JP4192337B2 - refrigerator - Google Patents

refrigerator Download PDF

Info

Publication number
JP4192337B2
JP4192337B2 JP14438199A JP14438199A JP4192337B2 JP 4192337 B2 JP4192337 B2 JP 4192337B2 JP 14438199 A JP14438199 A JP 14438199A JP 14438199 A JP14438199 A JP 14438199A JP 4192337 B2 JP4192337 B2 JP 4192337B2
Authority
JP
Japan
Prior art keywords
oxygen concentration
chilled
room
chamber
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14438199A
Other languages
Japanese (ja)
Other versions
JP2000337758A (en
Inventor
由紀 永井
利枝 平岡
恵司 大矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP14438199A priority Critical patent/JP4192337B2/en
Publication of JP2000337758A publication Critical patent/JP2000337758A/en
Application granted granted Critical
Publication of JP4192337B2 publication Critical patent/JP4192337B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/043Treating air flowing to refrigeration compartments by creating a vacuum in a storage compartment

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a refrigerator having a chilled chamber or a refrigerating chamber for storing frozen food for a long term. SOLUTION: Air in a housing 16 for forming a chilled chamber 8 is exhausted from an air exhaust hole 17 out of a refrigerator body through a first exhaust tube 18 and a second exhaust tube 19 by driving a vacuum pump 4 based on the output of an oxygen sensor 26. Thus, a suitable oxygen concentration such as, for example, 2.5% is held in the chamber 8.

Description

【0001】
【発明の属する技術分野】
この発明は、低酸素濃度の雰囲気に保たれたチルド室や冷凍室を具備する冷蔵庫に関するものである。
【0002】
【従来の技術】
図7は、例えば特開平9−4962号公報に開示された従来の冷蔵庫に備えられる真空装置の斜視図である。図7において、1は真空室本体、2は真空室本体1の側面に形成される排気孔、3は排気孔2に固着される排気管、4は排気管3の片側先端部に接続される真空ポンプ、5は真空室本体1の側方開口部に配設される開閉扉である。なお、その本体1は例えば冷凍室内に収納され、常に冷気と接触して低温状態に維持される。
【0003】
次に、こうした構成を有する真空装置の動作について、図7を併用して説明する。図7において、真空ポンプ4が駆動することにより真空室本体1内の空気が排気管3を通じて外部へ排出される。そして、真空室本体1内はほぼ真空状態即ち無酸素状態の雰囲気に近づくので、その本体1内に収納保存される冷凍食品は酸素と殆ど接触することがない。これにより、長期間において冷凍食品である例えば魚の油脂成分の酸化反応即ち油脂成分が過酸化物へと変化する現象を抑制し、その食品の酸化状態による変色を防止している。
【0004】
【発明が解決しようとする課題】
従来の真空装置は真空室本体内の酸素濃度を零%付近まで低下するように構成しているため、冷凍食品の油脂成分の酸化反応を抑えることができる。しかし、反面真空室本体内はほぼ無酸素状態(酸素濃度0.5%以下の推測値)の雰囲気に保たれるために、その本体内に収納保存される冷凍食品例えば新鮮な赤身の魚(刺身)や肉類の赤紫色の色素成分であるミオグロビンは、短時間で鮮度劣化特有の茶色の色素成分であるメトミオグロビンへと変化する。このように、冷凍食品の色素が赤紫色から茶色に変化する反応状態をメト化反応と表現する。こうしたメト化反応が起きた場合、冷凍食品はその反応特有の変色を起こして味が低下するなどの鮮度の低下が見られ、食品鮮度を十分に維持することが困難であるという問題点があった。
【0005】
また、真空室本体内の酸素濃度を零%付近まで減衰させるために、真空ポンプは空気の排出能力の高いものを選定する必要がある。これにより、真空ポンプ自身が大型化して真空装置のサイズは大きくなる。したがって、冷蔵庫本体内に形成する冷蔵室や冷凍室の有効スペースが小さくなるという問題点があった。
【0006】
この発明は、前述の問題点を解決するためになされたもので冷凍食品の酸化状態を防ぐと共に、メト化反応による変色を抑制して食品鮮度を長期間にわたって維持することができるチルド室あるいは冷凍室を設けた冷蔵庫を得ることを目的とする。
【0007】
【課題を解決するための手段】
この発明に係る冷蔵庫は、冷蔵庫本体内にチルド室と冷凍室と冷蔵室を具備した冷蔵庫において、前記チルド室内あるいは冷凍室内の酸素濃度を低減する低減手段と、これら室内の酸素濃度を検出する検出手段と、この検出手段の検出量に基づいて前記低減手段の動作を停止する停止手段とを含む酸素濃度制御装置を備え、前記チルド室あるいは冷凍室内に食品を出し入れするための開閉扉と、前記チルド室あるいは冷凍室内に外部空気を流入させる空気導入孔とを設け、前記酸素濃度制御装置は、前記チルド室あるいは冷凍室の開閉扉が閉まっている状態で前記低減手段が動作し、前記停止手段により前記低減手段が停止しているときに、前記開閉扉を開ける際には前記空気導入孔から外部空気を流入するようにしたものである。
また、開閉扉が閉まっている状態では、前記空気導入孔を閉じる弁を設けたものである。
【0008】
また、停止手段は検出手段から酸素濃度2.5%乃至5.0%相当の検出量が出力したときに低減手段の動作を停止するようにしたものである。
【0009】
また、低減手段は冷蔵庫本体に電動ポンプを設け、この電動ポンプのポンピング作用でチルド室内あるいは冷凍室内を減圧させ室内の酸素濃度を低減するようにしたものである。
【0010】
また、低減手段は電動ポンプにより酸素透過膜を介してチルド室内あるいは冷凍室内の酸素のみを排出するようにしたものである。
【0011】
【発明の実施の形態】
実施の形態1.
図1は、この発明による低酸素チルド室を備えた冷蔵庫の実施の形態を示す縦断面図である。また、図2は低酸素チルド室の縦断面図、図3は低酸素チルド室内の酸素濃度を制御する酸素濃度制御装置の回路図である。図1において、従来例と同一の符号は同一または相当部分を示す。5は冷蔵庫本体、6は冷蔵庫本体5内の上方に形成する冷蔵室、7は冷蔵室6の側方開口部に配設する冷蔵室用開閉扉、8は冷蔵室6の下方に形成する低酸素チルド室、9は低酸素チルド室8の側方開口部に配設する低酸素チルド室用開閉扉、10は低酸素チルド室8の下方に形成する野菜室、11は野菜室10の側方開口部に配設する野菜室用開閉扉、12は野菜室10の下方に形成する冷凍室、13は冷凍室12の側方開口部に配設する冷凍室用開閉扉である。14は冷蔵庫本体5の内壁部と野菜室10との間に設けられる冷却器、15は冷却器14の上方近傍に配置される送風ファンである。
【0012】
こうした構成を有する冷蔵庫本体5内において、送風ファン15から送り出された空気が風路(図1中のA部)を通じて冷却器14を通過し、この後に冷気となって各室に形成される通気孔(図示なし)を介してそれぞれの室内側に流れていく。こうした冷気の流通経路により、低酸素チルド室8内は例えば0℃程度に保たれることになる。
【0013】
また、図2において16は低酸素チルド室8を形成する筐体、17は筐体16の上面に形成される空気排出孔であって、その排出孔17には第1の排出管18が固着される。そして、第1の排出管18の片側先端部には真空ポンプ4のIN側が接続され、そのOUT側に第2の排出管19が接続される。また、20は筐体16の上面に形成される空気導入孔であって、その導入孔20には第1の導入管21が固着される。そして、第1の導入管21の片側先端部には電磁弁22のOUT側が接続され、そのIN側に第2の導入管23が接続される。24は低酸素チルド室用開閉扉9の内側と筐体16との間に設けられる真空ポンプ用駆動スイッチ、25はその開閉扉9の前面に設けられる電磁弁用駆動スイッチである。26は低酸素チルド室8内に設置される酸素濃度を検知する酸素センサ、27はそのチルド室8を形成する筐体16を囲むように構成された仕切り部材であり、この仕切り部材27と筐体16との間を冷気が通過する。
【0014】
次に、低酸素チルド室8内の酸素濃度を制御する酸素濃度制御装置の動作について、図2と図3とを併用して説明する。図2及び図3において、開閉扉9が閉まっている状態では真空ポンプ用駆動スイッチ24がONとなる。これにより、真空ポンプ4は駆動してそのチルド室8内の空気は空気排出孔17から第1の排出管18を通って、さらに第1の排出管18から第2の排出管19を通じて冷蔵庫本体5の外部に排出される。このために、チルド室8内は負圧状態となる。そして、チルド室8内に設置された酸素センサ26の出力が大気中の酸素濃度21%からその濃度よりも低い所定の酸素濃度相当に至った場合、駆動制御部28(図2中において、図示なし)から真空ポンプ4の駆動を停止させるOFF信号が出力される。ちなみに、チルド8室内の気圧は100kpaから12kpaへと減衰していく。この動作過程では、電磁弁22がOFF状態即ち弁は閉状態であるので外部空気が空気導入孔20を通じてチルド室8内に流入することはない。これによって、チルド室8内の酸素濃度は低濃度に維持することになる。
【0015】
次に、開閉扉9を開けてそのチルド室8内から冷凍食品を取り出す際には、開閉扉9の前面に設けられた電磁弁駆動用スイッチ25を予め所定時間だけONにする。これにより、電磁弁22が開状態となるので外部空気が第1の導入管21から第2の導入管23を通じて空気導入孔20より流入される。したがって、チルド室8内の気圧は徐々に高くなって大気圧レベルに近づくために、開閉扉9を容易に開けることが可能となる。次に、開閉扉9を閉めた場合には真空ポンプ用駆動スイッチ24がONとなって、チルド室8内の酸素濃度が再び減衰することになる。これ以降の動作内容は前述と同様であるので説明を省略する。
【0016】
次に、冷凍食品である例えば魚(マグロの刺身)の鮮度指標となるメト化の反応速度と酸素濃度との関係について、図4に示す実験結果を併用して簡単に説明する。図4において、酸素濃度が2.5%乃至21%の領域においてメト化反応の速度が1.3hr-1、0.5%時点では2.2hr-1、0%時点では1.3hr-1をそれぞれ示している。こうした実験結果より、酸素濃度が0.5%時点ではメト化反応の速度が最も大きい、即ち鮮度低下に至るまでの経過時間は非常に短いことが分かる。したがって、メト化反応の速度を遅くするためには、酸素濃度を例えば2.5%乃至21%の範囲内の何れかの値に設定することが適切である。
【0017】
また、酸素濃度を変化した場合の例えば魚(マグロの刺身)の色に対する目視評価結果について作成した表1を下記に示す。表1において、保存条件0℃×48hr,−7℃×48hrの双方において、酸素濃度が2.5%乃至10%の領域では大気中の酸素濃度21%の保存状態と比べて色に差が殆どないことが分かる。なお、保存温度0℃はチルド室8の設定温度であり、−7℃はチルド室8よりも低目に設定してある冷凍室の設定温度をそれぞれ考慮したものである。
【0018】
【表1】

Figure 0004192337
【0019】
また、冷凍食品の脂質酸化の割合と酸素濃度との関係について、図5に示す実験結果を併用して簡単に説明する。なお、保存条件は0℃×48hrである。図5において、酸素濃度が高まるに応じてその食品の脂質酸化の割合即ち油脂成分が酸化して過酸化物へと変化していく割合が増大する現象を示すことが分かる。ここで、冷凍食品の種類によって特性パターンの形態が異なっており、例えば表面が凹凸状態であって酸素との接触面積が比較的大きい食品あるいは油脂成分の絶対量が多い食品は図5中のAパターン、一方表面が平坦状であって酸素との接触面積が比較的小さいあるいは油脂成分の絶対量が少ない食品は図5中のBパターンをそれぞれ示すことが分かる。この結果より、長期間保存において冷凍食品の脂質酸化の割合を小さくするためには周囲の酸素濃度を例えば5.0%以下という具合に、低目に設定させる必要がある。
【0020】
前述の図4と図5の結果より、冷凍食品の鮮度の指標要因であるメト化反応の速度を遅くする適正な酸素濃度領域(酸素濃度:2.5%乃至21%)と、脂質酸化の割合を小さくする適正な酸素濃度領域(酸素濃度:5%以下)とを複合化して、双方の要因を満足する酸素濃度の最適範囲を抽出した場合、その濃度は2.5%乃至5.0%であることが推測される。したがって、酸素濃度制御装置で低酸素チルド室8内の酸素濃度を2.5%乃至5.0%に保つことによって長期間にわたり食品鮮度の向上を維持させることができる。
【0021】
実施の形態2.
図6は、この発明の冷蔵庫に備えた低酸素チルド室の他の実施の形態を示す縦断面図である。図6において、従来例あるいは実施の形態1と同一の符号は同一または相当部分を示す。29は空気排出孔17に形成する空気中の酸素のみを選択的に通過させる機能をもつ酸素透過膜であって、例えばシリコン、ポリエーテルサルホンなどが挙げられる。
【0022】
こうした構成を有する低酸素チルド室8について、図6を用いて説明する。図6において、低酸素チルド室用開閉扉9が閉まっている状態では真空ポンプ用駆動スイッチ24がONとなる。これにより、真空ポンプ4は駆動してそのチルド室8内の空気中に含まれる酸素のみが空気排出孔17に形成する酸素透過膜29を通過していく。このとき、チルド室8内の窒素は酸素透過膜29を通過でき難く、その室内に存在したままの状態となる。そして、その膜を通過した酸素は第1の排出管18から第2の排出管19を通じて冷蔵庫本体5の外部に排出される。
【0023】
次に、そのチルド室8内に設置された酸素センサ26の出力が大気中の酸素濃度21%からその濃度よりも低い所定の酸素濃度相当に至った場合、駆動制御部28から真空ポンプ4の駆動を停止させるOFF信号が出力される。なお、この動作過程では実施の形態1と同様に電磁弁21が閉状態であるので、外部空気が空気導入孔20を通じてチルド室8内に流入することはない。このような酸素透過膜29を用いてチルド室8内の空気中に含まれる酸素のみを選択的に排出し、かつ窒素は排出させないように工夫を盛り込んだ動作手段を備えたことにより、チルド室8内の負圧を小さくして例えば酸素濃度を2.5%乃至5.0%に維持させることができる。この時点で、チルド室8内の気圧は100kpaから82kpaへと変化し、その減衰率は比較的小さいことが分かる。なお、チルド室用開閉扉9を開ける際の動作手順や動作内容は実施の形態1と同様であるので、ここでは説明を省略する。
【0024】
以上のように、前述の酸素透過膜29を用いて低酸素チルド室8内の負圧を小さくして、酸素濃度を適正レベルまで低減することができる。これにより、そのチルド室8内の容積を大きくして冷凍食品を多く収納した場合に、空気の排出能力の小さい真空ポンプ4即ち小型化のものを使用して短時間の駆動で酸素濃度を低減することができる。したがって、冷蔵庫本体1内において真空ポンプ4を設置するスペースをできる限り狭くしてチルド室8の有効容積を拡大すると共に、長時間にわたって冷凍食品の鮮度を維持することができる。さらに、真空ポンプ4を小型化できるので駆動装置のコスト低減化が図れる。
【0025】
また、実施の形態1および実施の形態2で述べたように酸素センサ26の出力に基づいて低酸素チルド室8内の酸素濃度を所定値となるように真空ポンプ4の駆動を制御する他に、そのチルド室8内の容積と真空ポンプ4の排出能力とからチルド室8内の酸素濃度が所定値となるように真空ポンプ4の駆動時間を算出し、この算出値を駆動制御部28に予め設定させるようにしても良い。
【0026】
また、前述の酸素濃度制御装置を0℃の温度に設定されるチルド室8に設ける他に、例えば−5℃乃至−20℃の範囲内の何れかの温度に設定される冷凍室に設け、その室内に収納される冷凍食品の鮮度を長期間にわたって維持するように工夫しても良い。
【0027】
【発明の効果】
この発明は、以上説明したように構成されているので、以下に記載されるような効果を奏する。
【0028】
この発明に係る冷蔵庫は、冷蔵庫本体内にチルド室と冷凍室と冷蔵室を具備した冷蔵庫において、前記チルド室内あるいは冷凍室内の酸素濃度を低減する低減手段と、これら室内の酸素濃度を検出する検出手段と、この検出手段の検出量に基づいて前記低減手段の動作を停止する停止手段とを含む酸素濃度制御装置を備え、前記チルド室あるいは冷凍室内に食品を出し入れするための開閉扉と、前記チルド室あるいは冷凍室内に外部空気を流入させる空気導入孔とを設け、前記酸素濃度制御装置は、前記チルド室あるいは冷凍室の開閉扉が閉まっている状態で前記低減手段が動作し、前記停止手段により前記低減手段が停止しているときに、前記開閉扉を開ける際には前記空気導入孔から外部空気を流入するようにしたので、長時間にわたって食品鮮度を維持することができ、かつ冷凍食品を取り出す際には開閉扉を容易に開けることが可能となる。
また、開閉扉が閉まっている状態では、空気導入孔を閉じる弁を設けたので、冷凍食品を取り出す際には開閉扉を容易に開けることを可能としつつ、長時間にわたって食品鮮度を維持することができきる。
【0029】
また、停止手段は検出手段から酸素濃度2.5%乃至5.0%相当の検出量が出力したときに低減手段の動作を停止するようにしたので、チルド室内あるいは冷凍室内の酸素濃度を適正範囲に保たせることができる。これにより、冷凍食品の酸素濃度に対する脂質酸化の割合を小さくすると共に、メト化反応の速度をできる限り遅くするように工夫して長期間にわたって食品鮮度を維持することができる。
【0030】
また、低減手段は冷蔵庫本体内に電動ポンプを設け、この電動ポンプのポンピング作用でチルド室内あるいは冷凍室内を減圧させ室内の酸素濃度を低減するようにしたので、短時間でこれら室内の酸素濃度を低減して冷凍食品の鮮度を長時間にわたって維持することができる。
【0031】
また、低減手段は電動ポンプにより酸素透過膜を介してチルド室内あるいは冷凍室内の酸素のみを排出するようにしたので、空気の排出能力の小さい小型の真空ポンプによってその室内の酸素濃度を短時間で低減して冷凍食品の鮮度を維持することができる。これにより、冷蔵庫本体内において真空ポンプの収納スペースを小さくしてチルド室あるいは冷凍室の有効容積を拡大することができる。
【図面の簡単な説明】
【図1】 実施の形態1における低酸素チルド室を備えた冷蔵庫の縦断面図である。
【図2】 実施の形態1における低酸素チルド室の縦断面図である。
【図3】 実施の形態1における酸素濃度制御装置の回路図である。
【図4】 冷凍食品の酸素濃度とメト化反応の速度との関係を表す特性図である。
【図5】 冷凍食品の酸素濃度と脂質酸化の割合との関係を表す特性図である。
【図6】 実施の形態2における低酸素チルド室の縦断面図である。
【図7】 従来の冷蔵庫に備えられた真空冷凍室の縦断面図である。
【符号の説明】
1 真空室本体、2 排出孔、3 排気管、4 真空ポンプ、5 開閉蓋、6冷蔵室、7 冷蔵室用開閉扉、8 低酸素チルド室、9 低酸素チルド室用開閉扉、10 野菜室、11 野菜室用開閉扉、12 冷凍室、13 冷凍室用開閉扉、14 冷却器、15 送風ファン、16 筐体、17 空気排出孔、18第1の排出管、19 第2の排出管、20 空気導入孔、21 第1の導入管、22 電磁弁、23 第2の導入管、24 真空ポンプ用駆動スイッチ、25電磁弁用駆動スイッチ、26 酸素センサ、27 仕切り部材、28 駆動制御部、29 酸素透過膜。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigerator having a chilled room or a freezing room maintained in a low oxygen concentration atmosphere.
[0002]
[Prior art]
FIG. 7 is a perspective view of a vacuum device provided in a conventional refrigerator disclosed in, for example, Japanese Patent Application Laid-Open No. 9-4962. In FIG. 7, 1 is a vacuum chamber body, 2 is an exhaust hole formed in the side surface of the vacuum chamber body 1, 3 is an exhaust pipe fixed to the exhaust hole 2, and 4 is connected to one end of the exhaust pipe 3. A vacuum pump 5 is an open / close door disposed in a side opening of the vacuum chamber body 1. The main body 1 is stored in, for example, a freezer compartment, and is always kept in a low temperature state by contacting cold air.
[0003]
Next, the operation of the vacuum apparatus having such a configuration will be described with reference to FIG. In FIG. 7, when the vacuum pump 4 is driven, the air in the vacuum chamber body 1 is discharged to the outside through the exhaust pipe 3. And since the inside of the vacuum chamber main body 1 approaches the atmosphere of a substantially vacuum state, ie, an oxygen-free state, the frozen food stored and preserve | saved in the main body 1 hardly contacts oxygen. This suppresses the oxidation reaction of, for example, fish oil and fat components that are frozen foods over a long period of time, that is, the phenomenon that the oil and fat components change to peroxide, and prevents discoloration due to the oxidation state of the food.
[0004]
[Problems to be solved by the invention]
Since the conventional vacuum apparatus is configured to reduce the oxygen concentration in the vacuum chamber main body to near zero, the oxidation reaction of the fat and oil component of the frozen food can be suppressed. However, since the inside of the vacuum chamber main body is maintained in an almost oxygen-free atmosphere (estimated value of oxygen concentration of 0.5% or less), the frozen food stored in the main body, for example, fresh red fish ( Myoglobin, which is a reddish purple pigment component of sashimi and meat, changes to metmyoglobin, a brown pigment component peculiar to freshness degradation in a short time. In this way, the reaction state in which the pigment of frozen food changes from reddish purple to brown is expressed as a methation reaction. When such a metrification reaction occurs, the frozen foods have a color change peculiar to the reaction and a decrease in freshness such as a decrease in taste, and it is difficult to maintain the food freshness sufficiently. It was.
[0005]
Further, in order to attenuate the oxygen concentration in the vacuum chamber main body to near 0%, it is necessary to select a vacuum pump having a high air discharge capability. This increases the size of the vacuum pump itself and increases the size of the vacuum device. Therefore, there is a problem that the effective space of the refrigerator compartment or the freezer compartment formed in the refrigerator main body is reduced.
[0006]
The present invention has been made to solve the above-described problems, and is a chilled room or a frozen room that can prevent the oxidation state of frozen foods and suppress the discoloration due to the methation reaction to maintain the freshness of foods over a long period of time. It aims at obtaining the refrigerator which provided the room.
[0007]
[Means for Solving the Problems]
The refrigerator according to the present invention is a refrigerator having a chilled room, a freezing room, and a refrigerated room in the refrigerator body, and a reducing means for reducing the oxygen concentration in the chilled room or the freezing room, and detection for detecting the oxygen concentration in these rooms. Means and a stop means for stopping the operation of the reduction means based on the detection amount of the detection means, and an open / close door for taking food into and out of the chilled room or the freezing room, An air introduction hole for allowing external air to flow into the chilled chamber or the freezing chamber, and the oxygen concentration control device operates such that the reducing means operates when the open / close door of the chilled chamber or the freezing chamber is closed, and the stopping means Thus, when the reducing means is stopped, external air is introduced from the air introduction hole when the opening / closing door is opened.
Further, when the open / close door is closed, a valve for closing the air introduction hole is provided .
[0008]
The stop means stops the operation of the reduction means when a detection amount corresponding to an oxygen concentration of 2.5% to 5.0% is output from the detection means.
[0009]
The reduction means is provided with an electric pump in the refrigerator main body, and the oxygen concentration in the room is reduced by reducing the pressure in the chilled room or the freezing room by the pumping action of the electric pump.
[0010]
Further, the reduction means discharges only oxygen in the chilled room or the freezing room through an oxygen permeable membrane by an electric pump.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view showing an embodiment of a refrigerator provided with a low oxygen chilled chamber according to the present invention. 2 is a longitudinal sectional view of the low oxygen chilled chamber, and FIG. 3 is a circuit diagram of an oxygen concentration control device for controlling the oxygen concentration in the low oxygen chilled chamber. In FIG. 1, the same reference numerals as in the conventional example indicate the same or corresponding parts. 5 is a refrigerator body, 6 is a refrigeration room formed above the refrigerator body 5, 7 is a refrigeration room opening / closing door disposed in a side opening of the refrigeration room 6, and 8 is a low room formed below the refrigeration room 6. An oxygen chilled chamber, 9 is a low oxygen chilled chamber opening / closing door disposed at the side opening of the low oxygen chilled chamber 8, 10 is a vegetable chamber formed below the low oxygen chilled chamber 8, and 11 is a vegetable chamber 10 side. An open / close door for the vegetable compartment disposed in the side opening, 12 is a freezer compartment formed below the vegetable compartment 10, and 13 is an open / close door for the freezer compartment disposed in the side opening of the freezer compartment 12. Reference numeral 14 denotes a cooler provided between the inner wall of the refrigerator main body 5 and the vegetable compartment 10, and reference numeral 15 denotes a blower fan disposed near the upper portion of the cooler 14.
[0012]
In the refrigerator main body 5 having such a configuration, the air sent from the blower fan 15 passes through the cooler 14 through the air passage (A portion in FIG. 1), and then is formed into each chamber as cold air. It flows into each room side through pores (not shown). The inside of the low-oxygen chilled chamber 8 is maintained at, for example, about 0 ° C. by such a flow path of cold air.
[0013]
In FIG. 2, 16 is a housing that forms the low oxygen chilled chamber 8, and 17 is an air discharge hole formed in the upper surface of the housing 16. A first discharge pipe 18 is fixed to the discharge hole 17. Is done. The IN side of the vacuum pump 4 is connected to one end of the first discharge pipe 18, and the second discharge pipe 19 is connected to the OUT side. Reference numeral 20 denotes an air introduction hole formed in the upper surface of the housing 16, and a first introduction pipe 21 is fixed to the introduction hole 20. Then, the OUT side of the electromagnetic valve 22 is connected to one end portion of the first introduction pipe 21, and the second introduction pipe 23 is connected to the IN side. Reference numeral 24 denotes a vacuum pump drive switch provided between the inside of the low oxygen chilled chamber open / close door 9 and the housing 16, and 25 denotes an electromagnetic valve drive switch provided on the front face of the open / close door 9. 26 is an oxygen sensor for detecting the oxygen concentration installed in the low oxygen chilled chamber 8, and 27 is a partition member configured to surround the casing 16 forming the chilled chamber 8. Cold air passes between the body 16.
[0014]
Next, the operation of the oxygen concentration control apparatus for controlling the oxygen concentration in the low oxygen chilled chamber 8 will be described with reference to FIGS. 2 and 3, when the open / close door 9 is closed, the vacuum pump drive switch 24 is turned on. As a result, the vacuum pump 4 is driven, and the air in the chilled chamber 8 passes through the first discharge pipe 18 from the air discharge hole 17, and further passes through the first discharge pipe 18 and the second discharge pipe 19. 5 is discharged to the outside. For this reason, the inside of the chilled chamber 8 is in a negative pressure state. When the output of the oxygen sensor 26 installed in the chilled chamber 8 reaches a predetermined oxygen concentration lower than the oxygen concentration in the atmosphere from 21%, the drive control unit 28 (shown in FIG. 2). None) outputs an OFF signal for stopping the driving of the vacuum pump 4. By the way, the atmospheric pressure in the chilled 8 chamber attenuates from 100 kpa to 12 kpa. In this operation process, the electromagnetic valve 22 is in an OFF state, that is, the valve is closed, so that external air does not flow into the chilled chamber 8 through the air introduction hole 20. As a result, the oxygen concentration in the chilled chamber 8 is maintained at a low concentration.
[0015]
Next, when the open / close door 9 is opened and the frozen food is taken out from the chilled chamber 8, the electromagnetic valve drive switch 25 provided on the front surface of the open / close door 9 is turned ON for a predetermined time in advance. As a result, the electromagnetic valve 22 is opened, so that external air flows from the first introduction pipe 21 through the second introduction pipe 23 through the air introduction hole 20. Therefore, since the atmospheric pressure in the chilled chamber 8 gradually increases and approaches the atmospheric pressure level, the open / close door 9 can be easily opened. Next, when the open / close door 9 is closed, the vacuum pump drive switch 24 is turned ON, and the oxygen concentration in the chilled chamber 8 is attenuated again. Since the subsequent operation is the same as described above, the description thereof is omitted.
[0016]
Next, the relationship between the methation reaction rate, which is a freshness index of a frozen food such as fish (tuna sashimi), and the oxygen concentration will be briefly described with reference to the experimental results shown in FIG. 4, the rate of oxygen concentration of 2.5% to methemoglobin response in 21% of the area is 1.3hr -1, 2.2hr -1 at 0.5 percent point, 1.3Hr -1 at 0% point Respectively. From these experimental results, it can be seen that when the oxygen concentration is 0.5%, the speed of the metation reaction is the highest, that is, the elapsed time until the freshness is lowered is very short. Therefore, in order to slow down the rate of the metholysis reaction, it is appropriate to set the oxygen concentration to any value within a range of, for example, 2.5% to 21%.
[0017]
Moreover, Table 1 prepared for the visual evaluation result for the color of, for example, fish (tuna sashimi) when the oxygen concentration is changed is shown below. In Table 1, in both storage conditions of 0 ° C. × 48 hr and −7 ° C. × 48 hr, there is a difference in color in the region where the oxygen concentration is 2.5% to 10% compared to the storage state where the oxygen concentration is 21% in the atmosphere. It turns out that there is almost no. The storage temperature 0 ° C. is a set temperature of the chilled chamber 8, and −7 ° C. is a set temperature of the freezer compartment set lower than the chilled chamber 8.
[0018]
[Table 1]
Figure 0004192337
[0019]
Further, the relationship between the rate of lipid oxidation and the oxygen concentration in frozen food will be briefly described with the experimental results shown in FIG. The storage condition is 0 ° C. × 48 hr. In FIG. 5, it can be seen that as the oxygen concentration increases, the rate of lipid oxidation of the food, that is, the rate at which the fat and oil component is oxidized to change to peroxide increases. Here, the form of the characteristic pattern varies depending on the type of frozen food. For example, a food having a rough surface and a relatively large contact area with oxygen or a food having a large absolute amount of oil and fat components is shown in FIG. It can be seen that foods having a pattern, on the other hand, having a flat surface and a relatively small contact area with oxygen or a small absolute amount of fat and oil components show the B pattern in FIG. From this result, in order to reduce the rate of lipid oxidation of frozen food during long-term storage, it is necessary to set the ambient oxygen concentration to a low level, for example, 5.0% or less.
[0020]
From the results of FIG. 4 and FIG. 5 described above, an appropriate oxygen concentration region (oxygen concentration: 2.5% to 21%) that slows down the rate of the methation reaction, which is an index factor of the freshness of frozen foods, and lipid oxidation When an appropriate oxygen concentration region (oxygen concentration: 5% or less) for reducing the ratio is combined and an optimum range of oxygen concentration satisfying both factors is extracted, the concentration is 2.5% to 5.0%. % Is estimated. Therefore, by maintaining the oxygen concentration in the low oxygen chilled chamber 8 at 2.5% to 5.0% with the oxygen concentration control device, the food freshness can be improved over a long period of time.
[0021]
Embodiment 2. FIG.
FIG. 6 is a longitudinal sectional view showing another embodiment of the low oxygen chilled chamber provided in the refrigerator of the present invention. In FIG. 6, the same reference numerals as those in the conventional example or the first embodiment indicate the same or corresponding parts. Reference numeral 29 denotes an oxygen permeable film formed in the air discharge hole 17 and having a function of selectively allowing only oxygen in the air to pass therethrough. Examples thereof include silicon and polyethersulfone.
[0022]
The low oxygen chilled chamber 8 having such a configuration will be described with reference to FIG. In FIG. 6, when the open / close door 9 for the low oxygen chilled chamber is closed, the vacuum pump drive switch 24 is turned on. As a result, the vacuum pump 4 is driven and only oxygen contained in the air in the chilled chamber 8 passes through the oxygen permeable film 29 formed in the air discharge hole 17. At this time, the nitrogen in the chilled chamber 8 is difficult to pass through the oxygen permeable film 29 and remains in the chamber. The oxygen that has passed through the membrane is discharged from the first discharge pipe 18 to the outside of the refrigerator body 5 through the second discharge pipe 19.
[0023]
Next, when the output of the oxygen sensor 26 installed in the chilled chamber 8 reaches a predetermined oxygen concentration lower than the concentration of oxygen in the atmosphere from 21%, the drive controller 28 controls the vacuum pump 4. An OFF signal for stopping driving is output. In this operation process, the solenoid valve 21 is in a closed state as in the first embodiment, so that external air does not flow into the chilled chamber 8 through the air introduction hole 20. By using such an oxygen permeable membrane 29, an operation means incorporating a device for selectively discharging only oxygen contained in the air in the chilled chamber 8 and not discharging nitrogen is provided. For example, the oxygen concentration can be maintained at 2.5% to 5.0% by reducing the negative pressure within the pressure 8. At this time, the atmospheric pressure in the chilled chamber 8 changes from 100 kpa to 82 kpa, and it can be seen that the attenuation rate is relatively small. In addition, since the operation | movement procedure and operation | movement content at the time of opening the opening / closing door 9 for chilled rooms are the same as that of Embodiment 1, description is abbreviate | omitted here.
[0024]
As described above, it is possible to reduce the negative pressure in the low oxygen chilled chamber 8 using the oxygen permeable film 29 described above, and to reduce the oxygen concentration to an appropriate level. As a result, when a large amount of frozen food is stored by increasing the volume in the chilled chamber 8, the oxygen concentration can be reduced in a short time by using a vacuum pump 4 having a small air discharge capacity, that is, a downsized pump. can do. Therefore, the space for installing the vacuum pump 4 in the refrigerator main body 1 can be made as narrow as possible to increase the effective volume of the chilled chamber 8, and the freshness of the frozen food can be maintained for a long time. Furthermore, since the vacuum pump 4 can be reduced in size, the cost of the driving device can be reduced.
[0025]
In addition to controlling the driving of the vacuum pump 4 so that the oxygen concentration in the low oxygen chilled chamber 8 becomes a predetermined value based on the output of the oxygen sensor 26 as described in the first and second embodiments. The drive time of the vacuum pump 4 is calculated from the volume in the chilled chamber 8 and the discharge capacity of the vacuum pump 4 so that the oxygen concentration in the chilled chamber 8 becomes a predetermined value, and this calculated value is sent to the drive control unit 28. It may be set in advance.
[0026]
In addition to providing the oxygen concentration control device described above in the chilled chamber 8 set to a temperature of 0 ° C., for example, it is provided in a freezing chamber set to any temperature in the range of −5 ° C. to −20 ° C. You may devise so that the freshness of the frozen food stored in the room may be maintained over a long period of time.
[0027]
【The invention's effect】
Since the present invention is configured as described above, the following effects can be obtained.
[0028]
The refrigerator according to the present invention is a refrigerator having a chilled room, a freezing room, and a refrigerated room in the refrigerator body, and a reducing means for reducing the oxygen concentration in the chilled room or the freezing room, and detection for detecting the oxygen concentration in these rooms. Means and a stop means for stopping the operation of the reduction means based on the detection amount of the detection means, and an open / close door for taking food into and out of the chilled room or the freezing room, An air introduction hole for allowing external air to flow into the chilled chamber or the freezing chamber, and the oxygen concentration control device operates such that the reducing means operates when the open / close door of the chilled chamber or the freezing chamber is closed, and the stopping means wherein when the reduction means is stopped, since when opening the door was in so that to flow into the outside air from the air inlet holes by, over a long time Ki out to maintain food freshness, and when taking out the frozen foods it is possible to open easily door.
In addition, when the door is closed, a valve that closes the air introduction hole is provided, so that it is possible to easily open the door when taking out frozen food, and to maintain food freshness for a long time. I can do it.
[0029]
The stopping means stops the operation of the reducing means when a detection amount equivalent to 2.5% to 5.0% of oxygen concentration is output from the detecting means, so that the oxygen concentration in the chilled room or the freezing room is set appropriately. Can be kept in range. Thereby, while reducing the ratio of lipid oxidation with respect to the oxygen concentration of frozen food, it is possible to maintain the food freshness over a long period by devising the rate of methation reaction as slow as possible.
[0030]
Moreover, the reduction means is provided with an electric pump in the refrigerator body, and the pumping action of this electric pump reduces the oxygen concentration in the chilled room or the freezing room to reduce the oxygen concentration in the room. The freshness of the frozen food can be maintained over a long period of time.
[0031]
In addition, since the reduction means discharges only the oxygen in the chilled room or the freezing room through the oxygen permeable membrane by the electric pump, the oxygen concentration in the room can be reduced in a short time by a small vacuum pump having a small air discharge capacity. It can be reduced to maintain the freshness of the frozen food. Thereby, the storage space of the vacuum pump can be reduced in the refrigerator main body, and the effective volume of the chilled chamber or the freezing chamber can be expanded.
[Brief description of the drawings]
1 is a longitudinal sectional view of a refrigerator provided with a low oxygen chilled chamber according to Embodiment 1. FIG.
FIG. 2 is a longitudinal sectional view of a low oxygen chilled chamber in the first embodiment.
FIG. 3 is a circuit diagram of the oxygen concentration control apparatus in the first embodiment.
FIG. 4 is a characteristic diagram showing the relationship between the oxygen concentration of a frozen food and the rate of the methation reaction.
FIG. 5 is a characteristic diagram showing the relationship between the oxygen concentration of a frozen food and the rate of lipid oxidation.
6 is a longitudinal sectional view of a low oxygen chilled chamber according to Embodiment 2. FIG.
FIG. 7 is a longitudinal sectional view of a vacuum freezer compartment provided in a conventional refrigerator.
[Explanation of symbols]
1 vacuum chamber body, 2 discharge hole, 3 exhaust pipe, 4 vacuum pump, 5 open / close lid, 6 refrigerator compartment, 7 refrigerator compartment door, 8 low oxygen chilled chamber, 9 low oxygen chilled compartment door, 10 vegetable compartment 11 Opening door for vegetable room, 12 Freezing room, 13 Opening / closing door for freezing room, 14 Cooler, 15 Blower fan, 16 Housing, 17 Air discharge hole, 18 First discharge pipe, 19 Second discharge pipe, 20 air introduction hole, 21 first introduction pipe, 22 solenoid valve, 23 second introduction pipe, 24 vacuum pump drive switch, 25 solenoid valve drive switch, 26 oxygen sensor, 27 partition member, 28 drive control unit, 29 Oxygen permeable membrane.

Claims (5)

冷蔵庫本体内にチルド室と冷凍室と冷蔵室を具備した冷蔵庫において、前記チルド室内あるいは冷凍室内の酸素濃度を低減する低減手段と、これら室内の酸素濃度を検出する検出手段と、この検出手段の検出量に基づいて前記低減手段の動作を停止する停止手段とを含む酸素濃度制御装置を備え、前記チルド室あるいは冷凍室内に食品を出し入れするための開閉扉と、前記チルド室あるいは冷凍室内に外部空気を流入させる空気導入孔とを設け、前記酸素濃度制御装置は、前記チルド室あるいは冷凍室の開閉扉が閉まっている状態で前記低減手段が動作し、前記停止手段により前記低減手段が停止しているときに、前記開閉扉を開ける際には前記空気導入孔から外部空気を流入するようにしたことを特徴とする冷蔵庫。In a refrigerator having a chilled room, a freezing room, and a refrigerated room in the refrigerator body, a reducing means for reducing the oxygen concentration in the chilled room or the freezing room, a detecting means for detecting the oxygen concentration in these rooms, An oxygen concentration control device including stop means for stopping the operation of the reduction means based on the detected amount, an open / close door for putting food in and out of the chilled chamber or freezer, and an external device in the chilled chamber or freezer An air introduction hole through which air is introduced; in the oxygen concentration control device, the reducing means operates in a state where the open / close door of the chilled chamber or the freezing chamber is closed, and the reducing means is stopped by the stopping means. When the open / close door is opened, external air flows in from the air introduction hole . 前記開閉扉が閉まっている状態では、前記空気導入孔を閉じる弁を設けたことを特徴とする請求項1記載の冷蔵庫。The refrigerator according to claim 1 , further comprising a valve that closes the air introduction hole when the door is closed . 記停止手段は検出手段から酸素濃度2.5%乃至5.0%相当の検出量が出力したときに前記低減手段の動作を停止するようにしたことを特徴とする請求項1または請求項2記載の冷蔵庫。Previous Symbol stop means according to claim 1 or claims, characterized in that the so that to stop the operation of the reducing means when the detected amount of the oxygen concentration of 2.5% to 5.0% equivalent is output from the detecting means Item 3. The refrigerator according to Item 2. 前記低減手段は冷蔵庫本体に電動ポンプを設け、この電動ポンプのポンピング作用で前記チルド室内あるいは冷凍室内を減圧させ室内の酸素濃度を低減するようにしたことを特徴とする請求項1〜請求項3いずれか記載の冷蔵庫。Said reducing means an electric pump provided in the refrigerator main body, claims 1, characterized in that the said chilled compartment or freezer room so that to reduce the oxygen concentration in the chamber to reduce the pressure in the pumping action of the electric pump 3 either serial mounting refrigerator. 前記低減手段は電動ポンプにより酸素透過膜を介してチルド室内あるいは冷凍室内の酸素のみを排出するようにしたことを特徴とする請求項4記載の冷蔵庫。5. The refrigerator according to claim 4, wherein the reducing means discharges only oxygen in the chilled room or the freezing room through an oxygen permeable membrane by an electric pump.
JP14438199A 1999-05-25 1999-05-25 refrigerator Expired - Fee Related JP4192337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14438199A JP4192337B2 (en) 1999-05-25 1999-05-25 refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14438199A JP4192337B2 (en) 1999-05-25 1999-05-25 refrigerator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008035961A Division JP2008134054A (en) 2008-02-18 2008-02-18 Refrigerator

Publications (2)

Publication Number Publication Date
JP2000337758A JP2000337758A (en) 2000-12-08
JP4192337B2 true JP4192337B2 (en) 2008-12-10

Family

ID=15360816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14438199A Expired - Fee Related JP4192337B2 (en) 1999-05-25 1999-05-25 refrigerator

Country Status (1)

Country Link
JP (1) JP4192337B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017219694A1 (en) * 2016-06-20 2017-12-28 青岛海尔股份有限公司 Refrigeration and freezing device

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4821565B2 (en) * 2006-11-01 2011-11-24 パナソニック株式会社 refrigerator
JP5629648B2 (en) 2011-06-20 2014-11-26 日立アプライアンス株式会社 refrigerator
CN103090612A (en) * 2012-10-24 2013-05-08 徐东明 Fresh-keeping refrigerator
CN103090614A (en) * 2012-10-24 2013-05-08 徐东明 Method for preserving foods through refrigerator
CN106016950B (en) * 2016-05-26 2018-08-10 青岛海尔股份有限公司 The nitrogen control method processed and device of refrigerator
CN106052291B (en) * 2016-05-26 2019-01-18 青岛海尔股份有限公司 Refrigerating equipment and its control method
CN106091532B (en) * 2016-05-31 2019-01-18 青岛海尔股份有限公司 Nitrogen control method and refrigerating equipment processed for refrigerating equipment
CN106091519A (en) * 2016-05-31 2016-11-09 青岛海尔股份有限公司 Refrigerator
CN109140865A (en) * 2018-07-11 2019-01-04 珠海格力电器股份有限公司 Refrigerator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61168770A (en) * 1985-01-21 1986-07-30 三菱電機株式会社 Refrigerator
JPH0391680A (en) * 1989-08-31 1991-04-17 Sanyo Electric Co Ltd Ice box
JPH04346774A (en) * 1991-05-27 1992-12-02 Hitachi Ltd Storage apparatus for regulating atmosphere
JPH0658A (en) * 1992-06-19 1994-01-11 Matsushita Refrig Co Ltd Food presentation apparatus
JPH06194023A (en) * 1992-12-28 1994-07-15 Matsushita Refrig Co Ltd Refrigerator
JPH094962A (en) * 1995-06-21 1997-01-10 Hideo Masuda Refrigerator with deep freezer using vacuum deep freezing chamber and vacuum cold storage chamber
JPH10103849A (en) * 1996-09-26 1998-04-24 Sharp Corp Refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017219694A1 (en) * 2016-06-20 2017-12-28 青岛海尔股份有限公司 Refrigeration and freezing device
US10890369B2 (en) 2016-06-20 2021-01-12 Qingdao Haier Joint Stock Co., Ltd. Refrigerating and freezing device

Also Published As

Publication number Publication date
JP2000337758A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
JP2008134054A (en) Refrigerator
US6090422A (en) Refrigerator with automatic vacuum compartment and method of preserving fresh food items using the same
JP4192337B2 (en) refrigerator
CN106766515B (en) Air conditioning control method for refrigeration and freezing equipment and refrigeration and freezing equipment
JP5572599B2 (en) refrigerator
WO2018103727A1 (en) Refrigerating and freezing device and control method therefor
JP2006308265A (en) Refrigerator
JP5548758B2 (en) refrigerator
JP2004218924A (en) Refrigerator
JPH0618152A (en) Refrigerator
KR20010082996A (en) Component Type Kimchi Storage Apparatus
JP2004036917A (en) Refrigerator
JP2014025602A (en) Refrigerator
JP2005030648A (en) Refrigerator
CN111707038B (en) Refrigerating and freezing device and control method thereof
JPH06194023A (en) Refrigerator
JP2008082595A (en) Refrigerator and low temperature/reduced pressure preserving method
KR100379439B1 (en) Controlling device of Vacuum refrigerator
KR100379483B1 (en) Vacuum refrigerator
JPH10103849A (en) Refrigerator
KR20020043851A (en) Quick-cooling-device of Vacuum refrigerator
KR100379441B1 (en) Controlling device of Vacuum refrigerator
KR101192694B1 (en) Apparatus for removing air of refrigerator
KR100379484B1 (en) Vacuum refrigerator
JP2001280817A (en) Refrigerator

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040624

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080908

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees