JP4189950B2 - Rapid detection of toxic substances - Google Patents

Rapid detection of toxic substances Download PDF

Info

Publication number
JP4189950B2
JP4189950B2 JP2002229453A JP2002229453A JP4189950B2 JP 4189950 B2 JP4189950 B2 JP 4189950B2 JP 2002229453 A JP2002229453 A JP 2002229453A JP 2002229453 A JP2002229453 A JP 2002229453A JP 4189950 B2 JP4189950 B2 JP 4189950B2
Authority
JP
Japan
Prior art keywords
enterotoxin
antibody
magnetic beads
food
staphylococcus aureus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002229453A
Other languages
Japanese (ja)
Other versions
JP2004069504A (en
Inventor
敬久 宮本
英明 上門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Co Ltd
Meiji Dairies Corp
Original Assignee
Meiji Co Ltd
Meiji Dairies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Co Ltd, Meiji Dairies Corp filed Critical Meiji Co Ltd
Priority to JP2002229453A priority Critical patent/JP4189950B2/en
Publication of JP2004069504A publication Critical patent/JP2004069504A/en
Application granted granted Critical
Publication of JP4189950B2 publication Critical patent/JP4189950B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、食品中の有毒物質の検出方法に関するもので、詳しくは、微生物等による汚染の被害を受けやすい乳等に含まれる有毒な微量成分を簡便かつ迅速に分析する方法を提供するものである。
【0002】
【従来の技術】
食品製造においては、食品の安全を確保することを第一に考えなくてはならない。しかしながら、食品は、原料または製造中に様々な有害物質に汚染される可能性がある。有害物質としては、農薬や内分泌かく乱物質等の化学物質や食中毒をおこす微生物等である。微生物による食中毒には、食品に付着して増えた細菌を、食品と一緒に食べることにより発病する感染型の細菌性食中毒と食品中で大量に増えた細菌が毒素を作り、この毒素を食品と一緒に食べることにより発病する毒素型の細菌性食中毒がある。前者では、サルモネラ属菌や腸炎ビブリオ菌があり、後者では黄色ブドウ球菌(Staphylococcus aureus)による食中毒の発生件数が多い。
【0003】
黄色ブドウ球菌は、自然界に広く分布し、ヒトや動物の皮膚、粘膜、腸管等にも定着する微生物である。その一部にエンテロトキシン(腸管毒)を産生するものがある。エンテロトキシンは、分子量27,000〜34,000の単純たん白質で、抗原特異性により、一般に、A〜Eの5種類の毒素型に分類されるが、近年、F〜K型が追加された。このエンテロトキシンが高度の下痢や食中毒等の原因となりうるため、黄色ブドウ球菌の検出や感染検査法に、黄色ブドウ球菌が有するエンテロトキシン遺伝子に着目した検出法(特開平03-49700、特開平05-317098)や、エンテロトキシン抗体を用いた酵素免疫学的測定法(特開平06-88824)などがある。
【0004】
黄色ブドウ球菌による食中毒が発生するためには、まず、食品が汚染され、汚染食品内でエンテロトキシンが産生する菌量までに増殖しなければならない(菌数が少ない時には、エンテロトキシンは産生しない)。たとえ食品が黄色ブドウ球菌に汚染されても、菌自体は、70℃1〜2分間程度の加熱処理でほぼ完全に死滅するため、食品中の黄色ブドウ球菌を増やさないよう留意し、食品に十分の加熱を施すことで食中毒を予防することが可能である。
【0005】
これに対し、エンテロトキシンは、100℃、40分間の加熱でも失活せず、胃酸や生体のタンパク分解酵素でも破壊されないことなどから、いったんエンテロトキシンが産生されたら、黄色ブドウ球菌を死滅させても食中毒を予防することはできない。そこで、食品の製造工程管理や製品の品質管理には、食品に対する黄色ブドウ球菌の汚染・増殖防止と同時に、産生されうる毒素にも十分配慮する必要がある。
【0006】
乳および乳製品等は、食品の中でも最も微生物の汚染を受けやすく、微生物の生育に好適な食品のひとつとして知られている。これらの食品から、エンテロトキシンを検出する方法として、厚生労働省から通知された方法(「乳等からのエンテロトキシン検査方法」平成14年2月14日、食監発第0214002号)がある。これはトリクロロ酢酸(TCA)により抽出・濃縮を行う方法である(以下TCA法)。TCA法は、検体中のエンテロトキシンを高感度に検出できる一方で、操作が複雑で回収率や精度にばらつきが生じやすいことなどから、多検体を効率的に処理するのが困難である。また、サンドイッチ法のELISAや逆受身ラテックス凝集反応を利用した定性・定量用の市販キット(VIDAS Staph Enterotoxin(bioMerieux社):Transia Plate Staphylococcal Enterotoxins)(MERCK社);RIDASCREEN SET A、B、C、D、E(Biopharm社))も知られているが、食品中に微量含まれる低濃度のエンテロトキシンの検出は不可能であることから、食品の総合衛生管理製造工程に組込み可能といえる迅速かつ高感度な毒素検出法は未だなかった。
【0007】
【発明が解決しようとする課題】
本発明は、乳等の食品中に含まれる有毒な微量成分、特に黄色ブドウ球菌エンテロトキシンの簡易・迅速な抽出・濃縮法と、その高感度かつ高精度な定性、定量分析方法を提供することを課題とする。
【0008】
【課題を解決するための手段】
上記目的を達成するのに各方面から検討した結果、本発明者らは、黄色ブドウ球菌エンテロトキシンの抽出・濃縮に免疫磁気ビーズを採用し、検出にフローサイトメーターを用いることで、既述の問題点を解決し、簡便な操作法で、迅速かつ高感度に黄色ブドウ球菌エンテロトキシンを定性、定量することができることをはじめて見出し、この知見に基づき本発明を完成した。
【0009】
すなわち、本発明は、
(1)有毒物質に対する抗体を固定化した磁気ビーズを用いることを特徴とする食品中の有毒物質定性および/または定量分析方法、
(2)有毒物質を蛍光ラベル化することを特徴とする(1)の定性および/または定量分析方法、
(3)定性および/または定量がフローサイトメーターによって行われることを特徴とする(1)又は(2)の定性および/または定量分析方法、
(4)有毒物質が菌体外毒素である(1)〜(3)のいずれか1つの定性および/または定量分析方法、
(5)菌体外毒素が黄色ブドウ球菌エンテロトキシンである(4)の定性および/または定量分析方法、
(6)食品が乳および/または乳製品である(1)〜(5)の定性および/または定量分析方法、
からなる。
【0010】
【発明の実施の形態】
以下、本発明について詳述する。
検体中の有毒物質を捕捉するには、モノクローナル抗体あるいはポリクローナル抗体を固定化した磁気ビーズを使用する。本発明に有用な磁気ビーズは、例えばDynabeads M-280 Tosylactivated(粒径2.8μm ± 0.2μm,2×109 個/ ml,Dynal社,オスロ,ノルウェー)が市販されている。捕捉する有毒物質がエンテロトキシンの場合、ここで用いる抗体としては、エンテロトキシンを認識できるものであれば、いずれも使用することができ、具体的には、羊抗エンテロトキシン抗体(1mg/ml PBS, Toxin Technology, Inc., Sarasota, FL, USA)、ウサギ抗エンテロトキシン抗体(1mg/ml PBS, Toxin Technology, Inc., Sarasota, FL, USA)なども使用が可能である
【0011】
上記磁気ビーズに抗エンテロトキシン抗体を公知の方法により固定化し、次いで、検体と混合する。尚、検体が固体等の場合は、水や緩衝液に検体を混合し、ホモジナイズしたものを検体とすればよい。検体中に標的のエンテロトキシンが存在していれば、エンテロトキシンは磁気ビーズに捕捉される。すなわち、磁気ビーズに抗体が固定化されているため、食品中に含まれるエンテロトキシンが低濃度に微量しか含まれない場合でも、混合容器中で検体と磁気ビーズを攪拌することにより確実に抗体によって捕捉される。攪拌を停止した後、混合容器の外側に磁石を近づけることにより磁気ビーズを容器の壁面に集めることができる。その後、検体を吸引等により廃棄することにより磁気ビーズのみを回収することができる。従って、遠心分離により磁気ビーズを集めることは必ずしも必要ではなく、大容量の検体から、磁気ビーズを容易に回収することができる。回収した磁気ビーズは、洗浄し、次いで、蛍光色素で標識する。蛍光色素には、Cy3、Cy5等、フローサイトメーターでの定性・定量分析が可能な物質があげられる。蛍光標識の方法は、最終的にエンテロトキシンを蛍光ラベル化できれば、特に限定されないが、本発明においては、エンテロトキシンに特異的に結合する蛍光標識化した抗体を用いることが好ましい。このようにして標識されたエンテロトキシンは、フローサイトメーターで定性・定量分析される。
【0012】
本発明は、最終的な定性・定量分析をフローサイトメーターで行うことから、複数の項目の試験にも可能である。具体的には、磁気ビーズ上の抗体を適宜変えることで、菌体外毒素に限らず、食品中の内分泌かく乱物質(いわゆる環境ホルモン)、残留農薬に加え、アレルギー物質のモニタリング、その他加工設備の洗浄度評価などにも使用することができる。
【0013】
本発明の検体には、特に食品が好ましい。中でも乳、乳製品に最も適しているが、これらに限らず、あらゆる飲食品の適用が可能である。ここでいう乳、乳製品とは、乳等省令で示される乳および乳製品は勿論、これらを主原料とする食品を含めたものである。また、検体が固体の場合には、公知の細菌検査法に従って、検体を水等で適宜ホモジナイズし、定性・定量分析し易い形態に予め調整しておくことが望ましい。
【0014】
【実施例】
以下、本発明を実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
【0015】
[実施例1]磁気ビーズへの抗体の固定化
磁気ビーズへの抗体固定化には、Dynabeads M-280 Tosylactivated(粒径2.8μm ± 0.2μm、2×109個/ml、Dynal社、オスロ、ノルウェー)0.5ml(1×109beads/ml)を用いた。抗体固定化は、磁気ビーズに添付の方法に沿って行った。即ち、0.1M Na-phosphate buffer(pH7.4)で2回洗浄し、0.1M Na-phosphate buffer(pH7.4)0.7mlに懸濁し、羊抗エンテロトキシンB抗体(1mg/ml、PBS、Toxin Technology)0.3mlを添加、1夜室温でゆっくり振とうした。磁石により上清を除去し(タンパク量測定:85μg/ml)、0.1%BSA含有PBS(pH7.4)1mlで2回洗浄した。次いで0.1%BSA含有0.2M Tris-HCl(pH8.5)1mlに懸濁して20℃、20時間放置してブロッキングし、0.1%BSA含有PBS(pH7.4)1mlで1回洗浄した。これを0.1%BSA含有PBS(pH7.4)1mlに懸濁し、抗体固定化磁気ビーズを得た(≒5×108beads/ml)。
【0016】
[実施例2]抗体固定化磁気ビーズを用いた毒素の検出
黄色ブドウ球菌エンテロトキシンB水溶液(100μg/ml, Toxin Technology, Inc., Sarasota, FL, USA)を0.05%Tween20含有PBSで希釈し、エンテロトキシン濃度0、0.01、0.1、1.0、10ng/mlの溶液各10mlを調製した。これに10μlの抗体固定化磁気ビーズ(5×108個/ml)を混合し、37℃でゆっくり1時間振とうして反応させた。磁気ビーズを磁石で集め、0.05%Tween20含有PBS1mlで2回洗浄した。洗浄後のビーズに200μlのウサギ抗エンテロトキシンB抗体(1mg/ml PBS, Toxin Technology, Inc., Sarasota, FL, USA)を添加して37℃でゆっくり1時間振とうして反応させた。この後、磁気ビーズを0.05%Tween20含有PBS1mlで2回洗浄し、洗浄後のビーズを200μlのCy5標識ヤギ抗ウサギIgG抗体溶液(1mg/ml, Chemicon International, Temecula, CA, USA)に懸濁して37℃で1時間反応させた。この溶液を混合し、50μlを950μlのPBS(孔径0.2μmのメンブランフィルターでろ過したもの)と混合してフローサイトメーター(optoflow社製Microcyte(オスロ,ノルウェー))による粒子数の測定を行った。
【0017】
黄色ブドウ球菌エンテロトキシンBのPBS溶液10mlから抗エンテロトキシンB抗体磁気ビーズを用いて同毒素を回収し、蛍光色素で標識して、フローサイトメーターで検出した結果を図1に示す。ビーズのみをフローサイトメーターで測定した結果、ビーズのピークは、夾雑微粒子とは明らかに区別される位置に検出された。毒素未添加の場合にも、非特異的な蛍光標識2次抗体の結合による蛍光が13%の磁気ビーズから検出されたが、蛍光強度は非常に弱いものであった。エンテロトキシンB濃度0.01ng/mlでは、未添加に比べて若干、蛍光性磁気ビーズ数は39%まで増加した。0.1ng/mlでは61%の磁気ビーズが蛍光性となり、その蛍光強度も明らかに強いものが含まれていた。1ng/mlでは、100%の磁気ビーズが蛍光性となり、すべての磁気ビーズが強い蛍光を発していた。即ち、本法を用いることにより0.01ng/mlの濃度でもエンテロトキシンを検出することは可能であった(図2)。一般的に黄色ブドウ球菌エンテロトキシンは乳製品中に1.0ng/ml含まれていれば、ヒトは嘔吐などの症状を示すとされている。そこで、本法の検出限界は、食品汚染をモニタリングするのに十分な感度といえる。
【0018】
[実施例3]生乳からのエンテロトキシンBの検出
生乳からの毒素の検出には、黄色ブドウ球菌エンテロトキシンBを所定の濃度添加・混合したもの各10mlを試料として用いた。これを、沸騰水中で2分間加熱後、急冷したものに抗体固定化磁気ビーズを上記と同様に添加し、検出を行った。この結果を図3に示す。本法を用いることにより0.01ng/mlの濃度でもエンテロトキシンを検出することは可能であり、食品中のエンテロトキシンBを定量することが可能であることが確認された(図4)。
【0019】
【発明の効果】
以上、本発明により、食品中の有毒物質の定性・定量分析を、従来の複雑な操作を必要とせず、高感度に迅速かつ簡便に行うことができる。また、検体数にかかわらず短時間でその評価が可能なため、食品の総合衛生管理製造過程における危害分析の評価等のために、食品製造の現場にも導入することが可能である。
【0020】
【図面の簡単な説明】
【図1】 免疫磁気ビーズおよびフローサイトメーター法によるPBS中における黄色ブドウ球菌エンテロトキシンBを示すグラフである。
【図2】 PBS中黄色ブドウ球菌エンテロトキシンB濃度と総粒子中の蛍光粒子数の割合との関係を示すグラフである。
【図3】 免疫磁気ビーズおよびフローサイトメーター法による生乳からの黄色ブドウ球菌エンテロトキシンBを示すグラフである。
【図4】 生乳中黄色ブドウ球菌エンテロトキシンB濃度と総粒子中の蛍光粒子数の割合との関係を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting toxic substances in foods, and more particularly, to provide a method for easily and quickly analyzing toxic trace components contained in milk or the like that is easily damaged by microorganisms and the like. is there.
[0002]
[Prior art]
In food production, we must first consider ensuring food safety. However, foods can be contaminated with various harmful substances during the raw material or manufacture. Examples of harmful substances include chemical substances such as agricultural chemicals and endocrine disruptors, and microorganisms that cause food poisoning. In food poisoning caused by microorganisms, infectious bacterial food poisoning that is caused by eating bacteria along with food that have increased on food, and bacteria that have increased in large quantities in food make toxins. There are toxin-type bacterial food poisonings that cause disease when eaten together. In the former, there are Salmonella spp. And Vibrio parahaemolyticus, and in the latter, there are many cases of food poisoning caused by Staphylococcus aureus .
[0003]
Staphylococcus aureus is a microorganism that is widely distributed in nature and settles in human and animal skin, mucous membranes, intestinal tracts and the like. Some of them produce enterotoxins. Enterotoxins are simple proteins with a molecular weight of 27,000 to 34,000, and are generally classified into five types of toxins, A to E, depending on antigen specificity. Recently, F to K types have been added. Since this enterotoxin can cause severe diarrhea, food poisoning, etc., detection methods focusing on the enterotoxin gene possessed by Staphylococcus aureus are used for the detection and infection test of Staphylococcus aureus (JP 03-49700, JP 05-317098). And an enzyme immunoassay using an enterotoxin antibody (Japanese Patent Laid-Open No. 06-88824).
[0004]
In order for food poisoning caused by Staphylococcus aureus to occur, food must first be contaminated and must grow to the amount of enterotoxin produced in the contaminated food (when the number of bacteria is small, enterotoxin is not produced). Even if food is contaminated with Staphylococcus aureus, the bacteria itself will be almost completely killed by heat treatment at 70 ° C for 1-2 minutes, so be careful not to increase the number of Staphylococcus aureus in food. It is possible to prevent food poisoning by applying this heating.
[0005]
In contrast, enterotoxin is not inactivated by heating at 100 ° C for 40 minutes, and it is not destroyed by gastric acid or biological proteolytic enzymes, so once enterotoxin is produced, food poisoning can be achieved even if S. aureus is killed. Cannot be prevented. Therefore, in manufacturing process control of foods and product quality control, it is necessary to give due consideration to toxins that can be produced as well as to prevent contamination and growth of S. aureus in foods.
[0006]
Milk, dairy products and the like are most susceptible to microbial contamination among foods, and are known as one of foods suitable for the growth of microorganisms. As a method for detecting enterotoxin from these foods, there is a method notified by the Ministry of Health, Labor and Welfare (“Enterotoxin testing method from milk, etc.” February 14, 2002, Food Supervision No. 0214002). This is a method of extracting and concentrating with trichloroacetic acid (TCA) (hereinafter referred to as TCA method). While the TCA method can detect enterotoxin in a sample with high sensitivity, it is difficult to efficiently process a large number of samples because of complicated operations and easy variations in recovery rate and accuracy. In addition, a commercial kit for qualitative and quantitative analysis using sandwich ELISA and reverse passive latex agglutination (VIDAS Staph Enterotoxin (bioMerieux): Transia Plate Staphylococcal Enterotoxins) (MERCK); RIDASCREEN SET A, B, C, D E (Biopharm)) is also known, but since it is impossible to detect low concentrations of enterotoxins in foods, it can be incorporated into food hygiene management manufacturing processes quickly and with high sensitivity. There was no simple toxin detection method yet.
[0007]
[Problems to be solved by the invention]
The present invention provides a simple and rapid extraction / concentration method for toxic trace components contained in foods such as milk, particularly Staphylococcus aureus enterotoxin, and a highly sensitive and accurate qualitative and quantitative analysis method thereof. Let it be an issue.
[0008]
[Means for Solving the Problems]
As a result of studying from various directions to achieve the above object, the present inventors have adopted the above-mentioned problems by adopting immunomagnetic beads for extraction and concentration of Staphylococcus aureus enterotoxin and using a flow cytometer for detection. The inventors have solved the problem and found for the first time that staphylococcus aureus enterotoxin can be qualitatively and quantified with a simple operation method with high sensitivity, and based on this finding, the present invention has been completed.
[0009]
That is, the present invention
(1) A method for qualitative and / or quantitative analysis of toxic substances in foods, characterized by using magnetic beads on which antibodies against toxic substances are immobilized,
(2) The qualitative and / or quantitative analysis method according to (1), wherein the toxic substance is fluorescently labeled.
(3) The qualitative and / or quantitative analysis method according to (1) or (2), wherein the qualitative and / or quantitative determination is performed by a flow cytometer,
(4) The qualitative and / or quantitative analysis method according to any one of (1) to (3), wherein the toxic substance is a bacterial exotoxin,
(5) The qualitative and / or quantitative analysis method according to (4), wherein the cell exotoxin is Staphylococcus aureus enterotoxin,
(6) The qualitative and / or quantitative analysis method according to (1) to (5), wherein the food is milk and / or dairy products,
Consists of.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
To capture toxic substances in the specimen, magnetic beads to which a monoclonal antibody or a polyclonal antibody is immobilized are used. For example, Dynabeads M-280 Tosylactivated (particle size 2.8 μm ± 0.2 μm, 2 × 10 9 particles / ml, Dynal, Oslo, Norway) is commercially available. When the toxic substance to be captured is enterotoxin, any antibody that can recognize enterotoxin can be used. Specifically, sheep anti-enterotoxin antibody (1 mg / ml PBS, Toxin Technology , Inc., Sarasota, FL, USA), rabbit anti-enterotoxin antibody (1 mg / ml PBS, Toxin Technology, Inc., Sarasota, FL, USA), etc. can also be used.
An anti-enterotoxin antibody is immobilized on the magnetic beads by a known method, and then mixed with a specimen. When the sample is a solid or the like, the sample may be mixed with water or a buffer and homogenized. If the target enterotoxin is present in the sample, the enterotoxin is captured by the magnetic beads. In other words, because the antibody is immobilized on the magnetic beads, even if only a small amount of enterotoxin contained in food is contained at a low concentration, the sample and the magnetic beads are agitated in the mixing container to ensure capture by the antibody. Is done. After the stirring is stopped, the magnetic beads can be collected on the wall surface of the container by bringing the magnet close to the outside of the mixing container. Thereafter, only the magnetic beads can be recovered by discarding the specimen by suction or the like. Therefore, it is not always necessary to collect magnetic beads by centrifugation, and magnetic beads can be easily recovered from a large volume of specimen. The collected magnetic beads are washed and then labeled with a fluorescent dye. Fluorescent dyes include substances that can be qualitatively and quantitatively analyzed with a flow cytometer, such as Cy3 and Cy5. The method of fluorescent labeling is not particularly limited as long as enterotoxin can finally be fluorescently labeled. In the present invention, it is preferable to use a fluorescently labeled antibody that specifically binds to enterotoxin. The enterotoxin thus labeled is qualitatively and quantitatively analyzed with a flow cytometer.
[0012]
Since the final qualitative / quantitative analysis is performed with a flow cytometer, the present invention can be used for testing a plurality of items. Specifically, by appropriately changing the antibodies on the magnetic beads, in addition to bacterial exotoxins, in addition to endocrine disrupting substances (so-called environmental hormones) in foods, residual pesticides, monitoring of allergens, other processing equipment It can also be used for cleaning degree evaluation.
[0013]
A food is particularly preferable for the specimen of the present invention. Among them, it is most suitable for milk and dairy products, but is not limited to these, and any food or drink can be applied. The term “milk” and “dairy products” as used herein includes not only milk and dairy products indicated by a ministerial ordinance, but also foods mainly composed of these. In addition, when the specimen is solid, it is desirable that the specimen is appropriately homogenized with water or the like according to a known bacterial test method and adjusted in advance to a form that is easy for qualitative and quantitative analysis.
[0014]
【Example】
EXAMPLES Hereinafter, although an Example is given and this invention is demonstrated, this invention is not limited to these Examples.
[0015]
[Example 1] Immobilization of antibodies on magnetic beads For immobilization of antibodies on magnetic beads, Dynabeads M-280 Tosylactivated (particle size 2.8 μm ± 0.2 μm, 2 × 10 9 cells / ml, Dynal, Oslo, Norway) 0.5 ml (1 × 10 9 beads / ml) was used. Antibody immobilization was performed according to the method attached to the magnetic beads. Specifically, it was washed twice with 0.1 M Na-phosphate buffer (pH 7.4), suspended in 0.7 ml of 0.1 M Na-phosphate buffer (pH 7.4), and sheep anti-enterotoxin B antibody (1 mg / ml, PBS, Toxin Technology ) Add 0.3 ml and shake slowly at room temperature overnight. The supernatant was removed with a magnet (protein amount measurement: 85 μg / ml) and washed twice with 1 ml of 0.1% BSA-containing PBS (pH 7.4). Subsequently, the suspension was suspended in 1 ml of 0.2 M Tris-HCl (pH 8.5) containing 0.1% BSA, left to stand at 20 ° C. for 20 hours, and washed once with 1 ml of PBS (pH 7.4) containing 0.1% BSA. This was suspended in 1 ml of PBS (pH 7.4) containing 0.1% BSA to obtain antibody-immobilized magnetic beads (≈5 × 10 8 beads / ml).
[0016]
[Example 2] Detection of toxin using antibody-immobilized magnetic beads An aqueous solution of Staphylococcus aureus enterotoxin B (100 µg / ml, Toxin Technology, Inc., Sarasota, FL, USA) was diluted with PBS containing 0.05% Tween 20, and enterotoxin was used. 10 ml each of solutions having concentrations of 0, 0.01, 0.1, 1.0, and 10 ng / ml were prepared. To this, 10 μl of antibody-immobilized magnetic beads (5 × 10 8 particles / ml) were mixed, and the mixture was allowed to react by gently shaking at 37 ° C. for 1 hour. The magnetic beads were collected with a magnet and washed twice with 1 ml of PBS containing 0.05% Tween20. 200 μl of rabbit anti-enterotoxin B antibody (1 mg / ml PBS, Toxin Technology, Inc., Sarasota, FL, USA) was added to the washed beads, and the mixture was allowed to react by gently shaking at 37 ° C. for 1 hour. Thereafter, the magnetic beads were washed twice with 1 ml of PBS containing 0.05% Tween 20, and the washed beads were suspended in 200 μl of Cy5-labeled goat anti-rabbit IgG antibody solution (1 mg / ml, Chemicon International, Temecula, CA, USA). The reaction was allowed to proceed at 37 ° C for 1 hour. This solution was mixed, 50 μl was mixed with 950 μl PBS (filtered with a membrane filter having a pore size of 0.2 μm), and the number of particles was measured by a flow cytometer (Microcyte (Oslo, Norway) manufactured by optoflow).
[0017]
FIG. 1 shows the results of recovering the toxin from 10 ml of a Staphylococcus aureus enterotoxin B PBS solution using anti-enterotoxin B antibody magnetic beads, labeling with a fluorescent dye, and detecting with a flow cytometer. As a result of measuring only the beads with a flow cytometer, the peak of the beads was detected at a position clearly distinguished from the contaminating fine particles. Even when no toxin was added, fluorescence due to the binding of the non-specific fluorescently labeled secondary antibody was detected from 13% magnetic beads, but the fluorescence intensity was very weak. At the enterotoxin B concentration of 0.01 ng / ml, the number of fluorescent magnetic beads slightly increased to 39% compared to the case of no addition. At 0.1 ng / ml, 61% of the magnetic beads became fluorescent, and the fluorescence intensity was clearly strong. At 1 ng / ml, 100% of the magnetic beads became fluorescent and all the magnetic beads emitted strong fluorescence. That is, by using this method, enterotoxin could be detected even at a concentration of 0.01 ng / ml (FIG. 2). In general, if S. aureus enterotoxin is contained in dairy products at 1.0 ng / ml, humans are said to exhibit symptoms such as vomiting. Thus, the detection limit of this method is sensitive enough to monitor food contamination.
[0018]
[Example 3] Detection of enterotoxin B from raw milk For detection of toxin from raw milk, 10 ml each of Staphylococcus aureus enterotoxin B added and mixed at a predetermined concentration was used as a sample. This was heated in boiling water for 2 minutes and then rapidly cooled, and antibody-immobilized magnetic beads were added in the same manner as described above for detection. The result is shown in FIG. By using this method, it was possible to detect enterotoxin even at a concentration of 0.01 ng / ml, and it was confirmed that enterotoxin B in foods could be quantified (FIG. 4).
[0019]
【The invention's effect】
As described above, according to the present invention, qualitative and quantitative analysis of toxic substances in foods can be performed quickly and easily with high sensitivity without requiring conventional complicated operations. In addition, since the evaluation can be performed in a short time regardless of the number of specimens, it can be introduced to the field of food production for evaluation of hazard analysis in the process of manufacturing the overall hygiene management of food.
[0020]
[Brief description of the drawings]
FIG. 1 is a graph showing S. aureus enterotoxin B in PBS by immunomagnetic beads and flow cytometry.
FIG. 2 is a graph showing the relationship between the concentration of Staphylococcus aureus enterotoxin B in PBS and the ratio of the number of fluorescent particles in the total particles.
FIG. 3 is a graph showing S. aureus enterotoxin B from raw milk by immunomagnetic beads and flow cytometry.
FIG. 4 is a graph showing the relationship between the concentration of Staphylococcus aureus enterotoxin B in raw milk and the ratio of the number of fluorescent particles in the total particles.

Claims (1)

菌体外毒素である黄色ブドウ球菌エンテロトキシンを含む試料と、当該黄色ブドウ球菌エンテロトキシンに対する抗体を固定化した磁気ビーズとを結合させる第1の工程、有毒物質と有毒物質に対する抗体が結合した磁気ビーズに2次抗体を結合させる第2の工程、および、第2の工程にさらに蛍光ラベル化した抗体を結合させる第3の工程、および、黄色ブドウ球菌エンテロトキシンに対する抗体が結合した磁気ビーズ/黄色ブドウ球菌エンテロトキシン/2次抗体/蛍光ラベル化した抗体の複合体をフローサイトメトリーによって検出する第4の工程を含むことを特徴とする乳および/または乳製品の有毒物質定性および/または定量分析方法。 A first step of binding a sample containing Staphylococcus aureus enterotoxin that is a bacterial exotoxin and a magnetic bead having an antibody against the Staphylococcus aureus enterotoxin immobilized thereon; A second step of binding a secondary antibody; a third step of binding a further fluorescently labeled antibody to the second step; and a magnetic bead / S. Aureus enterotoxin bound to an antibody against S. aureus enterotoxin A method for qualitative and / or quantitative analysis of toxic substances in milk and / or dairy products, comprising a fourth step of detecting a complex of / secondary antibody / fluorescently labeled antibody by flow cytometry.
JP2002229453A 2002-08-07 2002-08-07 Rapid detection of toxic substances Expired - Fee Related JP4189950B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002229453A JP4189950B2 (en) 2002-08-07 2002-08-07 Rapid detection of toxic substances

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002229453A JP4189950B2 (en) 2002-08-07 2002-08-07 Rapid detection of toxic substances

Publications (2)

Publication Number Publication Date
JP2004069504A JP2004069504A (en) 2004-03-04
JP4189950B2 true JP4189950B2 (en) 2008-12-03

Family

ID=32015820

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002229453A Expired - Fee Related JP4189950B2 (en) 2002-08-07 2002-08-07 Rapid detection of toxic substances

Country Status (1)

Country Link
JP (1) JP4189950B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105675569B (en) * 2016-02-02 2019-04-02 广西大学 A kind of method and detection kit detecting golden yellow staphylococcus enterotoxin A

Also Published As

Publication number Publication date
JP2004069504A (en) 2004-03-04

Similar Documents

Publication Publication Date Title
Cho et al. In-situ immuno-gold nanoparticle network ELISA biosensors for pathogen detection
Waswa et al. Rapid detection of Salmonella enteritidis and Escherichia coli using surface plasmon resonance biosensor
Abdel-Hamid et al. Highly sensitive flow-injection immunoassay system for rapid detection of bacteria
US8597897B2 (en) Method of rapidly detecting microorganisms using nanoparticles
Li et al. Rapid detection of Listeria monocytogenes using fluorescence immunochromatographic assay combined with immunomagnetic separation technique
JP6081457B2 (en) Method for detecting specific substances in milk
WO2011159537A2 (en) Method and device for analyte detection
CN107533059B (en) Method for recovering microbial antigens
CN101158635A (en) Method using quantum dot to detect bacterium
CN105324489A (en) Multi-analyte assay
Clotilde et al. Microbead-based immunoassay for simultaneous detection of Shiga toxins and isolation of Escherichia coli O157 in foods
EP2540738A1 (en) Method for extracting staphylococcus aureus antigen, reagent for extracting staphylococcus aureus antigen, and method for testing staphylococcus aureus
Xu et al. Rapid detection of Campylobacter jejuni using fluorescent microspheres as label for immunochromatographic strip test
Srbova et al. Advanced immunocapture of milk‐borne Salmonella by microfluidic magnetically stabilized fluidized bed
CN109856130A (en) Detection method and chip system based on micro-fluidic chip and microarray chip technology
US20200300737A1 (en) SAMPLE PREPARATION AND SPECIFIC CAPTURE FOR MULTIPLEX DETECTION OF TARGET ANALYTES (i.e., BACTERIA, VIRUSES, ETC.)
US20150241424A1 (en) Multi-analyte assay
JP6387063B2 (en) Method for detecting specific substances in milk
JP4189950B2 (en) Rapid detection of toxic substances
JP3773633B2 (en) Analysis method and reagent for E. coli O157
Ehricht et al. Application of protein arraytubes to bacteria, toxin, and biological warfare agent detection
KR101573896B1 (en) Biomarker protein and bacteria detection method based on pipette using magnetic nanoparticle and viscous solution
AU773645B2 (en) Method and device for concentrating selected groups of microorganisms
DK3108249T3 (en) METHOD AND SYSTEMS FOR QUICK DETECTION OF MICROORGANISMS USING FREE ANTIBODIES
TWI521063B (en) Biological sensing device and method for separating biomolecule

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070424

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070615

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080911

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4189950

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees