JP4191347B2 - Transparent thermoplastic resin composition and heat ray shielding glazing material using the same - Google Patents

Transparent thermoplastic resin composition and heat ray shielding glazing material using the same Download PDF

Info

Publication number
JP4191347B2
JP4191347B2 JP35613499A JP35613499A JP4191347B2 JP 4191347 B2 JP4191347 B2 JP 4191347B2 JP 35613499 A JP35613499 A JP 35613499A JP 35613499 A JP35613499 A JP 35613499A JP 4191347 B2 JP4191347 B2 JP 4191347B2
Authority
JP
Japan
Prior art keywords
heat ray
ray shielding
thermoplastic resin
transparent thermoplastic
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP35613499A
Other languages
Japanese (ja)
Other versions
JP2000234066A (en
Inventor
博 中野
洋行 今泉
亨 吉井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Engineering Plastics Corp
Original Assignee
Mitsubishi Engineering Plastics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Engineering Plastics Corp filed Critical Mitsubishi Engineering Plastics Corp
Priority to JP35613499A priority Critical patent/JP4191347B2/en
Publication of JP2000234066A publication Critical patent/JP2000234066A/en
Application granted granted Critical
Publication of JP4191347B2 publication Critical patent/JP4191347B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、可視光には透過性で選択的に赤外線を遮蔽する機能を有し、透明性、機械強度、耐久性に優れ、一般窓、自動車のガラス部品等の熱線遮蔽性グレージング材、赤外線カットフィルター等の光学材、農業用フィルム等多くの用途に好適な、透明熱可塑性樹脂組成物及びこれを用いた熱線遮蔽性グレージング材に関する。
【0002】
【従来の技術】
可視光線に対して透過性があり、かつ赤外線を遮蔽する材料としては、酸化錫、酸化インジウム等の金属酸化物、フタロシアニン系等の有機色素及びジチオール系等の有機金属錯塩等が知られているが、有機色素及び有機金属錯塩系は可視光線の透過率が低く、暗褐色から暗青色の濃厚な着色を有している上、耐久性の点でも満足できるものではなかった。一方、酸化錫、酸化インジウム等の金属酸化物は可視光線透過率が高く、耐久性にも優れているものの、溶剤、樹脂等に不溶な粒子状であるため、一次粒子を細かくしても凝集等による分散不良を起こしやすく、透明樹脂中に溶融混練して分散させた場合、特開平2−136230号公報に示されるように可視領域の透過光を散乱や拡散してヘーズが増大し、さらに機械強度等の品質も低下するという問題を有していた。このため、積層体中のフィルムやコーティング層等の薄膜としての利用がほとんどであり、成形体としての使用法に多くの制限があった。
【0003】
【発明が解決しようとする課題】
本発明は、可視領域の透過光の拡散や散乱が少なく、機械強度に優れ、熱線遮蔽性能を有する透明熱可塑性樹脂組成物を提供するものである。
【0004】
【課題を解決するための手段】
本発明者らは、かかる問題を解決すべく鋭意検討した結果、透明な熱可塑性樹脂の溶融状態に熱線遮蔽性無機化合物を混練し分散化するに際し、熱線遮蔽性無機化合物微粒子と特定の分散剤の組み合わせが、成形体のヘイズ及び機械強度の悪化防止に有効であるのみならず、驚くべきことに熱線遮蔽特性も改善できることを見いだし本発明に至った。
【0005】
すなわち、本発明は、芳香族ポリカーボネート樹脂100重量部に、熱線遮蔽性無機化合物錫ドープ酸化インジウム微粒子0.001〜0.2重量部及び下記式(1)で表される分散剤を、該樹脂の溶融条件下で混練し、かつ該分散剤の含有量が下記関係式(2)を満たすことを特徴とする透明熱可塑性樹脂組成物及びこれを用いた熱線遮蔽性グレージング材に存する。
(RCOO)mX (1)
(式中、Rは、炭素数7〜30の飽和脂肪族炭化水素基であり、mは、1〜4の整数であり、Xは、水素原子又はアルコール性水酸基を有する炭素数2〜30の多価アルコール残基であり、m個のRは、同一でも異なってもよい。)
0.25≦A/B≦100 (2)
(式中、Aは、該分散剤の含有量(重量部)であり、Bは、熱線遮蔽性無機化合物の含有量(重量部)である。)
【0006】
【発明の実施の形態】
透明熱可塑性樹脂
本発明で使用する透明熱可塑性樹脂は芳香族ポリカーボネート樹脂であり、可視領域の光線透過率が高い透明な熱可塑性樹脂で、例えば、3mm厚の板状成形体としたときのJIS R 3106記載の可視光透過率が50%以上で、JIS K7105記載のヘイズが30%以下のものが挙げられる。ポリカーボネートは機械強度に優れるため好ましい。芳香族ポリカーボネート樹脂として具体的には、2,2−ビス(4−ヒドロキシフェニル)プロパン、2,2−ビス(3,5−ジブロモ−4−ヒドロキシフェニル)プロパンで例示される、二価のフェノール系化合物の一種以上と、ホスゲン又はジフェニルカーボネート等で例示される、カーボネート前駆体とから、界面重合、溶融重合又は固相重合等の公知の方法によって得られる重合体が例示できる。特に、本発明においては、機械強度、透明性から、25℃におけるメチレンクロライド溶液の粘度より換算した粘度平均分子量が10000〜40000の芳香族ポリカーボネートが特に好ましい。また、該芳香族ポリカーボネートの末端構造は任意に選択でき、未封止末端に存在するフェノール性OH基の量が、全末端の50〜0.1mol%の範囲であることが好ましく、末端はその他の構造に修飾が行われていてもよく、分岐構造を有していてもよい。また、該芳香族ポリカーボネートに、透明性を損なわない範囲で、他樹脂を配合してもかまわない。配合可能な樹脂としては、ポリエチレンテレフタレート樹脂、ポリアリレート樹脂、ポリカプロラクトン等のポリエステル系樹脂、ポリスチレン系樹脂等をあげることができる。透明熱可塑性樹脂の形状は、ペレット、粒状、粉体等、任意であるが、熱線遮蔽性無機化合物との混合性の点で、粉末状であることが好ましい。
【0007】
熱線遮蔽性無機化合物
本発明で使用する熱線遮蔽性無機化合物は、透明性を損なわない点で、金属酸化物半導体が選択される。なかでも、錫ドープ酸化インジウム微粒子(ITO)である。また、ITOの場合、ITOに対して錫原子が30重量%以下であることが好ましく、1〜20重量%であることがより好ましい
【0008】
熱線遮蔽性無機化合物は、平均一次粒子径が1μm以下、好ましくは0.2μm以下、さらに好ましくは0.1μm以下の微粉末であることが好ましい。平均一次粒子径が1μmより大きいと、成形体のヘイズが増大し好ましくない。また、該熱線遮蔽性無機化合物には、シランカップリング剤処理、ケイ酸コーティング等、公知の表面処理を行うことができる。また、該熱線遮蔽性無機化合物は、透明性樹脂100重量部に対して、0.001〜0.2重量部である。0.001重量部未満では熱線遮蔽効果が低く、また0.2重量部以上ではヘイズが悪化し、分散剤を添加しても十分な透明性が得られない。
【0009】
分散剤
本発明で使用される分散剤は、下記式(1)で表される。
(RCOO)mX (1)
上記式(1)中、Rは、炭素数7〜30好ましくは12〜30の飽和脂肪族炭化水素基であり、mは、1〜4の整数であり、Xは、水素原子又はアルコール性水酸基を有する炭素数2〜30の多価アルコール残基であり、好ましくはアルコール性水酸基を有する炭素数2〜30の多価アルコール残基であり、さらに好ましくはアルコール性水酸基を有する炭素数3〜10の多価アルコール残基であり、m個のRは、同一でも異なってもよい。
【0010】
該分散剤の性状は、常温で固体状態であるのが良く、粉末状、粒状等の性状をもつことが可能であるが、透明性樹脂、熱線遮蔽性無機化合物との混練操作性、ヘイズ低下効果を考慮すると、粉末状であることが好ましい。液体状態の分散剤では、樹脂と熱線遮蔽性無機化合物微粒子を混合する際、樹脂に均一に分散し難く、熱線遮蔽性無機化合物の樹脂への分散を阻害するので好ましくない。
これらの具体例としては、ステアリン酸、ベヘニン酸等のカルボン酸類;グリセリンモノステアレート、グリセリンジステアレート等のグリセリン脂肪酸エステル類;ペンタエリスリトールモノステアレート、ペンタエリスリトールジステアレート、ペンタエリスリトールトリステアレート等のペンタエリスリトール脂肪酸エステル類;ソルビタンモノステアレート等のソルビタン脂肪酸エステル類が挙げられる。これらの中で、グリセリンモノステアレートが好ましい。
【0011】
これら分散剤の含有量(A)は、透明熱可塑性樹脂組成物中の熱線遮蔽性無機化合物の含有量(B)によって決定され、すなわち、下記式(2)によって示される範囲内から選択される。
0.25≦A/B≦100 (2)
上記式(2)中、Aは、該分散剤の含有量(重量部)であり、Bは、熱線遮蔽性無機化合物の含有量(重量部)である。また、重量部は、いずれも透明熱可塑性樹脂100重量部に対する値である。すなわち、A/Bは、0.25以上、好ましくは0.5以上である。0.25未満では、分散剤の効果が十分でなく、成形体のヘイズが増加し、赤外線遮蔽性能の改良効果もわずかである。また、A/Bが100を超えると、ヘーズ改良及び赤外線遮蔽性能改善効果はあるものの、分散剤の含有量が樹脂成分量に対して過剰となり、機械強度等の品質に悪影響を与える。
【0012】
透明熱可塑性樹脂組成物
透明熱可塑性樹脂の溶融条件下で、上記熱線遮蔽性無機化合物及び上記分散剤を混練する方法は、粉末を溶融樹脂に練り込む際に慣用の、任意の方法で行うことができる。例えば、全成分をスーパーミキサー、タンブラー等で混合後、又は、熱線遮蔽性無機化合物と分散剤等とを予め混合したものを透明熱可塑性樹脂と混合後、単軸押出機、二軸押出機、ロール混練機等を用いて混練する方法が挙げられる。また、透明熱可塑性樹脂と熱線吸収性無機化合物等を、別々の場所から同一押出機に添加して、混練することもできる。
【0013】
本発明において、透明熱可塑性樹脂組成物は、フタロシアニン系、ナフタロシアニン系、硫化銅、銅イオン等の他の有機、無機系赤外線吸収剤のほか、慣用の添加剤を配合したものであることができる。例えば、任意の色調を与えるため、アゾ系染料、シアニン系染料、キノリン系染料、ペリレン系染料、カーボンブラック等、通常熱可塑性樹脂の着色に使用されている染料、顔料のほか、ヒンダードフェノール系、リン系等の安定剤、離型剤、ヒドロキシベンゾフェノン系、サリチル酸系、HALS系、トリアゾール系、トリアジン系等の紫外線吸収剤、カップリング剤、帯電防止剤等を、これらの有効発現量配合したものでもよい。さらに、透明性を極端に損なわない範囲で、ガラス等のフィラーを配合したものでもよい。
【0014】
熱線遮蔽性グレージング材
本発明の透明熱可塑性樹脂組成物は、透明性及び熱線遮蔽性に優れ、その成形体は、一般窓、自動車等乗り物のガラス部品等の熱線遮蔽性グレージング材として有用である。本発明の熱線遮蔽性グレージング材は、板状、フィルム状、その他任意の形状をとることができる。その成形方法も、特に制限はなく、押出成形、射出成形、ブロー成形、プレス成形等によることができる。
【0015】
本発明の熱線遮蔽性グレージング材は、本発明組成物の成形体と他の材料との複合体であることができる。その場合、本発明組成物の成形体は、表面層又はラミネート層として、他の透明基板と積層して利用する以外に、構造材料として機械強度を担う基板としての利用も可能である。具体的には、本発明の熱線遮蔽性グレージング材が、その表面の両側又は片側に、本発明組成物以外の材料による、表面層又はラミネート層を形成したものである場合、該表面層又はラミネート層は、ハードコート、紫外線吸収、防曇、帯電防止、反射防止、熱線遮蔽等の機能を有する機能性層であってもよい。このような表面層又はラミネート層の形成には、本発明組成物の成形体の両表面又は一表面に、直接又はプライマー層を介して、本発明組成物以外の材料の塗装等を施してもよく、また、本発明組成物以外の材料のフィルム又はシートを積層一体化してもよい。
【0016】
本発明においては、上記機能性層を有し又は有しないフィルム又はシートを積層一体化する方法は特に限定されないが、好ましい例としては、金型の内壁面の片側又は両側に、予め該フィルム又はシートを装着し、残余の金型空間に本発明の透明熱可塑性樹脂組成物を溶融射出充填することにより、該フィルム又はシートと積層一体化した、機能性層を有し又は有しない、熱線遮蔽性グレージング材を得ることができる。
【0017】
上記の方法に従い、金型の内壁面に装着するフィルム又はシートは、その厚みが、通常100〜1000μm、好ましくは200〜700μmのものである。このフィルム又はシートの材料は、いかなる樹脂からなるものでもよいが、このフィルム又はシートが、溶融射出充填によって本発明組成物の成形体と積層一体化されることを考慮に入れると、通常、本発明該透明熱可塑性樹脂組成物を構成する樹脂と同一のものを選ぶのが、熱融着性や光学的均一性の面から好ましく、従って、透明熱可塑性樹脂組成物と同様に、芳香族ポリカーボネート又はその組成物であることが好ましい。また、このフィルム又はシートには、所望により、片面にハードコート、防曇、帯電防止、反射防止及び熱線遮断からなる群から選ばれた少なくとも一種の機能性層を設けることもできる。
【0018】
該樹脂フィルム又はシートに機能性層を形成するには、従来公知の種々の方法が用いられる。例えば、ハードコート層の形成には、所望によりプライマー層を設けた上に、エポキシ系、アクリル系、アミノ樹脂系、ポリシロキサン系、コロイダルシリカ系等のハードコート剤を塗布し、熱又は紫外線等の手段により硬化する方法を用いることができる。防曇層の形成には、通常水溶性又は親水性樹脂と界面活性剤を必須成分として含有する防曇塗料を塗布し、硬化する方法を用いることができる。そのほか、帯電防止層、反射防止層、熱線遮断層等を設ける方法も、これらの機能を与える塗料を塗布して硬化するか、又はこれらの機能を有する薄膜層を真空蒸着法等の方法により、形成する方法が挙げられる。また、これらの機能性層を複合層として、二種以上の機能を同時に備えたものとしてもよい。
【0019】
さらにこれらの機能性層の他に、又は該機能性層に、予め美装用塗装処理を施して意匠性を持たせる等の方法により、意匠性付与層を形成することも可能である。シートへの意匠性層の形成は、シートの表面側、裏面側に限定されることなく、その用途や目的に応じて任意の箇所に形成することが可能である。
【0020】
本発明においては、溶融射出充填時の樹脂組成物との熱融着を促進し、積層一体化をより確実にする目的で、熱可塑性樹脂フィルム又はシートに、プライマーコートを施すこともできる。プライマーコートに使用する樹脂としては、射出用樹脂より溶融粘度が高く、該フィルム又はシートとよく接着するものが選ばれる。例えば、射出成形用樹脂と同種で、より高分子量の樹脂、又はこれを主体とするもの、熱や紫外線により硬化する樹脂がある。
【0021】
【実施例】
以下に、実施例により具体的に説明するが、本発明はその要旨を逸脱しない限り、これによって何等限定されるものではない。なお、以下の実施例、参考例及び比較例で得られた成形品の物性は、次のようにして測定した。
【0022】
光線透過率: 成形品(参考例1〜7又は比較例1〜4では4mm厚円盤;実施例8〜12では3mm厚プレート)を試料とし、日立製作所(株)製 日立自記分光光度計U−3400を使用して測定した。
【0023】
ヘイズ: 成形品(参考例1〜7又は比較例1〜4では4mm厚円盤;実施例8〜12では3mm厚板状成形体)を試料とし、ヘイズメーター(スガ試験機株式会社、商品名HGM−2DP)を使用して測定した。
【0024】
アイゾッド衝撃強度:
ASTM D256に従って3.2mm厚試験片のノッチありアイゾッド衝撃強度を測定した。
【0025】
実施例、参考例又は比較例で使用した原材料及びその略号は、次のとおりである。
透明熱可塑性樹脂:
(1)PC ポリカーボネート(三菱エンジニアリングプラスチックス(株)商品、ユーピロンS−3000F、粘度平均分子量21,000。)
(2)PS ポリスチレン(三菱化学(株)製、商品名ダイヤレックスHH−102。)
(3)ポリカーボネート樹脂シート(三菱エンジニアリングプラスチックス(株)商品、ユーピロンシートCFI−1。シート中の樹脂の粘度平均分子量:28000。)
【0026】
熱線遮蔽性無機化合物:
(4)ATO アンチモンドープ酸化錫微粒子(平均一次粒子径0.01μm以下、触媒化成工業(株)商品、ELCOM TL30。)
(5)SZO アンチモン酸亜鉛微粒子(平均一次粒子径0.02μm。)
(6)ITO 錫ドープ酸化インジウム微粒子(平均一次粒子径0.1μm以下。)
【0027】
分散剤:
(7)SMG ステアリン酸モノグリセリド
(8)PDS ペンタエリスリトールジステアレート
(9)SA ステアリン酸
(10)PDEH フタル酸ジエチルへキシル
(11)ZS ステアリン酸亜鉛
【0028】
参考例1〜7及び比較例1〜4
樹脂組成物
ポリカーボネート100重量部に対して、ATO又はアンチモン酸亜鉛微粒子及び表−1記載の分散剤を、表−1記載の割合で配合し、タンブラーで10分から60分混合を行い、単軸押出機(田辺プラスチック株式会社製、商品名VS−40)によりバレル温度280℃で混練しペレット化した。
【0029】
成形品
a) アイゾッド衝撃試験片
上記樹脂組成物を射出成形し、3.2mm厚試験片を調製した。
b) 光線透過率及びヘイズ測定用試験片
片面にシリコン系熱硬化型ハードコート層を施した、厚み0.5mmのポリカーボネート樹脂シート(商品名:ユーピロンシートCFI−1)2枚を、いずれもハードコート層が成形品の外表面となるように、直径100mm、厚み4mmの円盤状金型内に装着し、両シート間に溶融した上記樹脂組成物をサイドゲートから射出充填し、積層一体成形を実施し、4mm厚円盤を調製した。
これらの試験片を用いて、物性測定を行った結果を、表−1に示す。
【0030】
〔実施例8〜12〕
ポリカーボネート100重量部に対して、ITO及び表−1記載の分散剤を、表−1記載の割合で配合し、単軸押出機(田辺プラスチック株式会社製、商品名VS−40)によりバレル温度280℃で混練しペレット化した。
得られたペレットを射出成形し、厚み3mmの板状成形体及びアイゾッド衝撃試験用の3.2mmの試験片を得た。これらの試験片を用いて、物性測定を行った結果を表−1に示す。
【0031】
〔比較例5〕
実施例8において、分散剤を用いない以外は、実施例8同様にしてペレット化を行い、同様に射出成形し、厚み3mmの板状成形体及びアイゾッド衝撃試験用の3.2mmの試験片を得た。物性測定結果を表−1に示す。
【0032】
〔比較例6〕
実施例9において、分散剤として、ステアリン酸モノグリセリドの代わりにステアリン酸亜鉛を用いる以外は、実施例9同様にしてペレット化を行い、同様に射出成形し、厚み3mmの板状成形体及びアイゾッド衝撃試験用の3.2mmの試験片を得た。物性測定結果を表−1に示す。
【0035】
【表1】

Figure 0004191347
【0036】
【発明の効果】
本発明の透明熱可塑性樹脂組成物は、透明熱可塑性樹脂に熱線遮蔽性無機化合物微粒子及び特定の分散剤を特定割合で配合したので、可視光には透過性で選択的に赤外線を遮蔽する機能を有し、ヘイズが小さく、透明性、機械強度に優れ、一般窓、自動車のガラス部品等の熱線遮蔽性グレージング材、赤外線カットフィルター等の光学材、農業用フィルム等、多くの用途に好適な、透明樹脂組成物を提供する。[0001]
BACKGROUND OF THE INVENTION
The present invention has a function of selectively blocking infrared rays by being transparent to visible light, excellent in transparency, mechanical strength, durability, heat ray-shielding glazing materials such as general windows and glass parts of automobiles, infrared rays The present invention relates to a transparent thermoplastic resin composition suitable for many uses such as optical materials such as cut filters and agricultural films, and a heat ray shielding glazing material using the same.
[0002]
[Prior art]
Known materials that are transparent to visible light and shield infrared rays include metal oxides such as tin oxide and indium oxide, organic dyes such as phthalocyanine and organic metal complex salts such as dithiol. However, organic dyes and organometallic complex salts have low visible light transmittance, have a deep coloring from dark brown to dark blue, and are not satisfactory in terms of durability. On the other hand, metal oxides such as tin oxide and indium oxide have high visible light transmittance and excellent durability, but they are insoluble particles in solvents, resins, etc., so they aggregate even if the primary particles are fine In the case of being dispersed by melting and kneading in a transparent resin, as shown in JP-A-2-136230, the transmitted light in the visible region is scattered or diffused and haze increases. There was a problem that quality such as mechanical strength also deteriorated. For this reason, use as thin films, such as a film in a laminated body and a coating layer, is most, and there were many restrictions on the usage as a molded object.
[0003]
[Problems to be solved by the invention]
The present invention provides a transparent thermoplastic resin composition having little diffusion and scattering of transmitted light in the visible region, excellent mechanical strength, and heat ray shielding performance.
[0004]
[Means for Solving the Problems]
As a result of intensive studies to solve such problems, the present inventors have found that when heat ray shielding inorganic compound is kneaded and dispersed in a molten state of a transparent thermoplastic resin, heat ray shielding inorganic compound fine particles and a specific dispersant are used. It was found that this combination is effective not only for preventing the haze and mechanical strength of the molded body from being deteriorated, but also surprisingly improving the heat ray shielding properties.
[0005]
That is, in the present invention, 100 parts by weight of an aromatic polycarbonate resin, 0.001 to 0.2 parts by weight of heat ray shielding inorganic compound tin-doped indium oxide fine particles and a dispersant represented by the following formula (1) are added to the resin. And a transparent thermoplastic resin composition characterized in that the content of the dispersant satisfies the following relational expression (2) and a heat ray shielding glazing material using the same.
(RCOO) mX (1)
(In the formula, R is a saturated aliphatic hydrocarbon group having 7 to 30 carbon atoms, m is an integer of 1 to 4, and X is a hydrogen atom or an alcoholic hydroxyl group having 2 to 30 carbon atoms. A polyhydric alcohol residue, and m R may be the same or different.)
0.25 ≦ A / B ≦ 100 (2)
(In the formula, A is the content (parts by weight) of the dispersant, and B is the content (parts by weight) of the heat ray shielding inorganic compound.)
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Transparent thermoplastic resins to be used in the transparent thermoplastic resin present invention is an aromatic polycarbonate resin, the light transmittance in the visible region with a high transparent thermoplastic resin, for example, when the 3mm thick plate-shaped molded body The visible light transmittance described in JIS R 3106 is 50% or more, and the haze described in JIS K7105 is 30% or less . Po Li carbonate arbitrariness preferred because of its excellent mechanical strength. Specific examples of the aromatic polycarbonate resin include divalent phenols exemplified by 2,2-bis (4-hydroxyphenyl) propane and 2,2-bis (3,5-dibromo-4-hydroxyphenyl) propane. A polymer obtained by a known method such as interfacial polymerization, melt polymerization or solid phase polymerization can be exemplified from one or more kinds of system compounds and a carbonate precursor exemplified by phosgene or diphenyl carbonate. In particular, in the present invention, an aromatic polycarbonate having a viscosity average molecular weight of 10,000 to 40,000 converted from the viscosity of a methylene chloride solution at 25 ° C. is particularly preferable from the viewpoint of mechanical strength and transparency. Further, the terminal structure of the aromatic polycarbonate can be arbitrarily selected, and the amount of phenolic OH groups present at unsealed terminals is preferably in the range of 50 to 0.1 mol% of all terminals, and the terminals are other The structure may be modified or may have a branched structure. Moreover, you may mix | blend other resin with this aromatic polycarbonate in the range which does not impair transparency. Examples of resins that can be blended include polyester resins such as polyethylene terephthalate resin, polyarylate resin, polycaprolactone, and polystyrene resins. The shape of the transparent thermoplastic resin is arbitrary, such as pellets, granules, and powders, but is preferably in the form of powder from the viewpoint of mixing with the heat ray-shielding inorganic compound.
[0007]
Heat ray shielding inorganic compound As the heat ray shielding inorganic compound used in the present invention, a metal oxide semiconductor is selected in that the transparency is not impaired. Among these, tin-doped indium oxide fine particles (ITO) . Also, in the case of ITO, it is preferred that the tin atom is 30 wt% or less with respect to ITO, and more preferably 1 to 20 wt%.
[0008]
The heat ray shielding inorganic compound is preferably a fine powder having an average primary particle size of 1 μm or less, preferably 0.2 μm or less, more preferably 0.1 μm or less. When the average primary particle diameter is larger than 1 μm, the haze of the molded body increases, which is not preferable. The heat ray-shielding inorganic compound can be subjected to a known surface treatment such as silane coupling agent treatment or silicic acid coating. Further, the heat ray shielding inorganic compound is 100 parts by weight of the transparent resin, 0. 001 to 0.2 parts by weight. If it is less than 0.001 part by weight, the heat ray shielding effect is low, and if it is 0.2 part by weight or more, haze deteriorates, and even if a dispersant is added, sufficient transparency cannot be obtained.
[0009]
Dispersant The dispersant used in the present invention is represented by the following formula (1).
(RCOO) mX (1)
In the above formula (1), R is a saturated aliphatic hydrocarbon group having 7 to 30 carbon atoms, preferably 12 to 30 carbon atoms, m is an integer of 1 to 4, and X is a hydrogen atom or an alcoholic hydroxyl group. A polyhydric alcohol residue having 2 to 30 carbon atoms, preferably a polyhydric alcohol residue having 2 to 30 carbon atoms having an alcoholic hydroxyl group, more preferably 3 to 10 carbon atoms having an alcoholic hydroxyl group. And the m Rs may be the same or different.
[0010]
The properties of the dispersant should be in a solid state at room temperature, and may have properties such as powder and granules, but kneading operability with a transparent resin and a heat ray-shielding inorganic compound, haze reduction In consideration of the effect, the powder is preferable. The liquid dispersant is not preferable because when the resin and the heat ray shielding inorganic compound fine particles are mixed, it is difficult to uniformly disperse the resin in the resin and the dispersion of the heat ray shielding inorganic compound into the resin is inhibited.
Specific examples thereof include carboxylic acids such as stearic acid and behenic acid; glycerol fatty acid esters such as glycerol monostearate and glycerol distearate; pentaerythritol monostearate, pentaerythritol distearate, pentaerythritol tristearate. And the like, and sorbitan fatty acid esters such as sorbitan monostearate. Of these, glycerin monostearate is preferred.
[0011]
The content (A) of these dispersants is determined by the content (B) of the heat ray-shielding inorganic compound in the transparent thermoplastic resin composition, that is, selected from the range represented by the following formula (2). .
0.25 ≦ A / B ≦ 100 (2)
In the above formula (2), A is the content (parts by weight) of the dispersant, and B is the content (parts by weight) of the heat ray shielding inorganic compound. Further, all parts by weight are values relative to 100 parts by weight of the transparent thermoplastic resin. That is, A / B is 0.25 or more, preferably 0.5 or more. If it is less than 0.25, the effect of a dispersing agent is not enough, the haze of a molded object increases, and the improvement effect of infrared shielding performance is also slight. On the other hand, when A / B exceeds 100, the haze improvement and the infrared shielding performance improvement effect are obtained, but the content of the dispersant becomes excessive with respect to the resin component amount, which adversely affects the quality such as mechanical strength.
[0012]
Transparent thermoplastic resin composition The method of kneading the heat ray-shielding inorganic compound and the dispersing agent under the melting conditions of the transparent thermoplastic resin is any method commonly used when kneading the powder into the molten resin. Can be done by the method. For example, after mixing all components with a super mixer, tumbler, etc., or after premixing a heat ray-shielding inorganic compound and a dispersant with a transparent thermoplastic resin, a single screw extruder, a twin screw extruder, The method of kneading | mixing using a roll kneader etc. is mentioned. Moreover, a transparent thermoplastic resin, a heat ray absorbing inorganic compound, etc. can be added to the same extruder from different places and kneaded.
[0013]
In the present invention, the transparent thermoplastic resin composition may be a mixture of other organic and inorganic infrared absorbers such as phthalocyanine-based, naphthalocyanine-based, copper sulfide, copper ions, and other conventional additives. it can. For example, azo dyes, cyanine dyes, quinoline dyes, perylene dyes, carbon black, and other dyes and pigments that are usually used for coloring thermoplastic resins to give an arbitrary color tone, hindered phenols , Phosphorus stabilizers, release agents, hydroxybenzophenone, salicylic acid, HALS, triazole, triazine, UV absorbers, coupling agents, antistatic agents, etc. It may be a thing. Further, a filler such as glass may be blended as long as the transparency is not significantly impaired.
[0014]
Heat ray-shielding glazing material The transparent thermoplastic resin composition of the present invention is excellent in transparency and heat ray-shielding property, and its molded product is a heat ray-shielding glazing material for glass parts of vehicles such as general windows and automobiles. Useful as. The heat ray shielding glazing material of the present invention can take a plate shape, a film shape, or any other shape. The molding method is not particularly limited, and may be extrusion molding, injection molding, blow molding, press molding, or the like.
[0015]
The heat ray shielding glazing material of the present invention can be a composite of a molded product of the composition of the present invention and another material. In that case, the molded body of the composition of the present invention can be used as a substrate bearing mechanical strength as a structural material in addition to being used as a surface layer or a laminate layer by being laminated with another transparent substrate. Specifically, when the heat ray shielding glazing material of the present invention has a surface layer or a laminate layer formed of a material other than the composition of the present invention on both sides or one side of the surface, the surface layer or laminate The layer may be a functional layer having functions such as hard coating, ultraviolet absorption, anti-fogging, antistatic, antireflection, and heat ray shielding. For the formation of such a surface layer or laminate layer, a coating material other than the composition of the present invention may be applied directly or via a primer layer to both surfaces or one surface of the molded body of the composition of the present invention. In addition, a film or sheet of a material other than the composition of the present invention may be laminated and integrated.
[0016]
In the present invention, the method for laminating and integrating the film or sheet with or without the functional layer is not particularly limited, but as a preferred example, the film or sheet is previously placed on one side or both sides of the inner wall surface of the mold. The sheet is mounted, and the remaining mold space is melt injection filled with the transparent thermoplastic resin composition of the present invention, thereby laminating and integrating the film or sheet, with or without a functional layer, heat ray shielding Glazing material can be obtained.
[0017]
According to said method, the film or sheet | seat with which the inner wall surface of a metal mold | die is mounted | worn is the thing whose thickness is 100-1000 micrometers normally, Preferably it is 200-700 micrometers. The material of the film or sheet may be made of any resin. However, in consideration of the fact that the film or sheet is laminated and integrated with the molded body of the composition of the present invention by melt injection filling, the film or sheet is usually a book. It is preferable to select the same resin as that constituting the transparent thermoplastic resin composition from the viewpoints of heat-fusibility and optical uniformity. Therefore, as with the transparent thermoplastic resin composition, an aromatic polycarbonate is used. Or it is preferable that it is the composition. In addition, the film or sheet may be provided with at least one functional layer selected from the group consisting of hard coating, anti-fogging, antistatic, antireflection, and heat ray blocking on one side, if desired.
[0018]
In order to form the functional layer on the resin film or sheet, various conventionally known methods are used. For example, to form a hard coat layer, a primer layer is provided as desired, and then a hard coat agent such as epoxy, acrylic, amino resin, polysiloxane, or colloidal silica is applied, and heat or ultraviolet rays are applied. A method of curing by the means described above can be used. For the formation of the antifogging layer, a method of applying an antifogging coating usually containing a water-soluble or hydrophilic resin and a surfactant as essential components and curing can be used. In addition, the method of providing an antistatic layer, an antireflection layer, a heat ray blocking layer, etc. is also applied and cured by applying a paint that gives these functions, or a thin film layer having these functions by a method such as a vacuum evaporation method, The method of forming is mentioned. Further, these functional layers may be combined to have two or more functions at the same time.
[0019]
Furthermore, it is also possible to form a design-imparting layer in addition to these functional layers or by a method such as preliminarily applying a cosmetic coating treatment to the functional layers to impart design properties. The formation of the designable layer on the sheet is not limited to the front surface side and the back surface side of the sheet, and can be formed at any location according to the application and purpose.
[0020]
In the present invention, a primer coat may be applied to the thermoplastic resin film or sheet for the purpose of promoting thermal fusion with the resin composition at the time of melt injection filling and further ensuring lamination integration. As the resin used for the primer coating, a resin having a higher melt viscosity than the injection resin and adheres well to the film or sheet is selected. For example, there are resins having the same type as the resin for injection molding and having a higher molecular weight, or those mainly composed of this, and resins curable by heat or ultraviolet rays.
[0021]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these examples without departing from the gist thereof. In addition, the physical property of the molded article obtained by the following example , reference example, and comparative example was measured as follows.
[0022]
Light transmittance: Using a molded product (4 mm thick disk in Reference Examples 1 to 7 or Comparative Examples 1 to 4; 3 mm thick plate in Examples 8 to 12 ) as a sample, Hitachi Auto spectrophotometer U- manufactured by Hitachi, Ltd. Measured using 3400.
[0023]
Haze: Using a molded product (4 mm thick disk in Reference Examples 1 to 7 or Comparative Examples 1 to 4; 3 mm thick plate-shaped product in Examples 8 to 12 ) as a sample, a haze meter (Suga Test Instruments Co., Ltd., trade name HGM) -2DP).
[0024]
Izod impact strength:
The notched Izod impact strength of a 3.2 mm thick test piece was measured according to ASTM D256.
[0025]
The raw materials and their abbreviations used in Examples , Reference Examples or Comparative Examples are as follows.
Transparent thermoplastic resin:
(1) PC polycarbonate (Mitsubishi Engineering Plastics Co., Ltd., Iupilon S-3000F, viscosity average molecular weight 21,000)
(2) PS polystyrene (Made by Mitsubishi Chemical Co., Ltd., trade name: Dialex HH-102)
(3) Polycarbonate resin sheet (Mitsubishi Engineering Plastics Co., Ltd., Iupilon sheet CFI-1; viscosity average molecular weight of resin in the sheet: 28000)
[0026]
Heat ray shielding inorganic compound:
(4) ATO antimony-doped tin oxide fine particles (average primary particle diameter of 0.01 μm or less, Catalyst Chemical Industries, Ltd., ELCOM TL30)
(5) SZO zinc antimonate fine particles (average primary particle size 0.02 μm)
(6) ITO tin-doped indium oxide fine particles (average primary particle size of 0.1 μm or less)
[0027]
Dispersant:
(7) SMG stearic acid monoglyceride (8) PDS pentaerythritol distearate (9) SA stearic acid (10) PDEH diethyl hexyl phthalate (11) ZS zinc stearate
Reference Examples 1-7 and Comparative Examples 1-4
ATO or zinc antimonate fine particles and the dispersant described in Table-1 are blended in the proportions described in Table-1 with respect to 100 parts by weight of the resin composition polycarbonate, mixed for 10 to 60 minutes with a tumbler, and uniaxial extrusion The mixture was kneaded at a barrel temperature of 280 ° C. by a machine (trade name VS-40, manufactured by Tanabe Plastics Co., Ltd.) and pelletized.
[0029]
Molded Article a) Izod Impact Test Piece The resin composition was injection molded to prepare a 3.2 mm thickness test piece.
b) Hardened two polycarbonate resin sheets (product name: Iupilon sheet CFI-1) with a thickness of 0.5 mm, each of which is provided with a silicon-based thermosetting hard coat layer on one side of a test piece for measuring light transmittance and haze. Mounted in a disk-shaped mold having a diameter of 100 mm and a thickness of 4 mm so that the coat layer becomes the outer surface of the molded product, the resin composition melted between both sheets is injected and filled from the side gate, and laminated integral molding is performed. A 4 mm thick disk was prepared.
Table 1 shows the results of measuring physical properties using these test pieces.
[0030]
[Examples 8 to 12]
With respect to 100 parts by weight of polycarbonate, ITO and the dispersant described in Table-1 are blended in the ratios described in Table-1, and barrel temperature 280 is determined by a single screw extruder (trade name VS-40, manufactured by Tanabe Plastics Co., Ltd.). It knead | mixed at 0 degreeC and pelletized.
The obtained pellets were injection-molded to obtain a plate-like molded product having a thickness of 3 mm and a 3.2 mm test piece for an Izod impact test. Table 1 shows the results of measuring physical properties using these test pieces.
[0031]
[Comparative Example 5]
In Example 8, except that the dispersant is not used, pelletization is performed in the same manner as in Example 8, injection molding is performed in the same manner, and a 3 mm thick plate-shaped body and a 3.2 mm test piece for an Izod impact test are obtained. Obtained. The physical properties measurement results are shown in Table-1.
[0032]
[Comparative Example 6]
In Example 9, except that zinc stearate is used instead of stearic acid monoglyceride as a dispersing agent, pelletization is performed in the same manner as in Example 9, injection molding is performed in the same manner, a plate-like molded body having a thickness of 3 mm, and Izod impact A test piece of 3.2 mm for the test was obtained. The physical properties measurement results are shown in Table-1.
[0035]
[Table 1]
Figure 0004191347
[0036]
【The invention's effect】
Since the transparent thermoplastic resin composition of the present invention is blended with transparent thermoplastic resin in a specific proportion of heat ray-shielding inorganic compound fine particles and a specific dispersant, it has a function of being transparent to visible light and selectively blocking infrared rays. Suitable for many applications such as general windows, heat ray shielding glazing materials such as glass parts for automobiles, optical materials such as infrared cut filters, agricultural films, etc. A transparent resin composition is provided.

Claims (3)

芳香族ポリカーボネート樹脂100重量部に、熱線遮蔽性無機化合物錫ドープ酸化インジウム微粒子0.001〜0.2重量部及び下記式(1)で表される分散剤を、該樹脂の溶融条件下で混練し、かつ該分散剤の含有量が下記関係式(2)を満たすことを特徴とする透明熱可塑性樹脂組成物。
(RCOO)mX (1)
(式中、Rは、炭素数7〜30の飽和脂肪族炭化水素基であり、mは、1〜4の整数であり、Xは、水素原子又はアルコール性水酸基を有する炭素数2〜30の多価アルコール残基であり、m個のRは、同一でも異なってもよい。)
0.25≦A/B≦100 (2)
(式中、Aは、該分散剤の含有量(重量部)であり、Bは、熱線遮蔽性無機化合物の含有量(重量部)である。)
To 100 parts by weight of an aromatic polycarbonate resin, 0.001 to 0.2 parts by weight of heat-shielding inorganic compound tin-doped indium oxide fine particles and a dispersant represented by the following formula (1) are kneaded under the melting conditions of the resin. And the content of the dispersant satisfies the following relational expression (2).
(RCOO) mX (1)
(In the formula, R is a saturated aliphatic hydrocarbon group having 7 to 30 carbon atoms, m is an integer of 1 to 4, and X is a hydrogen atom or an alcoholic hydroxyl group having 2 to 30 carbon atoms. A polyhydric alcohol residue, and m R may be the same or different.)
0.25 ≦ A / B ≦ 100 (2)
(In the formula, A is the content (parts by weight) of the dispersant, and B is the content (parts by weight) of the heat ray shielding inorganic compound.)
請求項1に記載の透明熱可塑性樹脂組成物の成形体であることを特徴とする熱線遮蔽性グレージング材。A heat ray shielding glazing material, which is a molded product of the transparent thermoplastic resin composition according to claim 1 . 金型の内壁面の片側又は両側に、予めフィルム又はシートを装着し、残余の金型空間に請求項1に記載の透明熱可塑性樹脂組成物を溶融射出充填することにより、該フィルム又はシートと積層一体化したことを特徴とする熱線遮蔽性グレージング材。On one or both sides of the inner wall surface of the mold, pre-film or sheet attached by melt injection filling a transparent thermoplastic resin composition according to claim 1 to the remainder of the mold space, and the film or sheet A heat ray shielding glazing material characterized by being laminated and integrated.
JP35613499A 1998-12-16 1999-12-15 Transparent thermoplastic resin composition and heat ray shielding glazing material using the same Expired - Fee Related JP4191347B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35613499A JP4191347B2 (en) 1998-12-16 1999-12-15 Transparent thermoplastic resin composition and heat ray shielding glazing material using the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-357191 1998-12-16
JP35719198 1998-12-16
JP35613499A JP4191347B2 (en) 1998-12-16 1999-12-15 Transparent thermoplastic resin composition and heat ray shielding glazing material using the same

Publications (2)

Publication Number Publication Date
JP2000234066A JP2000234066A (en) 2000-08-29
JP4191347B2 true JP4191347B2 (en) 2008-12-03

Family

ID=26580381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35613499A Expired - Fee Related JP4191347B2 (en) 1998-12-16 1999-12-15 Transparent thermoplastic resin composition and heat ray shielding glazing material using the same

Country Status (1)

Country Link
JP (1) JP4191347B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005344006A (en) * 2004-06-03 2005-12-15 Teijin Chem Ltd Polycarbonate resin composition
JP2006036972A (en) * 2004-07-28 2006-02-09 Mitsubishi Engineering Plastics Corp Laminated material made from heat ray-shielding synthetic resin and method for producing the same
JP2006077075A (en) * 2004-09-08 2006-03-23 Sumitomo Metal Mining Co Ltd Resin composition, transparent molded resin article for ultraviolet-shielding and transparent resin laminate for ultraviolet-shielding
JP2006199850A (en) * 2005-01-21 2006-08-03 Sumitomo Metal Mining Co Ltd Heat ray-shading component-containing master batch, heat ray-shading transparent resin-molded article and heat ray-shading transparent resin laminate
WO2006103906A1 (en) * 2005-03-28 2006-10-05 Mitsubishi Engineering-Plastics Corporation Polycarbonate resin composition and hot radiation shielding molded product
JP2006307172A (en) * 2005-03-28 2006-11-09 Mitsubishi Engineering Plastics Corp Polycarbonate resin composition and molded article having heat radiation-shielding ability
JP5076336B2 (en) * 2005-03-28 2012-11-21 三菱エンジニアリングプラスチックス株式会社 Molded body with heat ray shielding ability
JP4918269B2 (en) * 2005-04-13 2012-04-18 大日本プラスチックス株式会社 Polycarbonate resin transparent plate
US8900693B2 (en) 2005-07-13 2014-12-02 Sabic Global Technologies B.V. Polycarbonate compositions having infrared absorbance, method of manufacture, and articles prepared therefrom
JP5102969B2 (en) 2006-04-14 2012-12-19 出光興産株式会社 Polycarbonate resin composition and molded plate thereof
US7713614B2 (en) * 2006-09-19 2010-05-11 Kuraray Co., Ltd. Resin composition and multilayer structure
ES2498928T3 (en) * 2010-10-25 2014-09-26 Bayer Intellectual Property Gmbh Multilayer plastic structure with low power transmission
JP6874816B1 (en) 2019-11-06 2021-05-19 東洋インキScホールディングス株式会社 Metal oxide dispersions and moldings

Also Published As

Publication number Publication date
JP2000234066A (en) 2000-08-29

Similar Documents

Publication Publication Date Title
JP4349779B2 (en) Heat ray shielding transparent resin molding and heat ray shielding transparent laminate
AU2007360455B2 (en) Masterbatch with high heat resistance, heat-ray-shielding transparent molded resin, and heat-ray-shielding transparent layered product
US9605129B2 (en) Polymer composition having heat-absorbing properties and improved colour properties
KR101967018B1 (en) Polycarbonate resin composition containing dispersed composite-tungsten-oxide microparticles and radiated-heat-blocking molded body and radiated-heat-blocking laminate using said composition
CN103003343B (en) There is the polymer composition of endothermic nature and high stability
KR101848826B1 (en) Polymer composition having heat-absorbent properties and improved dyeing properties
US7238418B2 (en) Heat radiation shielding component dispersion, process for its preparation and heat radiation shielding film forming coating liquid, heat radiation shielding film and heat radiation shielding resin form which are obtained using the dispersion
JP4191347B2 (en) Transparent thermoplastic resin composition and heat ray shielding glazing material using the same
JP4632094B2 (en) Manufacturing method of high heat-resistant masterbatch, heat ray shielding transparent resin molding, and heat ray shielding transparent laminate
JP5963210B2 (en) Polymer composition having heat absorption properties and high weatherability stability
CN102791786B (en) There is the polymer composition of heat absorptivity and high stability
JP2012180533A (en) Molded body having heat-ray shieldability
JP5257626B2 (en) High heat resistant masterbatch, heat ray shielding transparent resin molding, and heat ray shielding transparent laminate
JP5076336B2 (en) Molded body with heat ray shielding ability
JP2006077075A (en) Resin composition, transparent molded resin article for ultraviolet-shielding and transparent resin laminate for ultraviolet-shielding
JP2006199850A (en) Heat ray-shading component-containing master batch, heat ray-shading transparent resin-molded article and heat ray-shading transparent resin laminate
JP2012082326A (en) Master batch containing high heat-resistant heat ray shielding component, production method of the master batch, high heat-resistant heat ray shielding transparent resin molded article, and high heat-resistant heat ray shielding transparent laminate
JP2006307172A (en) Polycarbonate resin composition and molded article having heat radiation-shielding ability
JP3866869B2 (en) Polycarbonate resin composition and molded body thereof
JP2000143842A (en) Transparent, heat radiation-screening polycarbonate resin molded article
JP5321916B2 (en) Heat ray shielding polyester film and heat ray shielding polyester film laminate
JP5152131B2 (en) Method for producing hexaboride fine particle dispersion, heat ray shielding molded body and production method thereof, heat ray shielding component-containing masterbatch and production method thereof, and heat ray shielding laminate
JP5061665B2 (en) Masterbatch, method for producing the same, molded body using the masterbatch, and laminate using the molded body
JP2000351904A (en) Heat ray-shielding glazing material and holding thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050502

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20050502

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4191347

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees