイバの非線形屈折率測定装置は、請求項8または請求項9または請求項10または請求項12の光ファイバの非線形屈折率測定装置において、
前記測定対象の光ファイバに入射する光に前記強度変調の周波数の整数分の1と異なる周波数の位相変調を与える位相変調手段(41、42)を有している。
【0026】
【発明の実施の形態】
以下、図面に基づいて本発明の実施の形態を説明する。
図1は、本発明の実施形態の非線形屈折率測定装置20の構成を示している。
【0027】
図1において、正弦波発生器21は、周波数が可変できる所定振幅の正弦波の信号を変調信号Mとして出力する。
【0028】
光送信部22は、所定波長で、正弦波による強度変調が可能で、且つ全体の強度(平均パワー)を可変できる光を出力するように構成されたものであり、図1では、所定波長の連続光を出力するレーザダイオード等の光源23、光源23の出力光を正弦波発生器21から出力される変調信号Mによって変調度mで強度変調する強度変調器24と、強度変調器24から出力される光のパワー(平均パワー)を可変するパワー可変手段25とで構成されている。
【0029】
なお、光送信部22のパワー可変手段25は、例えば、図2に示すように、光増幅器25aで増幅した光のパワーを可変光減衰器25bで減衰する構成、図3に示すように、光増幅器25aの増幅度を決める励起光のパワーを励起光パワー可変手段25cによって可変する構成、また、図4に示すように、光源23の直流電源を可変直流電源25dによって可変する構成のいずれでもよい。
【0030】
また、図3に示しているように、強度変調器24を用いずに、光源23に変調信号Mを直接与えて強度変調してもよく、この直接変調を、図2や図4のパワー可変手段と組合せることも可能である。
【0031】
光送信部22から出力される光は、図示しないコネクタ等を介して測定対象の光ファイバ1の一端側に入射される。
【0032】
なお、後述する演算に用いるために、光ファイバ1に入射される光のパワーは既知である必要があり、予め光送信部22が出力するパワーを校正しておくか、図5に示すように、光カプラ26を介して光パワーメータ27で常時モニタする(光カプラ26の損失分も考慮する)。あるいは図6に示すように、光スイッチ28を介して光パワーメータ27で測定することとしてもよい。また、正弦波発生器21が出力する正弦波の振幅と強度変調器24の変調特性とで決まる変調度mについては、この例では既知であるとする。ただし、変調度mについては、後述するように条件によって変調度mと測定結果を無関係にすることもでき、必ずしも既知である必要はない。
【0033】
光ファイバ1の他端側から出力される光は、図示しないコネクタを介して光電変換器30に入射される。この光電変換器30は、光送信部22が出力する光の波長に対応したフォトダイオード等からなり、入射光のパワーに比例して電圧が変化する電気信号を検波器31に出力する。
【0034】
検波器31は、正弦波発生器21が出力する変調信号Mの周波数と連動して選択周波数を変化させる周波数選択機能を有しており、光電変換器30から出力される信号から変調信号Mの周波数と等しい周波数成分のみを抽出し、その抽出信号のレベルを検出し、検波出力M′として出力する。
【0035】
周波数特性測定手段32は、検波器31の出力を受けながら正弦波発生器21が出力する変調信号Mの周波数を掃引制御して、その周波数毎の抽出信号のレベル、即ち、検波出力M′の周波数特性を測定する。
【0036】
なお、ここでは、周波数特性測定手段32が、正弦波発生器21から出力される変調信号Mの周波数を制御する場合について説明するが、この周波数制御機能を正弦波発生器21自体に設け、周波数特性測定手段32が正弦波発生器21から出力される周波数情報を受けて、検波出力M′の周波数特性を求めるようにしてもよい。
【0037】
波数特性測定手段32は、検波出力M′のレベルが極小となる極小点の周波数を周波数特性の特徴点の値(特徴値)として求める。
【0038】
また、前記した正弦波発生器21、検波器31および周波数特性測定手段32は、これらの機能を一体的に有するネットワークアナライザで代用することもできる。
【0039】
このように連続光の強度を正弦波で変調して得られる所定以上のパワーの光を光ファイバ1に入射した状態で検波出力号M′の周波数特性を測定すると、例えば図7に示すように、検波出力M′のレベルが大きく低下して極小となる極小点が周波数fd、fd、…(変調周波数の範囲によって一つの場合も複数の場合もある)に現れる。
【0040】
このような極小点をもつ周波数特性は、光ファイバ1の分散や非線形屈折率および入射光のパワーや周波数チャープの影響によって変化するものであるので、光ファイバ1の分散および入射光のパワーや周波数チャープが既知で、任意の非線形屈折率についてこの検波出力M′の周波数特性を計算で求めることができれば、その計算で得られた周波数特性と測定によって得られた周波数特性とが一致したとき、その計算で使用した非線形屈折率が、光ファイバ1の非線形屈折率に等しいと見なすことができる。
【0041】
演算部33は、パラメータ設定手段34から設定される既知のパラメータおよび非線形屈折率の暫定値の初期値を用いて、非線形シュレディンガ方程式に基づいて検波出力の周波数特性を計算し、その計算で求めた周波数特性が測定で得られた周波数特性と所定範囲内で一致するか否かを判定し、一致しないときには、非線形屈折率の暫定値を変更して周波数特性を計算して、再度判定するという動作を繰り返して、計算で得られた特性と測定で得られた特性とが一致したときの非線形屈折率の暫定値を、光ファイバ1の非線形屈折率と決定して、表示器等で構成された出力部35に出力する。なお、ここでは、前記したように検波出力の周波数特性を極小点の周波数とする。
【0042】
次に、この演算部33が行なう演算処理について説明する。
先ず、スプリットステップフーリエ法による非線形シュレディンガ方程式の解法について説明する。
【0043】
非線形シュレディンガ方程式は、非線形な媒体を光等の信号が伝搬する際の波形の変化を求めるための方程式であり、高次分散項を省くと次式(1)で表される。
【0044】
∂A/∂z
=j(β/2)(∂A/∂t)+αA−jγ|A|A……(1)
【0045】
上式(1)において、Aは光の電場の振幅(包絡線の振幅)、βは分散を表す定数、αは損失または利得を表す定数、γは非線形性を表す定数である。
【0046】
ここで、上式(1)を形式的に次式(2)のように表す。
【0047】
∂A/∂z=(D+N)A ……(2)
【0048】
ただし、Dは分散と損失(または利得)を表す線形演算子、Nは非線形性を表す非線形演算子であり、それぞれ次式(3a)、(3b)で与えられる。
【0049】
=j(β/2)(∂/∂t)+α ……(3a)
=−jγ|A| ……(3b)
【0050】
上記した式(2)を数値的に解く方法として、スプリットステップフーリエ法があり、これを用いて、短い距離h(以下の式の近似誤差が無視できる程度の距離)だけ伝搬したときの光の振幅Aは、次式(4)で表される。
【0051】
A(z+h,t)
≒ exp[(h/2)D] exp[∫z〜z+h(z′)dz′]
・ exp[(h/2)D]A(z,t) ……(4)
【0052】
ただし、記号∫z〜z+hは、z′=z〜z+hまでの積分を表す。この式(4)の演算を定められた距離分繰り返し行なうことで、その距離分伝搬した光の電場の振幅を求めることができる。
【0053】
ここで、分散と損失の演算を、次式(5)のように周波数領域に変換して行なう。
【0054】
exp[(h/2)D]=F−1 exp[(h/2)D(jω)]F……(5)
【0055】
ここで、Fはフーリエ変換、F−1は逆フーリエ変換を表す演算子であり、高速フーリエ変換(FFT)を使用して計算することができる。また、D(jω)は、式(3)の偏微分演算子をjωで置き換えたものであり、周波数領域では乗算によって計算できる。
【0056】
なお、非線形係数γと非線形屈折率nとは、次式(6)で関係付けられることが知られている。
【0057】
γ=nω/(cAeff) ……(6)
【0058】
ここで、ωは光の角周波数、cは光速、Aeffは光ファイバの有効コア面積であり、これらのパラメータは測定時に既知とし且つ定数なので、非線形係数γと非線形屈折率nとは1対1の関係があり、非線形屈折率nを求めるということは非線形係数γを求めることと同義である。
【0059】
前記した従来方法では、上記した式(4)の演算をパルス光に対して行ない、計算で得られた時間波形と測定によって得られた時間波形とを一致させる非線形屈折率を求めているが、スプリットステップフーリエ法は、この実施形態のように強度が正弦波で変調された光信号にも適用することができる。
【0060】
周波数f、変調度mの変調信号Mで強度変調された光の強度Iは、その平均パワー(無変調時の強度)をIとすれば、次式(7)で表される。
【0061】
I=I[1+m cos(2πft)] ……(7)
【0062】
強度変調器24のチャープパラメータをαとすれば、光の位相φと強度Iの関係は、次式(8)で表される。
【0063】
dφ/dt=(α/2I)dI/dt ……(8)
【0064】
また、入射光の電場の振幅Aは、次式(9)のようになる。
【0065】
A=I1/2jφ(I) ……(9)
【0066】
強度変調器のチャープは変調された光の強度Iに依存する場合が多く、変調度が大きい場合には、チャープを一定値とみなすことができない場合がある。
【0067】
そこで、チャープを強度Iの関数としてα(I)と表すと、光の位相φは、前記式(8)から、次式(10)のようになる。
【0068】
φ(I)=∫[α(I)/2I](dI/dt)dt ……(10)
【0069】
式(9)に式(7)と式(10)を代入すると、ファイバ入射端(z=0)における電場の振幅A(0)を計算できる。
【0070】
次に、スプリットステップフーリエ法によりファイバ中の伝搬の計算を行なう。前記式(4)の具体的な計算方法は種々あるが、例えば、
z〜z+h(z′)dz′≒hN(z+h/2)
と近似すると、次の式が得られる。
【0071】
Figure 0004194022
【0072】
Figure 0004194022
【0073】
Figure 0004194022
【0074】
前記したA(0)を初期値として上式(11a)〜(11c)の計算を繰り返すことにより、ファイバ出射端(z=L)における光の電場A(L)を求めることができる。
【0075】
通常のフォトダイオードは2乗検波特性を持っているので、光電変換後の電気信号の周波数fの成分Iは、次式で求めることができる。
【0076】
=|(1/T)∫0〜T|A(L)|−j2πftdt|……(12)
【0077】
ここで、記号∫0〜Tは、t=0〜Tまでの積分を表し、Tは変調の正弦波の1周期(1/f)である。スプリットステップフーリエ法の計算は、この正弦波の1周期分について行なえばよい。
【0078】
この場合、正弦波の周期は、パルス波の周期より短くすることができるので、計算量が少なくて済むという利点がある。
【0079】
また、スプリットステップフーリエ法の代わりに、小信号近似を用いれば、さらに計算量を少なくすることができる。
【0080】
以下、この小信号近似を用いた演算処理について説明する。
入射光の電場の振幅Aをフーリエ級数で示すと次式(13)となる。
【0081】
A=Σp=−1〜1j2πpft ……(13)
【0082】
ただし、記号Σp=−1〜1は、p=−1、0、1の総和を表し、p=0は、入射光のキャリア成分に対応し、p=±1は入射光の変調成分に対応している。
【0083】
ここで、変調度mが1に比べて十分小さいと仮定すると、上記式(7)〜(9)、(13)により、光ファイバ1に入射される光の電場の振幅の各フーリエ係数Aは、それぞれ次式(14a)〜(14c)のようになる。
【0084】
−1=(I1/2m(1+jα)/4 ……(14a)
=(I1/2 ……(14b)
=(I1/2m(1+jα)/4 ……(14c)
【0085】
上記各式(14a)〜(14c)で、Iは光ファイバ1に入射される光のパワー、mは変調度、αはチャープパラメータであり、これらが既知であれば、p=−1、0、1における各フーリエ係数Aは既知となる。
【0086】
次に、式(13)の入射光を式(1)のシュレディンガ方程式に代入して、光ファイバ中の伝搬の計算を行なう。
先ず、式(1)の分散項は、次式(15)のようになる。
j(β/2)(∂A/∂t
=−j(β/2)Σp=−1〜1(2πpf)j2πpft……(15)
【0087】
また、非線形項は、次式(16)を展開したものとなる。
【0088】
Figure 0004194022
【0089】
ただし、AはAの共役である。ここで、上記式(16)を展開して得られる項について、変調度mが1に対して十分小さいと仮定すると、|A|および|A−1|が|A|に対して十分小さくなり、AまたはA−1が2個以上掛け合わされている項は、AまたはA−1が1個以下の項と比較して、その絶対値が十分小さくなり、これを無視して近似することができる。この小信号近似を行なうことで、非線形項は次式(17)のように近似できる。
【0090】
Figure 0004194022
【0091】
よって、式(15)の分散項と式(17)の非線形項を式(1)の非線形シュレディンガ方程式に代入すると、次式(18)となる。
【0092】
Figure 0004194022
【0093】
ただし、上式(18)の各係数Bは、
=|A
=2|A+A −1
−1=2|A−1+A
である。
【0094】
そして、上記式(18)を各フーリエ係数毎に表すと、次式(19)のようになる。
【0095】
∂A/∂z
=−j(β/2)(2πpf)+α
−jγBp=−1〜1 ……(19)
【0096】
よって、短い距離hだけ伝搬したときのA(z+h)は、p=−1、0、1についてそれぞれ次式(20a)〜(20c)で近似できる。
【0097】
(z+h/2)
≒ exp[(h/2)α
−j(h/2)(β/2)(2πpf)]A(z) ……(20a)
【0098】
′(z+h/2)
≒A(z+h/2)−jγhB(z+h/2) ……(20b)
【0099】
(z+h)
≒ exp[(h/2)α
−j(h/2)(β/2)(2πpf)]A′(z+h/2)……(20c)
【0100】
なお、式(20b)の結果は式(20a)の結果を代入して得られ、式(20c)の結果は式(20b)の結果を代入して得られる。
【0101】
したがって、pの値に対する前記式(14a)〜(14c)の各値をz=0における初期値として、上式(20a)〜(20c)を光ファイバ1の長さL分繰り返し計算することにより、その光ファイバ1を伝搬した後の振幅A(L)を求めることができる。
【0102】
また、前記したように、フォトダイオード等を用いた光電変換器30は入力される光の強度に比例した電圧を出力する2乗検波特性をもっているので、光電変換器30から出力される電気信号のうち、変調信号Mと等しい周波数fの信号成分(検波出力M′)Iは、次式(21)で求めることができる。
【0103】
=Σ|p+q|=1(L)・A(L) ……(21)
【0104】
ただし、記号Σ|p+q|=1は、−1、0、1のp、qに対して|p+q|=1を満たすpとqの組合せの総和を表す。
【0105】
このように、小信号近似を行なうと、Aについてp=−1、0、1の3つのデータについて計算すればよいので、従来のスプリットステップフーリエ法と比較して、さらに計算量が少なくなる。
【0106】
実施形態の演算部33は、上記原理に基づいて、非線形屈折率を求めるものであり、図8のフローチャートに示しているように、光送信部22から出射された光が光ファイバ1に入射されている状態で、周波数特性測定手段32によって検波出力M′の周波数特性(極小点の周波数)が測定されて(S1)、入射光のパワーI、変調周波数f、変調度m、チャープパラメータα、定数α、βの等の既知のパラメータと、非線形屈折率の暫定値nの初期値が設定される(S2、S3)と、これらのパラメータに基づいて、検波出力M′の周波数特性をスプリットステップフーリエ法または前記小信号近似によって計算で求め(S4)、その周波数特性と周波数特性測定手段32で測定された周波数特性とが所定の許容範囲内で一致するか否かを判定し(S5)、一致しないときに暫定値nを修正して計算を再度行い、判定するという動作を繰り返し(S6)、一致したときの暫定値nを光ファイバ1の非線形屈折率nと決定して、出力部35へ出力する。
【0107】
より具体的に言えば、周波数特性の特徴点である極小点の周波数同士を比較して、その差が所定範囲内に入るように非線形屈折率の暫定値nを可変して、周波数差が所定範囲内に入ったときの暫定値nを、光ファイバ1の非線形屈折率nと決定して、図示しない表示部等に出力する。
【0108】
なお、上記処理では未知数が非線形屈折率だけで、チャープパラメータおよび分散が既知であるので、あるパワーで得られた周波数特性の最低限一点(極小点の周波数でなくてもよい)のデータがあれば、非線形屈折率を求めることができるが、測定条件(例えば入射光のパワー)を変えて得られた複数のデータについて、同様の処理を行い、得られた複数の非線形屈折率の平均処理等を行なって測定精度をさらに高くすることもできる。
【0109】
また、前記式(1)のシュレディンガ方程式は、高次分散項を省略していたが、例えば3次の分散項を含めて計算してもよく、このようにすればより精度が高くなる。
【0110】
以上のように、実施形態の非線形屈折率測定装置20は、一つの光源23から出力される連続光を正弦波の変調信号Mで強度変調して得られる光を測定光として用いているので、その時間波形を観測しないでも、パワーを正確に校正したり、あるいは通常のパワーメータで容易に且つ高精度に測定することができ、精度の高い測定が行なえる。
【0111】
また、物理量のうち、高精度な測定が可能な周波数とレベルとからなる周波数特性の特徴点の値を比較対象として非線形屈折率を求めているので、パルス光の時間波形を比較対象とする従来方法に比べて高い精度が得られる。
【0112】
また、周波数特性の特徴点として極小点の周波数のみを測定対象および比較対象にした場合には、検波出力の値を正確に知る必要が無くなるため、光電変換器30、検波器31の変調周波数に対する特性のバラツキ等の影響を受けずに、さらに精度の高い測定が行なえる。
【0113】
また、変調度mが1に対して十分小さいことを利用して小信号近似を行なうことで、計算量が格段に少なくて済み、速やかに非線形屈折率を求めることができる。
【0114】
また、周波数特性の特徴点としての極小点の周波数のみを使用し、且つ変調度mが1に対して十分小さく小信号近似を行なうと、前記特徴に加えて、変調度mの値と完全に無関係になるため、正弦波発生器21、強度変調器24の周波特性の影響を受けず、変調度mの値を知る必要がなくなり、簡易で且つ高精度な測定が可能となる。
【0115】
なお、前記説明で、変調度mが1に対して十分小さいと仮定して小信号近似を行なったが、実際に測定を行なう際の変調度はある有限の値となる。
【0116】
そこで、この変調度mと小信号近似によって得られる非線形屈折率の誤差との関係を調べる。
【0117】
次の表1に示す測定条件において、小信号近似を行なわないで伝搬シミュレーションを行なって極小点の周波数を算出する。この算出の際、強度変調は、前記した式(7)に示す理想的な正弦波強度変調とし、算出した極小点の周波数から小信号近似の式を用いて非線形屈折率を算出し、表1の非線形屈折率の真値に対する誤差を、変調度mを変えて求めることにより、図9の結果を得ることができた。
【0118】
【表1】
Figure 0004194022
【0119】
この図9から明らかなように、変調度mが小さい程、誤差が小さくなっている。したがって、この変調度mは、測定に許容される誤差に応じて決定すればよく、例えば誤差を2パーセント以内にするには、変調度mを0.2以下に設定すればよく、変調度m0.2は十分に実現できる。
【0120】
前記した非線形屈折率測定装置20では、強度変調器24の周波数チャープ、分散が既知の場合であったが、周波数チャープと分散が未知の場合でも、前記非線形屈折率測定装置20と同様の構成で、非線形屈折率、周波数チャープおよび分散を求めることができる。
【0121】
この場合、演算部33は、図10のフローチャートに示すように、非線形屈折率の暫定値nだけでなく、チャープパラメータの暫定値α、分散の暫定値βを可変しながら、その計算結果と測定結果とを比較し、両者が所定範囲内で一致したときの各暫定値を、非線形屈折率、チャープパラメータおよび分散と決定することもできる。
【0122】
このように複数のパラメータを可変する場合、その内の一つだけを可変して、比較データの差が最も少なくなるようにしてから、次の1つのパラメータを可変して比較データの差が最も少なくなるようにし、最後に残りのパラメータを可変方法や、2つのパラメータを可変して比較データの差が最も少なくなるようにしてから、残りの一つを可変する方法、あるいは、3つのパラメータ全てを可変して比較データの差が最も少なくなるようにする方法がある。
【0123】
なお、このように3つの未知数がある場合には、少なくとも極小点の数とパワーが異なる最低限3つの測定データがあればよく、前記同様に、さらに測定条件を変えてより多く測定データを得て、各パラメータを精度よく求めるようにしてもよい。
【0124】
また、図示しないが、チャープパラメータと分散のいずれか一方が未知の場合には、最低限2つの測定データを用いることで、非線形屈折率とその一方のパラメータを求めることができる。
【0125】
これらパラメータと測定条件との関係をまとめると、次の表2のように4つの場合に区別される。
【0126】
【表2】
Figure 0004194022
【0127】
即ち、周波数チャープと分散が既知の場合には、未知数が非線形屈折率だけなので、1つの光パワー、1つの変調周波数で測定されたデータに基づいて、光ファイバ1の非線形屈折率を算出することができる。
【0128】
また、周波数チャープが既知で分散が未知の場合には、未知数が非線形屈折率を含めて2つなので、1つの光パワー、2つの変調周波数で測定された2組のデータに基づいて、光ファイバ1の非線形屈折率および分散を算出することができ、逆に周波数チャープが未知で分散が既知の場合には、未知数が非線形屈折率を含めて2つなので、2つの光パワー、1つの変調周波数で測定された2組のデータに基づいて、光ファイバ1の非線形屈折率および周波数チャープを算出することができる。
【0129】
また、周波数チャープと分散がともに未知の場合には、未知数が非線形屈折率を含めて3つなので、2つの光パワー、2つの変調周波数で測定された少なくとも3組のデータに基づいて、光ファイバ1の非線形屈折率、周波数チャープおよび分散を算出することができる。
【0130】
また、前記演算部33では、計算で求めた極小点の周波数と、測定で得られた極小点の周波数とを比較して、その差が小さくなるように非線形屈折率の暫定値を変更していたが、図11に示すフローチャートのように、測定された極小点の周波数についての非線形伝搬の計算、即ち、前記した式(14)、(20)、(21)の計算を行い、その計算で得られた検波出力のレベルが極小となるように、非線形屈折率の暫定値を変更してもよい。
【0131】
また、チャープパラメータと分散が未知の場合の簡易的な計算方法として、図12に示す方法も実施できる。
【0132】
即ち、図13のように、例えば3つの異なるパワーP1、P2、P3について測定で得られたそれぞれu番目の極小点の周波数f1、f2、f3(共振周波数と呼ぶ)とパワーとの関係を最小2乗法等を用いて直線Gで近似し、この直線を周波数軸まで延長して光パワー0における仮想的な共振周波数f0を少なくとも異なる2つのuについて求め、共振周波数の光パワーに対する傾きΔを、少なくとも1のuについて求める。
【0133】
そして、光パワー0における2つ以上の共振周波数f0と、線形における共振周波数、分散、チャープパラメータとの関係を表す次式(22)に基づいて、チャープパラメータα、分散Dを算出する。なお、分散Dは、光の波長λ、光速c、分散定数βとすると、−2πcβ/λで表される。
【0134】
f0
=[c/(2Dλ)][1+2u−(2/π) tan−1α]……(22)
【0135】
そして、この計算で得られたチャープパラメータと分散を用い、さらに非線形屈折率の暫定値を設定して、少なくとも1つのパワー(例えばP4)について周波数特性を計算で求め、図13に示しているように、そのu番目の極小点の周波数f4と前記f0とを結ぶ直線G′の傾きΔ′を、少なくとも一つのuについて算出する。なお、複数のパワー(例えばP1、P2、P3)について計算し、直線近似して傾きΔ′を求めてもよい。
【0136】
そして、この算出した傾きΔ′と、測定によって得られた傾きΔとが各uについて一致する方向に非線形屈折率の暫定値nを変えて、非線形屈折率を決定する。この場合、計算する極小点の周波数は最低1つでよく、変更するパラメータが非線形屈折率の暫定値だけなので、さらに計算量を少なくすることができる。
【0137】
なお、このように光パワーと共振周波数の関係を直線近似して得られた非線形屈折率は計算が簡易な分だけ誤差が多いので、これを非線形屈折率の暫定値の初期値として前記図10、図11の演算処理を行なうこともできる。この場合、暫定値の初期値が実際の非線形屈折率に近いので、図10、図11の処理での演算の繰り返し回数を少なくできる。
【0138】
なお、上記した構成の非線形屈折率測定装置20で、分散シフトファイバのように波長分散の小さい光ファイバ1を測定した場合、非線形による抽出信号の周波数特性の変化が小さくなるため、特性を精度よく測定する必要があり、また、極小点の周波数を求める場合においても、波長分散が小さいと極小点の周波数が高くなり、測定装置が大掛かりで高価になるという問題が生じる。
【0139】
図14に示す非線形屈折率測定装置20Aは、このように波長分散の小さい光ファイバ1を測定する場合であっても簡単な構成で容易に測定できるように、分散値が比較的大きな分散制御器40を測定対象の光ファイバ1に直列に接続して、光ファイバ1とこの分散制御器40とを合わせた分散値(総分散値)が比較的大きな値となるように設定して測定を行なうものである。
【0140】
なお、分散制御器40は、光ファイバ1の前に挿入したり、前後にそれぞれ挿入することも可能である。ただし、図14に示しているように光ファイバ1の後に挿入する方が、非線形による特徴値(周波数特性、極小点周波数)の変化が大きなり、有利である。
【0141】
ここで、分散の小さな光ファイバと分散制御器40とを組合せたときの抽出信号の周波数特性と、その組合せによる分散値と同一の分散値をもつ光ファイバのみの抽出信号の周波数特性とは、完全には一致しないが非常に近い特性となるため、上記の問題を解消することができる。
【0142】
なお、光ファイバ1と分散制御器40とを組合せたときの総分散値は、正負の符号に関わらず絶対値が適度に大きければよい。
【0143】
この総分散値の目安は、前記した極小点の周波数を特徴値とする場合、線形の場合の式(22)を用いて求めることができる。
【0144】
例えば、波長λ=1550nm、極小点の測定点を2点(u=0,1)、チャープα=0、最大測定周波数を約20GHzとすると、総分散値は、約470ps/nm以上にする必要がある。
【0145】
ここで使用する分散制御器40として、その分散値を可変できるものを用いれば、様々な分散値の光ファイバ1に対して、総分散値を一定にすることができて有利である。
【0146】
また、総分散値が周波数特性を容易に測定できるある範囲内に入るようにする場合には連続可変式でなく、分散値を離散的に可変できるものであればよく、これは、複数のものを任意に組合せる構造でも実現可能である。
【0147】
また、測定対象の光ファイバ1の分散値がある限られた範囲内にある場合には、その範囲に対して総分散値が適度に大きくなるような固定の分散値をもつもので構成してもよい。
【0148】
図15は分散制御器40の構成例を示したものであり、図15の(a)は、分散媒体40aのみからなる最も簡単な構成である。この構成は、分散媒体40aの非線形性が光ファイバ1の非線形性に対して十分小さい場合に有効である。また、たとえ、分散媒体40aの非線形性が光ファイバ1の非線形性に対して無視できない場合であっても、光ファイバ1の損失が既知であれば分散媒体40aの非線形の影響を含めて計算することが可能である。
【0149】
なお、分散媒体40aとしては、シングルモードファイバや分散補償ファイバ等の光ファイバ、ファイバブラッググレーティング、VIPA(Virtually Imaged Phase Array)等がある。
【0150】
また、図15の(b)は、分散媒体40aの前段に光減衰器40bを設けた構造であり、分散補償ファイバのように分散媒体40aの非線形性が大きい場合に、光減衰器40bで分散媒体40bに入射される光を減衰させて、分散媒体40aの非線形性の影響を少なくしている。これにより、分散媒体40aの非線形性の計算を行なう場合においても、分散媒体40aの非線形屈折率の誤差の影響が小さくなるという効果がある。
【0151】
また、図15の(c)は、図15の(a)の分散媒体40aの前段にカプラ40cを設け、そのカプラ40cの分岐出力を光パワーメータ40dで検出するものである。
【0152】
ここで、光送信部22から出射される光のパワーおよびカプラ40cの分岐損失が既知であれば、光ファイバ1から出射された光のパワーおよび分散媒体40aへ入射される光パワーが既知となるので、光ファイバ1の損失が求まり、光ファイバ1の損失が未知の場合においても分散媒体40aの非線形性の影響を求めることができる。
【0153】
同様に、図15の(d)は、図15の(c)の分散媒体40aの前段にカプラ40cを設け、そのカプラ40cの分岐出力を光パワーメータ40dで検出するものである。
【0154】
ここで、光送信部22から出射される光のパワーおよびカプラ40cの分岐損失が既知であれば、光減衰器40bから出射された光のパワーおよび分散媒体40aへ入射される光パワーが既知となるので、光減衰器40bの減衰量から光ファイバ1の損失が求まり、前記同様に光ファイバ1の損失が未知の場合においても分散媒体40aの非線形性の影響を求めることができ、また、図15の(c)の場合と同様に、分散媒体40aの非線形屈折率の誤差の影響を小さくすることができる。
【0155】
なお、図15の(d)では、カプラ40cを光減衰器40bと分散媒体40aの間に設けていたが、カプラ40cを光減衰器40bの前段に設けてもよい。
【0156】
このような分散制御器40を用いて光ファイバ1の非線形屈折率を求める場合、分散制御器40の分散値が既知である必要があり、これを知る方法としては、予め他の測定システム等で分散制御器40の分散値を求めておく方法と、この非線形屈折率測定装置20Aで測定する方法(セルフキャリブレーション)とがある。
【0157】
このセルフキャリブレーションを行なう場合には、図14で点線で示しているように、光ファイバ1をバイパスして、光送信部22から出射された光を分散制御器40に入射し、分散制御器40から出射された光を光電変換器30で受光し、前記同様の処理によって分散制御器40の分散値を求める。
【0158】
また、ここで使用する分散制御器40の非線形性が、分散補償ファイバのように大きい場合には、分散制御器40自体の非線形屈折率も光ファイバ1を測定したときと同様の方法で求めておく。
【0159】
そして、演算部33においては、光ファイバ1における光の伝搬についての計算を行い、続いて分散制御器40における光の伝搬についての計算を行い、最後に、フォトダイオードの2乗検波についての計算をすればよい。
【0160】
さらに具体的に言えば、光ファイバ1について前式(20a)〜(20c)を繰り返し計算して振幅A(L)を求め、シュレディンガ方程式の分散項から導出される次式(23)によって、分散制御器40を通過した後の振幅A(L+LDC)を求める。
【0161】
(L+LDC
=exp{−j[β2DCDC/2]・4π}A(L)……(23)
【0162】
ここで、β2DCは分散制御器40の波長分散を表す定数、LDCは分散制御器40の長さである。
【0163】
そして、このようにして得られた振幅A(L+LDC)をA(L)の代わりに用いて前式(21)の2乗検波の計算を行なうことにより、検波出力を求めることができる。
【0164】
このようにして計算で得られた検波出力の周波数特性と周波数特性測定手段32で測定された周波数特性とが所定の許容範囲内で一致する非線形屈折率の暫定値nを前記同様に求めて、これを光ファイバ1の非線形屈折率nと決定する。
【0165】
また、前記したように、分散制御器40の非線形性が大きい場合には、その非線形性も含めて計算を行なうことにより、分散制御器40の非線形性が光ファイバ1の非線形屈折率の計算結果へ与える影響をキャンセルすることができる。
【0166】
具体的には、光ファイバ1について前式(20a)〜(20c)を繰り返し計算して振幅A(L)を求めた後、分散制御器40の損失、分散、非線形屈折率の値を用いて、長さLDCの間について前式(20a)〜(20c)を繰り返し計算して振幅A(L+LDC)を求める。
【0167】
次に、上記非線形屈折率の測定誤差を低減するための技術について説明する。
非線形屈折率の測定においては、光ファイバ1に入射する光のパワーが大きい程、非線形効果が顕著となるので、精度の高い測定が可能となる。
【0168】
ところが、入射する光のパワーがある閾値(ブリルアン閾値という)より大きくなると、誘導ブリルアン散乱(Stimulated BrillouionScatering)により、逆方向に進行するストークス波が発生して、実質的な入射パワーが減少し、非線形効果が小さくなって、測定誤差が生じる。
【0169】
このため、非線形屈折率の測定では、ブリルアン閾値以下の光パワーでの測定に制限されており、この制限によってより高い精度で測定を行なうことができない。
【0170】
このブリルアン閾値は光源の線幅(スペクトラムの幅)に依存し、線幅が狭いと閾値は小さくなり、線幅が広いと閾値が大きくなるが、前記したように、小さい変調度で強度変調された光の線幅は狭いので、ブリルアン閾値も小さく、測定誤差をより少なくすることができない。
【0171】
この点を改善するために、図16および図17に示す非線形屈折率測定装置20B、20Cのように、光ファイバ1に入射する光に所定の位相変調を与えるための位相変調手段として位相変調器41と信号発生器42とを設け、出射する光に対して大きな信号で位相変調をかけて光の線幅を広げ、前記したブリルアン閾値を高くして、出射光のパワーを大きくして測定誤差をより小さくすることができる。なお、図16および図17に示した非線形屈折率測定装置20B、20Cでは、前記した分散制御器40を有しているが、この分散制御器40を省略してもよい。
【0172】
ここで、信号発生器42から位相変調器41に与える信号は、広げる線幅に応じた帯域をもった信号であればよい。ただし、強度変調を用いた測定に与える影響を少なくするために、その強度変調の変調周波数fの整数分の1と異なる正弦波またはそれに相当する周期の繰り返し信号を位相変調の変調信号として用いることが望ましい。また、位相変調の変調指数が大きくなると強度変調を用いた測定への影響が大きくなるので、前記した誘導ブリルアン散乱を抑制するのに必要十分な変調指数が望ましい。
【0173】
この位相変調器41としては、例えばLiNbO(ニオブ酸リチウム)変調器等を用いることができる。
【0174】
また、位相変調器41は、図16に示したように光源23と強度変調器34の間に設けたり、図17に示したように、強度変調器24とパワー可変手段25の間に設ける場合の他に、パワー可変手段25の後段に設けることもできる。
【0175】
また、前記説明では、測定によって得られた特徴点の値(極小点の周波数やある周波数における振幅値等)に基づいて、光ファイバ1の非線形屈折率を算出していたが、予め異なる非線形屈折率n(1)〜n(J)に対する特徴点の値F(1)〜F(J)を計算で求めておき、これを図18に示すように、演算部33′のメモリ33aにテーブル化して記憶しておき、測定で得られた特徴点の値に対応する非線形屈折率をメモリ33aから読み出すように構成してもよい。
【0176】
この場合、メモリ33aに記憶するデータは演算部33′自身が算出する場合だけでなく、他の演算装置で算出されたものを演算部33′のメモリ33aに記憶設定してもよい。
【0177】
図19は、上記のデータが予め演算部33′のメモリ33aに記憶設定されている場合の処理手順を示したものであり、前記同様に、光送信部22から非線形屈折率が未知の光ファイバ1に光を入射した状態で測定が行なわれて特徴値F(x)が得られると(S51)、その特徴値F(x)についてメモリ33aを参照し、その値に対応する非線形屈折率n(x)があれば、これを光ファイバ1の非線形屈折率として出力する(S52〜S54)。
【0178】
また、測定で得られた特徴値Fxに対応する非線形屈折率がメモリ33aに記憶されていない場合には、メモリ33a内でその値に近い値に対応する非線形屈折率の値を補間処理あるいは外挿処理して、測定で得られた特徴値に対応する非線形屈折率n(x)を算出して、これを光ファイバ1の非線形屈折率として出力する(S55)。
【0179】
ただし、光ファイバの非線形屈折率と測定によって得られる特徴値との関係は、光ファイバの分散によって異なるため、いくつかの分散値について、前記したテーブルを作成しておき、さらに、分散値についても前記した補間処理や外挿処理すれば、分散が異なる種々の光ファイバについてその非線形屈折率を求めることができる。
【0180】
【発明の効果】
以上説明したように、本発明の光ファイバの非線形屈折率測定方法および測定装置では、一つの光源から出力される連続光を正弦波の変調信号で強度変調して得られる光を測定光として用いているので、その時間波形を観測しないでも、パワーを正確に校正したり、あるいは通常のパワーメータで容易に且つ高精度に測定することができ、精度の高い測定が行なえる。また、正弦波に対する計算で済むので、計算量が少なくて済む。
【0181】
また、物理量のうち、高精度な測定が可能な周波数とレベルとからなる周波数特性の特徴値を比較対象として非線形屈折率を求めているので、パルス光の時間波形を比較対象とする従来方法に比べて高い精度が得られる。
【0182】
また、変調度を1に対して十分小さくし、極小点の周波数を特徴値とした場合には、変調度やレベルの正確な値が不要なため、正弦波発生器、強度変調器、光電変換器、検波器の変調周波数に対する特性のバラツキ等の影響を受けずに、さらに精度の高い測定が行なえる。
【0183】
また、変調信号についての小信号近似を行なうことで、計算量が格段に少なくて済み、速やかに非線形屈折率を求めることができる。
【0184】
また、分散の項を含む非線形シュレディンガ方程式に基づいているため、光ファイバの分散が大きい場合にも対応可能である。さらに、光ファイバの分散と強度変調器の周波数チャープが未知の場合でも、非線形屈折率と同時に分散と周波数チャープを求めることができる。
【0185】
また、測定対象の光ファイバに入射する光またはあるいは光ファイバから出射された光に既知の分散を与えて測定するようにしたものでは、分散が小さい光ファイバの非線形屈折率を、簡単な構成で容易に且つ精度よく測定することができる。
【0186】
また、測定対象の光ファイバに入射する光に所定の位相変調を与えて測定するようにしたものでは、光ファイバに入射する光の線幅を広げることができ、この線幅の広がりにより、光ファイバに入射できる光のパワーをより大きくすることができ、測定精度がより高くなる。
【図面の簡単な説明】
【図1】本発明の実施形態の非線形屈折率測定装置の構成を示す図
【図2】実施形態の要部の構成例を示す図
【図3】実施形態の要部の構成例を示す図
【図4】実施形態の要部の構成例を示す図
【図5】実施形態の要部の構成例を示す図
【図6】実施形態の要部の構成例を示す図
【図7】抽出信号の周波数特性の一例を示す図
【図8】演算部の処理手順を示すフローチャート
【図9】変調度と誤差の関係を示す図
【図10】演算部の処理手順を示すフローチャート
【図11】演算部の処理手順を示すフローチャート
【図12】演算部の処理手順を示すフローチャート
【図13】演算部の処理を説明するための図
【図14】本発明の実施形態の変形例を示す図
【図15】図14の要部の構成例を示す図
【図16】本発明の実施形態の変形例を示す図
【図17】本発明の実施形態の変形例を示す図
【図18】本発明の実施形態の変形例を示す図
【図19】本発明の実施形態の変形例の動作を説明するためのフローチャート
【図20】従来装置の構成を示す図
【符号の説明】
1……光ファイバ、20、20A〜20C……非線形屈折率測定装置、21……正弦波発生器、22……光送信部、23……光源、24……強度変調器、25……パワー可変手段、26……カプラ、27……光パワーメータ、28……光スイッチ、30……光電変換器、31……検波器、32……周波数特性測定手段、33、33′……演算部、33a……メモリ、40……分散制御器、40a……分散媒体、40b……光減衰器、40c……カプラ、40d……光パワーメータ、41……位相変調器、42……信号発生器

Claims (12)

  1. 指定された周波数の正弦波の変調信号によって強度変調されパワーが既知の光を測定対象の光ファイバの一端側に入射する段階(S1、S11)と、
    該光ファイバの他端側から出射される光を電気信号に変換し、該電気信号から前記変調信号の周波数と等しい周波数を有する信号成分のレベルが極小となる点の周波数を求める段階(S1、S11)と、
    演算に必要な既知のパラメータおよび非線形屈折率の暫定値を指定する段階(S2、S3、S12、S13)と、
    前記指定されたパラメータと非線形屈折率の暫定値を用いて、前記光ファイバの波長分散を表す定数と前記光ファイバの損失または利得を表す定数と前記光ファイバの非線形性を表す定数とを含み光の電場の振幅変化を表す非線形シュレディンガ方程式に基づいて前記信号成分のレベルが極小となる点の周波数を計算で求める計算段階(S4、S14)と、
    前記計算で求めた周波数と前記測定で得られた周波数とが所定の許容範囲内で一致するか否かを判定する判定段階(S5、S15)と、
    前記判定段階で一致が判定されるまで、前記非線形屈折率の暫定値を変えて前記計算段階および判定段階を繰り返し、前記判定段階で一致が判定されたときの非線形屈折率の暫定値を前記測定対象の光ファイバの非線形屈折率と決定する段階(S6、S7、S16、S17)とを含む光ファイバの非線形屈折率測定方法。
  2. 前記非線形シュレディンガ方程式は、次式で表されることを特徴とする請求項1記載の光ファイバの非線形屈折率測定方法。
    ∂A/∂z
    =j(β /2)(∂ A/∂t )+α A−jγ|A|

    ここで、γ=n ω /(cA eff

    A:光ファイバを透過する強度変調光の電場の振幅
    β :光ファイバの波長分散を表す定数
    α :光ファイバの損失または利得を表す定数
    γ:光ファイバの非線形性を表す定数
    :光ファイバの非線形屈折率の暫定値
    ω :光ファイバを透過する強度変調光の角周波数
    c:光速
    eff :光ファイバの有効コア面積
  3. 前記信号成分のレベルが極小となる点の周波数を計算で求める際に、前記非線形シュレディンガ方程式をスプリットステップフーリエ法で解くことを特徴とする請求項1または請求項2記載の光ファイバの非線形屈折率測定方法。
  4. 前記信号成分のレベルが極小となる点の周波数を計算によって求める際に、前記変調信号について小信号近似を行なうことを特徴とする請求項1または請求項2記載の光ファイバの非線形屈折率測定方法。
  5. 前記測定対象の光ファイバに入射する光または該光ファイバから出射された光に既知の波長分散を与える段階を含み、前記測定対象の光ファイバの波長分散の絶対値よりも前記測定対象の光ファイバの波長分散と前記既知の波長分散との和の絶対値を大きくすることを特徴とする請求項1または請求項2または請求項3または請求項4記載の光ファイバの非線形屈折率測定方法。
  6. 前記測定対象の光ファイバに入射する光に前記強度変調の周波数の整数分の1と異なる周波数の位相変調を与える段階を含み、誘導ブリルアン散乱を抑制することを特徴とする請求項1または請求項2または請求項3または請求項4または請求項5記載の光ファイバの非線形屈折率測定方法。
  7. 指定された周波数の正弦波の信号を変調信号として出力する正弦波発生器(21)と、
    前記変調信号で強度変調されパワーが既知の光を、測定対象の光ファイバの一端側に入射する光送信部(22)と、
    前記光ファイバの他端側から出射される光を電気信号に変換する光電変換器(30)と、
    前記光電変換器から出力される電気信号から前記変調信号の周波数と等しい周波数を有する信号成分を抽出し、該信号成分のレベルを検出する検波器(31)と、
    前記検波器の出力と前記変調信号の周波数とに基づいて、前記信号成分のレベルが極小となる点の周波数を求める周波数特性測定手段(32)と、
    既知のパラメータと非線形屈折率の暫定値と設定するパラメータ設定手段(34)と、
    前記パラメータ設定手段によって設定された既知パラメータと非線形屈折率の暫定値を用いて、前記光ファイバの波長分散を表す定数と前記光ファイバの損失または利得を表す定数と前記光ファイバの非線形性を表す定数とを含み光の電場の振幅変化を表す非線形シュレディンガ方程式に基づいて前記信号成分のレベルが極小となる点の周波数を計算で求める特性計算手段(S4、S14)と、前記特性計算手段で求めた周波数と前記周波数特性測定手段で得られた周波数とが所定の許容範囲内で一致するか否かを判定する判定手段(S5、S15)と、前記判定手段で不一致が判定される毎に、非線形屈折率の暫定値を変更する暫定値変更手段(S6、S16)とを有する演算部(33、33′)とを含み、
    前記判定手段で一致が判定されたときの非線形屈折率の暫定値を前記測定対象の光ファイバの非線形屈折率と決定するように構成されていることを特徴とする光ファイバの非線形屈折率測定装置。
  8. 前記非線形シュレディンガ方程式は、次式で表されることを特徴とする請求項7記載の光ファイバの非線形屈折率測定装置。
    ∂A/∂z
    =j(β /2)(∂ A/∂t )+α A−jγ|A|

    ここで、γ=n ω /(cA eff

    A:光ファイバを透過する強度変調光の電場の振幅
    β :光ファイバの波長分散を表す定数
    α :光ファイバの損失または利得を表す定数
    γ:光ファイバの非線形性を表す定数
    :光ファイバの非線形屈折率の暫定値
    ω :光ファイバを透過する強度変調光の角周波数
    c:光速
    eff :光ファイバの有効コア面積
  9. 前記演算部の特性計算手段は、
    前記非線形シュレディンガ方程式をスプリットステップフーリエ法で解くことを特徴とする請求項7または請求項8記載の光ファイバの非線形屈折率測定装置。
  10. 前記演算部の特性計算手段は、
    前記変調信号に対して小信号近似を行なって前記信号成分のレベルが極小となる点の周 波数を求めることを特徴とする請求項7または請求項8記載の光ファイバの非線形屈折率測定装置。
  11. 前記測定対象の光ファイバに入射する光または該光ファイバから出射された光に既知の波長分散を与える分散制御器(40)を有し、前記測定対象の光ファイバの波長分散の絶対値よりも前記測定対象の光ファイバの波長分散と前記既知の波長分散との和の絶対値を大きくすることを特徴とする請求項7または請求項8または請求項9または請求項10記載の光ファイバの非線形屈折率測定装置。
  12. 前記測定対象の光ファイバに入射する光に前記強度変調の周波数の整数分の1と異なる周波数の位相変調を与える位相変調手段(41、42)を有していることを特徴とする請求項7または請求項8または請求項9または請求項10または請求項11記載の光ファイバの非線形屈折率測定装置。
JP2002260658A 2001-12-25 2002-09-05 光ファイバの非線形屈折率測定方法および測定装置 Expired - Fee Related JP4194022B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002260658A JP4194022B2 (ja) 2001-12-25 2002-09-05 光ファイバの非線形屈折率測定方法および測定装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001391847 2001-12-25
JP2001-391847 2001-12-25
JP2002260658A JP4194022B2 (ja) 2001-12-25 2002-09-05 光ファイバの非線形屈折率測定方法および測定装置

Publications (2)

Publication Number Publication Date
JP2003254863A JP2003254863A (ja) 2003-09-10
JP4194022B2 true JP4194022B2 (ja) 2008-12-10

Family

ID=28677073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002260658A Expired - Fee Related JP4194022B2 (ja) 2001-12-25 2002-09-05 光ファイバの非線形屈折率測定方法および測定装置

Country Status (1)

Country Link
JP (1) JP4194022B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2947446B1 (en) * 2013-01-21 2020-02-05 Osaka University Method for measuring light physical constants and device for estimating light physical constants

Also Published As

Publication number Publication date
JP2003254863A (ja) 2003-09-10

Similar Documents

Publication Publication Date Title
US7376358B2 (en) Location specific optical monitoring
US7272308B1 (en) Method of WDM channel tagging and monitoring, and apparatus
US11719599B2 (en) Optical fiber test method and optical fiber test device
US20020122171A1 (en) Chromatic dispersion distribution measuring apparatus and measuring method thereof
US6909496B2 (en) Method and device for easily and rapidly measuring nonlinear refractive index of optical fiber
JP2000193558A (ja) 波長分散測定装置
Nelson et al. Optical monitoring using data correlation for WDM systems
JP4194022B2 (ja) 光ファイバの非線形屈折率測定方法および測定装置
Le Nguyen MATLAB Simulink simulation platform for photonic transmission systems
US7349077B2 (en) Method and apparatus for measuring the polarization mode dispersion of an optical fiber
US7298465B2 (en) Measurement and characterization of nonlinear phase shifts
Krehlik Precise method of estimation of semiconductor laser phase-noise-to-intensity-noise conversion in dispersive fiber
Simova et al. Characterization of chromatic dispersion and polarization sensitivity in fiber gratings
JP3250587B2 (ja) 波長分散測定装置
US7385706B2 (en) Method and apparatus for determining the nonlinear properties of devices and fibers
JP3237684B2 (ja) 光ファイバの波長分散測定装置
Baney et al. Elementary matrix method for dispersion analysis in optical systems
EP1326362A1 (en) Accelerated measurement of bit error ratio
JP3291158B2 (ja) 光ファイバの非線形屈折率の測定方法およびその装置
Simova et al. Spectral characterization and chromatic dispersion measurements in fiber Bragg gratings for dispersion compensation
Qin et al. Effects of fiber nonlinearity on error vector magnitude and bit error ratio for advanced modulation formats
JP2023159688A (ja) 測定システム及び測定方法
Ma et al. Analytical Analysis of Residual Chromatic Dispersion and Self-Phase Modulation Optimal Compensation in the Fractional Domain
Schanner et al. Low-Complexity Method for Optical Fiber Nonlinear Coefficient Measurement
Tomizawa Measurement of local zero-dispersion wavelength at the input-side of dispersion managed optical fibers

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080722

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080918

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees