JP4191845B2 - Surface-treated metal plate - Google Patents

Surface-treated metal plate Download PDF

Info

Publication number
JP4191845B2
JP4191845B2 JP11741999A JP11741999A JP4191845B2 JP 4191845 B2 JP4191845 B2 JP 4191845B2 JP 11741999 A JP11741999 A JP 11741999A JP 11741999 A JP11741999 A JP 11741999A JP 4191845 B2 JP4191845 B2 JP 4191845B2
Authority
JP
Japan
Prior art keywords
compound
rare earth
corrosion
treated metal
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP11741999A
Other languages
Japanese (ja)
Other versions
JP2000309879A (en
Inventor
浩雅 荘司
健一郎 田所
雅雄 坂下
善弘 兼田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP11741999A priority Critical patent/JP4191845B2/en
Publication of JP2000309879A publication Critical patent/JP2000309879A/en
Application granted granted Critical
Publication of JP4191845B2 publication Critical patent/JP4191845B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、耐食性に優れ、且つ6価クロムを全く含まない被覆層を有する表面処理金属板に関するものである。
【0002】
【従来の技術】
従来、自動車、家電製品、建材等の用途に用いられる冷延鋼板、亜鉛めっき鋼板及び亜鉛系合金めっき鋼板、アルミニウムめっき鋼板等に防錆性を付与するため等に、それらの表面にクロメート皮膜を被覆することが一般に行なわれている。このクロメート処理としては、電解型クロメートや塗布型クロメートがある。電解クロメートは、例えばクロム酸を主成分とし、他に硫酸、りん酸、硼酸及びハロゲン等の各種陰イオンを添加した浴を用いて、金属板を陰極電解処理することにより行なわれてきた。
【0003】
また、塗布型クロメートは、クロメート処理金属板からのクロムの溶出の問題があり、予め6価クロムの一部を3価に還元した溶液や6価クロムと3価クロム比を特定化した溶液に無機コロイドや無機アニオンを添加して処理液とし、金属板をその中に浸漬したり、処理液を金属板にスプレーしたりすることにより行なわれてきた。クロメート皮膜の内、電解によって形成されたクロメート皮膜は6価クロムの溶出性は少ないものの防食性は十分とは言えず、特に加工時などの皮膜損傷が大きい場合、その耐食性は低下する。一方、塗布型クロメート皮膜により被覆された金属板の耐食性は高く、特に加工部耐食性に優れているが、クロメート皮膜からの6価クロムの溶出が大きく問題となる。有機重合体を被覆すれば6価クロムの溶出はかなり抑制されるものの十分ではない。
【0004】
また、特開平5−230666号公報に開示されているような一般に樹脂クロメートと呼ばれる方法では6価クロムの溶出抑制に改善は見られるものの、微量の溶出は避けられない。従来のクロメート皮膜と同等の機能を有するクロムイオンを全く含まない皮膜を形成する被覆処理としては、塩化セリウム水溶液中でAl板を陰極処理して酸化セリウムを含有するコーティングを形成する方法、特開平2−502655号公報に開示されているセリウムイオンを含むpH1〜3程度の酸性水溶液にAl板を浸漬して水素ガスを発生させながらセリウム含水酸化物の防食性被覆層を得る方法、特開平2−25579号公報に開示されているセリウムイオン、ジルコニウムイオン、りん酸イオン、弗素イオンによるアルミニウム上への複塩皮膜、特開平5−331658号公報に開示されている亜鉛イオン、りん酸イオン、ランタン化合物の処理浴で形成されるりん酸亜鉛皮膜が知られているが、耐食性が十分ではない。
このような状況を鑑み、我々は6価クロムを含まない防食性被覆層を有する表面処理金属板をw097/28291で提案している。
【0005】
【発明が解決しようとする課題】
本発明の目的は、上述した表面処理金属板の特性をさらに改善した耐食性に優れ且つ6価クロムを全く使用しない防食性被覆層を有する表面処理金属板を提供することにある。
【0006】
【課題を解決するための手段】
現行クロメート処理に代わる汎用化成処理皮膜を6価クロムを全く含まない系で設計すべく、本発明者らは鋭意検討を重ねた結果、中間層として酸化ジルコニウムやりん酸ジルコニウム等の被膜によりバリア効果を持たせ、耐食性層ではセリウムをカソーディック反応抑制剤として供給し損傷部や腐食部の選択的修復機能を持たせ、またセリウム−りん酸化合物とすることでりん酸塩皮膜型の不働態化及び酸化物皮膜型の不働態化によりアノーディック反応を抑制し、各成分が機能を相乗的に発揮し、中間層形成により飛躍的に性能を向上させた新規無機系化成処理皮膜を得ることが可能となったものである。
【0007】
本発明の要旨とするところは、以下の通りである。
(1)IVA族元素の酸化物若しくは水酸化物、又は前記酸化物と前記水酸化物の両方からなる中間層、又は、IVA族元素の酸化物若しくは水酸化物、又は前記酸化物と前記水酸化物の両方と、1種又は2種以上の希土類元素化合物の添加成分からなる中間層を有し、希土類及び/又はIVA族元素の酸素酸化合物もしくは酸素酸水素化合物又はこれらの混合物からなる耐食性被覆層、希土類及び/又はIVA族元素の酸素酸化合物もしくは酸素酸水素化合物又はこれらの混合物と、添加成分である1種又は2種以上の希土類元素化合物からなる耐食性被覆層、希土類及び/又はIVA族元素の酸素酸化合物もしくは酸素酸水素化合物又はこれらの混合物と、添加成分である有機系腐食抑制剤からなる耐食性被覆層、又は、希土類及び/又はIVA族元素の酸素酸化合物もしくは酸素酸水素化合物又はこれらの混合物と、添加成分である1種又は2種以上の希土類元素化合物と有機系腐食抑制剤からなる耐食性被覆層を有する(但し、中間層と耐食性被覆層は同一組成ではない)ことを特徴とする表面処理金属板。
【0008】
(2)前記中間層におけるIVA族元素がジルコニウムである(1)記載の表面処理金属板。
(3)前記中間層が酸化ジルコニウム、りん酸ジルコニウム及び/又はりん酸水素ジルコニウムである(1)又は(2)に記載の表面処理金属板
【0009】
)前記添加成分である希土類元素化合物がセリウム及び/又はランタンの化合物である()記載の表面処理金属板。
)前記耐食性被覆層における希土類元素及び/又はIVA族元素がイットリウム、ランタン、セリウム及び/又はジルコニウムである(1)〜(のいずれか(1)に記載の表面処理金属板。
)前記耐食性被覆層における酸素酸化合物もしくは酸素酸水素化合物のアニオン種が、りん酸イオンもしくはりん酸水素イオンである(1)〜(のいずれか(1)に記載の表面処理金属板である
0010
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明の被膜は中間層として酸化ジルコニウムやりん酸ジルコニウム等の被膜によりバリア効果を持たせ、耐食性層ではセリウムをカソーディック反応抑制剤として供給して損傷部や腐食部の選択的修復機能を持たせ、またセリウムをりん酸化合物とすることでりん酸塩皮膜型の不働態化及び酸化物皮膜型の不働態化によりアノーディック反応を抑制し、各成分が機能を相乗的に発揮し、性能を飛躍的に向上した新規無機系化成処理皮膜を得ることが可能となったものである。
0011
相乗的に性能が向上する機構は明らかではないが、以下のように推定している。例えば弗化ジルコニウムカリウム水溶液に浸漬して中間層を形成させてから、りん酸(水素)セリウムを主成分とする処理液を塗布した場合、中間層であるジルコニア被膜が一部リン酸ジルコニウムとなり、りん酸ジルコニウム/りん酸セリウム複合被膜が形成される。この複合被膜はバイポーラ型であるため金属イオンの拡散を強く抑制し、ジルコニアやりん酸セリウムの同膜厚の単一被膜の場合に比べて金属溶出反応が飛躍的に抑制されると考えている。
さらに樹脂、有機系腐食抑制剤やカソーディック反応抑制強化を目的とした酸化セリウム等の他のセリウム化合物を添加してもよい。
0012
希土類元素、IVA族元素の酸素酸化合物、酸素酸水素化合物とはりん酸イオン、タングステン酸イオン、モリブデン酸イオン、バナジン酸イオン等の酸素酸アニオンとの希土類元素化合物やIVA族元素化合物を指称し、酸素酸水素化合物とはカチオンの一部に水素を含む化合物を指称する。また、希土類元素にはSc,Y,La,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dg,Ho,Er,Tm,Yb,Luの17元素が含まれる。IVA族元素とはTi,Zr,Hfを指称する。例えば、ランタンのりん酸化合物としてLaPO4 等があり、これに対応するランタンのりん酸化合物としてLa(H2 PO4 3 、La2 (HPO4 3 がある。
0013
中間層中のIVA族元素と添加剤としての希土類元素の総量としては0.01mg/m2 以上であれば良い。0.01mg/m2 未満では、耐食性が十分ではない。また、10g/m2 を超えても耐食性はそれほど向上せず、経済性を考慮すると10g/m2 で十分である。一方、膜厚は1nm以上が好ましく、さらに好ましくは0.01μm以上である。1nm未満では耐食性が十分ではない。しかし、膜厚が5μmを超えても耐食性はそれほど向上せず、経済性を考慮すると5μmで十分である。
0014
耐食性被覆層中の希土類元素及び/又はIVA族元素の酸素酸化合物もしくは酸素酸水素化合物もしくはそれらの混合物の希土類元素及び/又はIVA族元素と添加剤としての希土類元素化合物の和とりん酸(りん酸水素化合物の場合、もしくはそれを含む混合物の場合についてはりん酸に換算した)のモル比は、100:1〜1:100、好ましくは50:1〜1:50、さらに好ましくは15:1〜1:15である。100:1未満及び1:100を超える場合、りん酸塩被膜の機能が発現せず耐食性が充分ではない。
0015
また、耐食性被覆層中の酸素酸化合物及び/又は酸素酸水素化合物の希土類元素及び/又はIVA族元素の供給源は特に限定しないが、酸化物、酢酸塩、炭酸塩、塩化物、ふっ化物のような化合物が挙げられ、酸化物、硝酸塩、塩化物が好ましい。また、ミッシュメタルやその前駆体のように、不純物として他の希土類元素化合物が混在していても耐食性等に特に悪影響を及ぼさない。ここでいう前駆体とは、ランタン、セリウム等の原料であるモナザイト(りん酸塩)等から、それらを製錬、精製する過程で得られる化合物の総称である。耐食性被覆層中に含まれる希土類元素及び/又はIVA族元素量としては1mg/m2 以上であれば良い。1mg/m2 未満では、耐食性が十分ではない。また、10g/m2 を超えても耐食性はそれほど向上せず、経済性を考慮すると10g/m2 で十分である。
0016
一方、膜厚は0.01μm以上が好ましく、さらに好ましくは0.1μm以上である。0.01μm未満では耐食性が十分ではない。しかし、膜厚が5μmを超えても耐食性はそれほど向上せず、経済性を考慮すると5μmで十分である。特に好適な酸素酸化合物は、りん酸化合物及び/又はりん酸水素化合物であり、りん酸種としてはオルトりん酸、メタりん酸、ポリりん酸がある。ポリりん酸化合物及び/又はポリりん酸水素化合物が好適である。
耐食性被覆層中の添加成分として希土類元素、特にセリウムの酸化物、水酸化物、ハロゲン化物、炭酸化合物、硫酸化合物、硝酸化合物、有機酸化合物等を添加してもよい。
0017
耐食性被覆層中の添加成分としての有機系腐食抑制剤は金属表面への吸着性を有し、金属イオンの溶出時に錯体形成し捕捉するためイオン化の更なる進行を抑制する作用を有する。その有機系腐食抑制剤としては、分子構造に金属錯体結合形成に必要可能な官能基(=O,−NH2 ,=NH,=N−,=S,−OH等)、及び金属表面との共有結合形成可能な官能基(−OH,=NH,−SH,−CHO,−COOH等)を有する化合物が使用できる。なお、被膜中に含有させる有機系腐食抑制剤は難水溶性の化合物が好ましい。
0018
この理由として、この腐食抑制剤は被膜を透過する水により有機系腐食抑制剤が微量溶解することで発現するため、もし易溶性であると水の被膜透過時に容易に溶出してしまい機能を発現しないため、あるいは持続性が充分でないため好ましくない。上記官能基を兼ね備えた難水溶性の有機系腐食抑制剤の具体例としては、N−フェニル−ジメチルピロールのホルミル化誘導体、HS−CH2 COOCn 2n+1(nは1〜25の整数)で表されるチオグリコール酸エステル及び誘導体、Cn 2n(SH)COOH (nは1〜25の整数)で表されるα−メルカプトカルボン酸及びその誘導体、キノリン及びその誘導体、トリアジンジチオール及びその誘導体、没食子酸エステル及びその誘導体、ニコチン酸及びその誘導体、カテコール及びその誘導体である。
0019
なお、これら有機腐食抑制剤を1種又は2種以上混合して使用するが、その添加量は、耐食性被覆層中の希土類元素及び/又はIVA族元素の酸素酸化合物もしくは酸素酸水素化合物もしくはそれらの混合物の希土類元素及び/又はIVA族元素と添加剤としての希土類元素化合物の和と有機系腐食抑制剤とのモル比は1000:1〜1:2、好ましくは100:1〜1:1、さらに好ましくは50:1〜2:1である。モル比が1000:1未満では添加効果が充分ではなく、1:2を越えても耐食性がそれほど向上せず経済的ではない。また、被膜中でのこれらの有機系腐食抑制剤の形態は特に限定されないが、例えば処理液にそのまま添加し混合する。または予めりん酸に溶解させて処理液に添加する、あるいはエタノール、イソプロピルアルコール等のアルコールに完全溶解後、脱イオン水を滴下し微細コロイド化させて処理液に添加する等の方法により被膜中に含有させることができる。
0020
耐食性被覆層中の添加剤としてセリウム化合物等の希土類元素及び/又はIVA族元素化合物以外に、耐食性被覆層のバリア効果を強化し、また添加成分の溶出を抑制する等の効果を得るため、また、カソード防食能やアノード防食能を強化するために、酸化チタン、シリカ、酸化クロム、水酸化クロム、アルミナ、水酸化カルシウム、炭酸カルシウム、酸化カルシウム、りん酸亜鉛、りん酸水素亜鉛、りん酸カリウム、りん酸水素カリウム、りん酸カルシウム、りん酸水素カルシウム、珪酸カルシウム、珪酸ジルコニウム、りん酸アルミニウム、りん酸水素アルミニウム、りん酸ジルコニウム、りん酸水素ジルコニウム、硫酸、硫酸ナトリウム、硫酸水素ナトリウム、りん酸ナトリウム、りん酸水素ナトリウム等をさらに添加してもよい。
【0021】
また、この発明の対象となる金属板は特に限定されないが、例えば溶融亜鉛めっき鋼板、溶融亜鉛−鉄合金めっき鋼板、溶融亜鉛−アルミニウム−マグネシウム合金めっき鋼板、溶融アルミニウム−シリコン合金めっき鋼板、溶融鉛−スズ合金めっき鋼板等の溶融めっき鋼板や、電気亜鉛めっき鋼板、電気亜鉛−ニッケル合金めっき鋼板、電気亜鉛−鉄合金めっき鋼板、電気亜鉛−クロム合金めっき等の電気めっき鋼板等の表面処理鋼板、冷延鋼板や亜鉛、アルミニウム等の金属板等に適用できる。
0022
本発明の表面処理金属板の製造方法としては、中間層の酸化ジルコニウム被膜はスパッタリング法や弗化ジルコニウムカリウム水溶液への浸漬等で得られ、特に限定されない。耐食性層はセリウム化合物(又は水溶液)とりん酸を十分に混合し(この後、熱処理する場合もある)、樹脂やセリウム化合物等の添加剤及び適当量の水を必要に応じ添加する。添加剤及び水の添加は、それぞれ耐食性、成膜性を高めることができる。この処理液を金属板に塗布し、乾燥及び熱処理を行なうことにより目的の表面処理金属板を得る。
0023
塗布は現在使用されているクロメート処理の塗布設備や塗料の塗装設備等をそのまま流用でき、特別な設備を必要としない。また、乾燥条件は、一概には限定することはできないが、少なくとも処理液に含まれる溶媒を乾燥し、かつ含有する樹脂マトリックス成分が分解しない温度範囲で乾燥されればよい。例えば、金属材料表面到達温度が40〜200℃の範囲が好ましい。
0024
【実施例】
(実施例1〜4
表1に中間層を湿式処理により形成した場合を示す。前処理として実施例1〜2は0.001〜0.01M弗化ジルコニウムカリウム水溶液に25〜90℃で1秒間〜1時間浸漬後、水洗、乾燥した。実施例19〜22は0.001Mの硫酸セリウム含有の0.01M弗化ジルコニウムカリウム水溶液に25℃で1秒間〜1時間浸漬後、水洗、乾燥した。 耐食性層処理液組成は1M硝酸セリウム水溶液10mlにりん酸(85%)5.7gを十分に混合し、得られた生成物を水で500mlにし処理液とした。実施例2は酢酸セリウム16.8g、実施例2はチオグリコール酸オクチル0.2gを添加、混合し処理液とした。
0025
用いた金属板はGI(溶融亜鉛めっき鋼板、めっき付着量:90g/m2 )、EG(電気亜鉛めっき鋼板、めっき付着量:20g/m2 )、Al(溶融アルミニウム−シリコン合金めっき鋼板、めっき付着量:120g/m2 )、Al/Si=90/10)である。なお、用いた化合物はすべて市販の試薬を使用した。処理液を金属板上にバーコーターを用いて乾燥後の皮膜厚が1μmとなるように塗布し、板温100〜200℃で30秒間〜1時間熱処理した。
0026
(実施例4〜5
表2に中間層を乾式処理によりにより形成した場合を示す。前処理として実施例449はスパッタリング法によりジルコニウムをターゲットとしアルゴン、酸素雰囲気で行なった。実施例5〜5はスパッタリング法によりチタンをターゲットとしアルゴン、酸素雰囲気で行なった。実施例5〜5はテトラメトキシハフニウムを用いてCVD法により行った。
耐食性層処理液組成は1M硝酸セリウム水溶液10mlにりん酸(85%)5.7gを十分に混合し、得られた生成物を水で500mlにし処理液とした。
0027
用いた金属板はGI(溶融亜鉛めっき鋼板、めっき付着量:90g/m2 )、EG(電気亜鉛めっき鋼板、めっき付着量:20g/m2 )、Al(溶融アルミニウム−シリコン合金めっき鋼板、めっき付着量:120g/m2 、Al/Si=90/10)である。なお、用いた化合物はすべて市販の試薬を使用した。
処理液を金属板上にバーコーターを用いて乾燥後の皮膜厚が1μmとなるように塗布し、板温100〜200℃で30秒間〜1時間熱処理した。
0028
(比較例1)
中間層がない場合との比較を行うべく、1M硝酸セリウム水溶液10mlにりん酸(85%)5.7gを十分に混合し、得られた生成物を水で500mlにした処理液をGI(溶融亜鉛めっき鋼板)上にバーコーターを用いて乾燥後の皮膜厚が1μmとなるように塗布し、熱処理した。
0029
(比較例2)
クロメート処理鋼板との比較を行なうべく、クロメート処理液として澱粉による部分還元クロム酸をCrO3 換算で30g/l、SiO2を40g/l、りん酸を20g/l含有する処理液を調製し、鋼板上に塗布、乾燥、硬化させ皮膜形成を行なった(皮膜中Cr量は、金属Crに換算して100mg/m2である)。実施例1〜7、比較例1、2で作製した供試材について、以下の性能評価試験を行った。
0030
[被膜の性能評価法]
(a)サンプルに5%、35℃の塩水を噴霧した後の錆発生面積で平板耐食性評価を行なった。なお、噴霧期間はGI、EGが12日間、Alが16日間で何れも白錆発生率で測定した。
評点 ◎:錆発生率 0%
○:錆発生率 5%未満
△:錆発生率 5%以上、20%未満
×:錆発生率 20%以上
0031
(b)サンプルをエリクセン7mm加工後、5%、35℃の塩水を噴霧した後の錆発生面積で加工部耐食性評価を行なった。なお、噴霧期間はGI、EGが12日間、Alが16日間で何れも白錆発生率で測定した。
評点 ◎:錆発生率 0%
○:錆発生率 5%未満
△:錆発生率 5%以上、20%未満
×:錆発生率 20%以上
評価結果を表1〜3に示す。各表の結果から明らかなように、本発明の表面処理金属板は、クロメート処理と同等以上の平板及び加工部耐食性を示した。即ち、6価クロムを全く含まない化成処理膜として環境適合性に優れている上に、耐食性皮膜としてその効果を発揮するものである。
0032
【表1】

Figure 0004191845
0033
【表2】
Figure 0004191845
0034
【発明の効果】
以上述べたように、中間層によるバリア効果、りん酸化合物、もしくはりん酸水素化合物、もしくはそれらの混合物の皮膜、又はそれに他の希土類化合物が添加された皮膜は、例えばセリウムがカソーディック反応抑制剤として機能し損傷部や腐食部の選択的修復能を持ち、さらにりん酸化合物によるアノーディック反応抑制を有しており、6価クロムを含有する皮膜と同等以上の性能を示し、環境適合性とも併せて極めて優れた効果を奏するものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a surface-treated metal plate having a coating layer that has excellent corrosion resistance and does not contain hexavalent chromium at all.
[0002]
[Prior art]
Conventionally, chromate coating is applied to the surfaces of cold-rolled steel sheets, galvanized steel sheets, zinc-based alloy-plated steel sheets, aluminum-plated steel sheets, etc. used for automobiles, home appliances, building materials, etc. Coating is generally performed. Examples of the chromate treatment include electrolytic chromate and coating chromate. Electrolytic chromate has been performed, for example, by subjecting a metal plate to cathodic electrolysis using a bath containing chromic acid as a main component and various anions such as sulfuric acid, phosphoric acid, boric acid and halogen.
[0003]
In addition, the coating type chromate has a problem of elution of chromium from the chromate-treated metal plate, and is a solution in which a part of hexavalent chromium is reduced to trivalent in advance, or a solution in which the ratio of hexavalent chromium to trivalent chromium is specified. It has been carried out by adding an inorganic colloid or an anion to obtain a treatment liquid and immersing the metal plate therein or spraying the treatment liquid onto the metal plate. Among the chromate films, the chromate film formed by electrolysis has little elution of hexavalent chromium, but it cannot be said to have sufficient anticorrosion properties. In particular, when the film damage during processing is large, the corrosion resistance is lowered. On the other hand, the metal plate coated with the coating type chromate film has high corrosion resistance, and particularly excellent in the corrosion resistance of the processed part, but elution of hexavalent chromium from the chromate film is a serious problem. If an organic polymer is coated, elution of hexavalent chromium is considerably suppressed, but it is not sufficient.
[0004]
Further, in the method generally called resin chromate as disclosed in JP-A-5-230666, although improvement in the elution suppression of hexavalent chromium is observed, a very small amount of elution is unavoidable. As a coating treatment for forming a coating containing no chromium ions having a function equivalent to that of a conventional chromate coating, a method of forming a coating containing cerium oxide by cathodic treatment of an Al plate in a cerium chloride aqueous solution is disclosed. JP-A-2-502655 discloses a method for obtaining an anticorrosive coating layer of a cerium hydrated oxide while immersing an Al plate in an acidic aqueous solution containing about 1 to 3 containing cerium ions and generating hydrogen gas. Double salt film on aluminum by cerium ion, zirconium ion, phosphate ion and fluorine ion disclosed in JP-A-2525579, zinc ion, phosphate ion and lanthanum disclosed in JP-A-5-331658 A zinc phosphate coating formed in a compound treatment bath is known, but the corrosion resistance is not sufficient.
In view of such a situation, we have proposed a surface-treated metal plate having a corrosion-resistant coating layer containing no hexavalent chromium at w097 / 28291.
[0005]
[Problems to be solved by the invention]
An object of the present invention is to provide a surface-treated metal plate having an anticorrosive coating layer that is further improved in the properties of the surface-treated metal plate and has excellent corrosion resistance and does not use hexavalent chromium.
[0006]
[Means for Solving the Problems]
In order to design a general-purpose chemical conversion treatment film that replaces the current chromate treatment with a system that does not contain hexavalent chromium at all, the present inventors have conducted intensive studies. In the corrosion-resistant layer, cerium is supplied as a cathodic reaction inhibitor to provide a selective repair function for damaged or corroded parts, and a cerium-phosphate compound is used to passivate the phosphate film type. It is possible to obtain a novel inorganic chemical conversion treatment film that suppresses the anodic reaction by the passivation of the oxide film type and each component synergistically functions, and dramatically improves the performance by forming the intermediate layer. It has become possible.
[0007]
The gist of the present invention is as follows.
(1) An oxide or hydroxide of an IVA group element, or an intermediate layer composed of both the oxide and the hydroxide, an oxide or hydroxide of an IVA group element, or the oxide and the water with both oxides, one or have two or more intermediate layers made of the addition component of the rare earth element compound, the corrosion resistance of a rare earth and / or oxygen acid compound of a group IVA element or oxyacid hydrogen compound, or a mixture thereof Corrosion-resistant coating layer, rare earth and / or IVA comprising a coating layer, a rare earth and / or an oxyacid compound or oxygen oxyhydrogen compound of a group IVA element or a mixture thereof, and one or more rare earth element compounds as additive components A corrosion-resistant coating layer comprising a group element oxyacid compound or oxygen oxyhydrogen compound or a mixture thereof and an organic corrosion inhibitor as an additive component, or a rare earth and / or Having an oxygen acid compound of a Group IVA element or oxyacid hydrogen compound or mixtures thereof, one or more rare earth element compound and corrosion resistance coating layer made of an organic corrosion inhibitor is added component (provided that the intermediate layer And the corrosion-resistant coating layer are not the same composition).
[0008]
(2) The surface-treated metal plate according to (1), wherein the IVA group element in the intermediate layer is zirconium.
(3) The surface-treated metal plate according to (1) or (2), wherein the intermediate layer is zirconium oxide, zirconium phosphate and / or zirconium hydrogen phosphate .
[0009]
(4) the additive rare-earth element compound as component is a compound of cerium and / or lanthanum (3) surface-treated metal sheet according.
( 5 ) The surface-treated metal plate according to any one of (1) to ( 4 ) , wherein the rare earth element and / or the IVA group element in the corrosion-resistant coating layer is yttrium, lanthanum, cerium, and / or zirconium.
( 6 ) The surface-treated metal according to any one of (1) to ( 5 ) , wherein the anion species of the oxyacid compound or oxyhydrogen compound in the corrosion-resistant coating layer is a phosphate ion or a hydrogen phosphate ion. It is a board.
[ 0010 ]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The coating of the present invention has a barrier effect by a coating of zirconium oxide, zirconium phosphate or the like as an intermediate layer, and the corrosion resistant layer has a selective repair function for damaged or corroded portions by supplying cerium as a cathodic reaction inhibitor. In addition, by using cerium as a phosphoric acid compound, the anodic reaction is suppressed by the passivation of the phosphate film type and the passivation of the oxide film type, and each component exerts its function synergistically. Thus, it is possible to obtain a novel inorganic chemical conversion treatment film with a drastic improvement.
[ 0011 ]
