JP4193401B2 - Manufacturing method of electrolytic capacitor lead wire - Google Patents

Manufacturing method of electrolytic capacitor lead wire Download PDF

Info

Publication number
JP4193401B2
JP4193401B2 JP2002074151A JP2002074151A JP4193401B2 JP 4193401 B2 JP4193401 B2 JP 4193401B2 JP 2002074151 A JP2002074151 A JP 2002074151A JP 2002074151 A JP2002074151 A JP 2002074151A JP 4193401 B2 JP4193401 B2 JP 4193401B2
Authority
JP
Japan
Prior art keywords
lead
electrolytic capacitor
wire
external lead
external
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002074151A
Other languages
Japanese (ja)
Other versions
JP2003272976A (en
Inventor
達郎 久保内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2002074151A priority Critical patent/JP4193401B2/en
Publication of JP2003272976A publication Critical patent/JP2003272976A/en
Application granted granted Critical
Publication of JP4193401B2 publication Critical patent/JP4193401B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、電解コンデンサ素子の電極に接続される電解コンデンサ用リード線の製造方法に関する。
【0002】
【背景技術】
電解コンデンサは例えば、図6に示すように、陽極側及び陰極側の各電極箔100に接続されたリード線102を備えているが、このリード線102には、電極箔100に接続される偏平部104を備えた素子側リード106に棒状の外部リード108を溶接して一体化したものが用いられている。110は、素子側リード106及び外部リード108の溶接部である。
【0003】
【従来の技術】
ところで、素子側リード106は、例えば、図7に示すように、丸棒状の線材を成形加工して偏平部104と、線材の外形状からなる非偏平部112とを備え、非偏平部112の端部には溶接面としての平坦な端面114が形成されている。これに対し、外部リード108には、丸棒状の線材を剪断加工して2つの傾斜面からなる鋭角状先端部116が形成され、この鋭角状先端部116を素子側リード106の端面114に押し当ててアーク溶接が行われてリード線102が形成される。このリード線102の製造には例えば、特開平7−211597号「電解コンデンサ用リード線の製造方法」や特開平7−211601号「電解コンデンサ用リード線の製造装置」等が使用される。
【0004】
【発明が解決しようとする課題】
ところで、外部リード108には銅線や軟鉄線等の線材が使用され、このような線材を剪断加工すると、例えば、図8の(A)、(B)に示すように、鋭角状先端部116が形成されるが、その先端には線材が持つ粘りやカッタの刃先形状等により多数の鋭利なバリ118が発生する場合がある。このようなバリ118を持つ鋭角状先端部116を、素子側リード106の端面114に、図7の矢印Xで示すように押し当てると、バリ118が存在しているために、素子側リード106への食い込みが深くなったり(外部リード108a)、食い込み方向にずれ(外部リード108b)を生じたりするおそれがある。
【0005】
これらを補正することは極めて困難である。食い込みが深い場合には、溶接時、外部リード108と素子側リード106とを離間させるには相当な力が必要となり、無理に離間させると、外部リード108に振動を生じ、また、食い込み方向にズレが生じた場合にも、離間時には外部リード108を振動させてしまう。その結果、ねじれや撓み等が生じた状態で外部リード108を素子側リード106に溶接させることになる。この結果、外部リード108と素子側リード106との溶接部110は、溶接強度や溶接品質の低下を招き、安定性に欠けるという不都合がある。このようなリード線102を用いると、電解コンデンサの信頼性を低下させるおそれがある。
【0006】
ところで、このようなリード線の製造方法には、例えば、実開昭52−167546号「電解コンデンサにおける電極端子」が知られている。この電極端子では、素子側リードであるアルミニウム材に接続する外部リードの先端部側の傾斜面の途上に凹部や突部を形成することにより、溶融したアルミニウム材をその凹凸部に食い込ませて素子側リードから外部リードの分離を防止したものである。このような傾斜面に凹凸部が形成されても、先端部にバリが生じている場合には、図8に示すように、素子側リードへの外部リードの食い込みを抑制できず、また、そのずれも防止できない。このため、外部リードに実開昭52−167546号に係る形状の電極端子を用いても、依然として溶接強度や溶接品質の低下を招き、安定性に欠けるという不都合があり、電解コンデンサの信頼性を低下させるおそれがある。
【0007】
そこで、この発明は、溶接強度や溶接品質の低下を防止し、安定性の高い電解コンデンサ用リード線の製造方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
このような課題を解決したこの発明の電解コンデンサ用リード線の製造方法の構成を実施の形態で用いた符号を付して列挙すれば、次の通りである。
【0009】
請求項1に係るこの発明の電解コンデンサ用リード線の製造方法は、電解コンデンサ素子に接続する素子側リード(38)と、外部リード(2)とを溶着して形成する電解コンデンサ用リード線の製造方法であって、前記外部リードの先端部にバリを除去した尖鋭部(28、30)と平坦部(凹部26)を形成し、前記尖鋭部を前記素子側リード側の平坦な溶接面に衝突させて食い込ませるとともに、前記平坦部にて食い込み量を制限し、前記外部リードと前記素子側リードと両者間に溶接電流を流すとともに前記外部リードと前記素子側リードとを離間してアークを発生させて、該外部リードと前記素子側リードとを部分的に溶融させるとともに、前記外部リードと前記素子側リードとを当接させることにより溶接させることを特徴とする。
【0010】
請求項2に係るこの発明の電解コンデンサ用リード線の製造方法は、前記尖鋭部は、外部リードの直径と同等又は該直径より狭い間隔を持つ複数個からなることを特徴とする。
【0011】
請求項3に係るこの発明の電解コンデンサ用リード線の製造方法は、前記外部リードに、線材(4)を切断して鋭角状先端部(10)を成形し、この鋭角状先端部の中央部に凹部からなる平坦部(凹部26)を形成するとともに、該凹部を挟んで前記尖鋭部を形成したものを用いることを特徴とする。
【0013】
請求項に係るこの発明の電解コンデンサ用リード線の製造方法は、前記素子側リードは、前記電解コンデンサ素子の電極材料と同一金属で形成したことを特徴とする。
【0014】
このような構成によれば、外部リードの先端部の特定箇所に尖鋭部が形成されているので、従来の不特定なバリによる影響を回避でき、素子側リードとの安定した溶接処理を実現でき、また、前記外部リードの先端部に平坦部が形成されているので、素子側リードとの当接および離間を制御でき、これにより外部リードと素子側リードとの安定した溶接処理を実現できるため、溶接強度や溶接品質の低下を回避し、電解コンデンサの信頼性向上に寄与することが可能となる。
【0015】
【発明の実施の形態】
図1〜図3はこの発明の電解コンデンサ用リード線の製造方法の実施の形態を示し、図1は外部リードの切断加工工程、図2はその成形加工工程、図3はその溶接工程を示している。
【0016】
図1の(A)に示すように、外部リード2の素材として例えば、丸棒状の線材4が用いられ、この線材4には例えば、0.3〜1.2mm程度の直径の軟鉄線の表面に銅皮膜を形成したものを用いる。この線材4には、軟鉄線の他、軟銅線、その他の金属線を用いてもよい。この線材4は2枚の剪断刃6、8の刃先側を対向方向(矢印a、b方向)に進退させて剪断加工により、成形及び切断をする。各剪断刃6、8には、外部リード2の先端部の成形形状に対応する刃先角度θ及び幅Wを備えたものが用いられる。この剪断加工により、外部リード2の先端部には、図1の(B)に示すように、鋭角状先端部10が成形され、この実施の形態では、線対称の2つの傾斜面12を以て鋭角状先端部10が形成されている。即ち、この剪断加工では、外部リード2の切断と成形とが同時に行われているが、線材4の切断と鋭角状先端部10の成形加工とを別個に行うようにしてもよい。また、この外部リード2の他方の端部は切り落としによって所定長に形成される。
【0017】
そして、図2の(C)に示すように、この外部リード2の鋭角状先端部10に成形加工を施す。この成形手段として成形金型14が用いられ、この成形金型14には、例えば、V字形の第1及び第2の成形面16、18とともに断面が放物面ないし半円状の第3の成形面20が形成されている。成形面20の頂部は平坦面に形成されている。
【0018】
そこで、外部リード2を図示しない保持手段に保持させ、成形金型14の成形面16、18間に鋭角状先端部10が橋絡するように、例えば、矢印cで示す方向に成形金型14を移動させて成形金型14の成形面16、18を外部リード2の鋭角状先端部10に押し当てると、鋭角状先端部10は、成形金型14によって図2の(D)及び(E)に示すように成形される。即ち、外部リード2の鋭角状先端部10には、剪断時に生じた傾斜面12の先端側角部に成形面16、18によって三角形状の傾斜面22、24、成形面20に対応した放物面を成す凹部26が形成され、その結果、凹部26を挟んで複数の尖鋭部としてこの実施の形態では、一対の尖鋭部28、30が形成されている。凹部26の最奥部の面は平坦面となっている。また、尖鋭部28、30の間隔dは、外部リード2を形成する線材4の直径Rより狭く形成され、また、凹部26の底面と尖鋭部28、30の先端との距離は、例えば、3μm程度に設定される。このような成形処理を行うと、剪断加工で外部リード2の鋭角状先端部10に生じていたバリ32{図2の(C)}が成形面16、18、20によって成形され又はその成形によって除去されることになる。
【0019】
そして、図3の(F)に示すように、例えば、コンデンサ素子の電極材料と同一の金属材料からなる線材、例えば、直径が1〜3mm程度の丸棒状のアルミニウム線を成形加工して偏平部34と、丸棒状の線材の外形状からなる非偏平部36とを備えた素子側リード38が形成され、この素子側リード38の非偏平部36側には溶接面としての平坦な端面40が形成されている。そして、この素子側リード38の端面40を配置するとともに、外部リード2を可動チャック42に把持させて各尖鋭部28、30を一定間隔で対向配置する。この場合、素子側リード38と外部リード2との間には、アーク溶接装置44が接続される。
【0020】
次に、図3の(G)に示すように、外部リード2を可動チャック42によって保持させて矢印eで示す方向に移動し、その尖鋭部28、30を素子側リード38の端面40の所定位置に衝突させて端面40内に食い込ませると、凹部26の最奥面がストッパとして機能する。この状態において、外部リード2と素子側リード38との間に接続されている溶接装置44を動作させると、外部リード2と素子側リード38との間に溶接電流が流れ、外部リード2と素子側リード38との接触点、即ち、外部リード2の尖鋭部28、30と素子側リード38の端面40との間にアーク溶接電流が流れ始める。
【0021】
このような溶接電流の通流開始から、図3の(H)に示すように、外部リード2の尖鋭部28、30を素子側リード38の端面40から矢印fで示す方向に移動させて離し、両者間に間隔mを設定すると、外部リード2の尖鋭部28、30と素子側リード38の端面40との間にアークが生じ、対向する外部リード2及び素子側リード38の双方が部分的に溶融する。
【0022】
この状態で、外部リード2を素子側リード38の端面40側に移動させて当接すると、溶融した金属間の融合が生じ、外部リード2と素子側リード38の端面40とが溶着する。溶融金属は表面張力によって球形化し、半球状の溶接部46が形成され、図3の(I)に示すように、外部リード2と素子側リード38とが一体化されたリード線48が形成される。この場合、溶接部46は、外部リード2を構成する金属と素子側リード38を構成する金属との融合により合金層を形成している。
【0023】
そして、このリード線48を図示しない陰極箔及び陽極箔に接続し、コンデンサ素子を形成した後、外装ケースに収納し、その開口部を封口部材で封口することで、電解コンデンサを形成することができる。
【0024】
このような外部リード2と素子側リード38との溶接では、この実施形態の場合、外部リード2の尖鋭部28、30と素子側リード38の端面40とを接触させるので、素子側リード38への食い込み位置がその尖鋭部28、30の間に形成されている凹部26の底面、即ち、最奥面で形成されている平坦面がストッパとして機能するため、食い込み量が制限されて一定となる。しかも、各尖鋭部28、30の形状が一定であるために、加圧力が一定であれば、素子側リード38への食い込みの深さが変化することがなく、素子側リード38から外部リード2を離間した際に、外部リード2の振動等の機械的な変動を伴うことがなく、溶接の安定化を図ることができる。
【0025】
また、この実施形態の場合、外部リード2の鋭角状先端部10の尖鋭部28、30の双方が素子側リード38の端面40に食い込むので、その食い込み方向が各尖鋭部28、30によって規制される結果、素子側リード38に対する外部リード2の方向ズレを防止でき、その結果、安定した溶接電流を流すことができる。また、両者を離間させた際に発生するアークは各尖鋭部28、30に発生し、各尖鋭部28、30に集中させて素子側リード38及び外部リード2を一定範囲で溶融させることができ、安定した溶接を行うことができる。
【0026】
なお、第1の実施形態では、尖鋭部28、30の形成間隔を線材4の直径Rより狭く形成したが、例えば、図4の(A)、(B)に示すように、鋭角状先端部10の幅と同等の間隔dで形成し、各尖鋭部28、30の間隔内に円弧状の稜線を持つ凹部26を形成してもよく、第1の実施形態と同様の作用効果を得ることができる。
【0027】
また、例えば、図5の(A)及び(B)に示すように、外部リード2の溶接面側を平坦な端面50にするとともに、その端面50内に円錐状の複数の尖鋭部52を形成してもよい。この場合、各尖鋭部52の間隔dは、外部リード2を形成する線材4の直径Rよりも小さく設定されている。このような構成によっても、素子側リード38への3点食い込みによる、食い込み方向のズレを防止することが可能である。
【0028】
また、実施の形態では、2又は3個の尖鋭部を形成した場合を例に取って説明したが、単一の尖鋭部を形成した場合にも、上記の溶接方法を採用することにより、同等の効果を得ることができる。
【0029】
【発明の効果】
以上説明したように、本発明によれば、次の効果が得られる。
a 溶接強度や溶接品質の低下を防止し、安定性の高い電解コンデンサ用リード線を製造することができる。
b 外部リードの先端部側の特定箇所に尖鋭部を形成したので、不特定なバリを除去ないし成形してその影響を回避でき、また、前記外部リードの先端部に平坦部が形成されているので、素子側リードとの当接及び離間を制御でき、これにより外部リードと素子側リードとの安定した溶接処理を実現できるとともに、溶接強度や溶接品質の低下を回避し、電解コンデンサの信頼性向上に寄与することができる。
【図面の簡単な説明】
【図1】この発明の電解コンデンサ用リード線の製造方法の第1の実施形態である外部リードの切断工程を示す図である。
【図2】外部リードの成形工程を示し、(C)はその成形処理を示す図、(D)は成形された外部リードの第1の実施形態を示す平面図、(E)は外部リードの正面図である。
【図3】外部リードと素子側リードとの溶接工程を示し、(F)は初期配置を示す図、(G)は溶接開始を示す図、(H)は溶接途上を示す図、(I)は溶接によって形成されたリード線を示す図である。
【図4】外部リードの第2の実施形態を示し、(A)はその平面図、(B)はその正面図である。
【図5】外部リードの第3の実施形態を示し、(A)はその平面図、(B)はその正面図である。
【図6】一般的な電解コンデンサ用リード線の形態を示す斜視図である。
【図7】従来の外部リードと素子側リードとの溶接処理を示す図である。
【図8】従来の外部リードを示し、(A)はその側面図、(B)はその平面図である。
【符号の説明】
2 外部リード
4 線材
10 鋭角状先端部
26 凹部(平坦部)
28、30 尖鋭部
38 素子側リード
40 端面(溶接面)
48 リード線
50 端面
52 尖鋭部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing an electrolytic capacitor lead wire connected to an electrode of an electrolytic capacitor element.
[0002]
[Background]
For example, as shown in FIG. 6, the electrolytic capacitor includes a lead wire 102 connected to each of the electrode foils 100 on the anode side and the cathode side. The lead wire 102 includes a flat wire connected to the electrode foil 100. A device in which a rod-like external lead 108 is integrated by welding to an element side lead 106 provided with a portion 104 is used. Reference numeral 110 denotes a welded portion between the element side lead 106 and the external lead 108.
[0003]
[Prior art]
Incidentally, for example, as shown in FIG. 7, the element-side lead 106 includes a flat portion 104 formed by processing a round bar-shaped wire, and a non-flat portion 112 having an outer shape of the wire. A flat end surface 114 as a welding surface is formed at the end. On the other hand, the external lead 108 is formed by sharpening a round bar-like wire rod to form an acute-angled tip portion 116 composed of two inclined surfaces, and the acute-angled tip portion 116 is pushed against the end surface 114 of the element-side lead 106. Arc welding is performed to form the lead wire 102. For example, Japanese Patent Application Laid-Open No. 7-2111597 “Method for Manufacturing Lead Wire for Electrolytic Capacitor”, Japanese Patent Application Laid-Open No. 7-211161, “Device for Manufacturing Lead Wire for Electrolytic Capacitor”, or the like is used for manufacturing this lead wire 102.
[0004]
[Problems to be solved by the invention]
By the way, a wire rod such as a copper wire or a soft iron wire is used for the external lead 108. When such a wire rod is sheared, for example, as shown in FIGS. However, there are cases where a large number of sharp burrs 118 are generated at the tip due to the stickiness of the wire, the shape of the cutter edge, or the like. When the sharp-angled tip portion 116 having such a burr 118 is pressed against the end surface 114 of the element-side lead 106 as indicated by an arrow X in FIG. 7, the element-side lead 106 exists because the burr 118 exists. There is a possibility that the bite into the deeper (external lead 108a) or a shift in the bite direction (external lead 108b).
[0005]
It is extremely difficult to correct these. If the bite is deep, considerable force is required to separate the external lead 108 and the element-side lead 106 during welding. If the bit is forcibly separated, vibration will occur in the external lead 108 and in the biting direction. Even when the deviation occurs, the external lead 108 is vibrated at the time of separation. As a result, the external lead 108 is welded to the element-side lead 106 in a state where twisting or bending occurs. As a result, the welded portion 110 between the external lead 108 and the element-side lead 106 is disadvantageous in that the weld strength and weld quality are lowered and the stability is lacking. If such a lead wire 102 is used, the reliability of the electrolytic capacitor may be reduced.
[0006]
By the way, for example, Japanese Utility Model Laid-Open No. 52-167546 “Electrode Terminals in Electrolytic Capacitors” is known as a method for manufacturing such a lead wire. In this electrode terminal, by forming a recess or a protrusion in the middle of the inclined surface on the tip end side of the external lead connected to the aluminum material that is the element side lead, the molten aluminum material is bitten into the uneven portion and the element This prevents separation of the external leads from the side leads. Even if the concavo-convex part is formed on such an inclined surface, if the burr is generated at the tip part, as shown in FIG. 8, the biting of the external lead into the element side lead cannot be suppressed, and the Misalignment cannot be prevented. For this reason, even if an electrode terminal having a shape according to Japanese Utility Model Laid-Open No. 52-167546 is used for the external lead, there is a disadvantage in that the welding strength and the welding quality are still lowered and the stability is insufficient, and the reliability of the electrolytic capacitor is reduced. May decrease.
[0007]
Accordingly, an object of the present invention is to provide a method for manufacturing a lead wire for an electrolytic capacitor that prevents deterioration in welding strength and welding quality and has high stability.
[0008]
[Means for Solving the Problems]
The configuration of the electrolytic capacitor lead manufacturing method according to the present invention that solves such a problem is listed below with the reference numerals used in the embodiments.
[0009]
According to a first aspect of the present invention, there is provided a method for producing an electrolytic capacitor lead wire comprising: an electrolytic capacitor lead wire formed by welding an element side lead (38) connected to an electrolytic capacitor element and an external lead (2). In the manufacturing method, a sharpened portion (28, 30) and a flat portion (recessed portion 26) from which burrs are removed are formed at the distal end portion of the external lead, and the sharpened portion is formed on a flat welding surface on the element side lead side. While colliding and biting, the amount of biting is limited at the flat portion, and a welding current is passed between both the external lead and the element side lead, and the external lead and the element side lead are separated from each other to arc the to generate, and the element-side lead and the external lead causes partially melted, to characterized in that to weld by abutting and the element-side lead and the external lead .
[0010]
The method for manufacturing a lead wire for an electrolytic capacitor according to a second aspect of the present invention is characterized in that the sharp portion is formed of a plurality having a distance equal to or smaller than the diameter of the external lead.
[0011]
According to a third aspect of the present invention, there is provided a method of manufacturing a lead wire for an electrolytic capacitor, wherein the external lead is cut to form an acute tip portion (10), and the central portion of the sharp tip portion is formed. A flat portion (concave portion 26) formed of a concave portion is formed on the surface, and the sharp portion is formed with the concave portion interposed therebetween.
[0013]
According to a fourth aspect of the present invention, there is provided a method for producing a lead wire for an electrolytic capacitor, wherein the element-side lead is formed of the same metal as an electrode material of the electrolytic capacitor element.
[0014]
According to such a configuration, since a sharp portion is formed at a specific location at the tip of the external lead, it is possible to avoid the influence of conventional unspecified burrs and realize a stable welding process with the element side lead. In addition, since the flat portion is formed at the tip of the external lead, the contact and separation with the element side lead can be controlled, thereby realizing a stable welding process between the external lead and the element side lead. Thus, it is possible to avoid a decrease in welding strength and welding quality and to contribute to improving the reliability of the electrolytic capacitor.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
1 to 3 show an embodiment of a method of manufacturing a lead wire for an electrolytic capacitor according to the present invention, FIG. 1 shows a cutting process of an external lead, FIG. 2 shows a molding process thereof, and FIG. 3 shows a welding process thereof. ing.
[0016]
As shown in FIG. 1A, for example, a round bar-shaped wire 4 is used as a material of the external lead 2, and the surface of a soft iron wire having a diameter of about 0.3 to 1.2 mm is used for the wire 4 for example. A copper film is used. The wire 4 may be a soft copper wire, a soft copper wire, or another metal wire. The wire 4 is formed and cut by shearing with the cutting edge sides of the two shearing blades 6 and 8 being advanced and retracted in opposite directions (arrow a and b directions). Each of the shearing blades 6 and 8 has a blade edge angle θ and a width W corresponding to the shape of the tip of the external lead 2. By this shearing process, an acute-angled tip portion 10 is formed at the tip portion of the external lead 2 as shown in FIG. 1B. In this embodiment, the acute angle is formed by two inclined surfaces 12 that are line-symmetric. A shaped tip 10 is formed. That is, in this shearing process, the cutting and molding of the external lead 2 are performed simultaneously, but the cutting of the wire 4 and the molding process of the acute-angled tip portion 10 may be performed separately. The other end of the external lead 2 is formed to a predetermined length by cutting off.
[0017]
Then, as shown in FIG. 2C, the sharp tip portion 10 of the external lead 2 is molded. A molding die 14 is used as the molding means, and the molding die 14 has, for example, a V-shaped first and second molding surfaces 16 and 18 and a third parabolic or semicircular cross section. A molding surface 20 is formed. The top of the molding surface 20 is formed as a flat surface.
[0018]
Therefore, the external lead 2 is held by a holding means (not shown), and the molding die 14 is, for example, in the direction indicated by the arrow c so that the acute tip 10 is bridged between the molding surfaces 16 and 18 of the molding die 14. 2 and the molding surfaces 16 and 18 of the molding die 14 are pressed against the acute tip portion 10 of the external lead 2, the acute tip portion 10 is deformed by the molding die 14 (D) and (E) in FIG. ). That is, the acute-angled tip portion 10 of the external lead 2 has a paraboloid corresponding to the triangular inclined surfaces 22 and 24 and the molding surface 20 by the molding surfaces 16 and 18 at the tip-side corner portion of the inclined surface 12 generated during shearing. A concave portion 26 having a surface is formed, and as a result, a pair of sharp portions 28 and 30 are formed in this embodiment as a plurality of sharp portions with the concave portion 26 interposed therebetween. The innermost surface of the recess 26 is a flat surface. Further, the distance d between the sharp portions 28 and 30 is formed to be narrower than the diameter R of the wire 4 forming the external lead 2, and the distance between the bottom surface of the concave portion 26 and the tips of the sharp portions 28 and 30 is, for example, 3 μm. Set to degree. When such a forming process is performed, the burrs 32 {(C) in FIG. 2} generated in the sharp tip portion 10 of the external lead 2 by the shearing process are formed by the forming surfaces 16, 18 and 20, or by the forming. Will be removed.
[0019]
Then, as shown in FIG. 3 (F), for example, a wire made of the same metal material as the electrode material of the capacitor element, for example, a round bar-shaped aluminum wire having a diameter of about 1 to 3 mm is formed and processed into a flat portion. 34 and a non-flat portion 36 having an outer shape of a round bar-like wire rod are formed, and a flat end face 40 as a welding surface is formed on the non-flat portion 36 side of the element-side lead 38. Is formed. Then, the end face 40 of the element side lead 38 is disposed, and the external lead 2 is held by the movable chuck 42 so that the sharp portions 28 and 30 are opposed to each other at regular intervals. In this case, an arc welding device 44 is connected between the element side lead 38 and the external lead 2.
[0020]
Next, as shown in FIG. 3G, the external lead 2 is held by the movable chuck 42 and moved in the direction indicated by the arrow e, and the sharpened portions 28 and 30 thereof are predetermined on the end face 40 of the element side lead 38. When it is made to collide with the position and bite into the end surface 40, the innermost surface of the recess 26 functions as a stopper. In this state, when the welding apparatus 44 connected between the external lead 2 and the element side lead 38 is operated, a welding current flows between the external lead 2 and the element side lead 38, and the external lead 2 and the element side lead 38. An arc welding current starts to flow between the contact point with the side lead 38, that is, between the sharp portions 28 and 30 of the external lead 2 and the end face 40 of the element side lead 38.
[0021]
From the start of the welding current flow, the sharpened portions 28 and 30 of the external lead 2 are moved away from the end surface 40 of the element-side lead 38 in the direction indicated by the arrow f as shown in FIG. When the distance m is set between them, an arc is generated between the sharp portions 28 and 30 of the external lead 2 and the end surface 40 of the element side lead 38, and both the external lead 2 and the element side lead 38 facing each other are partially formed. To melt.
[0022]
In this state, when the external lead 2 is moved to the end face 40 side of the element side lead 38 and brought into contact, fusion between the molten metals occurs, and the external lead 2 and the end face 40 of the element side lead 38 are welded. The molten metal is spheroidized by surface tension, a hemispherical weld 46 is formed, and a lead wire 48 in which the external lead 2 and the element side lead 38 are integrated is formed as shown in FIG. The In this case, the welded portion 46 forms an alloy layer by the fusion of the metal constituting the external lead 2 and the metal constituting the element side lead 38.
[0023]
Then, the lead wire 48 is connected to a cathode foil and an anode foil (not shown) to form a capacitor element, which is then housed in an exterior case, and the opening is sealed with a sealing member, thereby forming an electrolytic capacitor. it can.
[0024]
In such welding of the external lead 2 and the element side lead 38, in this embodiment, the sharp portions 28 and 30 of the external lead 2 and the end surface 40 of the element side lead 38 are brought into contact with each other. Since the bottom surface of the recess 26 formed between the sharp portions 28 and 30, that is, the flat surface formed at the innermost surface functions as a stopper, the amount of biting is limited and becomes constant. . In addition, since the shape of each of the sharp portions 28 and 30 is constant, if the applied pressure is constant, the depth of biting into the element side lead 38 does not change, and the external lead 2 from the element side lead 38 does not change. When the gaps are separated from each other, mechanical fluctuations such as vibration of the external lead 2 are not caused, and welding can be stabilized.
[0025]
In the case of this embodiment, both the sharp portions 28 and 30 of the acute-angled tip portion 10 of the external lead 2 bite into the end surface 40 of the element side lead 38, so that the biting direction is regulated by the sharp portions 28 and 30. As a result, the direction deviation of the external lead 2 with respect to the element side lead 38 can be prevented, and as a result, a stable welding current can flow. In addition, the arc generated when the two are separated from each other is generated at each of the sharp portions 28 and 30, and can be concentrated on each of the sharp portions 28 and 30 to melt the element side lead 38 and the external lead 2 within a certain range. , Stable welding can be performed.
[0026]
In the first embodiment, the formation interval of the sharp portions 28 and 30 is formed to be narrower than the diameter R of the wire 4. For example, as shown in FIGS. It is also possible to form a recess 26 having an arcuate ridge line in the interval between the sharp portions 28 and 30 and to obtain the same effect as in the first embodiment. Can do.
[0027]
Further, for example, as shown in FIGS. 5A and 5B, the welded surface side of the external lead 2 is a flat end surface 50, and a plurality of conical sharpened portions 52 are formed in the end surface 50. May be. In this case, the interval d between the sharp portions 52 is set smaller than the diameter R of the wire 4 that forms the external lead 2. Even with such a configuration, it is possible to prevent the deviation in the biting direction due to the three-point biting into the element side lead 38.
[0028]
Further, in the embodiment, the case where two or three sharp portions are formed has been described as an example. The effect of can be obtained.
[0029]
【The invention's effect】
As described above, according to the present invention, the following effects can be obtained.
a It is possible to manufacture a lead wire for an electrolytic capacitor having high stability by preventing a decrease in welding strength and welding quality.
b Since a sharp portion is formed at a specific location on the distal end side of the external lead, the influence can be avoided by removing or molding unspecified burrs, and a flat portion is formed at the distal end portion of the external lead. Therefore, it is possible to control the contact and separation with the element side lead, thereby realizing a stable welding process between the external lead and the element side lead, avoiding a decrease in welding strength and welding quality, and the reliability of the electrolytic capacitor It can contribute to improvement.
[Brief description of the drawings]
FIG. 1 is a diagram showing a cutting process of external leads, which is a first embodiment of a method for producing a lead wire for an electrolytic capacitor according to the present invention.
FIGS. 2A and 2B show a forming process of an external lead, FIG. 2C is a view showing the forming process, FIG. 2D is a plan view showing a first embodiment of the formed external lead, and FIG. It is a front view.
FIG. 3 shows a welding process between an external lead and an element side lead, (F) shows an initial arrangement, (G) shows a welding start, (H) shows a welding process, (I) FIG. 4 is a view showing a lead wire formed by welding.
4A and 4B show a second embodiment of an external lead, in which FIG. 4A is a plan view thereof and FIG. 4B is a front view thereof.
5A and 5B show a third embodiment of an external lead, wherein FIG. 5A is a plan view thereof and FIG. 5B is a front view thereof.
FIG. 6 is a perspective view showing a form of a general lead wire for an electrolytic capacitor.
FIG. 7 is a diagram showing a welding process between a conventional external lead and an element side lead.
8A and 8B show a conventional external lead, FIG. 8A is a side view thereof, and FIG. 8B is a plan view thereof.
[Explanation of symbols]
2 External lead 4 Wire material 10 Sharp tip portion 26 Recessed portion (flat portion)
28, 30 Sharp point 38 Element side lead 40 End face (welded face)
48 Lead wire 50 End face 52 Sharp part

Claims (4)

電解コンデンサ素子に接続する素子側リードと、外部リードとを溶着して形成する電解コンデンサ用リード線の製造方法であって、
前記外部リードの先端部にバリを除去した尖鋭部と平坦部を形成し、前記尖鋭部を前記素子側リード側の平坦な溶接面に衝突させて食い込ませるとともに、前記平坦部にて食い込み量を制限し、前記外部リードと前記素子側リードと両者間に溶接電流を流すとともに前記外部リードと前記素子側リードとを離間してアークを発生させて、該外部リードと前記素子側リードとを部分的に溶融させるとともに、前記外部リードと前記素子側リードとを当接させることにより溶接させることを特徴とする電解コンデンサ用リード線の製造方法。
ンサ用リード線の製造方法。
A method for producing a lead wire for an electrolytic capacitor formed by welding an element-side lead connected to an electrolytic capacitor element and an external lead,
A sharpened portion and a flat portion are formed by removing burrs at the distal end portion of the external lead, and the sharpened portion is caused to collide with a flat welding surface on the element side lead side, and the amount of biting is reduced by the flat portion. limited to, the by generating arc spaced apart and said element-side lead and the external lead together with flow external leads and the two welding current between the said element side lead, and the element-side lead and the external lead A method for producing a lead wire for an electrolytic capacitor , wherein the external lead and the element side lead are welded while being partially melted .
Sensor wire manufacturing method.
前記尖鋭部は、外部リードの直径と同等又は該直径より狭い間隔を持つ複数個からなることを特徴とする請求項1記載の電解コンデンサ用リード線の製造方法。  2. The method of manufacturing a lead wire for an electrolytic capacitor according to claim 1, wherein the sharp portion is composed of a plurality of pieces having an interval equal to or narrower than the diameter of the external lead. 前記外部リードに、線材を切断して鋭角状先端部を成形し、この鋭角状先端部の中央部に凹部からなる平坦部を形成するとともに、該凹部を挟んで前記尖鋭部を形成したものを用いることを特徴とする請求項2記載の電解コンデンサ用リード線の製造方法。  In the external lead, a wire rod is cut to form an acute tip portion, and a flat portion including a recess is formed at the center of the acute tip portion, and the sharp portion is formed with the recess interposed therebetween. The method for manufacturing a lead wire for an electrolytic capacitor according to claim 2, wherein the lead wire is used. 前記素子側リードは、前記電解コンデンサ素子の電極材料と同一金属で形成したことを特徴とする請求項1記載の電解コンデンサ用リード線の製造方法。  2. The method of manufacturing a lead wire for an electrolytic capacitor according to claim 1, wherein the element-side lead is formed of the same metal as an electrode material of the electrolytic capacitor element.
JP2002074151A 2002-03-18 2002-03-18 Manufacturing method of electrolytic capacitor lead wire Expired - Fee Related JP4193401B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002074151A JP4193401B2 (en) 2002-03-18 2002-03-18 Manufacturing method of electrolytic capacitor lead wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002074151A JP4193401B2 (en) 2002-03-18 2002-03-18 Manufacturing method of electrolytic capacitor lead wire

Publications (2)

Publication Number Publication Date
JP2003272976A JP2003272976A (en) 2003-09-26
JP4193401B2 true JP4193401B2 (en) 2008-12-10

Family

ID=29203624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002074151A Expired - Fee Related JP4193401B2 (en) 2002-03-18 2002-03-18 Manufacturing method of electrolytic capacitor lead wire

Country Status (1)

Country Link
JP (1) JP4193401B2 (en)

Also Published As

Publication number Publication date
JP2003272976A (en) 2003-09-26

Similar Documents

Publication Publication Date Title
US8105712B2 (en) Sealed secondary battery, and method for manufacturing the battery
JP3562696B2 (en) Manufacturing method of fuse element
JPH10256296A (en) Wire-bonding method
US4476372A (en) Spot welding electrode
EP3287226B1 (en) Method of linear friction welding workpieces
JP4251504B2 (en) Welding tip for crimping resin product and method for crimping resin product using the welding tip
JP4193401B2 (en) Manufacturing method of electrolytic capacitor lead wire
JP2008510500A (en) Sharp undercutter and undercutter production
US10821554B2 (en) Method of manufacturing conductive member and conductive member
JP2001198689A (en) Method of laser welding for aluminum material
JPS6364351A (en) Lead frame
JP2949414B2 (en) Cladding material and its manufacturing method
JP6595546B2 (en) Manufacturing method of spark plug
JP4888875B2 (en) Welded metal wire and manufacturing method thereof
JPH0620756A (en) Manufacture of brush contact
JP3291072B2 (en) Manufacturing method of plasma electrode
KR100347607B1 (en) Manufacturing of small container with good weld strength and air-tightability
JP2008071497A (en) Carbon brush joined body, and its manufacturing method
JPH05343159A (en) Manufacture of discharge electrode for spark plug
JPH08150488A (en) Welding method of wire rod and forming jig for welding
JPS5927784A (en) Tig penetration welding method in all attitude by electrode having specially shaped forward end
JP2005347131A (en) Manufacturing method of lead acid storage battery
JPS6034465Y2 (en) Spot welding electrode
JPH0342151B2 (en)
JP2024141262A (en) Surface roughening treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071022

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080915

R150 Certificate of patent or registration of utility model

Ref document number: 4193401

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees