JP4189651B2 - High dielectric constant thin film etchant composition - Google Patents

High dielectric constant thin film etchant composition Download PDF

Info

Publication number
JP4189651B2
JP4189651B2 JP2003084472A JP2003084472A JP4189651B2 JP 4189651 B2 JP4189651 B2 JP 4189651B2 JP 2003084472 A JP2003084472 A JP 2003084472A JP 2003084472 A JP2003084472 A JP 2003084472A JP 4189651 B2 JP4189651 B2 JP 4189651B2
Authority
JP
Japan
Prior art keywords
acid
dielectric constant
high dielectric
film
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003084472A
Other languages
Japanese (ja)
Other versions
JP2004296593A (en
Inventor
健二 山田
秀 大戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP2003084472A priority Critical patent/JP4189651B2/en
Publication of JP2004296593A publication Critical patent/JP2004296593A/en
Application granted granted Critical
Publication of JP4189651B2 publication Critical patent/JP4189651B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Weting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高誘電率薄膜を用いた半導体装置、特にMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor:金属酸化膜電界効果トランジスタ)の高集積化と高速化に不可欠な極薄ゲート絶縁膜層、ゲート電極を用いた半導体装置の製造工程に使用される高誘電率薄膜エッチング剤組成物に関する。
【0002】
【従来の技術】
シリコン酸化膜はプロセス上の安定性や優れた絶縁特性を有し、MOSFETのゲート絶縁膜材料として用いられている。近年の素子微細化と共にゲート絶縁膜の薄層化が進んでおり、ゲート長が100nm程度以下になるとスケーリング則の要請からゲート絶縁膜であるシリコン酸化膜の厚さは1.5nm以下であることが必要となっている。しかし、この様な極薄の絶縁膜を用いた場合、ゲートバイアス印加時に絶縁層を挿んでのトンネル電流がソース/ドレイン電流に対して無視できない値となり、MOSFETの高性能化と低消費電力化における大きな課題となっている。
【0003】
そこで、実効的なゲート絶縁膜を薄くし、かつトンネル電流をデバイス設計上の許容値内に抑える為の研究開発が進められている。その一つの方法は、シリコン酸化膜中に窒素を添加する事で純粋なシリコン酸化膜に比べて誘電率を増大させ、物理的な膜厚を薄層化する事なしに実効的なゲート絶縁層の膜厚を減少させる方法であるが、シリコン酸化膜への窒素添加による高誘電率化には限界があることが指摘されている。
【0004】
二つ目の方法は、誘電率3.9であるシリコン酸化膜に代わって、誘電率10以上の薄膜材料、またはこれらの材料とシリコンとの複合材料であるシリケート薄膜をゲート絶縁膜に採用するという方法である。この様な高誘電率薄膜としては、Al2O3、ZrO2やHfO2およびY2O3などの希土類元素酸化物、ランタノイド系元素の酸化物が候補材料として検討されている。これらの高誘電率膜を用いれば、ゲート長を微細にしてもスケーリング則に則ったゲート絶縁膜容量を保持しつつ、ゲート絶縁膜としてトンネル電流を防げる厚さにすることができる。
【0005】
しかしながらこれらの希土類元素酸化物、ランタノイド系元素酸化物を材料とした高誘電率薄膜を用いた半導体装置を製造する際、従来のガスを用いたドライエッチング方法のみでは微細な加工が困難であり、高誘電率薄膜のエッチングに適した薬液の開発が要望されていた。
【0006】
【発明が解決しようとする課題】
本発明は高誘電率薄膜を用いた半導体装置、特にMOSFETの高集積化と高速化に不可欠な極薄ゲート絶縁膜層を用いた半導体装置の製造工程において、従来のガスを用いたドライエッチング方法のみでは困難な微細な加工が可能であり且つ他の配線材料や基盤等への腐食性が少ない高誘電率薄膜エッチング剤組成物を提供することにある。
【0007】
【課題を解決するための手段】
本発明者等は、上記課題を解決すべく鋭意研究を行った結果、酸化剤、キレート剤および水溶性フッ素化合物を含有する水溶液であることを特徴とするエッチング剤組成物が、高誘電率薄膜の微細な加工が可能でありかつ種々の配線材料や基盤に対して腐食性が少ない優れた特性が有ることを見いだし、本発明を完成するに至った。すなわち本発明は、酸化剤、キレート剤および水溶性フッ素化合物を含有する水溶液である高誘電率薄膜のエッチング剤組成物に関するものである。
【0008】
【発明の実施の形態】
本発明に使用する酸化剤としては、過酸化水素、オゾン、次亜塩素酸等の無機酸化物があげられ、特に好ましくは過酸化水素である。本発明に使用される酸化剤の濃度は0.0001〜60重量%であり、好ましくは0.0005〜30重量%である。
【0009】
本発明に使用するキレート剤としては、エチレンジアミンテトラ酢酸(EDTA)、ヒドロキシエチルエチレンジアミン四酢酸(DHEDDA)、1,3−プロパンジアミン四酢酸(1,3−PDTA)、ジエチレントリアミン五酢酸(DTDA)、トリエチレンテトラミン六酢酸(TTNA)、ニトリロ三酢酸(NTA)、ヒドロキシエチルイミノ二酢酸(HIMDA)、シュウ酸、マロン酸、マレイン酸、コハク酸若しくはクエン酸等のアミノポリカルボン酸類、又は、これらのアンモニウム塩、金属塩、若しくは有機アルカリ塩等が挙げられ、またメチルジホスホン酸、アミノトリスメチレンホスホン酸、エチリデンジホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、1−ヒドロキシプロピリデン−1,1−ジホスホン酸、エチルアミノビスメチレンホスホン酸、ドデシルアミノビスメチレンホスホン酸、ニトリロトリスメチレンホスホン酸、エチレンジアミンビスメチレンホスホン酸、エチレンジアミンテトラキスメチレンホスホン酸、ヘキサジアミンテトラキスメチレンホスホン酸、ジエチレントリアミンペンタメチレンホスホン酸、若しくは1,2−プロパンジアミンテトラメチレンホスホン酸等の分子中にホスホン酸基を1個以上有するホスホン酸系キレート剤、又は、これらのアンモニウム塩、有機アミン塩、アルカリ金属塩、さらに、これらホスホン酸系キレート剤の内その分子中に窒素原子を有するものが酸化されてN−オキシド体となっている酸化体、メタリン酸、テトラメタリン酸、ヘキサメタリン酸若しくはトリポリリン酸、又は、これらのアンモニウム塩、金属塩若しくは有機アミン塩等の縮合リン酸類が挙げられる。上記キレート剤は、単独でも2種類以上組み合わせても使用できる。このキレート剤の濃度は、通常、洗浄剤に対し0.01〜10重量%であり、好ましくは0.05〜5重量%、さらに好ましくは0.1〜3重量%である。
【0010】
本発明で使用するフッ素化合物としては、フッ化アンモニウム、酸性フッ化アンモニウム、フッ化モノエタノールアミン、メチルアミンフッ化水素塩、エチルアミンフッ化水素塩、プロピルアミンフッ化水素塩等の有機アミンフッ化物、フッ化テトラメチルアンモニウムまたはフッ化テトラエチルアンモニウム等が挙げられ、好ましくはフッ化水素酸、フッ化アンモニウムまたはフッ化テトラメチルアンモニウムである。このフッ素化合物の濃度は、通常、洗浄剤に対し0.001〜20重量%であり、好ましくは0.005〜10重量%である。0.001重量%以下では高誘電率薄膜のエッチング速度が遅くなり、30重量%以上では配線材料や基盤に腐食を生じ得策ではない。
【0011】
本発明のエッチング剤組成物には、所望により本発明の目的を損なわない範囲で従来から使用されている添加剤を配合してもよい。また、エッチング剤組成物の濡れ性を向上させるために界面活性剤を添加してもよく、例えばカチオン系、ノニオン系、アニオン系の何れの界面活性剤も使用できる。本発明のエッチング液のpHは特に制限はなく、通常、pH3〜12の範囲で使用されるが、エッチング条件、使用される半導体基体の種類等により選択すればよい。アルカリ性で使用する場合は、例えばアンモニア、アミン、テトラメチルアンモニウム水酸化物等の第四級アンモニウム水酸化物等を添加すればよく、酸性で使用する場合は、有機酸、無機酸等を添加すればよい。本発明の洗浄方法を実施する際の温度は、通常、常温〜90℃の範囲が好ましく、エッチングの条件や使用される半導体基体により適宜選択すればよい。
【0012】
本発明の高誘電率薄膜の材料は、ZrO2、Ta2O5、Nb2O5、Al2O3、HfO2、TiO2、ScO3、Y2O3、La2O3、CeO3、Pr2O3、Nd2O3、Sm2O3、Eu2O3、Gd2O3、Tb2O3、Dy2O3、Ho2O3、Er2O3、Tm2O3、Yb2O3、Lu2O3のいずれか一つを含んでいればよく、より好ましくはZrO2、Ta2O5、Al2O3、HfO2から一つ以上選ばれる。また、これらの材料に珪素を含んだシリケート材料、窒素を含んだナイトライド材料であっても適用できる。さらに上記材料中2つの材料が混合されていても、積層状態であっても適用できる。
【0013】
【実施例】
実施例及び比較例により本発明をさらに具体的に説明するが、本発明はこれらの実施例によりなんら制限されるものではない。
【0014】
実施例1
シリコンウエハ−上にSiO2膜、さらにAl2O3膜を形成したウェハサンプル(図1)を用いAl2O3のエッチング量を測定した。図1に示す基板上のAl2O3膜厚を光学式膜厚計により測定し初期膜厚とした。このサンプルを過酸化水素3%、クエン酸1%、フッ化テトラメチルアンモニウム9%を含有する水溶液であり35℃に保持したエッチング剤組成物中に10分間浸漬した後に、水でリンス後、乾燥し再度光学式膜厚計にてAl2O3膜厚を測定し処理後膜厚とした。Al2O3膜初期膜厚、処理後膜厚よりAl2O3エッチング量を算出した。
【0015】
さらにシリコンウェハー上にSiO2膜のみを形成したウェハサンプルを用い上記と同様の方法にてSiO2膜のエッチング量も算出した。その結果、Al2O3膜のエッチング量は114Å、SiO2膜のエッチング量は3Åであった。
【0016】
実施例2〜5、比較例1〜5
実施例1で使用した基板を用いて、表1に示した組成のエッチング剤組成物で処理を行って、Al2O3膜、SiO2膜のエッチング量測定を行った。
【0017】
比較例6
実施例1と同一の基板で初期膜厚を測定した基盤を用いて、テトラメチルアンモニウムヒドロキシド20重量%、残部が水である組成物を使用して、70℃、30分間浸漬を行った。水でリンス後、乾燥し光学式膜厚計にて処理後膜厚の測定を試みたが、基板表面に斑が生じており処理後膜厚の測定はできなかった。
【0018】
実施例6〜10、比較例7〜11
実施例1で使用した基板と同様な構造でAl2O3層がAlSixOy層になったサンプルを用い、表2に示した組成のエッチング剤組成物で処理を行って、AlSixOy膜、SiO2膜のエッチング量測定を行った。
【0019】
【表1】

Figure 0004189651
【0020】
【表2】
Figure 0004189651
【0021】
表1、2に示すように、本発明のエッチング剤組成物を適用することによりエッチング対象であるAl2O3、ZrO2やHfO2、およびY2O3などの希土類元素酸化物やランタノイド系元素の酸化物やSiを含んだシリケートに対するエッチング量と、SiO2に対するのエッチング量を比較すると実施例1〜10ではAl2O3、ZrO2やHfO2、およびY2O3などの希土類元素酸化物やランタノイド系元素の酸化物並びにシリケート材料のエッチング量が大きいことがわかる。
【0022】
【発明の効果】
本発明のエッチング剤組成物を用いて高誘電率薄膜をエッチングすることにより、従来のガスを用いたエッチング方法のみでは困難である微細な加工が可能でありかつ種々の配線材料や基盤に対する腐食によるダメージを抑制する事ができる。
【図面の簡単な説明】
【図1】 ウェハサンプル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor device using a high dielectric constant thin film, in particular, an ultra-thin gate insulating film layer indispensable for high integration and high speed of a MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor). The present invention relates to a high dielectric constant thin film etchant composition used in a manufacturing process of a semiconductor device using a gate electrode.
[0002]
[Prior art]
A silicon oxide film has process stability and excellent insulating properties, and is used as a gate insulating film material for MOSFETs. With the recent miniaturization of devices, the gate insulating film is becoming thinner, and when the gate length is about 100 nm or less, the thickness of the silicon oxide film, which is the gate insulating film, is 1.5 nm or less due to the demand of scaling law. Is required. However, when such an ultra-thin insulating film is used, the tunnel current with the insulating layer inserted when a gate bias is applied becomes a value that cannot be ignored with respect to the source / drain current, and the MOSFET has higher performance and lower power consumption. It has become a big issue.
[0003]
Therefore, research and development are underway to make the effective gate insulating film thinner and to keep the tunnel current within the allowable range in device design. One method is to add nitrogen to the silicon oxide film to increase the dielectric constant compared to a pure silicon oxide film, and an effective gate insulating layer without reducing the physical film thickness. However, it has been pointed out that there is a limit to increasing the dielectric constant by adding nitrogen to the silicon oxide film.
[0004]
In the second method, instead of a silicon oxide film having a dielectric constant of 3.9, a thin film material having a dielectric constant of 10 or more or a silicate thin film which is a composite material of these materials and silicon is used for the gate insulating film. It is a method. As such high dielectric constant thin films, rare earth element oxides such as Al 2 O 3 , ZrO 2 , HfO 2 and Y 2 O 3 and oxides of lanthanoid elements have been studied as candidate materials. If these high dielectric constant films are used, the gate insulating film can be made to have a thickness that can prevent a tunnel current while maintaining the gate insulating film capacity in accordance with the scaling rule even if the gate length is made fine.
[0005]
However, when manufacturing a semiconductor device using a high dielectric constant thin film made of these rare earth element oxides and lanthanoid element oxides, fine processing is difficult only by the conventional dry etching method using gas, Development of a chemical solution suitable for etching a high dielectric constant thin film has been demanded.
[0006]
[Problems to be solved by the invention]
The present invention relates to a conventional dry etching method using a gas in a manufacturing process of a semiconductor device using a high dielectric constant thin film, particularly a semiconductor device using an extremely thin gate insulating film layer indispensable for high integration and high speed of MOSFET. An object of the present invention is to provide a high dielectric constant thin film etchant composition which can be finely processed which is difficult only by itself and has little corrosiveness to other wiring materials and substrates.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have found that an etching agent composition characterized by being an aqueous solution containing an oxidizing agent, a chelating agent, and a water-soluble fluorine compound has a high dielectric constant thin film. The present invention has been completed by finding that it can be finely processed and has excellent characteristics with low corrosiveness to various wiring materials and substrates. That is, the present invention relates to an etching composition for a high dielectric constant thin film which is an aqueous solution containing an oxidizing agent, a chelating agent and a water-soluble fluorine compound.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Examples of the oxidizing agent used in the present invention include inorganic oxides such as hydrogen peroxide, ozone, and hypochlorous acid, and hydrogen peroxide is particularly preferable. The concentration of the oxidizing agent used in the present invention is 0.0001 to 60% by weight, preferably 0.0005 to 30% by weight.
[0009]
Examples of the chelating agent used in the present invention include ethylenediaminetetraacetic acid (EDTA), hydroxyethylethylenediaminetetraacetic acid (DHEDDA), 1,3-propanediaminetetraacetic acid (1,3-PDTA), diethylenetriaminepentaacetic acid (DTDA), Aminopolycarboxylic acids such as ethylenetetramine hexaacetic acid (TTNA), nitrilotriacetic acid (NTA), hydroxyethyliminodiacetic acid (HIMDA), oxalic acid, malonic acid, maleic acid, succinic acid or citric acid, or their ammonium Salts, metal salts, organic alkali salts, and the like, and methyldiphosphonic acid, aminotrismethylenephosphonic acid, ethylidenediphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, 1-hydroxypropylidene-1 , 1-Diphospho Acid, ethylaminobismethylenephosphonic acid, dodecylaminobismethylenephosphonic acid, nitrilotrismethylenephosphonic acid, ethylenediaminebismethylenephosphonic acid, ethylenediaminetetrakismethylenephosphonic acid, hexadiaminetetrakismethylenephosphonic acid, diethylenetriaminepentamethylenephosphonic acid, or 1, 2-Propanediaminetetramethylenephosphonic acid and other phosphonic acid chelating agents having one or more phosphonic acid groups in the molecule, or ammonium salts, organic amine salts, alkali metal salts thereof, and these phosphonic acid chelating agents Of these, those having a nitrogen atom in the molecule are oxidized to form an N-oxide, metaphosphoric acid, tetrametaphosphoric acid, hexametaphosphoric acid or tripolyphosphoric acid, or Et ammonium salts, and condensed phosphoric acids such as metal salts or organic amine salts. The chelating agents can be used alone or in combination of two or more. The concentration of this chelating agent is usually from 0.01 to 10% by weight, preferably from 0.05 to 5% by weight, more preferably from 0.1 to 3% by weight, based on the cleaning agent.
[0010]
Examples of the fluorine compound used in the present invention include organic amine fluorides such as ammonium fluoride, acidic ammonium fluoride, monoethanolamine fluoride, methylamine hydrogen fluoride salt, ethylamine hydrogen fluoride salt, propylamine hydrogen fluoride salt, Examples thereof include tetramethylammonium fluoride and tetraethylammonium fluoride. Preferred are hydrofluoric acid, ammonium fluoride and tetramethylammonium fluoride. The concentration of the fluorine compound is usually 0.001 to 20% by weight, preferably 0.005 to 10% by weight, based on the cleaning agent. If it is 0.001% by weight or less, the etching rate of the high dielectric constant thin film is slow, and if it is 30% by weight or more, the wiring material and the substrate are corroded.
[0011]
The etchant composition of the present invention may be blended with conventionally used additives as long as it does not impair the object of the present invention. In addition, a surfactant may be added to improve the wettability of the etching agent composition. For example, any of cationic, nonionic and anionic surfactants can be used. The pH of the etching solution of the present invention is not particularly limited and is usually used in the range of pH 3 to 12, but may be selected depending on the etching conditions, the type of semiconductor substrate used, and the like. For alkaline use, for example, ammonia, amine, quaternary ammonium hydroxide such as tetramethylammonium hydroxide may be added. For acidic use, add organic acid, inorganic acid, etc. That's fine. The temperature for carrying out the cleaning method of the present invention is usually preferably in the range of room temperature to 90 ° C., and may be appropriately selected depending on the etching conditions and the semiconductor substrate used.
[0012]
The material of the high dielectric constant thin film of the present invention is ZrO 2 , Ta 2 O 5 , Nb 2 O 5 , Al 2 O 3 , HfO 2 , TiO 2 , ScO 3 , Y 2 O 3 , La 2 O 3 , CeO 3 , Pr 2 O 3 , Nd 2 O 3 , Sm 2 O 3 , Eu 2 O 3 , Gd 2 O 3 , Tb 2 O 3 , Dy 2 O 3 , Ho 2 O 3 , Er 2 O 3 , Tm 2 O 3 , Yb 2 O 3 , and Lu 2 O 3 , and more preferably one or more selected from ZrO 2 , Ta 2 O 5 , Al 2 O 3 , and HfO 2 . Further, these materials can be applied to silicate materials containing silicon and nitride materials containing nitrogen. Further, the present invention can be applied even when two materials are mixed or in a laminated state.
[0013]
【Example】
The present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples.
[0014]
Example 1
The etching amount of Al 2 O 3 was measured using a wafer sample (FIG. 1) in which a SiO 2 film and an Al 2 O 3 film were formed on a silicon wafer. The Al 2 O 3 film thickness on the substrate shown in FIG. 1 was measured with an optical film thickness meter to obtain an initial film thickness. This sample is an aqueous solution containing 3% hydrogen peroxide, 1% citric acid, and 9% tetramethylammonium fluoride. The sample is immersed in an etching composition maintained at 35 ° C. for 10 minutes, rinsed with water, and then dried. Then, the Al 2 O 3 film thickness was measured again with an optical film thickness meter to obtain a post-treatment film thickness. The Al 2 O 3 film initial film thickness was calculated Al 2 O 3 etching amount than the film thickness after processing.
[0015]
Further, the etching amount of the SiO 2 film was calculated by the same method as described above using a wafer sample in which only the SiO 2 film was formed on the silicon wafer. As a result, the etching amount of the Al 2 O 3 film was 114 mm, and the etching amount of the SiO 2 film was 3 mm.
[0016]
Examples 2-5, Comparative Examples 1-5
The substrate used in Example 1 was treated with an etchant composition having the composition shown in Table 1, and the etching amounts of the Al 2 O 3 film and the SiO 2 film were measured.
[0017]
Comparative Example 6
Using the substrate whose initial film thickness was measured on the same substrate as in Example 1, immersion was performed at 70 ° C. for 30 minutes using a composition having 20% by weight of tetramethylammonium hydroxide and the balance being water. After rinsing with water and drying, an attempt was made to measure the film thickness after treatment with an optical film thickness meter, but spots were formed on the substrate surface, and the film thickness after treatment could not be measured.
[0018]
Examples 6-10, Comparative Examples 7-11
Using a sample having the same structure as the substrate used in Example 1 and the Al 2 O 3 layer being an AlSi x O y layer, treatment was performed with an etchant composition having the composition shown in Table 2 to obtain AlSi x O The etching amount of the y film and the SiO 2 film was measured.
[0019]
[Table 1]
Figure 0004189651
[0020]
[Table 2]
Figure 0004189651
[0021]
As shown in Tables 1 and 2 , rare earth element oxides such as Al 2 O 3 , ZrO 2 , HfO 2 , and Y 2 O 3 and lanthanoids that are objects of etching by applying the etchant composition of the present invention and etching amount for silicate containing oxide or Si elements, rare earth elements such as SiO in example 10 to compare the amount of etching for 2 Al 2 O 3, ZrO 2 or HfO 2, and Y 2 O 3 It can be seen that the etching amount of oxides, oxides of lanthanoid elements, and silicate materials is large.
[0022]
【The invention's effect】
By etching a high dielectric constant thin film using the etching agent composition of the present invention, fine processing that is difficult only by an etching method using a conventional gas is possible, and by corrosion on various wiring materials and substrates. Damage can be suppressed.
[Brief description of the drawings]
[Figure 1] Wafer sample

Claims (2)

過酸化水素とジエチレントリアミンペンタメチレンホスホン酸、1,2−プロパンジアミンテトラメチレンホスホン酸、およびカルボン酸基を有するキレート剤より選ばれる 1 種以上であるキレート剤、並びにフッ化アンモニウム、またはフッ化テトラメチルアンモニウムを含有する水溶液であるAl および/またはAlSi を含む高誘電率薄膜のエッチング剤組成物。 One or more chelating agents selected from hydrogen peroxide , diethylenetriaminepentamethylenephosphonic acid, 1,2-propanediaminetetramethylenephosphonic acid, and a chelating agent having a carboxylic acid group, and ammonium fluoride or tetrafluoride etching agent composition having a high dielectric constant thin film containing an aqueous solution containing methyl ammonium Al 2 O 3 and / or AlSi x O y. 過酸化水素0.0001〜60重量%、とジエチレントリアミンペンタメチレンホスホン酸、1,2−プロパンジアミンテトラメチレンホスホン酸、およびカルボン酸基を有するキレート剤より選ばれる 1 種以上であるキレート剤0.01〜10重量%並びにフッ化アンモニウム、またはフッ化テトラメチルアンモニウム0.001〜20重量%である請求項1記載のエッチング剤組成物。0.0001 to 60% by weight of hydrogen peroxide , and a chelating agent 0.01 that is at least one selected from diethylenetriaminepentamethylenephosphonic acid, 1,2-propanediaminetetramethylenephosphonic acid, and a chelating agent having a carboxylic acid group The etching agent composition according to claim 1, which is 10 to 10% by weight and ammonium fluoride or 0.001 to 20% by weight of tetramethylammonium fluoride .
JP2003084472A 2003-03-26 2003-03-26 High dielectric constant thin film etchant composition Expired - Lifetime JP4189651B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084472A JP4189651B2 (en) 2003-03-26 2003-03-26 High dielectric constant thin film etchant composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084472A JP4189651B2 (en) 2003-03-26 2003-03-26 High dielectric constant thin film etchant composition

Publications (2)

Publication Number Publication Date
JP2004296593A JP2004296593A (en) 2004-10-21
JP4189651B2 true JP4189651B2 (en) 2008-12-03

Family

ID=33399639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084472A Expired - Lifetime JP4189651B2 (en) 2003-03-26 2003-03-26 High dielectric constant thin film etchant composition

Country Status (1)

Country Link
JP (1) JP4189651B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006137497A1 (en) * 2005-06-24 2006-12-28 Mitsubishi Gas Chemical Company, Inc. Etching composition for metal material and method for manufacturing semiconductor device by using same
SG189292A1 (en) 2010-10-06 2013-05-31 Advanced Tech Materials Composition and process for selectively etching metal nitrides
CN104353451B (en) * 2014-11-19 2016-07-20 南开大学 The preparation method of tantalum pentoxide micro-nano post array films
WO2023112453A1 (en) * 2021-12-17 2023-06-22 株式会社レゾナック Method for removing lanthanum compound and processing liquid for lanthanum compound removal

Also Published As

Publication number Publication date
JP2004296593A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
JP2009200506A (en) Etching agent composition for thin film having high permittivity
JP5050850B2 (en) Etching composition for metal material and method for producing semiconductor device using the same
JP4826235B2 (en) Semiconductor surface treatment agent
US7235495B2 (en) Controlled growth of highly uniform, oxide layers, especially ultrathin layers
CN103605266B (en) Photoresist residue and polymer residue remove liquid composition
US20090212021A1 (en) Compositions and methods for selective removal of metal or metal alloy after metal silicide formation
TWI721311B (en) Etching solution for selectively removing tantalum nitride over titanium nitride during manufacture of a semiconductor device
JP2007005656A (en) Etchant composition for metal material and method of manufacturing semiconductor device using same
KR20120068818A (en) Cleaning solution for plasma etching residues
JP4498726B2 (en) Washing soap
JP4362714B2 (en) High dielectric constant thin film etchant composition and etching method
JP4189651B2 (en) High dielectric constant thin film etchant composition
KR102309758B1 (en) Compostion for etching titanium nitrate layer-tungsten layer containing laminate and methold for etching a semiconductor device using the same
JP2001527286A (en) Selective silicon oxide etchant formulation comprising fluoride salt, chelating agent, and glycol solvent
JP4501669B2 (en) Etching composition
US8668777B2 (en) Process for treating a semiconductor wafer
JP2006073871A (en) Composition for etching
TW201730326A (en) Acidic semi-aqueous fluoride activated anti-reflective coating cleaners with superior substrate compatibilities and exceptional bath stability
Barnett et al. Improvements in advanced gate oxide electrical performance by the use of an ozonated water clean process
JP2005191277A (en) Etching agent
KR100613455B1 (en) manufacturing method for semiconductor device
JP2007080966A (en) Etching compound for hafnium oxide
KR20070023954A (en) Method for cleaning a substrate
JP2004303795A (en) Hafnium oxide etchant and etching method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080820

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4189651

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110926

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120926

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130926

Year of fee payment: 5

EXPY Cancellation because of completion of term