The mechanism for synergistic performance improvement is not clear, but is estimated as follows. For example, when a treatment liquid mainly composed of cerium phosphate (hydrogen) is applied after being immersed in a potassium zirconium fluoride aqueous solution to form an intermediate layer, the zirconia coating as the intermediate layer is partly zirconium phosphate, A zirconium phosphate / cerium phosphate composite coating is formed. Since this composite coating is a bipolar type, metal ion diffusion is strongly suppressed, and the metal elution reaction is greatly suppressed compared to a single coating with the same film thickness of zirconia or cerium phosphate. .
Furthermore, you may add other cerium compounds, such as resin, an organic type corrosion inhibitor, and the cerium oxide for the purpose of reinforcement | strengthening suppression of cathodic reaction.
[ 0012 ]
Rare earth elements, IVA group oxyacid compounds, and oxyhydrogen compounds are rare earth elements and IVA group compounds with oxyacid anions such as phosphate ions, tungstate ions, molybdate ions, and vanadate ions. The oxygen oxyhydrogen compound refers to a compound containing hydrogen as part of a cation. The rare earth elements include 17 elements such as Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dg, Ho, Er, Tm, Yb, and Lu. Group IVA elements refer to Ti, Zr, and Hf. For example, there are LaPO 4 and the like as lanthanum phosphate compounds, and there are La (H 2 PO 4 ) 3 and La 2 (HPO 4 ) 3 as the corresponding lanthanum phosphate compounds.
[ 0013 ]
The total amount of Group IVA elements and rare earth elements as additives in the intermediate layer may be 0.01 mg / m 2 or more. If it is less than 0.01 mg / m 2 , the corrosion resistance is not sufficient. Moreover, even if it exceeds 10 g / m < 2 >, corrosion resistance does not improve so much, and 10 g / m < 2 > is enough considering economic efficiency. On the other hand, the film thickness is preferably 1 nm or more, and more preferably 0.01 μm or more. If it is less than 1 nm, the corrosion resistance is not sufficient. However, even if the film thickness exceeds 5 μm, the corrosion resistance is not improved so much, and 5 μm is sufficient in consideration of economy.
[ 0014 ]
Sum of rare earth elements and / or IVA group elements of rare earth elements and / or IVA group oxyacid compounds or oxygen oxyhydrogen compounds or mixtures thereof in the corrosion-resistant coating layer and rare earth element compounds as additives and phosphoric acid (phosphorus) In the case of an oxyhydrogen compound or a mixture containing the same, the molar ratio is 100: 1 to 1: 100, preferably 50: 1 to 1:50, more preferably 15: 1. ~ 1: 15. When the ratio is less than 100: 1 and exceeds 1: 100, the function of the phosphate coating does not appear and the corrosion resistance is not sufficient.
[ 0015 ]
Further, the source of rare earth elements and / or IVA group elements of the oxyacid compound and / or oxyhydrogen compound in the corrosion-resistant coating layer is not particularly limited, but oxides, acetates, carbonates, chlorides, fluorides Examples of such compounds include oxides, nitrates, and chlorides. Moreover, even if other rare earth element compounds are mixed as impurities, such as misch metal and its precursors, the corrosion resistance and the like are not particularly adversely affected. The precursor here is a general term for compounds obtained in the process of refining and purifying monazite (phosphate), which is a raw material of lanthanum, cerium and the like. The amount of rare earth element and / or IVA group element contained in the corrosion resistant coating layer may be 1 mg / m 2 or more. If it is less than 1 mg / m 2 , the corrosion resistance is not sufficient. Moreover, even if it exceeds 10 g / m < 2 >, corrosion resistance does not improve so much, and 10 g / m < 2 > is enough considering economic efficiency.
[ 0016 ]
On the other hand, the film thickness is preferably 0.01 μm or more, more preferably 0.1 μm or more. If it is less than 0.01 μm, the corrosion resistance is not sufficient. However, even if the film thickness exceeds 5 μm, the corrosion resistance is not improved so much, and 5 μm is sufficient in consideration of economy. Particularly suitable oxygen acid compounds are phosphoric acid compounds and / or hydrogen phosphate compounds, and phosphoric acid species include orthophosphoric acid, metaphosphoric acid, and polyphosphoric acid. Polyphosphate compounds and / or polyhydrogenphosphate compounds are preferred.
As an additive component in the corrosion-resistant coating layer, a rare earth element, particularly an oxide, hydroxide, halide, carbonate compound, sulfate compound, nitrate compound, organic acid compound, or the like of cerium may be added.
[ 0017 ]
The organic corrosion inhibitor as an additive component in the corrosion-resistant coating layer has adsorptivity to the metal surface, and has a function of suppressing further progression of ionization because it forms a complex and traps at the time of elution of metal ions. The organic corrosion inhibitor includes functional groups (= O, -NH 2 , = NH, = N-, = S, -OH, etc.) necessary for the formation of metal complex bonds in the molecular structure, and the metal surface. A compound having a functional group capable of forming a covalent bond (-OH, = NH, -SH, -CHO, -COOH, etc.) can be used. The organic corrosion inhibitor contained in the coating is preferably a slightly water-soluble compound.
[0018]
The reason for this is that this corrosion inhibitor is expressed when a small amount of the organic corrosion inhibitor is dissolved by the water that permeates the film. This is not preferable because it is not performed or because the sustainability is not sufficient. Specific examples of the poorly water-soluble organic corrosion inhibitor having the above functional groups include N-phenyl-dimethylpyrrole formylated derivatives, HS—CH 2 COOC n H 2n + 1 (n is an integer of 1 to 25) ), Thioglycolic acid esters and derivatives, C n H 2n (SH) COOH (n is an integer of 1 to 25) α-mercaptocarboxylic acid and derivatives thereof, quinoline and derivatives thereof, triazine dithiol and Derivatives thereof, gallic acid esters and derivatives thereof, nicotinic acid and derivatives thereof, catechol and derivatives thereof.
[ 0019 ]
These organic corrosion inhibitors are used singly or in combination of two or more, but the amount added is an oxyacid compound or oxyhydrogen compound of a rare earth element and / or an IVA group element in the corrosion-resistant coating layer or those. The molar ratio of the sum of the rare earth element and / or group IVA element of the mixture of the above and the rare earth element compound as an additive to the organic corrosion inhibitor is 1000: 1 to 1: 2, preferably 100: 1 to 1: 1. More preferably, it is 50: 1 to 2: 1. If the molar ratio is less than 1000: 1, the effect of addition is not sufficient, and if it exceeds 1: 2, the corrosion resistance is not improved so much and it is not economical. Further, the form of these organic corrosion inhibitors in the coating is not particularly limited. For example, the organic corrosion inhibitor is added to the processing solution as it is and mixed. Alternatively, it is dissolved in phosphoric acid in advance and added to the treatment solution, or after complete dissolution in an alcohol such as ethanol or isopropyl alcohol, deionized water is added dropwise to form a fine colloid and added to the treatment solution. It can be included.
[ 0020 ]
In addition to rare earth elements such as cerium compounds and / or IVA group element compounds as additives in the corrosion resistant coating layer, in order to enhance the barrier effect of the corrosion resistant coating layer and to suppress the elution of additive components, etc. In order to strengthen the cathodic protection ability and cathodic protection ability, titanium oxide, silica, chromium oxide, chromium hydroxide, alumina, calcium hydroxide, calcium carbonate, calcium oxide, zinc phosphate, zinc hydrogen phosphate, potassium phosphate , Potassium hydrogen phosphate, calcium phosphate, calcium hydrogen phosphate, calcium silicate, zirconium silicate, aluminum phosphate, aluminum hydrogen phosphate, zirconium phosphate, zirconium hydrogen phosphate, sulfuric acid, sodium sulfate, sodium hydrogen sulfate, phosphoric acid Sodium, sodium hydrogen phosphate and the like may be further added.
[0021]
Further, the metal plate that is the subject of the present invention is not particularly limited, but, for example, hot dip galvanized steel sheet, hot dip galvanized-iron alloy plated steel sheet, hot dip zinc-aluminum-magnesium alloy plated steel sheet, hot dip aluminum-silicon alloy plated steel sheet, hot lead -Surface-treated steel sheets such as hot dip galvanized steel sheets such as tin alloy galvanized steel sheets, electro galvanized steel sheets, electro zinc-nickel alloy galvanized steel sheets, electro zinc-iron alloy galvanized steel sheets, electro galvanized steel sheets such as electro zinc chrome alloy plating, It can be applied to cold rolled steel plates and metal plates such as zinc and aluminum.
[ 0022 ]
As a method for producing a surface-treated metal sheet of the present invention, zirconium oxide coating of the intermediate layer is obtained by dipping into the sputtering method or fluorozirconate aqueous potassium is not limited especially. In the corrosion-resistant layer, a cerium compound (or an aqueous solution) and phosphoric acid are sufficiently mixed (there may be a heat treatment thereafter), and an additive such as a resin or a cerium compound and an appropriate amount of water are added as necessary. Addition of additives and water can improve corrosion resistance and film formability, respectively. The target surface-treated metal plate is obtained by applying this treatment liquid to the metal plate, followed by drying and heat treatment.
[ 0023 ]
The application can be applied directly to the chromate treatment coating equipment and paint coating equipment currently used, and no special equipment is required. Moreover, although drying conditions cannot be generally limited, it is sufficient that the solvent contained in the treatment liquid is dried at least in a temperature range in which the resin matrix component contained therein is not decomposed. For example, the metal material surface arrival temperature is preferably in the range of 40 to 200 ° C.
[ 0024 ]
【Example】
(Examples 1 to 4 6 )
Table 1 shows the case where the intermediate layer is formed by wet processing. Example 1-2 4 as a pre-treatment after 1 sec to 1 hour immersion at 25 to 90 ° C. to 0.001~0.01M fluorozirconate aqueous potassium washed with water and dried. Examples 19 to 22 were immersed in an aqueous 0.01 M zirconium fluoride solution containing 0.001 M cerium sulfate at 25 ° C. for 1 second to 1 hour, washed with water and dried. The composition of the corrosion-resistant layer treatment solution was prepared by thoroughly mixing 5.7 g of phosphoric acid (85%) with 10 ml of 1M cerium nitrate aqueous solution, and making the resulting product 500 ml with water . Real施例2 3 cerium acetate 16.8 g, Example 2 4 was added octyl thioglycolate 0.2 g, mixed with the processing solution.
[ 0025 ]
The metal plates used were GI (hot dip galvanized steel sheet, plating coverage: 90 g / m 2 ), EG (electrogalvanized steel sheet, plating coverage: 20 g / m 2 ), Al (hot galvanized steel sheet, plating) Adhesion amount: 120 g / m 2 ), Al / Si = 90/10). All the compounds used were commercially available reagents. The treatment liquid was applied onto a metal plate using a bar coater so that the film thickness after drying was 1 μm, and heat-treated at a plate temperature of 100 to 200 ° C. for 30 seconds to 1 hour.
[ 0026 ]
(Example 4 7-5 7)
Table 2 shows the case where the intermediate layer is formed by dry processing. Examples 4 7-49 as a pre-treatment was carried out zirconium by sputtering argon as a target in an oxygen atmosphere. Examples 5 0 to 52 2 were performed in a argon and oxygen atmosphere using titanium as a target by sputtering. Examples 5 3 to 5 7 were performed by CVD using tetramethoxyhafnium.
The composition of the corrosion-resistant layer treatment solution was prepared by thoroughly mixing 5.7 g of phosphoric acid (85%) with 10 ml of 1M cerium nitrate aqueous solution, and making the resulting product 500 ml with water.
[ 0027 ]
The metal plates used were GI (hot dip galvanized steel sheet, plating coverage: 90 g / m 2 ), EG (electrogalvanized steel sheet, plating coverage: 20 g / m 2 ), Al (hot galvanized steel sheet, plating) Adhesion amount: 120 g / m 2 , Al / Si = 90/10). All the compounds used were commercially available reagents.
The treatment liquid was applied onto a metal plate using a bar coater so that the film thickness after drying was 1 μm, and heat-treated at a plate temperature of 100 to 200 ° C. for 30 seconds to 1 hour.
[ 0028 ]
(Comparative Example 1)
In order to compare with the case without an intermediate layer, 5.7 g of phosphoric acid (85%) was sufficiently mixed with 10 ml of 1M cerium nitrate aqueous solution, and the resulting product was made up to 500 ml with water. It was applied on a galvanized steel sheet) using a bar coater so that the film thickness after drying was 1 μm and heat-treated.
[ 0029 ]
(Comparative Example 2)
In order to make a comparison with the chromate-treated steel sheet, a treatment liquid containing 30 g / l of partially reduced chromic acid based on starch in terms of CrO 3 , 40 g / l of SiO 2 and 20 g / l of phosphoric acid is prepared as a chromate treatment liquid. Coating, drying and curing were performed on a steel sheet to form a film (the amount of Cr in the film is 100 mg / m 2 in terms of metal Cr). Example 1-5 7, the test materials prepared in Comparative Examples 1 and 2, the performance was the following evaluation tests.
[ 0030 ]
[Method for evaluating film performance]
(A) The plate corrosion resistance was evaluated by the rust generation area after spraying 5%, 35 ° C. salt water on the sample. The spraying period was 12 days for GI and EG, and 16 days for Al.
Score ◎: Rust incidence 0%
○: Rust incidence less than 5%
Δ: Rust generation rate 5% or more, less than 20%
×: Rust generation rate of 20% or more [ 0031 ]
(B) After processing the Erichsen 7 mm sample, 5% and 35 ° C. salt water was sprayed, and the processed portion corrosion resistance was evaluated based on the rust generation area. The spraying period was 12 days for GI and EG, and 16 days for Al.
Score ◎: Rust incidence 0%
○: Rust incidence less than 5%
Δ: Rust generation rate 5% or more, less than 20%
X: Rust incidence 20% or more Evaluation results are shown in Tables 1 to 3. As is clear from the results in each table, the surface-treated metal plate of the present invention exhibited a flat plate and processed part corrosion resistance equivalent to or better than the chromate treatment. That is, it is excellent in environmental compatibility as a chemical conversion treatment film containing no hexavalent chromium, and also exhibits its effect as a corrosion-resistant film.
[ 0032 ]
[Table 1]
Figure 0004191845
[ 0033 ]
[Table 2]
Figure 0004191845
[ 0034 ]
【The invention's effect】
As described above, the barrier effect by the intermediate layer, the film of the phosphoric acid compound, the hydrogen phosphate compound, or a mixture thereof, or the film to which other rare earth compounds are added, for example, cerium is a cathodic reaction inhibitor. It has the ability to selectively repair damaged and corroded parts, and has the ability to suppress anodic reactions with phosphate compounds. It exhibits the same or better performance as a film containing hexavalent chromium, and is environmentally compatible. In addition, it has an extremely excellent effect.

Claims (6)

IVA族元素の酸化物若しくは水酸化物、又は前記酸化物と前記水酸化物の両方からなる中間層、又は、IVA族元素の酸化物若しくは水酸化物、又は前記酸化物と前記水酸化物の両方と、1種又は2種以上の希土類元素化合物の添加成分からなる中間層を有し、希土類及び/又はIVA族元素の酸素酸化合物もしくは酸素酸水素化合物又はこれらの混合物からなる耐食性被覆層、希土類及び/又はIVA族元素の酸素酸化合物もしくは酸素酸水素化合物又はこれらの混合物と、添加成分である1種又は2種以上の希土類元素化合物からなる耐食性被覆層、希土類及び/又はIVA族元素の酸素酸化合物もしくは酸素酸水素化合物又はこれらの混合物と、添加成分である有機系腐食抑制剤からなる耐食性被覆層、又は、希土類及び/又はIVA族元素の酸素酸化合物もしくは酸素酸水素化合物又はこれらの混合物と、添加成分である1種又は2種以上の希土類元素化合物と有機系腐食抑制剤からなる耐食性被覆層を有する(但し、中間層と耐食性被覆層は同一組成ではない)ことを特徴とする表面処理金属板。Group IVA element oxide or hydroxide , or an intermediate layer composed of both the oxide and the hydroxide, or Group IVA element oxide or hydroxide, or the oxide and hydroxide both the one or have two or more intermediate layers made of the addition component of the rare earth element compound, corrosion-resistant coating layer comprising a rare earth and / or oxygen acid compound of a group IVA element or oxyacid hydrogen compound, or a mixture thereof, Corrosion-resistant coating layer comprising an oxyacid compound or oxyhydrogen compound of a rare earth and / or a group IVA element or a mixture thereof, and one or more rare earth element compounds as additive components, a rare earth and / or a group IVA element Corrosion-resistant coating layer comprising an oxyacid compound or an oxyhydrogen compound or a mixture thereof and an organic corrosion inhibitor as an additive component, or a rare earth and / or IV And oxyacid compound of group element or an oxyacid hydrogen compound, or mixtures thereof, is added component having one or more rare earth element compound and corrosion resistance coating layer made of an organic corrosion inhibitor (provided that the intermediate layer The surface-treated metal sheet is characterized in that the corrosion-resistant coating layers are not of the same composition. 前記中間層におけるIVA族元素がジルコニウムである請求項1記載の表面処理金属板。  The surface-treated metal sheet according to claim 1, wherein the group IVA element in the intermediate layer is zirconium. 前記中間層が酸化ジルコニウム、りん酸ジルコニウム及び/又はりん酸水素ジルコニウムである請求項1又は2に記載の表面処理金属板。  The surface-treated metal sheet according to claim 1 or 2, wherein the intermediate layer is zirconium oxide, zirconium phosphate and / or zirconium hydrogen phosphate. 前記添加成分である希土類元素化合物が、セリウム及び/又はランタンの化合物である請求項記載の表面処理金属板。The additive components a rare earth element compound is found cerium and / or surface treated metal sheet according to claim 1, wherein a compound of lanthanum. 前記耐食性被覆層における希土類及び/又はIVA族元素が、イットリウム、ランタン、セリウム及び/又はジルコニウムである請求項1〜4のいずれか1に記載の表面処理金属板。The surface-treated metal sheet according to any one of claims 1 to 4, wherein the rare earth element and / or the IVA group element in the corrosion-resistant coating layer is yttrium, lanthanum, cerium, and / or zirconium. 前記耐食性被覆層における酸素酸化合物もしくは酸素酸水素化合物のアニオン種が、りん酸イオンもしくはりん酸水素イオンである請求項1〜5のいずれか1に記載の表面処理金属板。The surface-treated metal sheet according to any one of claims 1 to 5, wherein an anionic species of the oxyacid compound or oxyhydrogen compound in the corrosion-resistant coating layer is a phosphate ion or a hydrogen phosphate ion.
JP11741999A 1999-04-26 1999-04-26 Surface-treated metal plate Expired - Fee Related JP4191845B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11741999A JP4191845B2 (en) 1999-04-26 1999-04-26 Surface-treated metal plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11741999A JP4191845B2 (en) 1999-04-26 1999-04-26 Surface-treated metal plate

Publications (2)

Publication Number Publication Date
JP2000309879A JP2000309879A (en) 2000-11-07
JP4191845B2 true JP4191845B2 (en) 2008-12-03

Family

ID=14711190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11741999A Expired - Fee Related JP4191845B2 (en) 1999-04-26 1999-04-26 Surface-treated metal plate

Country Status (1)

Country Link
JP (1) JP4191845B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001029285A2 (en) * 1999-10-19 2001-04-26 Advanced Mechanical Technology, Inc. Corrosion protection of steel in ammonia/water heat pumps
JP4081276B2 (en) * 2002-01-11 2008-04-23 日本パーカライジング株式会社 Water-based surface treatment agent, surface treatment method, and surface-treated material
TW200420754A (en) 2002-12-24 2004-10-16 Nippon Paint Co Ltd Pretreatment method for coating
JP4975378B2 (en) * 2006-06-07 2012-07-11 日本パーカライジング株式会社 Metal surface treatment liquid, surface treatment method, surface treatment material
JP5638191B2 (en) * 2008-11-05 2014-12-10 日本パーカライジング株式会社 Chemical conversion treated metal plate and manufacturing method thereof
FR3008985B1 (en) * 2013-07-26 2016-08-26 Soc Now Des Couleurs Zinciques COMPOSITION COMPRISING A CONTINUOUS ORGANIC PHASE AND REVERSE EMULSION INCORPORATING AN ACTIVE INGREDIENT FOR COATING A METAL SURFACE AND METHOD OF PRODUCING THE SAME
JP6008068B1 (en) * 2014-12-01 2016-10-19 新日鐵住金株式会社 Surface-treated steel sheet and method for producing surface-treated steel sheet
JP6682888B2 (en) * 2016-02-05 2020-04-15 日本製鉄株式会社 Insulating coating agent for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and method for treating grain-oriented electrical steel sheet
KR20230143181A (en) 2021-03-08 2023-10-11 닛폰세이테츠 가부시키가이샤 Painted plated steel sheet or painted plated steel strip
CN115611629B (en) * 2022-10-26 2023-12-01 上海应用技术大学 Structural rare earth molybdate ceramic and preparation method thereof

Also Published As

Publication number Publication date
JP2000309879A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
JP4105765B2 (en) Corrosion-resistant surface-treated metal material and surface treatment agent therefor
US6190780B1 (en) Surface treated metal material and surface treating agent
TWI550099B (en) Galvanized steel sheet containing aluminum and its manufacturing method
JP3987633B2 (en) Metal protective film forming treatment agent and forming method
KR20130109938A (en) Process for forming corrosion protection layers on metal surfaces
WO2000024948A1 (en) Composition and process for treating metal surfaces
JP4191845B2 (en) Surface-treated metal plate
US7575644B2 (en) Solution for treating metal surface, surface treating method, and surface treated material
JP3851482B2 (en) Galvanized steel sheet with excellent white rust resistance and coating adhesion
WO2001081653A1 (en) Surface treated steel plate and method for production thereof
JP3967796B2 (en) Surface-treated metal material
JP2002332574A (en) Plated steel with chromate-free treated film having excellent corrosion resistance
JPH1161429A (en) Surface treated metal material
JP2002363764A (en) Coating surface preparation agent, surface preparation method, metallic material, machining method and metallic product
JP3962123B2 (en) Organic surface treatment metal plate and organic metal surface treatment liquid
JP3451980B2 (en) Surface treated steel sheet with excellent corrosion resistance
JP2007023309A (en) Hot-dip zinc alloy plated steel sheet having excellent corrosion resistance
JPH0754156A (en) Production of galvanized steel sheet excellent in blackening resistance and white rust resistance
JPH1161432A (en) Metal plate surface-treated with inorganic/organic composite
JP4117203B2 (en) Corrosion resistant galvanized steel sheet
JP2005139532A (en) Chromate-free treated plated steel having excellent corrosion resistance and contamination resistance
JPH09228067A (en) Surface treated steel sheet excellent in resistance against environmental pollution and corrosion
KR20040108110A (en) Method of manufacturing galvanized steel plate excellent for resistance against corrosion and adherence of film plated
JP2004269921A (en) Method for manufacturing steel sheet provided with organic composite coating film
JP3845441B2 (en) Surface-treated steel sheet and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070619

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080919

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees