JP4192249B2 - Method for producing ferritic oxide dispersion strengthened steel with coarse grain structure and excellent high temperature creep strength - Google Patents

Method for producing ferritic oxide dispersion strengthened steel with coarse grain structure and excellent high temperature creep strength Download PDF

Info

Publication number
JP4192249B2
JP4192249B2 JP2005360303A JP2005360303A JP4192249B2 JP 4192249 B2 JP4192249 B2 JP 4192249B2 JP 2005360303 A JP2005360303 A JP 2005360303A JP 2005360303 A JP2005360303 A JP 2005360303A JP 4192249 B2 JP4192249 B2 JP 4192249B2
Authority
JP
Japan
Prior art keywords
steel
amount
heat treatment
oxide dispersion
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005360303A
Other languages
Japanese (ja)
Other versions
JP2006176878A (en
Inventor
智史 大塚
重治 鵜飼
威二 皆藤
優行 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Research Institute Inc
Original Assignee
Kobelco Research Institute Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Research Institute Inc filed Critical Kobelco Research Institute Inc
Priority to JP2005360303A priority Critical patent/JP4192249B2/en
Publication of JP2006176878A publication Critical patent/JP2006176878A/en
Application granted granted Critical
Publication of JP4192249B2 publication Critical patent/JP4192249B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、高温クリープ強度に優れたフェライト系酸化物分散強化型鋼の製造方法に関し、さらに詳しくは、鋼中の過剰酸素量を調整して粗大結晶粒組織をもたらすことにより、優れた高温クリープ強度を付与することができるフェライト系酸化物分散強化型鋼の製造方法に関するものである。   The present invention relates to a method for producing a ferritic oxide dispersion-strengthened steel having excellent high-temperature creep strength, and more specifically, by adjusting the amount of excess oxygen in the steel to produce a coarse grain structure, excellent high-temperature creep strength. The present invention relates to a method for producing a ferritic oxide dispersion strengthened steel.

本発明のフェライト系酸化物分散強化型鋼は、特に高温での強度が求められる高速増殖炉燃料被覆管用材料、核融合炉第一壁材料、火力発電用材料等に好ましく利用できる。   The ferritic oxide dispersion-strengthened steel of the present invention can be preferably used for a fast breeder reactor fuel cladding tube material, a fusion reactor first wall material, a thermal power generation material, and the like that are particularly required to have strength at high temperatures.

優れた高温強度と耐中性子照射特性が要求される原子炉、特に高速炉の構成部材には、従来よりオーステナイト系ステンレス鋼が用いられてきたが、耐スエリング特性などの耐照射特性に限界がある。一方、フェライト系ステンレス鋼は耐照射特性に優れるものの、高温強度が低い欠点がある。   Austenitic stainless steel has been used for reactors that require excellent high-temperature strength and neutron resistance, especially fast reactors, but there are limits to anti-swelling properties such as swelling resistance. . On the other hand, although ferritic stainless steel is excellent in irradiation resistance, it has a defect of low high-temperature strength.

そこで、耐照射特性と高温強度特性に優れた材料として、フェライト系鋼中に微細な酸化物粒子を分散させたフェライト系酸化物分散強化型鋼が提案されている。またこのフェライト系酸化物分散強化型鋼の強度を向上させるためには、鋼中にTiを添加して酸化物分散粒子をさらに微細分散化させることが有効であることも知られている。   Therefore, as a material excellent in irradiation resistance and high-temperature strength characteristics, ferritic oxide dispersion strengthened steel in which fine oxide particles are dispersed in ferritic steel has been proposed. In order to improve the strength of this ferritic oxide dispersion strengthened steel, it is also known that it is effective to further finely disperse oxide dispersed particles by adding Ti to the steel.

特に、フェライト系酸化物分散強化型鋼の高温クリープ強度の改善には、粒界すべりを抑制するため結晶粒の大粒径化および等軸晶化を図ることが有効である。かような粗大結晶粒組織を得る方法として、Ac3変態点以上に加熱保持する熱処理により十分なα→γ変態量を確保してα相からγ相へ相変態させることによりオーステナイト化し、その後に、γ相からα相へ相変態させてフェライト組織が得られるように十分遅い速度、すなわちフェライト形成臨界速度以下で徐冷する方法が提案されている(例えば特許文献1参照)。 In particular, in order to improve the high-temperature creep strength of ferritic oxide dispersion strengthened steel, it is effective to increase the grain size and equiaxed crystals in order to suppress intergranular slip. As a method for obtaining such a coarse crystal grain structure, a sufficient amount of α → γ transformation is ensured by heat treatment that is heated and held above the Ac 3 transformation point, and austenite is obtained by phase transformation from the α phase to the γ phase. There has been proposed a method of slow cooling at a sufficiently low speed, that is, a ferrite formation critical speed or less so that a ferrite structure is obtained by phase transformation from the γ phase to the α phase (see, for example, Patent Document 1).

特開平11−343526号公報Japanese Patent Laid-Open No. 11-343526

しかしながら、フェライト系酸化物分散強化型鋼にTiを添加した場合には、Tiがマトリックス中のCと結合して炭化物を形成する結果、マトリックス中のC濃度が低下し、焼ならし熱処理時に十分なα→γ変態量が確保できないという問題がある。   However, when Ti is added to ferritic oxide dispersion strengthened steel, Ti combines with C in the matrix to form carbides, resulting in a decrease in the C concentration in the matrix, which is sufficient during normalizing heat treatment. There is a problem that the amount of α → γ transformation cannot be secured.

すなわち、上述したように、粗大結晶粒組織を得るためのフェライト系酸化物分散強化型鋼の熱処理は、Ac3変態点以上に加熱保持する熱処理を施すことによってγ相とした後、フェライト形成臨界速度以下で徐冷するものであるが、Tiはマトリックス中のγ相生成元素であるCと親和力が強いため、TiとCとが結合して炭化物を形成し、その結果マトリックス中のC濃度が低下すると、Ac3変態点以上で熱処理してもγ相の単相とならず、未変態のα相が残留する。そのため、γ相からフェライト形成臨界速度以下、例えば100℃/時間以下で徐冷しても残留α相の存在によりγ相から変態したα相は細粒組織となってしまう。かような細粒組織は、高温強度の改善には寄与しない。 That is, as described above, the heat treatment of the ferritic oxide dispersion strengthened steel to obtain a coarse grain structure is made into a γ phase by performing a heat treatment that is held above the Ac 3 transformation point, and then the ferrite formation critical rate Although it is gradually cooled below, Ti has a strong affinity with C, which is a γ-phase-forming element in the matrix, so Ti and C combine to form a carbide, resulting in a decrease in the C concentration in the matrix. Then, even if heat treatment is performed at the Ac 3 transformation point or higher, a single phase of γ phase is not formed, and an untransformed α phase remains. For this reason, the α phase transformed from the γ phase becomes a fine-grained structure due to the presence of the residual α phase even if it is slowly cooled from the γ phase at a ferrite formation critical speed or less, for example, 100 ° C./hour or less. Such a fine grain structure does not contribute to the improvement of the high temperature strength.

そこで本発明は、フェライト系酸化物分散強化型鋼にTiを添加した場合でも、TiとCとの結合を抑制してマトリックス中のC濃度を維持し熱処理時に十分なα→γ変態を確保することにより、高温クリープ強度の改善に有効な粗大化した結晶粒組織を有するフェライト系酸化物分散強化型鋼を製造できる方法を提供することを目的とする。   Therefore, even when Ti is added to ferritic oxide dispersion strengthened steel, the present invention suppresses the bond between Ti and C, maintains the C concentration in the matrix, and ensures sufficient α → γ transformation during heat treatment. Thus, an object of the present invention is to provide a method capable of producing a ferritic oxide dispersion strengthened steel having a coarsened grain structure effective for improving high-temperature creep strength.

すなわち本発明は、元素粉末または合金粉末とY23粉末を混合して機械的合金化処理を行ない、熱間押出しにより固化した後、最終熱処理としてAc3変態点以上への加熱保持とそれに続くフェライト形成臨界速度以下での徐冷熱処理を施すことにより、Cが0.05〜0.25%、Crが8.0〜12.0%、Wが0.1〜4.0%、Tiが0.1〜1.0%、Y23が0.1〜0.5%、残部がFeおよび不可避不純物からなるY23粒子を分散させたフェライト系酸化物分散強化型鋼を製造する方法であって、鋼中の過剰酸素量(鋼中の酸素量からY23中の酸素量を差し引いた値)が
0.67Ti−2.7C+0.45>Ex.O>0.67Ti−2.7C+0.35
(式中、Ex.O:鋼中の過剰酸素量、質量%
Ti:鋼中のTi含有量、質量%
C:鋼中のC含有量、質量%)
となるように機械的合金化処理に際して混合する原料粉末としてFe23粉末を追加的に添加することを特徴とする粗大結晶粒組織を有する高温クリープ強度に優れたフェライト系酸化物分散強化型鋼の製造方法である。(なお、以下の本明細書中の記載において「%」はいずれも「重量%」を表すものとする。)
That is, in the present invention, elemental powder or alloy powder and Y 2 O 3 powder are mixed and mechanically alloyed, solidified by hot extrusion, and then heated to the Ac 3 transformation point or higher as the final heat treatment. Subsequent annealing heat treatment at a critical speed of ferrite formation or less causes C to be 0.05 to 0.25%, Cr is 8.0 to 12.0%, W is 0.1 to 4.0%, Ti Of ferrite-based oxide dispersion strengthened steel in which Y 2 O 3 particles consisting of 0.1 to 1.0% of Y 2 O 3 , 0.1 to 0.5% of Y 2 O 3 and the balance of Fe and inevitable impurities are dispersed The amount of excess oxygen in the steel (the value obtained by subtracting the amount of oxygen in Y 2 O 3 from the amount of oxygen in steel) is 0.67Ti-2.7C + 0.45>Ex.O> 0.67Ti -2.7C + 0.35
(In the formula, Ex.O: excess oxygen in steel, mass%
Ti: Ti content in steel, mass%
C: C content in steel, mass%)
Ferritic oxide dispersion strengthened steel having a coarse grain structure and excellent in high-temperature creep strength, characterized in that Fe 2 O 3 powder is additionally added as a raw material powder to be mixed during mechanical alloying treatment It is a manufacturing method. (In the following description of the present specification, “%” means “% by weight”.)

上述したごとき本発明によれば、原料粉末として不安定酸化物であるFe23粉末を追加的に添加して鋼中の過剰酸素量を所定の範囲とすることにより、TiはCと結合して炭化物を形成せずに、過剰酸素と結合して酸化物を形成するため、マトリックス中のC濃度を低下させることがない。この結果、Ac3変態点以上での熱処理時に十分なα→γ変態が生じてγ単相とすることができ、さらにそれに続くフェライト形成臨界速度以下で徐冷する熱処理を行うことにより粗大化結晶粒組織を有するα相を形成することができ、高温クリープ強度の向上をもたらすことができる。 According to the present invention as described above, Ti is bonded to C by adding Fe 2 O 3 powder, which is an unstable oxide, as a raw material powder so that the amount of excess oxygen in the steel is within a predetermined range. In this way, the oxide is formed by combining with excess oxygen without forming carbides, so that the C concentration in the matrix is not lowered. As a result, a sufficient α → γ transformation occurs during the heat treatment at the Ac 3 transformation point or higher, so that a γ single phase can be obtained. An α phase having a grain structure can be formed, and high temperature creep strength can be improved.

以下に本発明のフェライト系酸化物分散強化型鋼の化学成分およびその限定理由について説明する。   The chemical components of the ferritic oxide dispersion strengthened steel of the present invention and the reasons for limitation will be described below.

Crは、耐食性の確保に重要な元素であり、8.0%未満となると耐食性の悪化が著しくなる。また12.0%を超えると、靱性および延性の低下が懸念される。この理由から、Cr含有量は8.0〜12.0%とする。   Cr is an important element for ensuring corrosion resistance. When the content is less than 8.0%, the corrosion resistance is remarkably deteriorated. Moreover, when it exceeds 12.0%, there exists a concern about a fall of toughness and ductility. For this reason, the Cr content is set to 8.0 to 12.0%.

Cの含有量は以下の理由から決定される。本発明は、一旦Ac3変態点以上の熱処理を施すことによるα→γ変態とそれに続く徐冷熱処理により、等軸かつ粗大な結晶粒組織を得るものである。すなわち、等方的かつ粗大な結晶粒組織を得るためには、熱処理によりα→γ変態を生じさせることが不可欠である。
Cr含有量が8.0〜12.0%の場合に、α→γ変態を生じさせるためには、Cを0.05%以上含有させる必要がある。このα→γ変態は1000〜1150℃×0.5〜1時間の熱処理により生じる。C含有量が高くなるほど炭化物(M236、M6C等)の析出量が多くなり高温強度が高くなるが、0.25%より多量に含有すると加工性が悪くなる。この理由から、C含有量は0.05〜0.25%とする。
The C content is determined for the following reason. In the present invention, an equiaxed and coarse crystal grain structure is obtained by the α → γ transformation once subjected to the heat treatment at the Ac 3 transformation point or higher and the subsequent annealing treatment. That is, in order to obtain an isotropic and coarse crystal grain structure, it is essential to cause the α → γ transformation by heat treatment.
In order to cause the α → γ transformation when the Cr content is 8.0 to 12.0%, it is necessary to contain 0.05% or more of C. This α → γ transformation is caused by heat treatment at 1000 to 1150 ° C. for 0.5 to 1 hour. The higher the C content, the greater the amount of carbides (M 23 C 6 , M 6 C, etc.) precipitated and the higher the high-temperature strength. However, when the content is higher than 0.25%, the workability deteriorates. For this reason, the C content is set to 0.05 to 0.25%.

Wは、合金中に固溶し高温強度を向上させる重要な元素であり、0.1%以上添加する。W含有量を多くすれば、固溶強化作用、炭化物(M236、M6C等)析出強化作用、金属間化合物析出強化作用により、クリープ破断強度が向上するが、4.0%を超えるとδフェライト量が多くなり、かえって強度も低下する。この理由から、W含有量は0.1〜4.0%とする。 W is an important element that improves the high-temperature strength by dissolving in the alloy, and is added in an amount of 0.1% or more. Increasing the W content improves the creep rupture strength by solid solution strengthening action, carbide (M 23 C 6 , M 6 C, etc.) precipitation strengthening action, and intermetallic compound precipitation strengthening action, but 4.0% If it exceeds, the amount of δ ferrite increases, and the strength also decreases. For this reason, the W content is 0.1 to 4.0%.

Tiは、Y23の分散強化に重要な役割を果たし、Y23と反応してY2Ti27またはY2TiO5 という複合酸化物を形成して、酸化物粒子を微細化させる働きがある。この作用はTi含有量が1.0%を超えると飽和する傾向があり、0.1%未満では微細化作用が小さい。この理由から、Ti含有量は0.1〜1.0%とする。 Ti is, Y 2 O play an important role in the dispersion strengthening of the 3, it reacts with Y 2 O 3 to form a Y 2 Ti 2 O 7 or the composite oxide of Y 2 TiO 5, the oxide particles fine There is a function to make it. This effect tends to saturate when the Ti content exceeds 1.0%, and if it is less than 0.1%, the refining effect is small. For this reason, the Ti content is set to 0.1 to 1.0%.

23は、分散強化により高温強度を向上させる重要な添加物である。この含有量が0.1%未満の場合には、分散強化の効果が小さく強度が低い。一方、0.5%を超えて含有すると、硬化が著しく加工性に問題が生じる。この理由から、Y23の含有量は0.1〜0.5%とする。 Y 2 O 3 is an important additive that improves high temperature strength by dispersion strengthening. When this content is less than 0.1%, the dispersion strengthening effect is small and the strength is low. On the other hand, if the content exceeds 0.5%, the curing is remarkably caused and a problem occurs in workability. For this reason, the content of Y 2 O 3 is set to 0.1 to 0.5%.

本発明によるフェライト系酸化物分散強化型鋼の製造方法は、金属元素粉末または合金粉末さらには酸化物粉末といった原料粉末を目標組成となるように調合し、いわゆる機械的合金化処理(メカニカルアロイング)によって合金化する。この合金化粉末を押出用カプセルに充填した後、脱気、密封して熱間押出しを行って固化し、例えば押出棒材とする。   The method for producing ferritic oxide dispersion strengthened steel according to the present invention comprises preparing a raw material powder such as a metal element powder or an alloy powder and further an oxide powder so as to have a target composition, and so-called mechanical alloying treatment (mechanical alloying). Alloy by. After this alloyed powder is filled into an extrusion capsule, it is degassed and sealed, and hot extruded to solidify, for example, to obtain an extruded bar.

得られた熱間押出棒材は、最終熱処理として、Ac3変態点以上での加熱保持とそれに続くフェライト形成臨界速度以下での徐冷熱処理を施す。徐冷熱処理は通常は炉内で徐々に冷却する炉冷熱処理とすることができ、フェライト形成臨界速度以下の冷却速度は、一般的には100℃/時間以下、好ましくは50℃/時間以下とすることができる。
本発明のフェライト系酸化物分散強化型鋼の場合、Ac3変態点は約900〜1200℃程度であり、C量が0.13%の場合にはAc3変態点は約950℃である。
As a final heat treatment, the obtained hot-extrusion rod is subjected to heating and holding at the Ac 3 transformation point or higher and subsequent slow cooling heat treatment at a ferrite forming critical speed or lower. The slow cooling heat treatment can be a furnace cooling heat treatment that usually cools gradually in the furnace, and the cooling rate below the ferrite formation critical rate is generally 100 ° C./hour or less, preferably 50 ° C./hour or less. can do.
In the case of the ferritic oxide dispersion strengthened steel of the present invention, the Ac 3 transformation point is about 900 to 1200 ° C., and when the C content is 0.13%, the Ac 3 transformation point is about 950 ° C.

本発明においては、鋼中のTiがCと結合して炭化物を形成し、マトリックス中のC濃度が低下しないようにする手段として、機械的合金化処理に際して混合する原料粉末として、不安定酸化物であるFe23粉末を追加的に混合して鋼中の過剰酸素量を増加させる方法も採用することができる。この場合、TiはFe23由来の鋼中の過剰酸素と結合して酸化物を形成し、Cと結合して炭化物を形成することがないから、マトリックス中のC濃度の低下を抑制することができる。 In the present invention, as a means to prevent Ti in the steel from combining with C to form carbides and lowering the C concentration in the matrix, the unstable oxide is used as the raw material powder to be mixed in the mechanical alloying process. A method of increasing the amount of excess oxygen in the steel by additionally mixing the Fe 2 O 3 powder can be employed. In this case, Ti combines with excess oxygen in steel derived from Fe 2 O 3 to form an oxide, and does not combine with C to form a carbide, thereby suppressing a decrease in C concentration in the matrix. be able to.

Fe23粉末の混合量は、鋼中の過剰酸素量が
0.67Ti−2.7C+0.45>Ex.O>0.67Ti−2.7C+0.35
(式中、Ex.O:鋼中の過剰酸素量(%)
Ti:鋼中のTi含有量(%)
C:鋼中のC含有量(%)
となるようにする。かような過剰酸素量の上限および下限の設定理由を以下に説明する。
The mixing amount of the Fe 2 O 3 powder is such that the excess oxygen amount in the steel is 0.67Ti-2.7C + 0.45>Ex.O> 0.67Ti-2.7C + 0.35.
(In the formula, Ex.O: Excess oxygen in steel (%)
Ti: Ti content in steel (%)
C: C content in steel (%)
To be. The reason for setting the upper limit and the lower limit of such excess oxygen amount will be described below.

表1は、フェライト系酸化物分散強化型鋼試作材の目標組成と成分の特徴をまとめて示している。   Table 1 summarizes the target composition and component characteristics of the ferritic oxide dispersion strengthened steel prototype.

各試作材とも、元素粉末あるいは合金粉末と酸化物粉末を目標組成に調合し、高エネルギーアトライター中に装入後、99.99%のAr雰囲気中で撹拌して機械的合金化処理を行った。アトライターの回転数は約220rpm、撹拌時間は約48hrとした。得られた合金化粉末を軟鋼製カプセルに充填後、高温真空脱気して約1150〜1200℃、7〜8:1の押出比で熱間押出しを行い、熱間押出棒材を得た。   For each prototype, elemental powder or alloy powder and oxide powder are prepared to the target composition, and after charging into a high-energy attritor, stirring is performed in a 99.99% Ar atmosphere for mechanical alloying. It was. The rotation speed of the attritor was about 220 rpm, and the stirring time was about 48 hours. The obtained alloyed powder was filled into a mild steel capsule and then subjected to high temperature vacuum degassing and hot extrusion at an extrusion ratio of about 1150 to 1200 ° C. and 7 to 8: 1 to obtain a hot extruded bar.

表1中、試作材MM13とT14が基本組成であり、T3はT14の組成にFe23を添加することにより過剰酸素量を増加させた試料、T4はTi添加量を増加させた試料、T5はTi添加量を増加させるとともにFe23を添加して過剰酸素量を増加させた試料である。 In Table 1, prototype materials MM13 and T14 are basic compositions, T3 is a sample in which the amount of excess oxygen is increased by adding Fe 2 O 3 to the composition of T14, T4 is a sample in which the amount of Ti addition is increased, T5 is a sample in which the amount of excess oxygen is increased by increasing the amount of Ti added and adding Fe 2 O 3 .

上記で得られた各試作材(熱間押出棒材)の成分分析結果を表2にまとめて示す。
ここで、過剰酸素量とは、化学成分の分析結果における試作材中の酸素量から分散酸化物(Y23)中の酸素量を差し引いた値である。
Table 2 summarizes the component analysis results of each prototype material (hot extruded rod) obtained above.
Here, the excess oxygen amount is a value obtained by subtracting the oxygen amount in the dispersed oxide (Y 2 O 3 ) from the oxygen amount in the prototype material in the analysis result of the chemical component.

これらの試作材について、最終熱処理として、熱処理(Ac3変態点以上での加熱保持:1050℃×1hr)とそれに続く炉冷熱処理(フェライト形成臨界速度以下での徐冷熱処理:37℃/hrの速度で1050℃から600℃まで徐冷)を施した。 For these prototype materials, as the final heat treatment, heat treatment (heat retention above the Ac 3 transformation point: 1050 ° C. × 1 hr) and subsequent furnace cooling heat treatment (slow cooling heat treatment below the critical rate of ferrite formation: 37 ° C./hr) (Slow cooling from 1050 ° C. to 600 ° C.).

熱処理後の各試作材の金相組織の光学顕微鏡写真を図1(T14、MM13、T3、T4)と図2(T5)に示す。これらを観察してわかるように、炉冷熱処理により結晶粒が十分成長している試料と成長していない試料がある。結晶粒成長が生じているT3は、基本組成にFe23を添加した試料である。T3においては、鋼中のTiと化学結合する過剰酸素量が十分に存在するため、炭化物TiCの形成によるマトリックス中のC濃度の減少を抑えられる結果、熱処理時におけるα→γ変態、その後の炉冷熱処理での結晶粒成長が効果的に生じると考えられる。 An optical micrograph of the gold phase structure of each prototype after heat treatment is shown in FIG. 1 (T14, MM13, T3, T4) and FIG. 2 (T5). As can be seen from these observations, there are samples in which crystal grains are sufficiently grown by furnace cooling heat treatment and samples in which crystals are not grown. T3 where crystal grain growth occurs is a sample in which Fe 2 O 3 is added to the basic composition. In T3, since there is a sufficient amount of excess oxygen chemically bonded to Ti in the steel, the decrease in the C concentration in the matrix due to the formation of carbide TiC can be suppressed. As a result, the α → γ transformation during heat treatment, the subsequent furnace It is considered that crystal grain growth is effectively caused by the cold heat treatment.

一方、結晶粒成長の少ないT4とT5は、基本組成よりTi添加量を増量させた試料(T4)、およびFe23を添加しているがTi添加量も増量させた試料(T5)である。これらの試料においては、多量のTiがCと化学結合して炭化物を形成するためマトリックス中のC濃度が極度に減少してしまうか(T4)、あるいはFe23を添加しても多量のTiとCとの化学結合を阻止するほどに十分の過剰酸素量が存在していない(T5)と考えられる。 On the other hand, T4 and T5 with little crystal grain growth are the sample (T4) in which the Ti addition amount is increased from the basic composition and the sample (T5) in which Fe 2 O 3 is added but the Ti addition amount is also increased. is there. In these samples, a large amount of Ti chemically bonds with C to form carbides, so the C concentration in the matrix is extremely reduced (T4), or even if Fe 2 O 3 is added, a large amount It is considered that there is not a sufficient amount of excess oxygen to prevent chemical bonding between Ti and C (T5).

なお、MM13とT14はいずれも基本組成であり組成的には同等のものであるが、MM13(過剰酸素量:0.137%)は結晶粒が成長しており、T14(過剰酸素量:0.110%)は結晶粒成長が少なくなっている。この理由は、組成が同じであっても機械的合金化処理やその後の熱処理等の過程で、鋼中に混入する酸素量が微妙に相違し、MM13は鋼中のTiと化学結合するに十分な過剰酸素量が存在したたためと考えられる。   Note that MM13 and T14 are both basic compositions and equivalent in composition, but MM13 (excess oxygen amount: 0.137%) has crystal grains grown and T14 (excess oxygen amount: 0). .110%) has less crystal grain growth. The reason for this is that even if the composition is the same, the amount of oxygen mixed in the steel is slightly different in the process of mechanical alloying and subsequent heat treatment, and MM13 is sufficient to chemically bond with Ti in the steel. This is probably because there was a large excess of oxygen.

図3のグラフは、各試作材のTi含有量と過剰酸素量との関係を示している。このグラフから、Ex.O>0.61Ti[Ex.O:過剰酸素量(%)、Ti:鋼中のTi含有量(%)]の関係を満たしている試作材MM13、T3については、炉冷熱処理により結晶粒の粗大化が生じていることがわかる。   The graph of FIG. 3 shows the relationship between the Ti content and the excess oxygen amount of each prototype material. From this graph, Ex. O> 0.61Ti [Ex. In the prototype materials MM13 and T3 satisfying the relationship of O: excess oxygen amount (%), Ti: Ti content in steel (%)], the crystal grains are coarsened by the furnace cooling heat treatment. Recognize.

以上の結果はすべて鋼中の炭素量が約0.13%の場合の結果である。上記のEx.O>0.61Tiをモル量に単位換算すると
Ex.O′(mol/g)>1.86Ti′≒2Ti′(mol/g)
となり、鋼中のすべてのTiがTiO2を形成できるだけの過剰酸素量が存在した場合(マトリックス中の残存C量が0.13%以上の場合)には、結晶粒の粗大化が生じると考えられる。
The above results are all the results when the carbon content in the steel is about 0.13%. Ex. When O> 0.61Ti is converted into a molar amount, Ex. O ′ (mol / g)> 1.86 Ti′≈2 Ti ′ (mol / g)
Thus, when there is an excess amount of oxygen that allows all Ti in the steel to form TiO 2 (when the amount of residual C in the matrix is 0.13% or more), it is considered that crystal grains become coarse. It is done.

上述の結果から、本発明のフェライト系酸化物分散強化型鋼では、TiO2およびTiCの形成を考慮したマトリックス中の残存C量が0.13%(1.08×10-4mol/g)以上であれば、熱処理時に十分なα→γ変態が生じて炉冷熱処理により結晶粒の粗大化が生じると考えられる。TiO2およびTiCの形成を考慮したマトリックス中の残存C量(C′r mol/g)は次式のように表わされる。 From the above results, in the ferritic oxide dispersion strengthened steel of the present invention, the residual C content in the matrix considering the formation of TiO 2 and TiC is 0.13% (1.08 × 10 −4 mol / g) or more. If this is the case, it is considered that a sufficient α → γ transformation occurs during the heat treatment, and the crystal grains become coarse due to the furnace cooling heat treatment. The amount of residual C (C′r mol / g) in the matrix considering the formation of TiO 2 and TiC is expressed by the following equation.

C′r=C′−(Ti′−0.5Ex.O′)
ここで、C′r(mol/g):TiO2およびTiCの形成を考慮したマトリックス中の残存C量
C′(mol/g):鋼中のC含有量
Ti′(mol/g):鋼中のTi含有量
Ex.O′(mol/g):鋼中の過剰酸素量
である。
C'r = C '-(Ti'-0.5Ex.O')
Here, C′r (mol / g): the amount of residual C in the matrix considering the formation of TiO 2 and TiC
C ′ (mol / g): C content in steel
Ti ′ (mol / g): Ti content in steel
Ex. O ′ (mol / g): The amount of excess oxygen in the steel.

よって、結晶粒粗大化の条件式は下式となる。
C′r=C′−(Ti′−0.5Ex.O′)≧1.08×10-4
単位を mol/g から%に変換して整理すると上式は
Ex.O>0.67Ti−2.7C+0.35
となる。
Therefore, the conditional expression for crystal grain coarsening is as follows.
C′r = C ′ − (Ti′−0.5Ex.O ′) ≧ 1.08 × 10 −4
When the unit is converted from mol / g to% and rearranged, the above equation becomes Ex. O> 0.67Ti-2.7C + 0.35
It becomes.

過剰酸素は金属Ti、Y23と結合して微細な複合酸化物を形成するとともに、マトリックス中のCとTiの結合を抑制して、マトリックス中に十分なC量を確保する重要な元素である。しかし、0.67Ti−2.7C+0.45以上の過剰酸素は、分散粒子の微細高密度化を著しく阻害する。また、過剰な酸素の混入は靱性の著しい低下を引き起こすとともに、少量のSi、Mn等と介在物を形成しやすくなるため、過剰酸素量の上限値を0.67Ti−2.7C+0.45とする。 Excess oxygen combines with metals Ti and Y 2 O 3 to form fine composite oxides, and suppresses the binding of C and Ti in the matrix to ensure a sufficient amount of C in the matrix It is. However, excess oxygen of 0.67Ti-2.7C + 0.45 or more remarkably hinders the fine densification of the dispersed particles. In addition, excessive oxygen contamination causes a significant decrease in toughness and easily forms inclusions with a small amount of Si, Mn, etc., so the upper limit of the excess oxygen amount is 0.67Ti-2.7C + 0.45. .

図4のグラフは、上述した結晶粒粗大化の条件式の上限と下限の範囲を斜線部分で表し、各試作材の実測値をプロットしたものである。条件式はC量を0.13%として計算しているが、結晶粒が成長した試作材MM13、T3はすべて斜線範囲内に位置し、結晶粒が成長しなかった試作材T14、T5、T4はすべて斜線範囲外に位置しており、この条件式が妥当であることを示している。なお、図4のグラフ中で試作材番号が記されていないプロットについても、斜線範囲内に位置する試作材では結晶粒の粗大化が生じており、斜線範囲外に位置するものでは結晶粒の粗大化が生じていないことが確認されている。   The graph of FIG. 4 represents the range of the upper limit and the lower limit of the conditional expression for the grain coarsening described above with hatched portions, and plots the actual measurement values of each prototype material. Although the conditional expression is calculated with the C content being 0.13%, the prototype materials MM13 and T3 with crystal grains grown are all located within the hatched area, and the prototype materials T14, T5 and T4 with no crystal grains grown are used. Are all located outside the shaded area, indicating that this conditional expression is valid. In addition, in the plot in which the prototype material number is not described in the graph of FIG. 4, the crystal grains are coarsened in the prototype material located within the hatched range, and the crystal grains of the plot located outside the shaded range are generated. It has been confirmed that no coarsening has occurred.

以上詳述した理由により、本発明において、機械的合金化処理に際して混合する原料粉末としてFe23粉末を追加的に混合して鋼中の過剰酸素量を増加させ場合には、鋼中の過剰酸素量が結晶粗大化の条件式
0.67Ti−2.7C+0.45>Ex.O>0.67Ti−2.7C+0.35
となるようにFe23粉末を添加する。
For the reason detailed above, in the present invention, when the excess oxygen amount in the steel is increased by additionally mixing Fe 2 O 3 powder as a raw material powder to be mixed in the mechanical alloying treatment, Conditional expression for excessive oxygen content is crystal coarsening 0.67Ti-2.7C + 0.45>Ex.O> 0.67Ti-2.7C + 0.35
Fe 2 O 3 powder is added so that

試験例Test example

〈高温クリープ破断試験〉
試作材T3に対して、本発明による熱処理、すなわち、熱処理(Ac3変態点以上での加熱保持:1050℃×1hr)とそれに続く炉冷熱処理(フェライト形成臨界速度以下での徐冷熱処理:37℃/hrの速度で1050℃から600℃まで徐冷)を施して、結晶粒を粗大化させた試料(T3(FC材))を準備した。
<High temperature creep rupture test>
For the prototype T3, heat treatment according to the present invention, that is, heat treatment (heat retention above the Ac 3 transformation point: 1050 ° C. × 1 hr) and subsequent furnace cooling heat treatment (slow cooling heat treatment below the ferrite formation critical speed: 37) A sample (T3 (FC material)) in which the crystal grains were coarsened by slow cooling from 1050 ° C. to 600 ° C. at a rate of ° C./hr was prepared.

これとは別に、試作材T14、T3に対して、焼ならし熱処理(1050℃×1hr・空冷(AC))とそれに続く焼戻し熱処理(780℃×1hr・空冷(AC))を施して、結晶粒が微細となっている試料(T14(NT材)、T3(NT材))を準備した。   Separately, the samples T14 and T3 are subjected to normalizing heat treatment (1050 ° C. × 1 hr · air cooling (AC)) and subsequent tempering heat treatment (780 ° C. × 1 hr · air cooling (AC)) to produce crystals. Samples with fine grains (T14 (NT material), T3 (NT material)) were prepared.

これらの試料について、試験温度700℃で単軸クリープ破断試験を行った結果を図5のグラフに示す。Fe23粉末を追加的に混合して過剰酸素量を増加さ せるとともに、炉冷熱処理で結晶粒を粗大化させたT3(FC材)が、その他の試作材に比べて高温クリープ強度が向上していることが図5のグラフからわかる。 The results of a uniaxial creep rupture test performed on these samples at a test temperature of 700 ° C. are shown in the graph of FIG. T3 (FC material), in which Fe 2 O 3 powder is additionally mixed to increase the amount of excess oxygen and the crystal grains are coarsened by furnace cooling heat treatment, has a higher temperature creep strength than other prototype materials. It can be seen from the graph of FIG.

以上説明したところからわかるように本発明によれば、フェライト系酸化物分散強化型鋼にTiを添加した場合でも、TiとCとの結合を抑制してマトリックス中のC濃度を維持し熱処理時に十分なα→γ変態を確保することができ、これにより粗大化した結晶粒を生成できる結果、優れた高温クリープ強度を有するフェライト系酸化物分散強化型鋼を得ることができる。   As can be seen from the above description, according to the present invention, even when Ti is added to the ferritic oxide dispersion strengthened steel, the bonding between Ti and C is suppressed and the C concentration in the matrix is maintained and sufficient during heat treatment. As a result, it is possible to obtain a ferrite-based oxide dispersion strengthened steel having excellent high-temperature creep strength.

試作材T14、MM13、T3、T4の光学顕微鏡金相写真。Optical microscope gold phase photograph of prototype materials T14, MM13, T3, and T4. 試作材T5の光学顕微鏡金相写真。Optical microscope gold phase photograph of prototype material T5. 各試作材のTi含有量と過剰酸素量(Ex.O)との関係を示すグラフ。The graph which shows the relationship between Ti content and excess oxygen amount (Ex.O) of each prototype material. 図3のグラフに結晶粗大化の条件式を満たす領域を斜線部分で示したグラフ。The graph which showed the area | region which satisfy | fills the conditional expression of crystal coarsening in the graph of FIG. 試作材T14、T3の700℃における高温クリープ破断試験を示すグラフ。The graph which shows the high temperature creep rupture test in 700 degreeC of prototype material T14, T3.

Claims (1)

元素粉末または合金粉末とY23粉末を混合して機械的合金化処理を行ない、熱間押出しにより固化した後、最終熱処理としてAc3変態点以上への加熱保持とそれに続くフェライト形成臨界速度以下での徐冷熱処理を施すことにより、質量%で、Cが0.05〜0.25%、Crが8.0〜12.0%、Wが0.1〜4.0%、Tiが0.1〜1.0%、Y23が0.1〜0.5%、残部がFeおよび不可避不純物からなるY23粒子を分散させたフェライト系酸化物分散強化型鋼を製造する方法であって、鋼中の過剰酸素量(鋼中の酸素量からY23中の酸素量を差し引いた値)が
0.67Ti−2.7C+0.45>Ex.O>0.67Ti−2.7C+0.35
(式中、Ex.O:鋼中の過剰酸素量、質量%
Ti:鋼中のTi含有量、質量%
C:鋼中のC含有量、質量%)
となるように機械的合金化処理に際して混合する原料粉末としてFe23粉末を追加的に添加することを特徴とする粗大結晶粒組織を有する高温クリープ強度に優れたフェライト系酸化物分散強化型鋼の製造方法。
Elemental alloy or alloy powder and Y 2 O 3 powder are mixed and mechanically alloyed, solidified by hot extrusion, and then heated to the Ac 3 transformation point or higher as the final heat treatment, followed by the critical rate of ferrite formation By performing the slow cooling heat treatment below, by mass%, C is 0.05 to 0.25%, Cr is 8.0 to 12.0%, W is 0.1 to 4.0%, and Ti is A ferritic oxide dispersion strengthened steel in which Y 2 O 3 particles composed of 0.1 to 1.0%, Y 2 O 3 is 0.1 to 0.5%, and the balance is Fe and inevitable impurities is produced. The amount of excess oxygen in steel (the value obtained by subtracting the amount of oxygen in Y 2 O 3 from the amount of oxygen in steel) is 0.67Ti-2.7C + 0.45>Ex.O> 0.67Ti- 2.7C + 0.35
(In the formula, Ex.O: excess oxygen in steel, mass%
Ti: Ti content in steel, mass%
C: C content in steel, mass%)
Ferritic oxide dispersion strengthened steel having a coarse grain structure and excellent in high-temperature creep strength, characterized in that Fe 2 O 3 powder is additionally added as a raw material powder to be mixed during mechanical alloying treatment Manufacturing method.
JP2005360303A 2005-12-14 2005-12-14 Method for producing ferritic oxide dispersion strengthened steel with coarse grain structure and excellent high temperature creep strength Expired - Fee Related JP4192249B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005360303A JP4192249B2 (en) 2005-12-14 2005-12-14 Method for producing ferritic oxide dispersion strengthened steel with coarse grain structure and excellent high temperature creep strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005360303A JP4192249B2 (en) 2005-12-14 2005-12-14 Method for producing ferritic oxide dispersion strengthened steel with coarse grain structure and excellent high temperature creep strength

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002231781A Division JP3792624B2 (en) 2002-08-08 2002-08-08 Method for producing ferritic oxide dispersion strengthened steel with coarse grain structure and excellent high temperature creep strength

Publications (2)

Publication Number Publication Date
JP2006176878A JP2006176878A (en) 2006-07-06
JP4192249B2 true JP4192249B2 (en) 2008-12-10

Family

ID=36731242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005360303A Expired - Fee Related JP4192249B2 (en) 2005-12-14 2005-12-14 Method for producing ferritic oxide dispersion strengthened steel with coarse grain structure and excellent high temperature creep strength

Country Status (1)

Country Link
JP (1) JP4192249B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102277525B (en) * 2011-08-23 2012-12-05 北京科技大学 Method for preparing oxide dispersion reinforced stainless steel powder and stainless steel
CN106399807A (en) * 2016-09-28 2017-02-15 天津大学 Preparation method of oxide dispersion strengthened steel with micro-nano-scale double-crystal-grain structure
CN110885954B (en) * 2018-09-07 2021-03-30 天津大学 Application of ferrite-based ODS steel in supercritical water service condition
CN111349842B (en) * 2020-02-27 2021-05-18 北京科技大学 Method for preparing oxide dispersion strengthened steel through high-flux continuous smelting

Also Published As

Publication number Publication date
JP2006176878A (en) 2006-07-06

Similar Documents

Publication Publication Date Title
JP3792624B2 (en) Method for producing ferritic oxide dispersion strengthened steel with coarse grain structure and excellent high temperature creep strength
US4963200A (en) Dispersion strengthened ferritic steel for high temperature structural use
JP6245417B1 (en) Steel
WO2011090451A1 (en) CASTING ALLOY OF THE AIMgSI TYPE
JP4192249B2 (en) Method for producing ferritic oxide dispersion strengthened steel with coarse grain structure and excellent high temperature creep strength
JP3753248B2 (en) Method for producing martensitic oxide dispersion strengthened steel with residual α grains and excellent high temperature strength
CN111394663A (en) Heat-resistant iron-based alloy and preparation method thereof
JP4413549B2 (en) Method for producing martensitic oxide dispersion strengthened steel with excellent high temperature strength
JPH0820835A (en) Mg alloy
JP4299769B2 (en) High HAZ toughness steel for high heat input welding with heat input of 20-100 kJ / mm
JP2002167655A (en) Stainless cast steel having excellent heat resistance and machinability
JP6270197B2 (en) Method for producing oxide dispersion strengthened tempered martensitic steel
JP3468916B2 (en) Stainless steel with excellent hot workability and resistance to molten salt corrosion
JPH0518897B2 (en)
JPH08100243A (en) Highly heat resistant iron-bas alloy
JP2692340B2 (en) Oxide dispersion strengthened ferritic steel
JPS5893856A (en) Iron-chromium-aluminum alloy
JP3787311B2 (en) Method for producing boron-containing Al-based alloy having neutron absorption action
JPH09111413A (en) Heat resistant steel for nuclear fusion reactor, excellent in toughness, and its production
JP2018070900A (en) Austenitic heat resistant cast steel
WO2024070784A1 (en) Stainless steel powder, stainless steel member, and stainless steel member manufacturing method
JPH06328196A (en) Manufacture of boron-contained austenitic stainless steel
JPH0941096A (en) Turbine blade material
JPH09111414A (en) Stainless steel excellent in thermal neutron absorption property
JPH0551701A (en) Oxide disperion strengthened ferritic heat resisting steel plate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061116

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111003

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121003

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131003

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees