JP4193953B2 - Electrostatic coating method for metal cylinders - Google Patents

Electrostatic coating method for metal cylinders Download PDF

Info

Publication number
JP4193953B2
JP4193953B2 JP33292898A JP33292898A JP4193953B2 JP 4193953 B2 JP4193953 B2 JP 4193953B2 JP 33292898 A JP33292898 A JP 33292898A JP 33292898 A JP33292898 A JP 33292898A JP 4193953 B2 JP4193953 B2 JP 4193953B2
Authority
JP
Japan
Prior art keywords
metal cylinder
inner periphery
resin composition
metal
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33292898A
Other languages
Japanese (ja)
Other versions
JP2000153218A (en
Inventor
健 西澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuroda Precision Industries Ltd
Original Assignee
Kuroda Precision Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuroda Precision Industries Ltd filed Critical Kuroda Precision Industries Ltd
Priority to JP33292898A priority Critical patent/JP4193953B2/en
Priority to SG1999002443A priority patent/SG74728A1/en
Priority to MYPI99001942A priority patent/MY134899A/en
Priority to KR10-1999-0019937A priority patent/KR100436623B1/en
Priority to CN99107151A priority patent/CN1106225C/en
Publication of JP2000153218A publication Critical patent/JP2000153218A/en
Application granted granted Critical
Publication of JP4193953B2 publication Critical patent/JP4193953B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Electrostatic Spraying Apparatus (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属板を積層して形成されたほぼ円筒状をなす金属円筒体への静電塗装方法に関し、特にモータ、発電機等の回転電気機器に用いられる回転子鉄心又は固定子鉄心の絶縁塗装に適した静電塗装方法に関する。
【0002】
【従来の技術】
モータ、発電機等の回転電気機器に用いられる回転子鉄心又は固定子鉄心は、ケイ素鋼板等からなる複数枚の磁性金属片を積層して形成されており、回転子鉄心の場合は、外側にコイル挿入用のスロットが形成され、固定子鉄心の場合は、内側にコイル挿入用のスロットが形成されている。
【0003】
図5には、回転子鉄心の一例が示されている。この回転子鉄心10は、複数枚の磁性金属片15を積層して構成され、中心部には軸孔13を有し、外周には軸方向に沿ったスロット11が周方向に所定間隔で形成され、スロット11の間はコイルを巻付ける外歯12をなしている。なお、図中14は、端面の内周の角部を指している。
【0004】
このような回転子鉄心のような、金属板を積層して形成された金属円筒体に塗装を行う方法としては、電着塗装や静電塗装が知られている。しかしながら、電着塗装は設備が大がかりで機械のメンテナンスも大変であり、総じて生産コストが高くなるという問題があった。
【0005】
一方、静電塗装は、上面が開口され下面に多孔板が配置された流動槽と多孔板に取付けられた電極と流動槽の下方空間を囲む均圧室とを備えた静電塗装装置を用い、流動槽に樹脂粉体を供給し、均圧室に圧力空気を導入して多孔板を通して噴出させ、流動槽内の樹脂粉体を流動化させると共に前記電極に正又は負の静電気を付与して樹脂粉体を帯電させ、前記電極とは反対の静電気を付与した被塗装物を流動槽の上方に支持して樹脂粉体を被塗装物の表面に付着させた後、被塗装物を加熱することにより前記付着した樹脂粉体を融着させて塗膜を形成する方法である。
【0006】
【発明が解決しようとする課題】
しかしながら、回転子鉄心等の金属板を積層して形成された金属円筒体へ静電塗装により全面塗装を行った場合、樹脂粉体を融着させて塗装膜を形成する際に加熱するため、積層金属板の間の空気が膨脹し、塗装膜表面上に膨脹した空気の逃げ跡(ホール)が発生し、このようなホールが存在すると、絶縁耐圧及び防錆が確保できないという問題点があった。
【0007】
この問題点を解決するため、本発明者は、特願平10−152720号(本願の出願時において未公開の出願)において、静電塗装の際に、積層鉄心からなる金属円筒体の内周又は外周に電極シャフトを軸方向に沿って当接させることにより、電極シャフトが当接した部分を未塗装部分として残し、加熱した際の積層板間の膨脹した空気の逃げ道とすることにより、塗装膜表面上のホールの発生を防ぎ、その後、前記未塗装部分に常温硬化型の樹脂塗料を塗布するという塗装方法を提案している。
【0008】
しかしながら、上記塗装方法においても、なおかつ以下のような問題点があることがわかった。すなわち、前記軸孔内周の未塗装部分を塗装する際、通常のエアスプレーガンを用いて塗装すると、塗装膜厚が極めて薄くなるため完全防錆は困難であった。
【0009】
一方、防錆を完全にするために塗装膜厚を厚くしようとすると、使用する塗料の粘度がかなり低いため、図6に示すように塗料33がタレてしまい、均一に塗装することが困難であった。特に、鉄心10の上端面の内周角部14に位置する部分に塗料33が十分に付着されず、その部分に錆が発生するという問題点があった。なお、図中34は、静電塗装によって形成された塗膜である。
【0010】
また逆に、塗料の粘度を高くすると塗装膜厚を厚くしたり、塗料のタレを防ぐことはできるが、塗りムラが生じやすくなるという問題があった。特に、図7に示すように、積層金属板からなる円筒体51の内周54に溝52等を持つ複雑な形状の被塗装物の場合、溝52内が塗料53で埋められてしまい、均一な厚さの塗膜を形成することが困難であった。
【0011】
したがって、本発明の目的は、回転子鉄心や固定子鉄心のような、金属板を積層して形成されたほぼ円筒状をなす金属円筒体への静電塗装方法であって、塗装膜にピンホール等を生ずることがなく、その内周も均一に塗装できる方法を提供することにある。
【0012】
【課題を解決するための手段】
上記目的を達成するために、本発明の静電塗装方法は、金属板を積層して形成されたほぼ円筒状をなす金属円筒体への静電塗装方法において、金属円筒体の内周に支持棒を挿入して軸方向に沿って当接させることにより前記金属円筒体を支持して、前記金属円筒体を樹脂粉体の流動槽の上方に配置し、この状態で前記金属円筒体を回転させながら、樹脂粉体を前記金属円筒体表面に静電的に付着させた後、付着した樹脂粉体を加熱融着させて塗膜を形成する第1塗装工程と、前記金属円筒体の内周の支持棒が当接して未塗装となっている部分に常温硬化型の液状樹脂組成物を塗布し、前記金属円筒体の内周にガスを吹き付けることにより、前記金属円筒体の内周に塗布した前記液状樹脂組成物を均一に延ばし、次いで前記液状樹脂組成物を硬化させて塗膜を形成する第2塗装工程とを含むことを特徴とする。
【0013】
本発明によれば、第1塗装工程で前記金属円筒体を静電塗装する際に、金属円筒体の内周の支持棒が当接する部分には樹脂粉体が付着しない。このため、付着した樹脂粉体を加熱融着させて塗膜を形成する際、前記未塗装部分が、加熱によって膨脹した積層板間の空気の逃げ道となり、塗装膜表面のホールの発生を防ぐことができる。
【0014】
次に、第2塗装工程として、前記金属円筒体の内周の未塗装部分に常温硬化型の液状樹脂組成物を塗布し、ガスを吹き付けて前記液状樹脂組成物を均一に延ばした後、硬化させて塗膜を形成することにより、塗料のタレや塗りムラもなく、所定の厚さの塗膜を得ることができる。
【0015】
本発明においては、前記第2塗装工程において、前記金属円筒体の内周に適合する開口部を有する一対の治具で、前記金属円筒体の両端面を挟んで前記金属円筒体を支持し、この治具と共に前記金属円筒体を回転させながら、前記金属円筒体の内周への液状樹脂組成物の塗布及び前記金属円筒体の内周へのガス吹き付けを行うことが好ましい。
【0016】
これにより、金属円筒体の端面への余分な塗料の付着を防ぎ、上方の治具については金属円筒体の上端面の内周角部の膜厚を確保し、下方の治具については金属円筒体の内周下部の液溜りを解消する効果がもたらされる。
【0017】
また、前記第2塗装工程において、前記液状樹脂組成物として紫外線硬化型の樹脂組成物を用い、この紫外線硬化型の樹脂組成物を前記金属円筒体の内周の未塗装部分に塗布して前記ガス吹き付けを行った後、前記金属円筒体の内周に紫外線を照射させることにより、前記紫外線硬化型の樹脂組成物を硬化させることが望ましい。
【0018】
これにより、紫外線を照射させることによって、金属円筒体の内周に塗布した樹脂組成物を硬化させることができるので、樹脂の硬化に際して加熱を必要とせず、しかも瞬時にかつ均一に硬化させることができる。
【0019】
更に、前記金属円筒体が、回転電気機器に用いられる固定子鉄心又は回転子鉄心であることが好ましい。これらの鉄心は、金属板の積層物からなり、より完全な絶縁性及び防錆が要求されるものであるため、本発明の方法を適用するメリットが特に大きい。
【0020】
【発明の実施の形態】
図1〜3は、本発明の静電塗装方法の1実施形態を示し、図1は同方法に用いられる静電塗装装置の正面断面図、図2は同方法の第2塗装工程を示す概略説明図、図3は第2塗装工程において樹脂組成物を塗布した状態を示す要部拡大断面図である。
【0021】
図1に示すように、この静電粉体塗装装置は、上面が開口された枠体22と、その下面を覆う多孔板24と、多孔板24の下面に配置された筐体25とを備えており、枠体22と多孔板24とによって、樹脂粉体Pが供給、充填される流動槽23が形成され、多孔板24と筐体25とによって、均圧室26が形成されている。均圧室26の側部には、圧力空気ARを導入するための送気孔27が設けられている。多孔板24には、複数本の電極28が取り付けてあり、これにより樹脂粉体Pに正又は負の静電気が付与される。
【0022】
被塗装物である回転子鉄心等の金属板を積層してなる金属円筒体16は、その軸孔内周に電極シャフト兼支持棒21を挿入し、流動槽23の上方に軸方向を水平方向に向けて支持、配置される。なお、金属円筒体16は、その一方の端面が電極シャフト兼支持棒21の段部21aに係合し、他方の端面がキャップ29で押さえられて、電極シャフト兼支持棒21に固定されている。電極シャフト兼支持棒21は、多孔板24の電極28とは反対の電圧を印加され、図示しない駆動源によって回転する。
【0023】
そこで、上記静電塗装装置を用いた第1塗装工程について説明すると、まず、送気孔27から均圧室26に圧力空気ARを導入し、多孔板24を通して噴出させることにより、流動槽23内の樹脂粉体Pを流動化させる。また、電極シャフト兼支持棒21を回転させて金属円筒体16を緩やかに回転させる。
【0024】
この状態で電極シャフト兼支持棒21と電極28との間に所定の電圧を印加すると、樹脂粉体Pは電極28によって正又は負に帯電して浮遊し、電極シャフト兼支持棒21を介してそれとは反対の電圧を印加された金属円筒体16に静電的に付着する。
【0025】
この場合、流動槽23から立ち上がって上方へ流動する樹脂粉体Pには、▲1▼金属円筒体16の外周及びスロット内に付着するもの、▲2▼金属円筒体16の端面に付着するものなどがあるが、金属円筒体16の軸孔内周は、電極シャフト兼支持棒21が当接しているため、樹脂粉体が付着しない。
【0026】
なお、上記において、金属円筒体16の外周に近接して、樹脂粉体の掻き取り体を設け、金属円筒体16の外周に付着した余分な樹脂粉体Pを掻き落とすことにより、金属円筒体16の外周に常に適正な厚さの樹脂粉体Pを付着させるようにしてもよい。また、樹脂粉体Pとしては、例えば、ポリエステル系、エポキシ系など公知の粉体塗装用の粉体が用いられる。
【0027】
こうして、金属円筒体16の軸孔内周以外の部分に樹脂粉体Pを付着させた後、金属円筒体16を電極シャフト兼支持棒21から外して、あるいは金属円筒体16を電極シャフト兼支持棒21で支持したまま、高周波加熱炉や熱風乾燥炉に入れて加熱し、樹脂粉体Pを融着させて塗装膜を形成する。
【0028】
金属円筒体16が金属板を積層して形成されたものであるため、上記加熱時に積層板間の空気が膨脹し、気泡となって流出しようとするが、上述したように、金属円筒体16は、その軸孔に挿入された電極シャフト兼支持棒21により支持されており、電極シャフト兼支持棒21に接触している軸孔内周には、樹脂粉体Pは付着していないため、この膨脹空気は、上記電極シャフト兼支持棒21が当接して樹脂粉体Pが付着しなかった内周部分から抜け、塗装膜にピンホール等が生じることを防止できる。
【0029】
次に、第2塗装工程について説明すると、図2(a)に示すように,上記第1塗装工程で軸孔内周以外の部分に塗膜34を形成された上記金属円筒体16の両端面を、上記金属円筒体16の内周に適合する開口部を有する一対の治具32a及び32bで挟み込んで支持し、この治具と共に上記金属円筒体16を回転させながら、上記金属円筒体16の軸孔に塗料供給ノズル31を挿入して、常温硬化型の液状樹脂組成物、この実施形態では紫外線硬化型の液状樹脂組成物33をその内周に塗布する。なお、金属円筒体16を固定しておいて、塗料供給ノズル31を回転させるようにしてもよい。
【0030】
そして、図2(b)に示すようにガス供給ノズル35から上記金属円筒体16の内周へ空気、窒素等のガスの吹き付けを行い、上記紫外線硬化型の液状樹脂組成物33を均一に延ばす。
【0031】
このとき、図3に示すように、金属円筒体16の内周に適合する開口部を有する一対の治具32a及び32bで挟み込んで支持することにより、金属円筒体16の端面に液状樹脂組成物33が余分に付着するのを防ぐことができる。また、上方の治具32aによって金属円筒体16の上端面の内周角部44の膜厚が確保され、下方の治具32bによって金属円筒体16の内周下部の液溜りを解消する効果がもたらされる。
【0032】
更に、ガス供給ノズル35から金属円筒体16の内周へガス吹き付けを行うことにより、図4に示すように、金属円筒体16の内周43に溝42等が形成されている場合でも、液状樹脂組成物33を均一な厚さで塗布することができる。更にまた、ガスの吹き付け圧力を変えることにより、軸孔内周の塗装膜厚を制御することもできる。
【0033】
こうして、金属円筒体16の内周に紫外線硬化型の液状樹脂組成物33を塗布した後、図2(c)に示すように、金属円筒体16を支持具37で支持し、支持具37と共に金属円筒体16を回転させながら、紫外線照射装置36によって金属円筒体16の内周面に紫外線UVを照射する。これによって、金属円筒体16の内周に塗布された液状樹脂組成物33が硬化して、均一な膜厚の塗膜33aが形成される。
【0034】
なお、常温硬化型の液状樹脂組成物としては、上記のような紫外線硬化型の樹脂組成物に限らず、常温で乾燥して硬化する溶剤型の樹脂組成物等を用いることもできる。
【0035】
【発明の効果】
以上説明したように、本発明の静電塗装方法によれば、第1塗装工程で静電塗装する際に、金属円筒体の内周の支持棒が当接する部分には樹脂粉体が付着しないため、付着した樹脂粉体を加熱融着させて塗膜を形成する際、前記未塗装部分が、加熱によって膨脹した積層板間の空気の逃げ道となり、塗装膜表面のホールの発生を防ぐことができる。
【0036】
また、第2塗装工程で金属円筒体の内周の未塗装部分に常温硬化型の液状樹脂組成物を塗布した後、ガスを吹き付けて上記液状樹脂組成物を均一に延ばすようにしたので、塗料のタレや塗りムラのない、均一な厚さの塗膜を形成することができる。
【0037】
したがって、絶縁性や防錆性に優れた塗膜を形成することができ、回転子鉄心や固定子鉄心などの巻き線後の絶縁耐圧が必要とされる部品への静電塗装が可能となった。
【図面の簡単な説明】
【図1】本発明の静電塗装方法の第1塗装工程に用いられる静電塗装装置の一例を示す正面断面図である。
【図2】本発明の静電塗装方法の第2塗装工程の一例を示す概略説明図である。
【図3】本発明の静電塗装方法の第2塗装工程において、樹脂組成物を塗布した状態を示す要部拡大断面図である。
【図4】本発明の静電塗装方法の第2塗装工程において、内周に溝を有する円筒体に塗装した場合の一例を示す平面図である。
【図5】金属板を積層して形成された金属円筒体の一例としての回転子鉄心を示す斜視図である。
【図6】金属円筒体の内周に常温硬化型の液状樹脂を常法によって塗布した状態を示す断面図である。
【図7】内周に溝を有する金属円筒体の内周に常温硬化型の液状樹脂を常法によって塗布した状態を示す断面図である。
【符号の説明】
16 金属円筒体
21 アース電極シャフト兼支持棒
22 枠体
23 流動槽
24 多孔板
25 筐体
26 均圧室
27 送気孔
28 電極
31 塗料供給ノズル
32a 上方治具
32b 下方治具
33 紫外線硬化型の液状樹脂組成物
34 静電塗装により形成された塗膜
35 ガス供給ノズル
36 紫外線照射装置
P 樹脂粉体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of electrostatic coating on a substantially cylindrical metal cylinder formed by laminating metal plates, and in particular, a rotor core or stator core used in rotating electrical equipment such as motors and generators. The present invention relates to an electrostatic coating method suitable for insulating coating.
[0002]
[Prior art]
Rotor cores or stator cores used in rotating electrical equipment such as motors and generators are formed by laminating a plurality of magnetic metal pieces made of silicon steel plates, etc. A coil insertion slot is formed. In the case of a stator core, a coil insertion slot is formed inside.
[0003]
FIG. 5 shows an example of the rotor core. The rotor core 10 is configured by laminating a plurality of magnetic metal pieces 15. The rotor core 10 has a shaft hole 13 at the center, and slots 11 along the axial direction are formed at predetermined intervals in the circumferential direction on the outer periphery. Between the slots 11, external teeth 12 for winding the coil are formed. In addition, 14 in the figure has shown the corner | angular part of the inner periphery of an end surface.
[0004]
Electrodeposition coating and electrostatic coating are known as methods for coating a metal cylinder formed by laminating metal plates such as the rotor core. However, electrodeposition coating has a problem that the equipment is large and the maintenance of the machine is difficult, and the production cost is generally increased.
[0005]
On the other hand, the electrostatic coating uses an electrostatic coating apparatus having a fluid tank having an upper surface opened and a perforated plate disposed on the lower surface, an electrode attached to the perforated plate, and a pressure equalizing chamber surrounding the lower space of the fluid tank. The resin powder is supplied to the fluid tank, the pressure air is introduced into the pressure equalizing chamber and ejected through the perforated plate, the resin powder in the fluid tank is fluidized, and positive or negative static electricity is applied to the electrode. The resin powder is charged to support the object to be coated with the opposite static electricity to the electrode above the fluid tank, and the resin powder adheres to the surface of the object to be coated. By doing so, the adhered resin powder is fused to form a coating film.
[0006]
[Problems to be solved by the invention]
However, when the entire surface is coated by electrostatic coating on a metal cylinder formed by laminating metal plates such as a rotor core, heating is performed when forming a coating film by fusing the resin powder. The air between the laminated metal plates expands, and air escape traces (holes) are generated on the surface of the coating film. When such holes are present, there is a problem that insulation withstand voltage and rust prevention cannot be ensured.
[0007]
In order to solve this problem, the present inventor disclosed in Japanese Patent Application No. 10-152720 (an unpublished application at the time of filing of the present application) an inner periphery of a metal cylindrical body made of a laminated iron core during electrostatic coating. Alternatively, the electrode shaft is brought into contact with the outer periphery along the axial direction, leaving the portion where the electrode shaft is in contact as an unpainted portion, and by painting it as an escape route for the expanded air between the laminates when heated. A coating method is proposed in which the generation of holes on the film surface is prevented, and then a room temperature curable resin coating is applied to the unpainted portion.
[0008]
However, it has been found that the above-described coating method also has the following problems. That is, when the unpainted portion of the inner periphery of the shaft hole is painted using a normal air spray gun, the coating film thickness becomes extremely thin, so that complete rust prevention is difficult.
[0009]
On the other hand, when trying to increase the coating film thickness for complete rust prevention, the viscosity of the coating material used is quite low, so that the coating material 33 is dripped as shown in FIG. there were. In particular, there is a problem that the paint 33 is not sufficiently adhered to a portion located at the inner peripheral corner portion 14 of the upper end surface of the iron core 10 and rust is generated in that portion. In the figure, 34 is a coating film formed by electrostatic coating.
[0010]
Conversely, if the viscosity of the paint is increased, the coating film thickness can be increased and the sagging of the paint can be prevented, but there is a problem that uneven coating tends to occur. In particular, as shown in FIG. 7, in the case of an object having a complicated shape having a groove 52 or the like on the inner periphery 54 of a cylindrical body 51 made of a laminated metal plate, the inside of the groove 52 is filled with a paint 53 and uniform. It was difficult to form a coating film with a sufficient thickness.
[0011]
Accordingly, an object of the present invention is an electrostatic coating method for a substantially cylindrical metal cylinder formed by laminating metal plates, such as a rotor core and a stator core, and includes a pin on a coating film. An object of the present invention is to provide a method capable of uniformly painting the inner periphery without generating holes or the like.
[0012]
[Means for Solving the Problems]
In order to achieve the above object, the electrostatic coating method of the present invention is supported on the inner periphery of a metal cylinder in the electrostatic coating method on a substantially cylindrical metal cylinder formed by laminating metal plates. A rod is inserted and abutted along the axial direction to support the metal cylinder, and the metal cylinder is disposed above the fluidized resin powder tank, and the metal cylinder is rotated in this state. A first coating step of electrostatically adhering the resin powder to the surface of the metal cylinder, and then heat-sealing the adhering resin powder to form a coating film; A liquid resin composition of room temperature curing type is applied to an unpainted portion in contact with a peripheral support rod, and a gas is blown onto the inner periphery of the metal cylinder, so that the inner periphery of the metal cylinder is applied. The applied liquid resin composition is uniformly extended, and then the liquid resin composition is hardened. By, characterized in that it comprises a second coating step of forming a coating film.
[0013]
According to the present invention, when electrostatically coating the metal cylinder in the first coating process, the resin powder does not adhere to the portion of the metal cylinder that is in contact with the support rod on the inner periphery. For this reason, when the coated resin powder is heat-fused to form a coating film, the unpainted portion serves as an air escape path between the laminated plates expanded by heating, preventing the occurrence of holes on the surface of the coated film. Can do.
[0014]
Next, as a second coating step, a room temperature curable liquid resin composition is applied to an unpainted portion of the inner periphery of the metal cylindrical body, and the liquid resin composition is uniformly extended by blowing gas, and then cured. By forming the coating film, a coating film having a predetermined thickness can be obtained without sagging or uneven coating.
[0015]
In the present invention, in the second coating step, with a pair of jigs having openings adapted to the inner periphery of the metal cylinder, the metal cylinder is supported with both end faces of the metal cylinder sandwiched therebetween, It is preferable to apply the liquid resin composition to the inner periphery of the metal cylinder and to spray the gas to the inner periphery of the metal cylinder while rotating the metal cylinder together with the jig.
[0016]
This prevents excessive paint from adhering to the end face of the metal cylinder, secures the film thickness of the inner peripheral corner of the upper end face of the metal cylinder for the upper jig, and the metal cylinder for the lower jig. The effect of eliminating the liquid pool in the lower inner circumference of the body is brought about.
[0017]
In the second coating step, an ultraviolet curable resin composition is used as the liquid resin composition, and the ultraviolet curable resin composition is applied to an unpainted portion on the inner periphery of the metal cylindrical body. After the gas spraying, it is desirable to cure the ultraviolet curable resin composition by irradiating the inner circumference of the metal cylinder with ultraviolet rays.
[0018]
Accordingly, the resin composition applied to the inner periphery of the metal cylindrical body can be cured by irradiating ultraviolet rays, so that heating is not required for curing the resin, and the resin composition can be cured instantaneously and uniformly. it can.
[0019]
Furthermore, it is preferable that the metal cylindrical body is a stator core or a rotor core used in a rotating electrical apparatus. Since these iron cores are made of a laminate of metal plates and require more complete insulation and rust prevention, the merit of applying the method of the present invention is particularly great.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
1-3 show one embodiment of the electrostatic coating method of the present invention, FIG. 1 is a front sectional view of an electrostatic coating apparatus used in the method, and FIG. 2 is a schematic diagram showing a second coating step of the method. Explanatory drawing and FIG. 3 are principal part expanded sectional views which show the state which apply | coated the resin composition in the 2nd coating process.
[0021]
As shown in FIG. 1, the electrostatic powder coating apparatus includes a frame 22 having an upper surface opened, a porous plate 24 covering the lower surface, and a casing 25 disposed on the lower surface of the porous plate 24. The fluid flow tank 23 into which the resin powder P is supplied and filled is formed by the frame body 22 and the porous plate 24, and the pressure equalizing chamber 26 is formed by the porous plate 24 and the housing 25. An air supply hole 27 for introducing the pressurized air AR is provided at a side portion of the pressure equalizing chamber 26. A plurality of electrodes 28 are attached to the porous plate 24, whereby positive or negative static electricity is applied to the resin powder P.
[0022]
A metal cylinder 16 formed by laminating metal plates such as a rotor core, which is an object to be coated, has an electrode shaft / support bar 21 inserted into the inner periphery of the shaft hole, and the axial direction is horizontal above the fluid tank 23. It is supported and arranged toward. Note that one end surface of the metal cylinder 16 is engaged with the step portion 21 a of the electrode shaft / support bar 21, and the other end surface is pressed by the cap 29, and is fixed to the electrode shaft / support bar 21. . The electrode shaft / support bar 21 is applied with a voltage opposite to that of the electrode 28 of the perforated plate 24 and is rotated by a driving source (not shown).
[0023]
Therefore, the first coating process using the electrostatic coating apparatus will be described. First, the pressure air AR is introduced into the pressure equalizing chamber 26 from the air supply hole 27 and is ejected through the perforated plate 24, whereby the fluid inside the fluid tank 23. The resin powder P is fluidized. Further, the electrode shaft / support bar 21 is rotated to gently rotate the metal cylinder 16.
[0024]
When a predetermined voltage is applied between the electrode shaft / support bar 21 and the electrode 28 in this state, the resin powder P is positively or negatively charged and floats by the electrode 28, and is passed through the electrode shaft / support bar 21. It adheres electrostatically to the metal cylinder 16 to which the opposite voltage is applied.
[0025]
In this case, the resin powder P that rises from the fluid tank 23 and flows upward includes (1) one that adheres to the outer periphery and slot of the metal cylinder 16 and (2) one that adheres to the end face of the metal cylinder 16. However, since the electrode shaft / support bar 21 is in contact with the inner periphery of the shaft hole of the metal cylindrical body 16, the resin powder does not adhere.
[0026]
In the above, a scraping body of resin powder is provided in the vicinity of the outer periphery of the metal cylindrical body 16, and the excess resin powder P adhering to the outer periphery of the metal cylindrical body 16 is scraped off. The resin powder P having an appropriate thickness may be always attached to the outer periphery of the 16. Further, as the resin powder P, for example, known powder coating powders such as polyester and epoxy are used.
[0027]
In this way, after the resin powder P is adhered to a portion other than the inner periphery of the shaft hole of the metal cylinder 16, the metal cylinder 16 is removed from the electrode shaft / support bar 21, or the metal cylinder 16 is supported as an electrode shaft. While being supported by the rod 21, it is put into a high-frequency heating furnace or a hot air drying furnace and heated to fuse the resin powder P to form a coating film.
[0028]
Since the metal cylinder 16 is formed by laminating metal plates, the air between the laminate plates expands during the heating and tends to flow out as bubbles, but as described above, the metal cylinder 16 Is supported by the electrode shaft / support bar 21 inserted in the shaft hole, and the resin powder P is not attached to the inner periphery of the shaft hole in contact with the electrode shaft / support bar 21, This expanded air can prevent the electrode shaft / support bar 21 from coming into contact with the inner peripheral portion where the resin powder P has not adhered and pinholes or the like in the coating film.
[0029]
Next, the second coating step will be described. As shown in FIG. 2 (a), both end surfaces of the metal cylindrical body 16 in which the coating film 34 is formed on the portion other than the inner periphery of the shaft hole in the first coating step. Is sandwiched and supported by a pair of jigs 32a and 32b having an opening adapted to the inner periphery of the metal cylinder 16, and the metal cylinder 16 is rotated while rotating the metal cylinder 16 together with the jig. The paint supply nozzle 31 is inserted into the shaft hole, and a room temperature curable liquid resin composition, in this embodiment, an ultraviolet curable liquid resin composition 33 is applied to the inner periphery thereof. The metal cylinder 16 may be fixed and the paint supply nozzle 31 may be rotated.
[0030]
Then, as shown in FIG. 2 (b), a gas such as air or nitrogen is blown from the gas supply nozzle 35 to the inner periphery of the metal cylindrical body 16 to uniformly extend the ultraviolet curable liquid resin composition 33. .
[0031]
At this time, as shown in FIG. 3, the liquid resin composition is placed on the end surface of the metal cylindrical body 16 by being sandwiched and supported by a pair of jigs 32 a and 32 b having an opening adapted to the inner periphery of the metal cylindrical body 16. It is possible to prevent 33 from adhering excessively. Further, the upper jig 32a secures the film thickness of the inner peripheral corner portion 44 on the upper end surface of the metal cylindrical body 16, and the lower jig 32b has an effect of eliminating the liquid pool in the lower inner circumference of the metal cylindrical body 16. Brought about.
[0032]
Further, by blowing gas from the gas supply nozzle 35 to the inner periphery of the metal cylindrical body 16, as shown in FIG. 4, even when a groove 42 or the like is formed in the inner periphery 43 of the metal cylindrical body 16, The resin composition 33 can be applied with a uniform thickness. Furthermore, the coating film thickness on the inner periphery of the shaft hole can be controlled by changing the gas spray pressure.
[0033]
In this way, after the ultraviolet curable liquid resin composition 33 is applied to the inner periphery of the metal cylindrical body 16, the metal cylindrical body 16 is supported by the support tool 37 as shown in FIG. While rotating the metal cylindrical body 16, the ultraviolet irradiation device 36 irradiates the inner peripheral surface of the metal cylindrical body 16 with ultraviolet UV. Thereby, the liquid resin composition 33 applied to the inner periphery of the metal cylindrical body 16 is cured, and a coating film 33a having a uniform film thickness is formed.
[0034]
The room temperature curable liquid resin composition is not limited to the ultraviolet curable resin composition as described above, and a solvent type resin composition that is cured by drying at room temperature can also be used.
[0035]
【The invention's effect】
As described above, according to the electrostatic coating method of the present invention, when electrostatic coating is performed in the first coating process, the resin powder does not adhere to the portion where the support rod on the inner periphery of the metal cylindrical body abuts. For this reason, when the coated resin powder is heat-fused to form a coating film, the unpainted portion serves as an air escape path between the laminated plates expanded by heating, thereby preventing the generation of holes on the surface of the coated film. it can.
[0036]
In addition, since the room temperature curing type liquid resin composition is applied to the unpainted portion of the inner periphery of the metal cylindrical body in the second coating step, the gas is blown to uniformly extend the liquid resin composition. It is possible to form a coating having a uniform thickness without sagging or uneven coating.
[0037]
Therefore, it is possible to form a coating film with excellent insulation and rust prevention, and electrostatic coating can be applied to parts that require dielectric strength after winding, such as rotor cores and stator cores. It was.
[Brief description of the drawings]
FIG. 1 is a front sectional view showing an example of an electrostatic coating apparatus used in a first coating process of an electrostatic coating method of the present invention.
FIG. 2 is a schematic explanatory view showing an example of a second coating process of the electrostatic coating method of the present invention.
FIG. 3 is an enlarged cross-sectional view of a main part showing a state where a resin composition is applied in the second coating step of the electrostatic coating method of the present invention.
FIG. 4 is a plan view showing an example when a cylindrical body having a groove on the inner periphery is coated in the second coating step of the electrostatic coating method of the present invention.
FIG. 5 is a perspective view showing a rotor core as an example of a metal cylinder formed by stacking metal plates.
FIG. 6 is a cross-sectional view showing a state in which a room temperature curable liquid resin is applied to the inner periphery of a metal cylinder by a conventional method.
FIG. 7 is a cross-sectional view showing a state in which a room temperature curable liquid resin is applied to the inner periphery of a metal cylinder having grooves on the inner periphery by a conventional method.
[Explanation of symbols]
16 Metal cylindrical body 21 Ground electrode shaft / support rod 22 Frame body 23 Fluid tank 24 Perforated plate 25 Housing 26 Pressure equalizing chamber 27 Air supply hole 28 Electrode 31 Paint supply nozzle 32a Upper jig 32b Lower jig 33 UV curable liquid Resin composition 34 Coating film 35 formed by electrostatic coating Gas supply nozzle 36 Ultraviolet irradiation device P Resin powder

Claims (4)

金属板を積層して形成されたほぼ円筒状をなす金属円筒体への静電塗装方法において、
前記金属円筒体の内周に支持棒を挿入して軸方向に沿って当接させることにより前記金属円筒体を支持して、前記金属円筒体を樹脂粉体の流動槽の上方に配置し、この状態で前記金属円筒体を回転させながら、樹脂粉体を前記金属円筒体表面に静電的に付着させた後、付着した樹脂粉体を加熱融着させて塗膜を形成する第1塗装工程と、
前記金属円筒体の内周の前記支持棒が当接して未塗装となっている部分に常温硬化型の液状樹脂組成物を塗布し、前記金属円筒体の内周にガスを吹き付けることにより、前記金属円筒体の内周に付着した前記液状樹脂組成物を均一に延ばし、次いで前記液状樹脂組成物を硬化させて塗膜を形成する第2塗装工程とを含むことを特徴とする金属円筒体の静電塗装方法。
In the method of electrostatic coating on a metal cylinder having a substantially cylindrical shape formed by laminating metal plates,
Supporting the metal cylinder by inserting a support rod into the inner circumference of the metal cylinder and bringing it into contact along the axial direction, and placing the metal cylinder above the resin powder flow tank, In this state, the resin powder is electrostatically attached to the surface of the metal cylinder while rotating the metal cylinder, and then the attached resin powder is heat-fused to form a coating film. Process,
By applying a room-temperature curable liquid resin composition to the unpainted portion of the inner periphery of the metal cylinder that is in contact with the support rod, and blowing a gas on the inner periphery of the metal cylinder, A second coating step of uniformly extending the liquid resin composition adhering to the inner periphery of the metal cylinder and then curing the liquid resin composition to form a coating film. Electrostatic coating method.
前記第2塗装工程において、前記金属円筒体の内周に適合する開口部を有する一対の治具で、前記金属円筒体の両端面を挟んで前記金属円筒体を支持し、この治具と共に前記金属円筒体を回転させながら、前記金属円筒体の内周への液状樹脂組成物の塗布及び前記金属円筒体の内周へのガス吹き付けを行う請求項1記載の金属円筒体の静電塗装方法。In the second coating step, a pair of jigs having an opening that fits the inner periphery of the metal cylinder body supports the metal cylinder body with both end faces of the metal cylinder body sandwiched between the jig and the jig. The electrostatic coating method for a metal cylinder according to claim 1, wherein the liquid resin composition is applied to the inner periphery of the metal cylinder and gas is sprayed to the inner periphery of the metal cylinder while rotating the metal cylinder. . 前記第2塗装工程において、前記液状樹脂組成物として紫外線硬化型の樹脂組成物を用い、この紫外線硬化型の樹脂組成物を前記金属円筒体の内周の未塗装部分に塗布して前記ガス吹き付けを行った後、前記金属円筒体の内周に紫外線を照射させることにより、前記紫外線硬化型の樹脂組成物を硬化させる請求項1又は2記載の金属円筒体の静電塗装方法。In the second coating step, an ultraviolet curable resin composition is used as the liquid resin composition, the ultraviolet curable resin composition is applied to an unpainted portion on the inner periphery of the metal cylindrical body, and the gas is sprayed. 3. The method of electrostatic coating of a metal cylinder according to claim 1 or 2, wherein the ultraviolet curable resin composition is cured by irradiating an inner periphery of the metal cylinder with ultraviolet rays after performing the step. 前記金属円筒体が、回転電気機器に用いられる固定子鉄心又は回転子鉄心である請求項1〜3のいずれか1つに記載の金属円筒体の静電塗装方法。The electrostatic coating method for a metal cylinder according to any one of claims 1 to 3, wherein the metal cylinder is a stator core or a rotor core used in a rotating electrical apparatus.
JP33292898A 1998-06-02 1998-11-24 Electrostatic coating method for metal cylinders Expired - Fee Related JP4193953B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP33292898A JP4193953B2 (en) 1998-11-24 1998-11-24 Electrostatic coating method for metal cylinders
SG1999002443A SG74728A1 (en) 1998-06-02 1999-05-14 Method for electrostatic coating a metallic cylindrical body
MYPI99001942A MY134899A (en) 1998-06-02 1999-05-18 Method for electrostatic coating a metallic cylindrical body
KR10-1999-0019937A KR100436623B1 (en) 1998-06-02 1999-06-01 Method for electrostatic coating a metallic cylindrical body
CN99107151A CN1106225C (en) 1998-06-02 1999-06-02 Method for electrostatic coating metallic cylindrical body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33292898A JP4193953B2 (en) 1998-11-24 1998-11-24 Electrostatic coating method for metal cylinders

Publications (2)

Publication Number Publication Date
JP2000153218A JP2000153218A (en) 2000-06-06
JP4193953B2 true JP4193953B2 (en) 2008-12-10

Family

ID=18260390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33292898A Expired - Fee Related JP4193953B2 (en) 1998-06-02 1998-11-24 Electrostatic coating method for metal cylinders

Country Status (1)

Country Link
JP (1) JP4193953B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4649722B2 (en) * 2000-10-10 2011-03-16 アイシン精機株式会社 Powder supply device and powder coating system
JP4254493B2 (en) 2003-11-07 2009-04-15 株式会社デンソー Powder coating apparatus and method of manufacturing stator of rotating electric machine
WO2015194307A1 (en) * 2014-06-18 2015-12-23 株式会社カネカ Method for manufacturing tubular elastic body
CN110739819B (en) * 2019-11-06 2021-10-22 卢美华 Automatic rotor electrostatic powder coating machine

Also Published As

Publication number Publication date
JP2000153218A (en) 2000-06-06

Similar Documents

Publication Publication Date Title
JP2018126052A (en) Method for producing electric drive machine, and electric drive machine
JP2004064989A (en) Stator for segment coil rotary electric machine and its manufacturing method
US5663601A (en) Core winding set for a motor
KR100436623B1 (en) Method for electrostatic coating a metallic cylindrical body
JP4193953B2 (en) Electrostatic coating method for metal cylinders
US5470615A (en) Bonding and coating methods and apparatus for th coils of dynamo-electric machine parts
CN112934641B (en) Spraying method of insulating layer and application of insulating layer in battery shell
US3660136A (en) Method of coating slotted articles
KR102066460B1 (en) Manufacturing method of adhesive steel sheet for motor core
US20100055221A1 (en) Assembly and Method for Magnetic Embossing Roll Surfacing
JP2005138048A (en) Powder-coating device and method of manufacturing stator for rotary electric machine
JP3466837B2 (en) Motor core and motor provided with the same
JP4478384B2 (en) Iron core manufacturing method and apparatus suitable for the method
JPH06327203A (en) Varnish impregnation method for electronic appliance
JP2012110190A (en) Stator core, method for manufacturing the same, and masking jig used for method for manufacturing the same
JP2011110464A (en) Powder coating apparatus and powder coating method
JP2883346B2 (en) Electrostatic coating method and apparatus therefor
JPH10145994A (en) Motor core motor having motor core and painting jig for core
KR100801223B1 (en) In-line apparatus for manufacturing blanket sheet, and method thereof
JP2003224952A (en) Stator core, its manufacturing method, and its manufacturing apparatus
JPS6142246A (en) Coil insulating method of rotary electric machine
JPH0512032B2 (en)
JP4344527B2 (en) Manufacturing method of rotating electrical machine
JP2018117503A (en) Rotary electric machine rotor and manufacturing method of rotary electric machine rotor
JP2013192433A (en) Manufacturing method of rotary electric machine and rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080917

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees