JP4192354B2 - Chlorine production method - Google Patents

Chlorine production method Download PDF

Info

Publication number
JP4192354B2
JP4192354B2 JP26852299A JP26852299A JP4192354B2 JP 4192354 B2 JP4192354 B2 JP 4192354B2 JP 26852299 A JP26852299 A JP 26852299A JP 26852299 A JP26852299 A JP 26852299A JP 4192354 B2 JP4192354 B2 JP 4192354B2
Authority
JP
Japan
Prior art keywords
gas
chlorine
hydrogen chloride
oxygen
unreacted
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP26852299A
Other languages
Japanese (ja)
Other versions
JP2000272906A (en
Inventor
哲也 鈴田
康彦 森
清司 岩永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP26852299A priority Critical patent/JP4192354B2/en
Publication of JP2000272906A publication Critical patent/JP2000272906A/en
Application granted granted Critical
Publication of JP4192354B2 publication Critical patent/JP4192354B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/20Improvements relating to chlorine production

Landscapes

  • Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、塩素の製造方法に関するものである。更に詳しくは、本発明は、塩化水素を含むガスを酸素を含むガスを用いて酸化する塩素の製造方法であって、触媒成分の揮発や飛散による配管等の閉塞トラブルを伴わず、かつ揮発や飛散した触媒成分の処理工程を必要とせず、また活性の高い触媒を使用することによって、平衡的に有利な温度で塩素を製造できるために、未反応塩化水素と水を回収する工程、塩素と未反応酸素を分離する工程及び未反応酸素を反応工程へ供給する工程を簡略化し、よって設備コスト及び運転コストの観点から特に優れた塩素の製造方法に関するものである。
【0002】
【従来の技術】
塩素は塩化ビニル、ホスゲンなどの原料として有用であり、塩化水素の酸化によって得られることもよく知られている。特開昭62−275001号公報には、酸化クロム触媒を用いて塩化水素を酸化する方法が開示されている。しかしながら、この方法は、酸化反応で得られる生成ガスに中に揮散、飛散クロムを含むために、生成ガスを水洗して該クロムを水溶液として回収する必要があるという問題を有している。
【0003】
【発明が解決しようとする課題】
かかる状況において、本発明が解決しようとする課題は、塩化水素を酸素で酸化する塩素の製造方法であって、触媒成分の揮発や飛散による配管等の閉塞トラブルを伴わず、かつ揮発や飛散した触媒成分の処理工程を必要とせず、また活性の高い触媒を使用することによって、平衡的に有利な温度で塩素を製造できるために、未反応塩化水素と水を回収する工程、塩素と未反応酸素を分離する工程及び未反応酸素を反応工程へ供給する工程を簡略化し、よって設備コスト及び運転コストの観点から特に優れた塩素の製造方法を提供する点に存するものである。
【0004】
【課題を解決するための手段】
すなわち、本発明は、塩化水素を含むガスを酸素を含むガスを用いて酸化する塩素の製造方法であって、下記の工程を有する塩素の製造方法に係るものである。
反応工程:ルテニウム及び/又はルテニウム化合物を含む触媒の存在下、塩化水素を含むガスを酸素で酸化し、塩素、水、未反応塩化水素及び未反応酸素を主成分とするガスを得る工程
吸収工程:反応工程で得た塩素、水、未反応塩化水素及び未反応酸素を主成分とするガスを、水及び/又は塩酸水と接触させることにより、及び/又は、冷却することにより、塩化水素と水を主成分とする溶液を回収し、塩素と未反応酸素を主成分とするガスを得る工程
乾燥工程:吸収工程で得たガス中の水分を除去することにより、乾燥したガスを得る工程
精製工程:乾燥工程で得た乾燥したガスを、塩素を主成分とする液体又はガスと未反応酸素を主成分とするガスとに分離することにより塩素を得る工程
【0005】
【発明の実施の形態】
本発明において用いられる塩化水素を含むガスとしては、塩素化合物の熱分解反応や燃焼反応、有機化合物のホスゲン化反応又は塩素化反応、焼却炉の燃焼等において発生した塩化水素を含むいかなるものを使用することができる。該ガス中の塩化水素の濃度は10体積%以上、好ましくは50体積%以上、更に好ましくは80体積%以上のものが用いられる。塩化水素の濃度が10体積%よりも低い場合には、精製工程で得られる未反応酸素を主成分とするガス中の酸素の濃度が低くなり、循環工程で反応工程へ供給する該ガスの量を少なくしなければならないことがある。塩化水素を含むガス中の塩化水素以外の成分としては、オルトジクロロベンゼン、モノクロロベンゼン等の塩素化芳香族炭化水素、及びトルエン、ベンゼン等の芳香族炭化水素、及び塩化ビニル、1,2−ジクロロエタン、塩化メチル、塩化エチル等の塩素化炭化水素、及びメタン、アセチレン、エチレン、プロピレン等の炭化水素、及び窒素、アルゴン、二酸化炭素、一酸化炭素、ホスゲン、水素、硫化カルボニル、硫化水素等の無機ガスがあげられる。塩化水素と酸素の反応において、塩素化芳香族炭化水素及び塩素化炭化水素は、二酸化炭素と水と塩素に酸化され、芳香族炭化水素及び炭化水素は、二酸化炭素と水に酸化され、一酸化炭素は二酸化炭素に酸化され、ホスゲンは、二酸化炭素と塩素に酸化される。
【0006】
酸素を含むガスとしては、酸素又は空気が使用されるが、好ましくは酸素の濃度が80体積%以上、更に好ましくは90体積%以上のものが用いられる。酸素の濃度が80体積%よりも小さい場合には、精製工程で得られる未反応酸素を主成分とするガス中の酸素濃度が低くなり、循環工程で反応工程へ供給する該ガスの量を少なくしなければならないことがある。酸素濃度が80体積%以上の酸素を含むガスは、空気の圧力スイング法や深冷分離などの通常の工業的な方法によって得ることができる。
【0007】
塩化水素1モルに対する酸素の理論モル量は0.25モルであるが、理論量以上供給することが好ましく、塩化水素1モルに対し酸素0.25〜2モルが更に好ましい。酸素の量が過小であると、塩化水素の転化率が低くなる場合があり、一方酸素の量が過多であると生成した塩素と未反応酸素の分離が困難になる場合がある。
【0008】
本発明における反応工程とは、ルテニウム及び/又はルテニウム化合物を含む触媒の存在下、塩化水素を含むガスを酸素を含むガスで酸化し、塩素、水、未反応塩化水素及び未反応酸素を主成分とするガスを得る工程である。塩化水素を酸素で酸化するに際しては、ルテニウム及び/又はルテニウム化合物を含む触媒を用いる必要がある。このことにより、触媒成分の揮発や飛散による配管等の閉塞トラブルを伴わず、かつ揮発や飛散した触媒成分の処理工程を必要とせず、また平衡的に有利な温度で塩素を製造できるために、未反応塩化水素と水を回収する工程、塩素と未反応酸素を分離する工程及び未反応酸素を反応反応に供給する工程を簡略化し、よって設備コスト及び運転コストを低く抑制し得る。ルテニウム及び/又はルテニウム化合物を含む触媒としては、公知の触媒(特開平9−67103号公報、特開平10−182104号公報、特開平10−194705号公報、特開平10−338502号公報、特開平11−180701号公報)を用いることができる。中でも酸化ルテニウムを含む触媒が好ましい。更に、触媒中の酸化ルテニウムの含有量は、0.1〜20重量%が好ましい。酸化ルテニウムの量が過小であると触媒活性が低く塩化水素の転化率が低くなる場合があり、一方、酸化ルテニウムの量が過多であると触媒価格が高くなる場合がある。たとえば、特開平10−338502号公報には、酸化ルテニウムの含有量が0.1〜20重量%であり、酸化ルテニウムの中心径が1.0〜10.0ナノメートルである担持酸化ルテニウム触媒又は酸化ルテニウム複合酸化物型触媒が記載されている。
【0009】
反応方式としては、固定床気相流通方式又は流動層気相流通方式等があげられるが、固定床気相流通方式が好ましい。流動層気相流通方式は、触媒がガスに同伴されて飛散する場合がある。
【0010】
触媒の使用量(体積)は、0.1MPa下の塩化水素の供給速度との比GHSVで表すと、通常10〜20000h-1で行われる。反応圧力は、通常0.1〜5MPaで行われる。反応温度は、好ましくは200〜500℃、更に好ましくは200〜380℃である。反応温度が低すぎる場合は、塩化水素の転化率が低くなる場合があり、一方反応温度が高すぎる場合は、触媒成分が揮発する場合がある。
【0011】
反応器としては、反応管の外側にジャケット部を有したものがあげられる。反応管内の温度は、ジャケット部の熱媒体によって制御される。反応で生成した反応熱は、熱媒体を通じて、スチ−ムを発生させて回収することができる。熱媒体としては、溶融塩、有機熱媒体及び溶融金属等をあげることができるが、熱安定性や取り扱いの容易さ等の点から溶融塩が好ましい。溶融塩の組成としては、硝酸カリウム50重量%と亜硝酸ナトリウム50重量%の混合物、硝酸カリウム53重量%と亜硝酸ナトリウム40重量%と硝酸ナトリウム7重量%の混合物などをあげることができる。反応管に使用される材質としては、金属、ガラス、セラミック等があげられる。金属材料としては、Ni、SUS316L、SUS310、SUS304、ハステロイB、ハステロイC及びインコネル等があげられるが、中でもNiが好ましい。
【0012】
本発明における吸収工程とは、反応工程で得た塩素、水、未反応塩化水素及び未反応酸素を主成分とするガスを、水及び/又は塩酸水と接触させることにより、及び/又は、冷却することにより、塩化水素と水を主成分とする溶液を回収し、塩素と未反応酸素を主成分とするガスを得る工程である。接触温度は0〜100℃、圧力は0.05〜1MPaで行われる。接触させる塩酸水の濃度は、25重量%以下が好ましい。得られた溶液は、そのまま、あるいは溶液中に含まれる塩素を加熱、及び/又は窒素等の不活性なガスのバブリングにより除去した後、電解槽のpH調整、ボイラ−フィ−ド水の中和、アニリンとホルマリンの縮合転位反応及び塩酸水電解の原料等に用いることができる。
【0013】
本発明における乾燥工程とは、吸収工程で得たガス中の水分を除去する工程である。乾燥工程後のガス中の水分は0.5mg/l以下、好ましくは0.1mg/l以下である。ガス中の水分を除去する化合物としては、硫酸、塩化カルシウム、過塩素酸マグネシウム、ゼオライトなどがあげられるが、中でも硫酸が好ましい。ガス中の水分を除去する方法としては、吸収工程で得た塩素と未反応酸素を主成分とするガスを硫酸と接触させる方法があげられる。工程に加える硫酸の濃度は、90重量%以上が好ましい。硫酸濃度が90重量%よりも小さいと、ガス中の水分が十分に除去されないことがある。接触温度は0〜80℃、圧力は0.05〜1MPaで行われる。
【0014】
本発明における精製工程とは、乾燥工程で得たガスを、塩素を主成分とする液体又はガスと未反応酸素を主成分とするガスとに分離することにより塩素を得る工程である。塩素を主成分とする液体又はガスと未反応酸素を主成分とするガスとに分離する方法としては、圧縮及び/又は冷却する方法、及び/又は公知の方法(特開平3−262514号公報、特表平11−500954号公報)があげられる。たとえば、乾燥工程で得たガスを圧縮及び/又は冷却することによって、塩素を主成分とする液体が未反応酸素を主成分とするガスと分離される。塩素の液化は、圧力と温度で規定される塩素が液体状態で存在しうる範囲で実施される。その範囲で低温にすればするほど、圧縮圧力が低くなるために圧縮動力は小さくできるが、工業的には設備等の問題から、圧縮圧力と冷却温度はこの範囲内の最適な経済条件を考慮して決められる。通常の運転においては、塩素液化の圧縮圧力は0.5〜5MPa、冷却温度は−70〜40℃で行われる。得られた塩素を主成分とする液体は、そのまま、あるいは一部又は全部を気化させた後、塩化ビニル、ホスゲンなどの原料として用いることができる。一部又は全部を気化させた後に用いる場合は、乾燥工程で得られるガスとの熱交換を行うことにより、気化に必要な熱の一部を得ると同時に、乾燥工程で得られるガス中の塩素の液化に必要な外部冷媒による冷却負荷を削減することが可能である。
【0015】
本発明における循環工程とは、精製工程で得た未反応酸素を主成分とするガスの一部又は全部を反応工程へ供給する工程である。本発明においては、反応工程、吸収工程、乾燥工程及び精製工程に加え、循環工程を有することが好ましい。反応工程へ供給するガス中に硫酸ミストが含有される場合は、硫酸ミストを除去することが好ましい。硫酸ミストを除去する方法としては、公知の方法(特開平6−171907号公報)があげられる。
【0016】
本発明における除害工程とは、精製工程で得た未反応酸素を主成分とするガス、又は循環工程で反応工程へ供給されなかったガスを該ガス中に含まれる塩素を除去した後、系外に排出する工程である。本発明においては、反応工程、吸収工程、乾燥工程及び精製工程、又は反応工程、吸収工程、乾燥工程、精製工程及び循環工程に加え、除害工程を有することが好ましい。塩素を除去する方法としては、ガスをアルカリ金属水酸化物の水溶液、又はアルカリ金属チオ硫酸塩の水溶液、又はアルカリ金属亜硫酸塩とアルカリ金属炭酸塩を溶解させた水溶液、又はアルカリ金属水酸化物とアルカリ金属亜硫酸塩を溶解させた水溶液と接触させて除害する方法、ガス中の塩素を分離回収する公知の方法(特開平3−262514号公報、特開平10−25102号公報、特表平11−500954号公報)があげられる。
【0017】
【発明の効果】
以上説明したとおり、本発明により、塩化水素を含むガスを原料として、該原料中の塩化水素を酸素を含むガスを用いて酸化する塩素の製造方法であって、触媒成分の揮発や飛散による配管等の閉塞トラブルを伴わず、かつ処理工程を必要とせず、また活性の高い触媒を使用することによって、平衡的に有利な温度で塩素を製造できるために、未反応塩化水素と水を回収する工程、塩素と未反応酸素を分離する工程及び未反応酸素を酸化反応に供給する工程を簡略化し、よって設備コスト及び運転コストの観点から特に優れた塩素の製造方法を提供することができた。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing chlorine. More specifically, the present invention relates to a method for producing chlorine in which a gas containing hydrogen chloride is oxidized using a gas containing oxygen. A process for recovering unreacted hydrogen chloride and water is not necessary because a process for treating scattered catalyst components is not required and chlorine can be produced at an equilibrium and advantageous temperature by using a highly active catalyst. The present invention relates to a chlorine production method that simplifies the process of separating unreacted oxygen and the process of supplying unreacted oxygen to the reaction process, and thus is particularly excellent in terms of equipment cost and operation cost.
[0002]
[Prior art]
It is well known that chlorine is useful as a raw material for vinyl chloride, phosgene and the like, and is obtained by oxidation of hydrogen chloride. Japanese Patent Application Laid-Open No. 62-275001 discloses a method of oxidizing hydrogen chloride using a chromium oxide catalyst. However, this method has a problem that since the product gas obtained by the oxidation reaction contains volatilized and scattered chromium, it is necessary to wash the product gas with water and recover the chromium as an aqueous solution.
[0003]
[Problems to be solved by the invention]
In such a situation, the problem to be solved by the present invention is a method for producing chlorine in which hydrogen chloride is oxidized with oxygen, without causing troubles such as clogging of piping due to volatilization or scattering of catalyst components, and volatilization or scattering. A process of recovering unreacted hydrogen chloride and water, which does not require a catalyst component treatment step, and can produce chlorine at an equilibrium advantageous temperature by using a highly active catalyst. The present invention resides in simplifying the step of separating oxygen and the step of supplying unreacted oxygen to the reaction step, and thus providing a chlorine production method that is particularly excellent from the viewpoint of equipment cost and operation cost.
[0004]
[Means for Solving the Problems]
That is, the present invention relates to a chlorine production method for oxidizing a gas containing hydrogen chloride using a gas containing oxygen, and relates to a method for producing chlorine having the following steps.
Reaction process: Process absorption process in which a gas containing hydrogen chloride is oxidized with oxygen in the presence of a catalyst containing ruthenium and / or ruthenium compound to obtain a gas mainly composed of chlorine, water, unreacted hydrogen chloride and unreacted oxygen. : Hydrogen chloride obtained by bringing the gas mainly composed of chlorine, water, unreacted hydrogen chloride and unreacted oxygen obtained in the reaction step into contact with water and / or hydrochloric acid and / or cooling. Process for recovering water-based solution and obtaining gas mainly composed of chlorine and unreacted oxygen Drying process: Process purification for obtaining dry gas by removing moisture in gas obtained in absorption process Step: A step of obtaining chlorine by separating the dried gas obtained in the drying step into a liquid or gas mainly containing chlorine and a gas mainly containing unreacted oxygen.
DETAILED DESCRIPTION OF THE INVENTION
As the gas containing hydrogen chloride used in the present invention, any gas containing hydrogen chloride generated in pyrolysis reaction or combustion reaction of chlorine compound, phosgenation reaction or chlorination reaction of organic compound, combustion in incinerator, etc. is used. can do. The concentration of hydrogen chloride in the gas is 10% by volume or more, preferably 50% by volume or more, more preferably 80% by volume or more. When the concentration of hydrogen chloride is lower than 10% by volume, the concentration of oxygen in the gas mainly composed of unreacted oxygen obtained in the purification process becomes low, and the amount of the gas supplied to the reaction process in the circulation process May have to be reduced. Components other than hydrogen chloride in the gas containing hydrogen chloride include chlorinated aromatic hydrocarbons such as orthodichlorobenzene and monochlorobenzene, aromatic hydrocarbons such as toluene and benzene, vinyl chloride, and 1,2-dichloroethane. , Chlorinated hydrocarbons such as methyl chloride and ethyl chloride, and hydrocarbons such as methane, acetylene, ethylene and propylene, and inorganics such as nitrogen, argon, carbon dioxide, carbon monoxide, phosgene, hydrogen, carbonyl sulfide and hydrogen sulfide Gas. In the reaction between hydrogen chloride and oxygen, chlorinated aromatic hydrocarbons and chlorinated hydrocarbons are oxidized to carbon dioxide, water, and chlorine, and aromatic hydrocarbons and hydrocarbons are oxidized to carbon dioxide and water, and are oxidized. Carbon is oxidized to carbon dioxide and phosgene is oxidized to carbon dioxide and chlorine.
[0006]
As the gas containing oxygen, oxygen or air is used. Preferably, the oxygen concentration is 80% by volume or more, more preferably 90% by volume or more. When the oxygen concentration is less than 80% by volume, the oxygen concentration in the gas mainly composed of unreacted oxygen obtained in the purification process is low, and the amount of the gas supplied to the reaction process in the circulation process is reduced. There are things you have to do. A gas containing oxygen having an oxygen concentration of 80% by volume or more can be obtained by an ordinary industrial method such as an air pressure swing method or a cryogenic separation.
[0007]
Although the theoretical molar amount of oxygen with respect to 1 mol of hydrogen chloride is 0.25 mol, it is preferable to supply more than the theoretical amount, and more preferably 0.25 to 2 mol of oxygen with respect to 1 mol of hydrogen chloride. If the amount of oxygen is too small, the conversion rate of hydrogen chloride may be low. On the other hand, if the amount of oxygen is excessive, it may be difficult to separate generated chlorine and unreacted oxygen.
[0008]
The reaction step in the present invention means that a gas containing hydrogen chloride is oxidized with a gas containing oxygen in the presence of a catalyst containing ruthenium and / or a ruthenium compound, and chlorine, water, unreacted hydrogen chloride and unreacted oxygen are the main components. Is a step of obtaining a gas. When oxidizing hydrogen chloride with oxygen, it is necessary to use a catalyst containing ruthenium and / or a ruthenium compound. Because of this, it is possible to produce chlorine at a temperature that is advantageous in an equilibrium manner, without causing troubles such as clogging of piping due to volatilization or scattering of the catalyst component, and without requiring a treatment process of the volatilized or scattered catalyst component. The step of recovering unreacted hydrogen chloride and water, the step of separating chlorine and unreacted oxygen, and the step of supplying unreacted oxygen to the reaction can be simplified, so that the equipment cost and operation cost can be kept low. As catalysts containing ruthenium and / or ruthenium compounds, known catalysts (Japanese Patent Laid-Open Nos. 9-67103, 10-182104, 10-194705, 10-338502, 10-338502, 11-180701). Of these, a catalyst containing ruthenium oxide is preferable. Further, the content of ruthenium oxide in the catalyst is preferably 0.1 to 20% by weight. If the amount of ruthenium oxide is too small, the catalytic activity may be low and the conversion rate of hydrogen chloride may be low. On the other hand, if the amount of ruthenium oxide is excessive, the catalyst price may be high. For example, JP-A-10-338502 discloses a supported ruthenium oxide catalyst having a ruthenium oxide content of 0.1 to 20% by weight and a ruthenium oxide center diameter of 1.0 to 10.0 nanometers. A ruthenium oxide composite oxide type catalyst is described.
[0009]
Examples of the reaction method include a fixed bed gas phase distribution method and a fluidized bed gas phase distribution method, but a fixed bed gas phase distribution method is preferable. In the fluidized bed gas phase circulation method, the catalyst may be scattered with the gas.
[0010]
The use amount (volume) of the catalyst is usually 10 to 20000 h −1 in terms of the ratio GHSV with respect to the supply rate of hydrogen chloride under 0.1 MPa. The reaction pressure is usually 0.1 to 5 MPa. The reaction temperature is preferably 200 to 500 ° C, more preferably 200 to 380 ° C. If the reaction temperature is too low, the conversion rate of hydrogen chloride may be low, while if the reaction temperature is too high, the catalyst component may volatilize.
[0011]
An example of the reactor is one having a jacket portion outside the reaction tube. The temperature in the reaction tube is controlled by the heat medium in the jacket portion. The reaction heat generated by the reaction can be recovered by generating a steam through a heat medium. Examples of the heat medium include a molten salt, an organic heat medium, and a molten metal, but a molten salt is preferable from the viewpoints of thermal stability and ease of handling. Examples of the composition of the molten salt include a mixture of 50% by weight of potassium nitrate and 50% by weight of sodium nitrite, and a mixture of 53% by weight of potassium nitrate, 40% by weight of sodium nitrite and 7% by weight of sodium nitrate. Examples of the material used for the reaction tube include metal, glass, and ceramic. Examples of the metal material include Ni, SUS316L, SUS310, SUS304, Hastelloy B, Hastelloy C, and Inconel. Among these, Ni is preferable.
[0012]
The absorption step in the present invention refers to a gas mainly composed of chlorine, water, unreacted hydrogen chloride and unreacted oxygen obtained in the reaction step, and / or cooling by contacting with water and / or hydrochloric acid water. In this step, a solution containing hydrogen chloride and water as main components is recovered, and a gas containing chlorine and unreacted oxygen as main components is obtained. The contact temperature is 0 to 100 ° C. and the pressure is 0.05 to 1 MPa. The concentration of hydrochloric acid to be contacted is preferably 25% by weight or less. The obtained solution is used as it is or after removing chlorine contained in the solution by heating and / or bubbling with an inert gas such as nitrogen, and then adjusting the pH of the electrolytic cell and neutralizing boiler-feed water. It can be used as a raw material for the condensation rearrangement reaction of aniline and formalin, and hydrochloric acid water electrolysis.
[0013]
The drying step in the present invention is a step of removing moisture in the gas obtained in the absorption step. The moisture in the gas after the drying step is 0.5 mg / l or less, preferably 0.1 mg / l or less. Examples of the compound that removes moisture in the gas include sulfuric acid, calcium chloride, magnesium perchlorate, and zeolite. Among them, sulfuric acid is preferable. As a method for removing moisture in the gas, there is a method in which chlorine obtained in the absorption step and a gas mainly composed of unreacted oxygen are brought into contact with sulfuric acid. The concentration of sulfuric acid added to the process is preferably 90% by weight or more. If the sulfuric acid concentration is less than 90% by weight, moisture in the gas may not be sufficiently removed. The contact temperature is 0 to 80 ° C. and the pressure is 0.05 to 1 MPa.
[0014]
The purification step in the present invention is a step of obtaining chlorine by separating the gas obtained in the drying step into a liquid or gas containing chlorine as a main component and a gas containing unreacted oxygen as a main component. As a method of separating the liquid or gas mainly containing chlorine and the gas mainly containing unreacted oxygen, a compression and / or cooling method and / or a known method (Japanese Patent Laid-Open No. 3-262514, No. 11-500954). For example, by compressing and / or cooling the gas obtained in the drying step, a liquid containing chlorine as a main component is separated from a gas containing unreacted oxygen as a main component. The liquefaction of chlorine is carried out to the extent that chlorine specified by pressure and temperature can exist in a liquid state. The lower the temperature, the lower the compression pressure, so the compression power can be reduced. However, from the industrial viewpoint, the compression pressure and cooling temperature take into account the optimal economic conditions within this range. Can be decided. In normal operation, the compression pressure for liquefaction of chlorine is 0.5 to 5 MPa, and the cooling temperature is −70 to 40 ° C. The obtained liquid containing chlorine as a main component can be used as a raw material for vinyl chloride, phosgene or the like as it is or after partially or completely vaporizing. When used after vaporizing part or all of it, by exchanging heat with the gas obtained in the drying step, part of the heat necessary for vaporization is obtained and at the same time chlorine in the gas obtained in the drying step. It is possible to reduce the cooling load due to the external refrigerant necessary for liquefaction.
[0015]
The circulation step in the present invention is a step of supplying a part or all of the gas mainly composed of unreacted oxygen obtained in the purification step to the reaction step. In the present invention, it is preferable to have a circulation step in addition to the reaction step, the absorption step, the drying step and the purification step. When sulfuric acid mist is contained in the gas supplied to the reaction step, it is preferable to remove the sulfuric acid mist. As a method for removing the sulfuric acid mist, a known method (Japanese Patent Laid-Open No. 6-171907) can be mentioned.
[0016]
The detoxification step in the present invention refers to a gas containing unreacted oxygen obtained as a main component in the purification step, or a gas not supplied to the reaction step in the circulation step after removing chlorine contained in the gas, It is a process of discharging outside. In this invention, it is preferable to have a detoxification process in addition to a reaction process, an absorption process, a drying process, and a purification process, or a reaction process, an absorption process, a drying process, a purification process, and a circulation process. As a method for removing chlorine, an alkali metal hydroxide aqueous solution, an alkali metal thiosulfate aqueous solution, an aqueous solution in which alkali metal sulfite and alkali metal carbonate are dissolved, or an alkali metal hydroxide is used. A method of detoxification by contacting with an aqueous solution in which an alkali metal sulfite is dissolved, and a known method of separating and recovering chlorine in a gas (Japanese Patent Laid-Open Nos. 3-262514, 10-25102, Hei 11) -50054).
[0017]
【The invention's effect】
As described above, according to the present invention, there is provided a chlorine production method in which hydrogen chloride-containing gas is used as a raw material, and hydrogen chloride in the raw material is oxidized using a gas containing oxygen, and piping due to volatilization or scattering of catalyst components. In order to produce chlorine at an equilibrium and advantageous temperature by using a highly active catalyst without any clogging troubles such as, it is possible to recover unreacted hydrogen chloride and water. It was possible to simplify the process, the process of separating chlorine and unreacted oxygen and the process of supplying unreacted oxygen to the oxidation reaction, thereby providing a particularly excellent chlorine production method from the viewpoint of equipment cost and operation cost.

Claims (5)

塩化水素を含むガスを酸素を含むガスを用いて酸化する塩素の製造方法であって、下記の工程を有する塩素の製造方法。
反応工程:ルテニウム及び/又はルテニウム化合物を含む触媒の存在下、塩化水素を含むガスを酸素で酸化し、塩素、水、未反応塩化水素及び未反応酸素を主成分とするガスを得る工程
吸収工程:反応工程で得た塩素、水、未反応塩化水素及び未反応酸素を主成分とするガスを、水及び/又は塩酸水と接触させることにより、及び/又は、冷却することにより、塩化水素と水を主成分とする溶液を回収し、塩素と未反応酸素を主成分とするガスを得る工程
乾燥工程:吸収工程で得たガス中の水分を除去することにより、乾燥したガスを得る工程
精製工程:乾燥工程で得た乾燥したガスを、圧縮及び/又は冷却して塩素を主成分とする液体と未反応酸素を主成分とするガスとに分離することにより塩素を得る工程
A method for producing chlorine in which a gas containing hydrogen chloride is oxidized using a gas containing oxygen, the method comprising the following steps.
Reaction step: A step of oxidizing a gas containing hydrogen chloride with oxygen in the presence of a catalyst containing ruthenium and / or a ruthenium compound to obtain a gas mainly composed of chlorine, water, unreacted hydrogen chloride and unreacted oxygen Absorption step : Hydrogen chloride obtained by bringing the gas mainly composed of chlorine, water, unreacted hydrogen chloride and unreacted oxygen obtained in the reaction step into contact with water and / or hydrochloric acid and / or cooling. A process of collecting a solution containing water as a main component and obtaining a gas containing chlorine and unreacted oxygen as a main component. Drying process: A process of obtaining a dry gas by removing moisture in the gas obtained in the absorption process. Step: Step of obtaining chlorine by compressing and / or cooling the dried gas obtained in the drying step into a liquid containing chlorine as a main component and a gas containing unreacted oxygen as a main component.
請求項1記載の各工程に加え、更に下記の循環工程を有する請求項1記載の塩素の製造方法。
循環工程:精製工程で得た未反応酸素を主成分とするガスの一部又は全部を反応工程へ供給する工程
The method for producing chlorine according to claim 1, further comprising the following circulation step in addition to each step according to claim 1.
Circulation step: A step of supplying a part or all of the gas mainly composed of unreacted oxygen obtained in the purification step to the reaction step.
ルテニウム及び/又はルテニウム化合物を含む触媒が、酸化ルテニウムを含む触媒である請求項1記載の塩素の製造方法。  The method for producing chlorine according to claim 1, wherein the catalyst containing ruthenium and / or a ruthenium compound is a catalyst containing ruthenium oxide. 酸化ルテニウムを含む触媒が0.1〜20重量%の酸化ルテニウムを含む触媒である請求項記載の塩素の製造方法。The method for producing chlorine according to claim 3, wherein the catalyst containing ruthenium oxide is a catalyst containing 0.1 to 20% by weight of ruthenium oxide. 塩化水素を含むガス中に含まれる塩化水素1モルに対して、0.25モル以上の酸素を用いて、固定床気相流通方式で、反応温度200〜500℃で塩化水素の酸化を行う請求項1記載の塩素の製造方法。  Claims in which hydrogen chloride is oxidized at a reaction temperature of 200 to 500 ° C. in a fixed bed gas phase flow system using 0.25 mol or more of oxygen with respect to 1 mol of hydrogen chloride contained in a gas containing hydrogen chloride. Item 2. A method for producing chlorine according to Item 1.
JP26852299A 1999-01-22 1999-09-22 Chlorine production method Expired - Lifetime JP4192354B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26852299A JP4192354B2 (en) 1999-01-22 1999-09-22 Chlorine production method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-14236 1999-01-22
JP1423699 1999-01-22
JP26852299A JP4192354B2 (en) 1999-01-22 1999-09-22 Chlorine production method

Publications (2)

Publication Number Publication Date
JP2000272906A JP2000272906A (en) 2000-10-03
JP4192354B2 true JP4192354B2 (en) 2008-12-10

Family

ID=26350139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26852299A Expired - Lifetime JP4192354B2 (en) 1999-01-22 1999-09-22 Chlorine production method

Country Status (1)

Country Link
JP (1) JP4192354B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003002453A1 (en) * 2001-06-28 2003-01-09 Sumitomo Chemical Company, Limited Method of chlorine purification and process for producing 1,2-dichloroethane
DE10242400A1 (en) 2002-09-12 2004-03-18 Basf Ag Production of chlorine by fixed bed catalytic gas-phase oxidation of hydrogen chloride, comprises removing a recycle stream from the product gas and recycling it to the reaction zone
JP4507510B2 (en) * 2003-05-21 2010-07-21 三菱化学株式会社 High purity hydrogen chloride and method for producing the same
DE10336522A1 (en) * 2003-08-08 2005-02-24 Basf Ag Process for the production of chlorine
JP4553674B2 (en) * 2004-10-15 2010-09-29 住友化学株式会社 How to remove chlorine gas
CN101838223B (en) 2005-03-10 2013-04-03 三井化学株式会社 Process for production of polyisocyanate and equipment for production thereof
US7718145B2 (en) 2005-04-05 2010-05-18 Mitsui Chemicals, Inc. Polyisocyanate production system and gas treatment apparatus
ES2350799T3 (en) * 2006-01-27 2011-01-27 Basf Se PROCEDURE FOR OBTAINING HYDROCARBON FREE CHLORIDE (CHLORINE), AND HYDROCARBON FREE (CHLORINE) FREE OF PHOSGEN, FROM A HYDROGEN CHLORIDE FLOW (HYDROCARBON).
JP2006219369A (en) * 2006-02-21 2006-08-24 Sumitomo Chemical Co Ltd Manufacturing process of chlorine
JP2009196825A (en) * 2008-02-19 2009-09-03 Sumitomo Chemical Co Ltd Method for manufacturing chlorine
JP2009195773A (en) * 2008-02-19 2009-09-03 Sumitomo Chemical Co Ltd Chemical apparatus

Also Published As

Publication number Publication date
JP2000272906A (en) 2000-10-03

Similar Documents

Publication Publication Date Title
CA1260228A (en) Production process of chlorine
JP5177360B2 (en) Method for producing hydrogen chloride and method for producing chlorine
JP4192354B2 (en) Chlorine production method
JP4785515B2 (en) Chlorine production method
JPH075283B2 (en) Chlorine dioxide production method
JP2005289800A (en) Method of producing chlorine
JP2006137669A (en) Method for producing phosgene
JP2012046363A (en) Method of producing hydrogen chloride and method of producing chlorine
US5154911A (en) Efficient method for the chemical production of chlorine and the separation of hydrogen chloride from complex mixtures
JP2006219369A (en) Manufacturing process of chlorine
JP3606051B2 (en) Chlorine production method
JPH053405B2 (en)
JP4081591B2 (en) Chlorine production method
US8168154B2 (en) Start-up method for producing chlorine
US20100303710A1 (en) Process for producing chlorine
EP0500728B1 (en) Efficient production of chlorine from hydrogen chloride
JP5315578B2 (en) Chlorine production method
JP2005306715A (en) Method for manufacturing chlorine
JP5183047B2 (en) Chlorine production method, chlorine production apparatus and heat exchanger
JP2005306712A (en) Method for manufacturing chlorine and hydrochloric acid
JP4854193B2 (en) Method for producing phosgene
JP2003001048A (en) Method of drying wet gas, method of removing sulfuric acid mist, and method of producing chlorine using these methods
JP4999406B2 (en) Chlorine production method
JP2009196826A (en) Method for manufacturing chlorine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070424

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20080125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080610

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

R151 Written notification of patent or utility model registration

Ref document number: 4192354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

EXPY Cancellation because of completion of term