JP4188382B2 - A method for leaching a treated product containing selenium and / or tellurium and containing ruthenium and / or rhodium. - Google Patents

A method for leaching a treated product containing selenium and / or tellurium and containing ruthenium and / or rhodium. Download PDF

Info

Publication number
JP4188382B2
JP4188382B2 JP2006096413A JP2006096413A JP4188382B2 JP 4188382 B2 JP4188382 B2 JP 4188382B2 JP 2006096413 A JP2006096413 A JP 2006096413A JP 2006096413 A JP2006096413 A JP 2006096413A JP 4188382 B2 JP4188382 B2 JP 4188382B2
Authority
JP
Japan
Prior art keywords
tellurium
selenium
rhodium
ruthenium
leaching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006096413A
Other languages
Japanese (ja)
Other versions
JP2007270233A (en
Inventor
燈文 永井
雄仁 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP2006096413A priority Critical patent/JP4188382B2/en
Priority to CNB2006101603478A priority patent/CN100510123C/en
Publication of JP2007270233A publication Critical patent/JP2007270233A/en
Application granted granted Critical
Publication of JP4188382B2 publication Critical patent/JP4188382B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

本発明は、銅電解殿物の湿式処理において発生するセレン及び又はテルルを含み、ルテニウム及び又はロジウムを含む処理物、特に還元滓中に存在するルテニウム及び又はロジウムの濃縮方法に関する。   The present invention relates to a treatment product containing ruthenium and / or rhodium containing selenium and / or tellurium generated in a wet treatment of a copper electrolytic product, and more particularly to a method for concentrating ruthenium and / or rhodium present in a reduced soot.

銅電解殿物の湿式処理、例えば特開2001−316735(特許文献1)においては脱銅工程、塩化浸出工程、金抽出工程を経由する予備処理のあと亜硫酸ガスを用いて、まず白金族を還元し白金族含有還元物を得た後に、さらに亜硫酸ガスを用いてセレン及び又はテルルを含む還元物を得る。このセレン及び又はテルルを含む還元残渣は貴金属のルテニウム及び又はロジウムを含有しているが、セレン及び又はテルルの品位が高いので、セレン及び又はテルルを浸出してルテニウム及び又はロジウムを浸出残渣中に濃縮することが望ましい。   In the wet treatment of copper electrolytic deposits, for example, in Japanese Patent Application Laid-Open No. 2001-316735 (Patent Document 1), first, the platinum group is reduced by using sulfurous acid gas after preliminary treatment through a copper removal step, a chloride leaching step, and a gold extraction step. After obtaining the platinum group-containing reduced product, a reduced product containing selenium and / or tellurium is further obtained using sulfurous acid gas. This reduction residue containing selenium and / or tellurium contains the noble metals ruthenium and / or rhodium, but since the quality of selenium and / or tellurium is high, selenium and / or tellurium are leached to extract ruthenium and / or rhodium into the leaching residue. It is desirable to concentrate.

特開2005−126800(特許文献2)では、上記問題を回避するために、ルテニウム及び又はロジウムを含むセレン及び又はテルル還元残渣を水酸化ナトリウム水溶液にリパルプし、一定量の過酸化水素を添加し続ける方法でセレン及び又はテルルを酸化浸出して液中に回収しルテニウム及び又はロジウムを残渣に残す方法が示された。 In Japanese Patent Laid-Open No. 2005-126800 (Patent Document 2), in order to avoid the above problem, selenium containing ruthenium and / or rhodium and / or tellurium reduction residue is repulped into a sodium hydroxide aqueous solution, and a certain amount of hydrogen peroxide is added. In the following method, selenium and / or tellurium was oxidatively leached and recovered in the liquid to leave ruthenium and / or rhodium in the residue.

この方法ではセレン及び又はテルルの酸化に過酸化水素を使用するが、薬液コストが大きくなる問題がある。また、一定の酸化還元電位で浸出を終了しても液中に過酸化水素が残存するため、ろ過が終了して酸化反応が停止するまでセレン及び又はテルルが浸出される。浸出処理を終了する酸化還元電位はろ過が終了するまでの浸出量を考慮しているが、浸出処理を終了して酸化反応が停止するまでの反応量が一定しない。このため、浸出反応が不足して残渣中のセレン及び又はテルル品位が高くなることや、浸出反応が進みすぎてルテニウム及び又はロジウムを浸出してしまうことがあり、安定的に操業できない問題があった。 In this method, hydrogen peroxide is used for the oxidation of selenium and / or tellurium, but there is a problem that the cost of the chemical solution increases. In addition, hydrogen peroxide remains in the liquid even after the leaching is completed at a constant oxidation-reduction potential, and therefore selenium and / or tellurium are leached until the filtration is completed and the oxidation reaction is stopped. The oxidation-reduction potential at which the leaching process is finished takes into account the leaching amount until the filtration is finished, but the reaction amount from the end of the leaching process until the oxidation reaction stops is not constant. For this reason, there is a problem that the leaching reaction is insufficient and the quality of selenium and / or tellurium in the residue is increased, or the leaching reaction proceeds so much that ruthenium and / or rhodium are leached, and stable operation is not possible. It was.

特開2001−316735号公報JP 2001-316735 A 特開2005−126800号公報JP 2005-126800 A

そこで本発明では、ルテニウム及び又はロジウムを含むセレン及び又はテルル還元残渣から安価にかつ安定してセレン及び又はテルルを浸出し、セレン、テルルよりも高価であるルテニウム及び又はロジウムを浸出残渣中に濃縮する方法を提供することを目的とする。   Therefore, in the present invention, selenium and / or tellurium is stably and inexpensively leached from the selenium and / or tellurium-reducing residue containing ruthenium and / or rhodium, and the ruthenium and / or rhodium, which is more expensive than selenium and tellurium, is concentrated in the leaching residue. It aims to provide a way to do.

ルテニウム及び又はロジウムを含むセレン及び又はテルル還元残渣を水酸化ナトリウム水溶液にリパルプし、液中に空気を吹き込んでセレン及び又はテルルを酸化浸出する方法において、銀−塩化銀電極基準の酸化還元電位が-150〜-240mVに成った時点で空気吹込みを終了し、その後ろ過する方法で、安価にかつ安定してセレン及び又はテルルを浸出し、ルテニウム及び又はロジウムを浸出残渣中に濃縮できることを見出した。
水酸化ナトリウム水溶液中におけるセレン及び又はテルルの浸出反応は以下の通りである。
Se + 2NaOH + O2 → Na2SeO3 + H2O
Te + 2NaOH + O2 → Na2TeO3 + H2O
1molのセレン及び又はテルルは2molの水酸化ナトリウムおよび1molの酸素分子と反応して、それぞれ亜セレン酸ナトリウム、亜テルル酸ナトリウムとなって溶解する。なお、亜テルル酸ナトリウムの一部が、空気吹込みによる酸化反応で、アルカリ性水溶液に難溶であるテルル酸ナトリウムに変化することもある。
2Na2TeO3 + O2 → 2Na2TeO4
テルル酸ナトリウムは本発明のアルカリ浸出を実施後に、残渣を希硫酸等の鉱酸で洗浄することで溶解でき、鉱酸に難溶であるルテニウム及び又はロジウムを容易に回収することができる。
以上のように、水溶液中に空気を吹込み、酸素を溶解することでセレン及び又はテルルの浸出が可能である。過酸化水素を用いずに液中に空気を吹き込んでセレン及び又はテルルを酸化浸出することで、安価に浸出できる。
また、液中への空気吹き込みを停止することで、直ちに酸化浸出反応を停止できるため、浸出反応の過不足が少なくなり、残渣中のルテニウム及び又はロジウム品位および回収率を安定化することができる。
In the method of repulping selenium and / or tellurium-reducing residue containing ruthenium and / or rhodium into an aqueous sodium hydroxide solution and blowing air into the solution to oxidize and leach out selenium and / or tellurium, the oxidation-reduction potential based on the silver-silver chloride electrode is It is found that air blowing is terminated when the pressure reaches -150 to -240 mV, and then filtration is performed, and selenium and / or tellurium can be leached stably and inexpensively and ruthenium and / or rhodium can be concentrated in the leaching residue. It was.
The leaching reaction of selenium and / or tellurium in an aqueous sodium hydroxide solution is as follows.
Se + 2NaOH + O 2 → Na 2 SeO 3 + H 2 O
Te + 2NaOH + O 2 → Na 2 TeO 3 + H 2 O
1 mol of selenium and / or tellurium reacts with 2 mol of sodium hydroxide and 1 mol of oxygen molecules to dissolve as sodium selenite and sodium tellurite, respectively. In addition, a part of sodium tellurite may be changed to sodium tellurate which is hardly soluble in an alkaline aqueous solution by an oxidation reaction by blowing air.
2Na 2 TeO 3 + O 2 → 2Na 2 TeO 4
Sodium tellurate can be dissolved by washing the residue with a mineral acid such as dilute sulfuric acid after the alkaline leaching of the present invention, and ruthenium and / or rhodium which are hardly soluble in the mineral acid can be easily recovered.
As described above, selenium and / or tellurium can be leached by blowing air into an aqueous solution and dissolving oxygen. By leaching selenium and / or tellurium by oxidizing air by blowing air into the liquid without using hydrogen peroxide, it can be leached at low cost.
In addition, since the oxidation leaching reaction can be stopped immediately by stopping the air blowing into the liquid, the excess and deficiency of the leaching reaction is reduced, and the ruthenium and / or rhodium quality in the residue and the recovery rate can be stabilized. .

すなわちすなわち本発明は、
(1)少なくともセレン及び又はテルルを含み、ルテニウム及び又はロジウムを含む残渣を55〜150g/Lのスラリー濃度で、セレン及び又はテルルのモル数の合計に対して水酸化ナトリウムのモル数が2〜5倍である水溶液に空気を吹き込み、
銀−塩化銀電極基準の酸化還元電位が-150〜-240mVに成った時点で、浸出処理を中止することにより浸出液中にセレン及び又はテルルを分離し、濃縮率で4倍以上のルテニウム及び又はロジウムを残渣に残すセレン及び又はテルルを含み、ルテニウム及び又はロジウムを含む処理物の浸出方法。
(2)上記(1)記載の処理物である残渣が、還元滓であるセレン及び又はテルルを含み、ルテニウム及び又はロジウムを含む処理物の浸出方法。
を提供するものである。
That is, the present invention
(1) Residue containing at least selenium and / or tellurium and ruthenium and / or rhodium at a slurry concentration of 55 to 150 g / L, the number of moles of sodium hydroxide is 2 to 2 with respect to the total number of moles of selenium and / or tellurium Air is blown into the aqueous solution that is 5 times,
When the oxidation-reduction potential based on the silver-silver chloride electrode reaches -150 to -240 mV, the leaching process is stopped to separate selenium and / or tellurium in the leachate, and the concentration rate of ruthenium and / or 4 times or more. A method for leaching a treated product containing selenium and / or tellurium that leaves rhodium in the residue and containing ruthenium and / or rhodium.
(2) A method for leaching a treated product, in which the residue that is the treated product according to (1) includes selenium and / or tellurium as reduced soot, and includes ruthenium and / or rhodium.
Is to provide.

本発明の方法を用いて、
(1)ルテニウム及び又はロジウムを含むセレン及び又はテルル還元残渣から安価にかつ安定してセレン及び又はテルルを浸出すること。
(2)ルテニウム及び又はロジウムを浸出残渣中に濃縮すること。
が可能になる。
Using the method of the present invention,
(1) Leaching selenium and / or tellurium at low cost and stably from selenium and / or tellurium reduction residues containing ruthenium and / or rhodium.
(2) Concentrate ruthenium and / or rhodium in the leach residue.
Is possible.

以下、本発明の詳細について述べる。
セレン及び又はテルル、ルテニウム及び又はロジウムを含む処理対象の還元残渣の主な組成は、セレンが50〜80mass%,テルルが10〜40mass%,ルテニウムが1.0〜10mass%,ロジウムが0.1〜5 mass%である。
Details of the present invention will be described below.
The main composition of the reduction residue to be treated containing selenium and / or tellurium, ruthenium and / or rhodium is selenium 50 to 80 mass%, tellurium 10 to 40 mass%, ruthenium 1.0 to 10 mass%, rhodium 0.1 to 5 mass% It is.

この残渣を55〜150g/Lのスラリー濃度で、セレン及び又はテルルのモル数の合計に対して水酸化ナトリウムのモル数が2〜5倍、より好ましくは2.2〜4倍である水溶液にリパルプする。
スラリー濃度を55g/L以上とした理由は、スラリー濃度が低くなると反応に必要な水酸化ナトリウムの量が一定であるため、水酸化ナトリウム濃度が低くなりセレン及び又はテルルの浸出の効率が低下するためである。水酸化ナトリウム濃度を高くすることは、反応に寄与しない水酸化ナトリウムが増えるため、効率的でない。また、スラリー濃度が低すぎると処理液量が多く効率的でない。
スラリー濃度を150 g/L以下とした理由は、スラリー濃度が高くなると液の粘性が増大するためである。スラリー濃度の増加に伴ってセレン及び又はテルルの浸出に必要な水酸化ナトリウムの濃度も増えるため、液の粘性が増大して効率的な浸出ができなくなる。
The residue is repulped into an aqueous solution having a slurry concentration of 55 to 150 g / L and a sodium hydroxide mole number of 2 to 5 times, more preferably 2.2 to 4 times the total number of moles of selenium and / or tellurium. .
The reason why the slurry concentration is 55 g / L or more is that when the slurry concentration is low, the amount of sodium hydroxide required for the reaction is constant, so the sodium hydroxide concentration is low and the leaching efficiency of selenium and / or tellurium is reduced. Because. Increasing the sodium hydroxide concentration is not efficient because the amount of sodium hydroxide that does not contribute to the reaction increases. On the other hand, if the slurry concentration is too low, the amount of treatment liquid is large and not efficient.
The reason for setting the slurry concentration to 150 g / L or less is that the viscosity of the liquid increases as the slurry concentration increases. As the slurry concentration increases, the concentration of sodium hydroxide required for leaching of selenium and / or tellurium also increases, so that the viscosity of the liquid increases and efficient leaching cannot be performed.

セレン及び又はテルルの浸出に必要な水酸化ナトリウム量は、セレン及び又はテルルのモル数の合計2倍のモル数である。水酸化ナトリウム量が少ないと浸出反応が十分に行えない。また、水酸化ナトリウム量が多すぎると、液の粘性が増大して効率的な浸出ができなくなること、反応に寄与しない水酸化ナトリウムが増える。このため、水酸化ナトリウムのモル数はセレン及び又はテルルのモル数の合計に対して2〜5倍が好ましく、より好ましくは3〜5倍である。この範囲で水溶液の水酸化ナトリウム濃度は50〜150g/Lとなることが望ましい。 The amount of sodium hydroxide required for the leaching of selenium and / or tellurium is the number of moles twice the total number of moles of selenium and / or tellurium. If the amount of sodium hydroxide is small, the leaching reaction cannot be performed sufficiently. Moreover, when there is too much sodium hydroxide amount, the viscosity of a liquid will increase and it will become impossible to perform efficient leaching, and sodium hydroxide which does not contribute to reaction will increase. For this reason, the number of moles of sodium hydroxide is preferably 2 to 5 times, more preferably 3 to 5 times the total number of moles of selenium and / or tellurium. In this range, the sodium hydroxide concentration of the aqueous solution is desirably 50 to 150 g / L.

上記のスラリーを70〜90℃、より好ましくは75〜85℃に加熱して、スラリー中に空気を吹き込み、セレン及び又はテルルを酸化浸出する。この温度範囲で浸出効率が高くなるためである。
空気の吹き込み量は特に規定されるものではないが、スラリー1m3に対して空気量が毎分0.05〜2m3が好ましい。空気を効率的に反応するためには、空気導入口から液面までの深さを高くすること、空気を液中に留めるように撹拌することが望ましい。
The slurry is heated to 70 to 90 ° C., more preferably 75 to 85 ° C., and air is blown into the slurry to oxidize and leach selenium and / or tellurium. This is because the leaching efficiency increases in this temperature range.
Blowing amount of air is not particularly defined, but the amount of air is preferably min 0.05~2M 3 against slurry 1 m 3. In order to react air efficiently, it is desirable to increase the depth from the air inlet to the liquid level and to stir so that the air remains in the liquid.

銀−塩化銀電極基準の酸化還元電位が-150〜-240mVになった時点で空気吹き込みを止めると反応が直ちに停止し、ろ過して残渣を回収するまでに浸出されることがなくなる。このため、ルテニウム及び又はロジウムが浸出されず残渣に残り、セレン及び又はテルルが効率良く浸出された状態を確保できる。銀−塩化銀電極基準の酸化還元電位が-150mVを超えて浸出すると、ルテニウム及び又はロジウムが浸出されて、残渣中への回収率が低下する問題がある。また、銀−塩化銀電極基準の酸化還元電位が-240mV未満で空気吹き込みを止めると、セレン及び又はテルルが十分に浸出されず、残渣中のルテニウム及び又はロジウム品位が低くなる問題がある。
なお、セレン及び又はテルルの浸出反応は酸化反応が律速となるが、導入した空気中の酸素が反応に使われる割合がスラリーの組成、液の深さ、エアー導入口の形状、撹拌状態などによって変化するため、空気を定量添加する手法が使えない。
以上の方法で、ルテニウム及び又はロジウムを残渣中に4〜10倍に濃縮でき、ルテニウム及び又はロジウムの溶出が少なくなり、安価にかつ安定してルテニウム及び又はロジウムを回収できる。
If the air blowing is stopped when the oxidation-reduction potential based on the silver-silver chloride electrode becomes -150 to -240 mV, the reaction stops immediately and no leaching occurs until the residue is collected by filtration. For this reason, ruthenium and / or rhodium are not leached but remain in the residue, and a state where selenium and / or tellurium are efficiently leached can be secured. When the oxidation-reduction potential based on the silver-silver chloride electrode exceeds -150 mV, there is a problem that ruthenium and / or rhodium are leached and the recovery rate in the residue is lowered. Further, when the air-blowing is stopped when the oxidation-reduction potential based on the silver-silver chloride electrode is less than -240 mV, selenium and / or tellurium are not sufficiently leached, and there is a problem that the ruthenium and / or rhodium quality in the residue is lowered.
The leaching reaction of selenium and / or tellurium is rate-determining by the oxidation reaction, but the proportion of oxygen in the introduced air depends on the composition of the slurry, the depth of the liquid, the shape of the air inlet, the stirring state, etc. Because it changes, the method of adding a certain amount of air cannot be used.
By the above method, ruthenium and / or rhodium can be concentrated 4 to 10 times in the residue, the elution of ruthenium and / or rhodium is reduced, and ruthenium and / or rhodium can be recovered stably at low cost.

(実施例1)
以下に本発明の実施例を説明する。表1に実施例および比較例に用いた原料の乾燥重量と組成を、表2に実施例および比較例の試験条件を、表3に実施例および比較例の乾燥重量と組成を、表4に還元滓から浸出残渣の濃縮率を、表6に浸出残渣に回収したルテニウム、ロジウムの回収率を示す。
実施例1に用いた原料は銅電解殿物の湿式処理工程において亜硫酸ガスを用いて還元した還元滓である。この還元滓は表1に示すようにセレン、テルル、ルテニウム、ロジウムを含み、乾燥重量が488kg(表1参照)であった。これを表2に示すように、25%水酸化ナトリウムと市水でスラリー濃度が80g/L、水酸化ナトリウム濃度が75g/Lに調整してリパルプした。このときの水酸化ナトリウムのモル数はセレン及びテルルのモル数の合計に対して2.2倍である。このスラリーを撹拌しながら80℃に加熱した後、空気を毎分2m3で11時間15分間吹込んだ。空気吹込み終了時点における銀−塩化銀電極基準の酸化還元電位は-230mVであった。これをフィルタープレスで濾過して、浸出残渣を得た。
(Example 1)
Examples of the present invention will be described below. Table 1 shows the dry weight and composition of the raw materials used in Examples and Comparative Examples, Table 2 shows the test conditions of Examples and Comparative Examples, Table 3 shows the dry weights and compositions of Examples and Comparative Examples, and Table 4 shows. Table 6 shows the recovery rate of ruthenium and rhodium recovered in the leaching residue.
The raw material used in Example 1 was reduced soot reduced by using sulfurous acid gas in the wet processing step of the copper electrolytic product. As shown in Table 1, this reduced soot contained selenium, tellurium, ruthenium and rhodium and had a dry weight of 488 kg (see Table 1). As shown in Table 2, the slurry was repulped after adjusting the slurry concentration to 80 g / L and the sodium hydroxide concentration to 75 g / L with 25% sodium hydroxide and city water. The number of moles of sodium hydroxide at this time is 2.2 times the total number of moles of selenium and tellurium. The slurry was heated to 80 ° C. with stirring, and air was blown in at 2 m 3 / min for 11 hours and 15 minutes. The redox potential on the basis of the silver-silver chloride electrode at the end of air blowing was -230 mV. This was filtered with a filter press to obtain a leaching residue.

浸出残渣の乾燥重量は101kgで、還元滓から浸出残渣の濃縮率は4.8倍(表4参照)であった。浸出残渣中のルテニウム濃度は18.0mass%、ロジウム濃度は1.5mass%(表3参照)と濃縮されていた。表5に示すようにセレンとテルルの浸出液への移行率は、それぞれ93%、74%であった。
また、表6に示すように、浸出残渣への回収率は、ルテニウム、ロジウム共に99%以上であった。








The dry weight of the leach residue was 101 kg, and the concentration rate of the leach residue from the reduced soot was 4.8 times (see Table 4). The ruthenium concentration in the leach residue was 18.0 mass% and the rhodium concentration was 1.5 mass% (see Table 3). As shown in Table 5, the transfer rates of selenium and tellurium to the leachate were 93% and 74%, respectively.
Further, as shown in Table 6, the recovery rate to the leaching residue was 99% or more for both ruthenium and rhodium.














(実施例2)
実施例2に用いた原料は実施例1と同様の手法で得た還元滓である。表1に示すように、乾燥重量で495kgの還元滓を表2に示すように、25%水酸化ナトリウムと市水でスラリー濃度が80g/L、水酸化ナトリウム濃度が75g/Lに調整してリパルプした。このときの水酸化ナトリウムのモル数はセレン及びテルルのモル数の合計に対して2.3倍である。このスラリーを撹拌しながら80℃に加熱した後、空気を毎分2m3で12時間30分間吹込んだ。空気吹込み終了時点における銀−塩化銀電極基準の酸化還元電位は-160mVであった。これをフィルタープレスで濾過して、浸出残渣を得た。
浸出残渣の乾燥重量は表3に示すように45kgで、組成は、表3に示すものであった。
還元滓から浸出残渣の濃縮率は11.1倍(表4参照)であった。表5に示すようにセレンとテルルの浸出液への移行率は、共に95%であった。
また、表3に示すように、浸出残渣中のルテニウム濃度は18.0mass%、ロジウム濃度は2.0mass%に濃縮されていた。浸出残渣への回収率は、表6に示すように、ルテニウム、ロジウム共に99%以上であった。
(Example 2)
The raw material used in Example 2 was reduced soot obtained by the same method as in Example 1. As shown in Table 1, 495 kg of reduced soot by dry weight was adjusted to a slurry concentration of 80 g / L and sodium hydroxide concentration of 75 g / L with 25% sodium hydroxide and city water as shown in Table 2. Repulped. The number of moles of sodium hydroxide at this time is 2.3 times the total number of moles of selenium and tellurium. The slurry was heated to 80 ° C. with stirring, and air was blown at 2 m 3 / min for 12 hours and 30 minutes. The oxidation-reduction potential based on the silver-silver chloride electrode at the end of air blowing was -160 mV. This was filtered with a filter press to obtain a leaching residue.
The dry weight of the leaching residue was 45 kg as shown in Table 3, and the composition was as shown in Table 3.
The concentration rate of the leach residue from the reduced soot was 11.1 times (see Table 4). As shown in Table 5, the transfer rates of selenium and tellurium to the leachate were both 95%.
As shown in Table 3, the ruthenium concentration in the leaching residue was concentrated to 18.0 mass%, and the rhodium concentration was concentrated to 2.0 mass%. As shown in Table 6, the recovery rate to the leach residue was 99% or more for both ruthenium and rhodium.

(実施例3)
実施例3に用いた原料は実施例1と同様の手法で得た還元滓である。乾燥重量で495kgの還元滓(表1参照)を25%水酸化ナトリウムと市水でスラリー濃度が55g/L、水酸化ナトリウム濃度が100g/Lに調整してリパルプした。
表2に示すように、このときの水酸化ナトリウムのモル数はセレン及びテルルのモル数の合計に対して4.0倍である。このスラリーを撹拌しながら80℃に加熱した後、空気を毎分2m3で12時間10分間吹込んだ。空気吹込み終了時点における銀−塩化銀電極基準の酸化還元電位は-200mVであった。これをフィルタープレスで濾過して、浸出残渣を得た。
浸出残渣の乾燥重量は87kgで、還元滓から浸出残渣の濃縮率は5.4倍(表4参照)であった。表5に示すようにセレンとテルルの浸出液への移行率は、それぞれ95%、84%であった。
また、浸出残渣中のルテニウム濃度は11.5mass%、ロジウム濃度は1.0mass%に濃縮されていた(表3参照)。浸出残渣への回収率は、ルテニウム、ロジウム共に99%以上(表6参照)であった。
(Example 3)
The raw material used in Example 3 was reduced soot obtained by the same method as in Example 1. A dry weight of 495 kg of reduced soot (see Table 1) was repulped with 25% sodium hydroxide and city water at a slurry concentration of 55 g / L and a sodium hydroxide concentration of 100 g / L.
As shown in Table 2, the number of moles of sodium hydroxide at this time is 4.0 times the total number of moles of selenium and tellurium. The slurry was heated to 80 ° C. with stirring, and air was blown at 2 m 3 / min for 12 hours and 10 minutes. The oxidation-reduction potential based on the silver-silver chloride electrode at the end of air blowing was -200 mV. This was filtered with a filter press to obtain a leaching residue.
The dry weight of the leach residue was 87 kg, and the concentration rate of the leach residue from the reduced soot was 5.4 times (see Table 4). As shown in Table 5, the transfer rates of selenium and tellurium to the leachate were 95% and 84%, respectively.
Further, the ruthenium concentration in the leach residue was concentrated to 11.5 mass%, and the rhodium concentration was concentrated to 1.0 mass% (see Table 3). The recovery rate to the leach residue was 99% or more for both ruthenium and rhodium (see Table 6).

(比較例1)
(還元残渣のスラリー濃度が55g/Lより低い場合)
以下に比較例を説明する。比較例1の原料は実施例1と同様の手法で得た還元滓である。乾燥重量で440kgの還元滓(表1参照)を25%水酸化ナトリウムと市水でスラリー濃度が51g/L、水酸化ナトリウム濃度が61g/Lに調整してリパルプした(表2参照)。このときの水酸化ナトリウムのモル数はセレン及びテルルのモル数の合計に対して3.6倍である(表2参照)。このスラリーを撹拌しながら80℃に加熱した後、空気を毎分1m3で5時間吹込んだ。空気吹込み終了時点における銀−塩化銀電極基準の酸化還元電位は-133mVであった(表2参照)。これをフィルタープレスで濾過して、浸出残渣を得た。
浸出残渣(表3参照)の乾燥重量は88kgで、還元滓から浸出残渣の濃縮率は5.0倍(表4参照)であった。セレンとテルルの浸出液への移行率は、それぞれ98%、95%(表5参照)であった。浸出残渣中のルテニウム濃度は33.5mass%、ロジウム濃度は11.0mass%と濃縮されていた。
しかし、浸出残渣への回収率は、ルテニウムが67%、ロジウムが58%と低かった(表6参照)。ろ液を分析したところ、ルテニウムとロジウムが多く含まれていた。これは空気吹込み終了時点における銀−塩化銀電極基準の酸化還元電位は-133mVと低くなりすぎて、ルテニウムとロジウムが浸出されたためである。
(Comparative Example 1)
(When the slurry concentration of the reduction residue is lower than 55 g / L)
A comparative example will be described below. The raw material of Comparative Example 1 is reduced soot obtained by the same method as in Example 1. A reduced weight of 440 kg of reduced soot (see Table 1) was repulped with 25% sodium hydroxide and city water at a slurry concentration of 51 g / L and a sodium hydroxide concentration of 61 g / L (see Table 2). The number of moles of sodium hydroxide at this time is 3.6 times the total number of moles of selenium and tellurium (see Table 2). The slurry was heated to 80 ° C. with stirring, and air was blown at 1 m 3 / min for 5 hours. The oxidation-reduction potential based on the silver-silver chloride electrode at the end of air blowing was -133 mV (see Table 2). This was filtered with a filter press to obtain a leaching residue.
The dry weight of the leaching residue (see Table 3) was 88 kg, and the concentration rate of the leaching residue from the reduced soot was 5.0 times (see Table 4). The migration rates of selenium and tellurium into the leachate were 98% and 95%, respectively (see Table 5). The ruthenium concentration in the leach residue was 33.5 mass% and the rhodium concentration was 11.0 mass%.
However, the recoveries of leachable residue were as low as 67% for ruthenium and 58% for rhodium (see Table 6). When the filtrate was analyzed, it contained a lot of ruthenium and rhodium. This is because the oxidation-reduction potential based on the silver-silver chloride electrode reference at the end of air blowing was too low at -133 mV, and ruthenium and rhodium were leached.

(比較例2)
(空気吹き込み時間が少なく、酸化還元電位-240mVより低い場合)
比較例2の原料は実施例1と同様の手法で得た還元滓である。乾燥重量で358kgの還元滓(表1参照)を25%水酸化ナトリウムと市水でスラリー濃度が102g/L、水酸化ナトリウム濃度が82g/Lに調整してリパルプした(表2参照)。このときの水酸化ナトリウムのモル数はセレン及びテルルのモル数の合計に対して2.4倍である(表2参照)。このスラリーを撹拌しながら80℃に加熱した後、空気を毎分1m3で8時間吹込んだ。空気吹込み終了時点における銀−塩化銀電極基準の酸化還元電位は-285mVであった(表2参照)。これをフィルタープレスで濾過して、浸出残渣を得た。
浸出残渣の乾燥重量は177kg(表3参照)で、還元滓から浸出残渣の濃縮率は2.0倍(表4参照)と低かった。表5に示すようにセレンとテルルの浸出液への移行率は、それぞれ60%、76%であった。また浸出残渣中のルテニウム濃度は14.0mass%、ロジウム濃度は5.4mass%で還元滓から約2倍までしか濃縮されていなかった(表3参照)。これは銀−塩化銀電極基準の酸化還元電位は-285mVと高い時点で空気吹込みを終了したため、セレン、テルルが十分に浸出できていなかったためである。
(Comparative Example 2)
(When the air blowing time is short and the oxidation-reduction potential is lower than -240 mV)
The raw material of Comparative Example 2 is reduced soot obtained by the same method as in Example 1. A reduced weight of 358 kg of reduced soot (see Table 1) was repulped with 25% sodium hydroxide and city water at a slurry concentration of 102 g / L and a sodium hydroxide concentration of 82 g / L (see Table 2). The number of moles of sodium hydroxide at this time is 2.4 times the total number of moles of selenium and tellurium (see Table 2). The slurry was heated to 80 ° C. with stirring, and air was blown at 1 m 3 / min for 8 hours. The oxidation-reduction potential based on the silver-silver chloride electrode at the end of air blowing was -285 mV (see Table 2). This was filtered with a filter press to obtain a leaching residue.
The dry weight of the leaching residue was 177 kg (see Table 3), and the concentration rate of the leaching residue from the reduced soot was as low as 2.0 times (see Table 4). As shown in Table 5, the transfer rates of selenium and tellurium to the leachate were 60% and 76%, respectively. Moreover, the ruthenium concentration in the leach residue was 14.0 mass%, the rhodium concentration was 5.4 mass%, and it was concentrated only about 2 times from the reduced soot (see Table 3). This is because selenium and tellurium were not sufficiently leached because air blowing was terminated when the oxidation-reduction potential based on the silver-silver chloride electrode was as high as -285 mV.

(比較例3)
(水酸化ナトリウムのモル比が、2より低い場合)
比較例3の原料は実施例1と同様の手法で得た還元滓である。乾燥重量で309kgの還元滓(表1参照)を25%水酸化ナトリウムと市水でスラリー濃度が80g/L、水酸化ナトリウム濃度が65g/Lに調整してリパルプした(表2参照)。このときの水酸化ナトリウムのモル数はセレン及びテルルのモル数の合計に対して1.9倍である(表2参照)。このスラリーを撹拌しながら80℃に加熱した後、空気を毎分2m3で12時間吹込んだ。空気吹込み終了時点における銀−塩化銀電極基準の酸化還元電位は-220mVであった(表2参照)。これをフィルタープレスで濾過して、浸出残渣を得た。
浸出残渣の乾燥重量は88kg(表3参照)で、還元滓から浸出残渣の濃縮率は3.5倍と低かった。表5に示すようにセレンとテルルの浸出液への移行率は、それぞれ84%、60%であった。また浸出残渣中のルテニウム濃度は15.0mass%、ロジウム濃度は2.3mass%で還元滓から4倍以下までしか濃縮されていなかった(表3参照)。これは水酸化ナトリウムの添加量が少なかったため、セレン、テルルが十分に浸出できていないことによる。
(Comparative Example 3)
(When the molar ratio of sodium hydroxide is lower than 2)
The raw material of Comparative Example 3 is reduced soot obtained by the same method as in Example 1. A reduced weight of 309 kg (see Table 1) was repulped with 25% sodium hydroxide and city water at a slurry concentration of 80 g / L and a sodium hydroxide concentration of 65 g / L (see Table 2). At this time, the number of moles of sodium hydroxide is 1.9 times the total number of moles of selenium and tellurium (see Table 2). The slurry was heated to 80 ° C. with stirring, and then air was blown at 2 m 3 / min for 12 hours. The oxidation-reduction potential based on the silver-silver chloride electrode at the end of air blowing was -220 mV (see Table 2). This was filtered with a filter press to obtain a leaching residue.
The dry weight of the leach residue was 88 kg (see Table 3), and the concentration rate of the leach residue from the reduced soot was as low as 3.5 times. As shown in Table 5, the transfer rates of selenium and tellurium to the leachate were 84% and 60%, respectively. In addition, the ruthenium concentration in the leach residue was 15.0 mass%, the rhodium concentration was 2.3 mass%, and it was concentrated only 4 times or less from the reduced soot (see Table 3). This is because selenium and tellurium were not sufficiently leached because the amount of sodium hydroxide added was small.

本発明の処理フローの一態様を示す。An aspect of the processing flow of the present invention is shown.

Claims (2)

少なくともセレン及び又はテルルを含み、ルテニウム及び又はロジウムを含む残渣を55〜150g/Lのスラリー濃度で、セレン及び又はテルルのモル数の合計に対して水酸化ナトリウムのモル数が2〜5倍である水溶液に空気を吹き込み、
銀−塩化銀電極基準の酸化還元電位が-150〜-240mVに成った時点で、浸出処理を中止することにより浸出液中にセレン及び又はテルルを分離し、濃縮率で4倍以上のルテニウム及び又はロジウムを残渣に残すこと
を特徴とするセレン及び又はテルルを含み、ルテニウム及び又はロジウムを含む処理物の浸出方法。
Residues containing at least selenium and / or tellurium, ruthenium and / or rhodium at a slurry concentration of 55 to 150 g / L, 2-5 times the number of moles of sodium hydroxide relative to the total number of moles of selenium and / or tellurium Blow air into an aqueous solution,
When the oxidation-reduction potential based on the silver-silver chloride electrode reaches -150 to -240 mV, the leaching process is stopped to separate selenium and / or tellurium in the leachate, and the concentration rate of ruthenium and / or 4 times or more. A method for leaching a treated product containing selenium and / or tellurium and containing ruthenium and / or rhodium, wherein rhodium is left in the residue.
請求項1記載の処理物である残渣が、還元滓であることを特徴とするセレン及び又はテルルを含み、ルテニウム及び又はロジウムを含む処理物の浸出方法。


2. The method for leaching a treated product containing ruthenium and / or rhodium containing selenium and / or tellurium, wherein the residue as the treated product according to claim 1 is reduced soot.


JP2006096413A 2006-03-31 2006-03-31 A method for leaching a treated product containing selenium and / or tellurium and containing ruthenium and / or rhodium. Active JP4188382B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006096413A JP4188382B2 (en) 2006-03-31 2006-03-31 A method for leaching a treated product containing selenium and / or tellurium and containing ruthenium and / or rhodium.
CNB2006101603478A CN100510123C (en) 2006-03-31 2006-11-15 Lixiviation method for treatment substance containing selenium and/or tellurium, and ruthenium and/or rhodium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006096413A JP4188382B2 (en) 2006-03-31 2006-03-31 A method for leaching a treated product containing selenium and / or tellurium and containing ruthenium and / or rhodium.

Publications (2)

Publication Number Publication Date
JP2007270233A JP2007270233A (en) 2007-10-18
JP4188382B2 true JP4188382B2 (en) 2008-11-26

Family

ID=38673333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006096413A Active JP4188382B2 (en) 2006-03-31 2006-03-31 A method for leaching a treated product containing selenium and / or tellurium and containing ruthenium and / or rhodium.

Country Status (2)

Country Link
JP (1) JP4188382B2 (en)
CN (1) CN100510123C (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4874375B2 (en) * 2009-09-28 2012-02-15 Jx日鉱日石金属株式会社 Method for recovering tellurium from copper electrolytic deposits
JP5539777B2 (en) * 2010-03-31 2014-07-02 Jx日鉱日石金属株式会社 Method for treating reduced soot containing selenium and tellurium
CN102515117B (en) * 2012-01-12 2013-09-11 伍代明 Method for extracting selenium from material containing arsenic, selenium and aluminum
JP6250365B2 (en) * 2013-11-07 2017-12-20 Jx金属株式会社 Method for concentrating rhodium and ruthenium
JP6376349B2 (en) * 2015-02-28 2018-08-22 三菱マテリアル株式会社 Method for separating selenium, tellurium and platinum group elements
JP6994984B2 (en) * 2018-02-27 2022-01-14 Jx金属株式会社 How to recover ruthenium

Also Published As

Publication number Publication date
CN100510123C (en) 2009-07-08
CN101045958A (en) 2007-10-03
JP2007270233A (en) 2007-10-18

Similar Documents

Publication Publication Date Title
JP5237120B2 (en) Gold collection method
JP4999108B2 (en) Gold leaching method
KR100956050B1 (en) Method for separating platinum group element
JP4642796B2 (en) Gold leaching method
JP4188382B2 (en) A method for leaching a treated product containing selenium and / or tellurium and containing ruthenium and / or rhodium.
JP5539777B2 (en) Method for treating reduced soot containing selenium and tellurium
JP5104211B2 (en) Silver powder manufacturing method
CN111606308A (en) Method for efficiently separating and recycling tellurium from copper anode slime copper separation slag
JP7016463B2 (en) How to collect tellurium
CN109706322A (en) The extracting method of silver, lead, tin in a kind of silver separating residues
JP5146017B2 (en) Chlorine leaching method for lead anode slime
JP6810887B2 (en) Separation and recovery methods for selenium, tellurium, and platinum group elements
JP2012246198A (en) Method for purifying selenium by wet process
JP2012211028A (en) Method for recovering tellurium from alkali leaching residue containing tellurium
JP5447357B2 (en) Chlorine leaching method for copper electrolytic slime
JP5327420B2 (en) Platinum recovery method
JP5200588B2 (en) Method for producing high purity silver
JP2008274382A (en) Method for separating lead from aqueous cobalt chloride solution
US8936667B2 (en) Aqueous leaching process for recovery of precious metals with addition of di-thiooxamide ligand
JP2015113503A (en) Method of separating and collecting selenium and tellurium in transition metal-containing aqueous solution
JP2020105587A (en) Treatment method of acidic solution containing noble metal, selenium and tellurium
JP4158706B2 (en) Processing method and manufacturing method for separating gold from platinum group-containing solution
JP6652746B2 (en) Arsenic leaching method
JP2016011449A (en) Method for producing leach product solution containing platinum group element
JP4406745B2 (en) Method for processing Sn, Pb, Cu-containing material

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080909

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080910

R150 Certificate of patent or registration of utility model

Ref document number: 4188382

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250