JP4188350B2 - Semiconductor diode and display device using the same - Google Patents

Semiconductor diode and display device using the same Download PDF

Info

Publication number
JP4188350B2
JP4188350B2 JP2005254040A JP2005254040A JP4188350B2 JP 4188350 B2 JP4188350 B2 JP 4188350B2 JP 2005254040 A JP2005254040 A JP 2005254040A JP 2005254040 A JP2005254040 A JP 2005254040A JP 4188350 B2 JP4188350 B2 JP 4188350B2
Authority
JP
Japan
Prior art keywords
semiconductor diode
phosphor
light
light emitting
diode according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005254040A
Other languages
Japanese (ja)
Other versions
JP2005350681A (en
Inventor
伸行 須藤
賢二 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005254040A priority Critical patent/JP4188350B2/en
Publication of JP2005350681A publication Critical patent/JP2005350681A/en
Application granted granted Critical
Publication of JP4188350B2 publication Critical patent/JP4188350B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Led Devices (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は半導体ダイオードおよびそれを用いた表示装置に係り、特に波長370nm付近の紫外線励起光を効率的に吸収して赤色光に変換することが可能な半導体ダイオードおよびそれを用いた高輝度の表示装置に関する。   The present invention relates to a semiconductor diode and a display device using the semiconductor diode, and more particularly to a semiconductor diode capable of efficiently absorbing ultraviolet excitation light having a wavelength of around 370 nm and converting it into red light, and a high luminance display using the semiconductor diode. Relates to the device.

発光ダイオード(LED:Light Emitting Diode)は光を放射する半導体ダイオードであり、電気エネルギーを可視光または赤外光に変換するものである。特に可視光を利用するためにGaPやGaAsP,GaAlAs等の発光材料で形成した発光チップを透明樹脂等で封止したLEDランプとして広く使用されている。また発光材料をプリント基板や金属リードの上面に固定し、数字や文字をかたどった樹脂ケースで封止したディスプレイ型のLEDランプも多用されている。   A light emitting diode (LED) is a semiconductor diode that emits light, and converts electrical energy into visible light or infrared light. In particular, in order to use visible light, it is widely used as an LED lamp in which a light emitting chip formed of a light emitting material such as GaP, GaAsP, or GaAlAs is sealed with a transparent resin or the like. In addition, a display-type LED lamp in which a light emitting material is fixed to the upper surface of a printed board or a metal lead and sealed with a resin case shaped like a number or letter is also frequently used.

また、発光チップの表面ないし発光ダイオードの樹脂中に各種の蛍光体粉末を含有させることにより、放射光の色を適正に調整することも可能である。すなわち、発光ダイオードランプの発光色は、青色から赤色まで各使用用途に応じた可視光領域の発光を再現することができる。また、発光ダイオードは半導体素子であるため、寿命が長く信頼性も高く、光源として用いた場合には、その交換作業も軽減化されることから、携帯通信機器,パーソナルコンピュータ周辺機器,OA機器,家庭用電気機器,オーディオ機器,各種スイッチ,バックライト用光源表示板等の各種表示装置の構成部品として広く使用されている。   In addition, it is possible to appropriately adjust the color of the emitted light by including various phosphor powders on the surface of the light emitting chip or the resin of the light emitting diode. That is, the emission color of the light-emitting diode lamp can reproduce light emission in the visible light region according to each usage from blue to red. Further, since the light emitting diode is a semiconductor element, it has a long life and high reliability, and when used as a light source, its replacement work is also reduced, so that a portable communication device, a personal computer peripheral device, an OA device, It is widely used as a component of various display devices such as household electrical equipment, audio equipment, various switches, and light source display plates for backlights.

しかしながら、最近では、上記各種表示装置の利用者の色彩感覚がさらに向上し、各種表示装置においても、微妙な色合いをより高精細に再現できる機能が要求されている。また、1個の発光ダイオードによって白色ないし各種の中間色を再現する機能も強く求められている。   Recently, however, the color sense of the users of the various display devices has been further improved, and various display devices are required to have a function capable of reproducing subtle hues with higher definition. There is also a strong demand for a function of reproducing white or various intermediate colors with a single light emitting diode.

そのため、LEDランプの発光チップの表面に、さらに青色,赤色,緑色発光蛍光体を塗布したり、発光ダイオードを構成する樹脂中に上記各種蛍光体粉末を含有させることにより、1個の発光ダイオードから白色ないし任意の中間色を取り出すように構成することも試行されている。従来から発光ダイオードから放射される370nm前後の波長の紫外線によって、効率的に可視光を放射する青色発光蛍光体および緑色発光蛍光体は数多く存在する。   Therefore, by applying blue, red and green light emitting phosphors on the surface of the light emitting chip of the LED lamp, or by incorporating the above various phosphor powders in the resin constituting the light emitting diode, the light emitting diode can be made from one light emitting diode. Attempts have also been made to extract white or any intermediate color. Conventionally, there are many blue-emitting phosphors and green-emitting phosphors that efficiently emit visible light by ultraviolet rays having a wavelength of around 370 nm emitted from light-emitting diodes.

しかしながら、特に赤色発光蛍光体は、他の青色,緑色発光蛍光体と比較して、波長370nm前後の励起光(紫外線)に対して吸収が弱いという問題点があり、特に赤色発光に近い色合いの放射光を再現しようとすると、その発光輝度が大幅に低下してしまう問題点があった。   However, in particular, the red light emitting phosphor has a problem that it is weakly absorbed with respect to excitation light (ultraviolet light) having a wavelength of around 370 nm as compared with other blue and green light emitting phosphors. When trying to reproduce the radiated light, there is a problem that the luminance of the emitted light is greatly reduced.

本発明は上記問題点を解決するためになされたものであり、発光チップの励起波長である370nm前後において、効率的に紫外線を吸収して赤色発光を効率よく放射でき、1個の発光チップから白色ないし任意の中間色を取り出すために、実用的に使用できる赤色発光蛍光体を含有する半導体ダイオードおよびそれを用いた高輝度の表示装置を提供することを目的とする。   The present invention has been made to solve the above problems, and can absorb red light efficiently and emit red light efficiently at around 370 nm, which is the excitation wavelength of the light emitting chip, from one light emitting chip. An object of the present invention is to provide a semiconductor diode containing a red light-emitting phosphor that can be used practically for extracting white or any intermediate color, and a high-luminance display device using the semiconductor diode.

本発明者らは、上記目的を達成するため、種々の組成から成る赤色発光蛍光体を調製し、この組成成分の種類および添加量が蛍光体の励起スペクトル分布および発光輝度に及ぼす影響を実験により比較検討した。   In order to achieve the above-mentioned object, the present inventors prepared red light-emitting phosphors having various compositions, and experimentally examined the effects of the types and addition amounts of the composition components on the excitation spectrum distribution and emission luminance of the phosphors. A comparative study was conducted.

その結果、ユーロピウム付活酸硫化ランタン蛍光体に所定量のサマリウム(Sm)を添加配合することにより励起スペクトル分布のピークが波長370nm前後と長波長側にシフトでき、半導体ダイオードの発光チップの励起紫外線によって赤色発光を効率的に放射できることが可能な赤色発光蛍光体が初めて得られるという知見を得た。本発明は上記知見に基づいて完成されたものである。   As a result, by adding a predetermined amount of samarium (Sm) to the europium activated lanthanum oxysulfide phosphor, the peak of the excitation spectrum distribution can be shifted to the long wavelength side of around 370 nm, and the excitation ultraviolet light of the light emitting chip of the semiconductor diode As a result, it has been found that a red light emitting phosphor capable of efficiently emitting red light emission can be obtained for the first time. The present invention has been completed based on the above findings.

すなわち本発明に係る半導体ダイオードは、一般式(La1−x−yEuSmS(但し、0.01≦x≦0.15,0.0001≦y≦0.03)で表わされるユーロピウム・サマリウム付活酸硫化ランタン蛍光体から成る赤色発光蛍光体に、青色発光蛍光体および緑色発光蛍光体を組み合わせて任意の色温度の白色または任意の中間色で発光することを特徴とする。 That is, the semiconductor diode according to the present invention have the general formula (La 1-x-y Eu x Sm y) 2 O 2 S ( where, 0.01 ≦ x ≦ 0.15,0.0001 ≦ y ≦ 0.03) A red light emitting phosphor composed of a europium samarium activated lanthanum oxysulfide phosphor represented by the above , and a blue light emitting phosphor and a green light emitting phosphor are combined to emit light in any white color or any intermediate color. To do.

さらに、本発明に係る他の半導体ダイオードは、一般式(La1−x−yEuSmS(但し、0.01≦x≦0.15,0.0001≦y≦0.03)で表わされるユーロピウム・サマリウム付活酸硫化ランタン蛍光体から成る赤色発光蛍光体と発光チップとを有する半導体ダイオードにおいて、前記発光チップが紫外線を放射することを特徴とする。 Further, other semiconductor diode according to the present invention have the general formula (La 1-x-y Eu x Sm y) 2 O 2 S ( where, 0.01 ≦ x ≦ 0.15,0.0001 ≦ y ≦ 0 0.03), a semiconductor diode having a red light emitting phosphor made of a europium / samarium activated lanthanum oxysulfide phosphor and a light emitting chip, wherein the light emitting chip emits ultraviolet light.

また、上記半導体ダイオードにおいて、励起スペクトル分布におけるピーク波長が、紫外線長波長領域に存在することが好ましい。さらに、励起スペクトル分布におけるピーク波長が、330〜430nmの紫外線波長領域に存在することが好ましい。   In the semiconductor diode, the peak wavelength in the excitation spectrum distribution is preferably in the ultraviolet long wavelength region. Furthermore, it is preferable that the peak wavelength in the excitation spectrum distribution exists in the ultraviolet wavelength region of 330 to 430 nm.

さらに、一般式におけるユーロピウム(Eu)の原子比(x)が0.03〜0.08の範囲であることが、より好ましい。また、一般式におけるサマリウム(Sm)の原子比(y)が0.001〜0.01の範囲であることが、より好ましい。   Furthermore, it is more preferable that the atomic ratio (x) of europium (Eu) in the general formula is in the range of 0.03 to 0.08. Moreover, it is more preferable that the atomic ratio (y) of samarium (Sm) in the general formula is in the range of 0.001 to 0.01.

さらに、Laの30mol%以下を、YおよびGdの少なくとも一方の元素で置換してもよい。また、Laに対するYおよびGdの少なくとも一方の元素の置換量が5〜20mol%であることが、より好ましい。   Furthermore, 30 mol% or less of La may be substituted with at least one element of Y and Gd. Moreover, it is more preferable that the substitution amount of at least one of Y and Gd with respect to La is 5 to 20 mol%.

また、上記蛍光体と発光チップとを具備する半導体ダイオードにおいて、上記蛍光体が樹脂層に含有されることが好ましい。   In the semiconductor diode including the phosphor and the light emitting chip, the phosphor is preferably contained in a resin layer.

さらに本発明に係る表示装置は、上記のように構成された半導体ダイオードを用いて形成される。   Furthermore, the display device according to the present invention is formed using the semiconductor diode configured as described above.

さらに、本発明に係る半導体ダイオードに使用される赤色発光蛍光体の製造方法は、一般式(La1−x−yEuSmS(但し、0.01≦x≦0.15,0.0001≦y≦0.03)で表わされる組成を有するように各原料粉末を均一に配合して原料混合体を調製する工程と、得られた原料混合体を焼成する工程と、得られた焼成物を純水にて洗浄して不要な可溶成分を除去する工程と、さらに焼成物をpH2以上の酸性液中で酸洗浄する工程と、酸洗浄した焼成物を純水にて洗浄後、濾過・乾燥する工程とを備えることを特徴とする。 Furthermore, the manufacturing method of the red light-emitting phosphors used in the semiconductor diode according to the present invention have the general formula (La 1-x-y Eu x Sm y) 2 O 2 S ( where, 0.01 ≦ x ≦ 0. 15, 0.0001 ≦ y ≦ 0.03), a step of uniformly blending the raw material powders to prepare a raw material mixture, a step of firing the obtained raw material mixture, The obtained fired product is washed with pure water to remove unnecessary soluble components, the step of acid-washing the fired product in an acidic liquid having a pH of 2 or higher, and the acid-washed fired product to pure water. And a step of filtering and drying after washing.

さらに、本発明に係る半導体ダイオードは、発光材料と組み合わされた発光チップに通電することにより電気エネルギーを可視光または赤外光に変換する半導体ダイオードにおいて、上記発光チップと組み合わされた発光材料が一般式(La1−x−yEuSmS(但し、0.01≦x≦0.15,0.0001≦y≦0.03)で表わされるユーロピウム・サマリウム付活酸硫化ランタン蛍光体であることを特徴とする。 Furthermore, the semiconductor diode according to the present invention is a semiconductor diode that converts electrical energy into visible light or infrared light by energizing the light emitting chip combined with the light emitting material, and the light emitting material combined with the light emitting chip is generally used. formula (La 1-x-y Eu x Sm y) 2 O 2 S ( where, 0.01 ≦ x ≦ 0.15,0.0001 ≦ y ≦ 0.03) europium-samarium Katsusan sulfide represented by It is a lanthanum phosphor.

ここで、上記Eu(ユーロピウム)は蛍光体の発光効率を高める活性体(付活剤)として作用し、La(ランタン)に対して原子比xで0.01〜0.15の割合で添加される。添加割合が0.01未満では輝度が著しく低下し発光効率の改善効果が少ない。一方、添加割合が0.15を超えると、着色を生じ易くなり、濃度消光のため輝度が著しく低下し蛍光体の発光効率を却って阻害することになる。より好ましいEuの原子比xは0.03〜0.08の範囲である。   Here, Eu (europium) acts as an activator (activator) that enhances the luminous efficiency of the phosphor, and is added at an atomic ratio x of 0.01 to 0.15 with respect to La (lanthanum). The When the addition ratio is less than 0.01, the luminance is remarkably lowered and the effect of improving the luminous efficiency is small. On the other hand, when the addition ratio exceeds 0.15, coloring is likely to occur, and the luminance is remarkably lowered due to concentration quenching, which hinders the luminous efficiency of the phosphor. The atomic ratio x of Eu is more preferably in the range of 0.03 to 0.08.

また、Sm(サマリウム)は付活剤として作用する他に、蛍光体の励起スペクトル波長を長波長側にシフトする作用を有し、La(ランタン)に対して、0.0001〜0.03の割合で添加される。添加割合が0.0001未満では上記シフト効果が不十分である一方、添加割合が0.03を超えると、同様に蛍光体の発光効率を却って阻害する。より好ましいSmの原子比yは0.001〜0.01の範囲である。   In addition to acting as an activator, Sm (samarium) has the effect of shifting the excitation spectrum wavelength of the phosphor to the longer wavelength side, and is 0.0001 to 0.03 relative to La (lanthanum). Added in proportions. When the addition ratio is less than 0.0001, the shift effect is insufficient. On the other hand, when the addition ratio exceeds 0.03, the luminous efficiency of the phosphor is similarly inhibited. A more preferable atomic ratio y of Sm is in the range of 0.001 to 0.01.

上記組成範囲の赤色発光蛍光体は、励起スペクトル分布におけるピーク波長が360〜380nmの紫外線波長領域に存在することになり、半導体ダイオードの励起用紫外線によって効率的に赤色光を放射する。   The red light-emitting phosphor having the above composition range exists in the ultraviolet wavelength region where the peak wavelength in the excitation spectrum distribution is 360 to 380 nm, and efficiently emits red light by the ultraviolet light for excitation of the semiconductor diode.

また、Laと一部置換して用いられるイットリウム(Y)およびガドリニウム(Gd)は、蛍光体中に固溶することにより、赤色領域における発光エネルギーを高める効果を有し、Laとの置換量は30mol%以下とされる。置換量が30mol%を超えるように過大になると、結晶の歪みが無視できなくなり、発光強度が不十分となるためである。より好ましい置換量は、5〜20mol%の範囲である。   In addition, yttrium (Y) and gadolinium (Gd), which are partially substituted with La, have the effect of increasing the emission energy in the red region by being dissolved in the phosphor, and the amount of substitution with La is 30 mol% or less. This is because if the amount of substitution exceeds 30 mol%, the crystal distortion cannot be ignored and the light emission intensity becomes insufficient. A more preferable substitution amount is in the range of 5 to 20 mol%.

本発明に係る半導体ダイオードに使用される赤色発光蛍光体は、例えば以下の工程を経て製造される。すなわち、一般式(La1−x−yEuSmS(但し、0.01≦x≦0.15,0.0001≦y≦0.03)で表わされる組成を有するようにLaO3,Eu,Sm,Sなどの各原料粉末をNaCOやLiPOなどの融剤と均一に配合した後にボールミル等で十分に混合して原料混合体を調製する工程と、得られた原料混合体を、蓋付きのアルミナ坩堝等の焼成容器に収容して大気中で1100〜1400℃の温度で3〜6時間焼成する工程と、得られた焼成物を純水にて洗浄して不要な可溶成分を除去する工程と、さらに焼成物をpH2以上の酸性液中で酸洗浄する工程と、酸洗浄した焼成物を純水にて3〜5回洗浄後、濾過・乾燥する工程とを経て製造される。 The red light emitting phosphor used in the semiconductor diode according to the present invention is manufactured through the following steps, for example. In other words, the general formula (La 1-x-y Eu x Sm y) 2 O 2 S ( where, 0.01 ≦ x ≦ 0.15,0.0001 ≦ y ≦ 0.03) to have a composition represented by Each raw material powder such as La 2 O 3, Eu 2 O 3 , Sm 2 O 3 , and S is uniformly mixed with a fluxing agent such as Na 2 CO 3 and Li 3 PO 4, and then mixed thoroughly with a ball mill or the like. A step of preparing a mixture, a step of storing the obtained raw material mixture in a firing container such as an alumina crucible with a lid, and firing in the atmosphere at a temperature of 1100 to 1400 ° C. for 3 to 6 hours; Washing the fired product with pure water to remove unnecessary soluble components, further washing the fired product with acid in an acidic solution having a pH of 2 or higher, and washing the acid-washed fired product with pure water 3 It is manufactured through a step of filtration and drying after washing 5 times.

ここで上記製造方法の酸洗浄工程において、特に蛍光体粒子分散液をpH2以上の酸性領域に維持しながら洗浄することにより、蛍光体粒子中に混入した非発光成分を高い効率で除去できるとともに、蛍光体粒子の製品歩留りを90%以上に高めることができるなど、実用上顕著な効果が発揮される。なお、非発光成分の除去効果と製品歩留りとを共に高くするためには、上記酸洗浄時のpHは、2〜4の範囲に保持することが、より好ましい。   Here, in the acid washing step of the above production method, in particular, by washing the phosphor particle dispersion while maintaining it in an acidic region having a pH of 2 or more, non-luminescent components mixed in the phosphor particles can be removed with high efficiency, The product yield of the phosphor particles can be increased to 90% or more, and a remarkable effect in practical use is exhibited. In order to increase both the removal effect of the non-luminescent component and the product yield, it is more preferable to maintain the pH during the acid cleaning in the range of 2 to 4.

さらに、本発明に係る半導体ダイオードは、発光材料と組み合わされた発光チップに通電することにより電気エネルギーを可視光または赤外光に変換する半導体ダイオードにおいて、上記発光チップと組み合わされた発光材料が一般式(La1−x−yEuSmS(但し、0.01≦x≦0.15,0.0001≦y≦0.03)で表わされるユーロピウム・サマリウム付活酸硫化ランタン蛍光体であることを特徴とする。 Furthermore, the semiconductor diode according to the present invention is a semiconductor diode that converts electrical energy into visible light or infrared light by energizing the light emitting chip combined with the light emitting material, and the light emitting material combined with the light emitting chip is generally used. formula (La 1-x-y Eu x Sm y) 2 O 2 S ( where, 0.01 ≦ x ≦ 0.15,0.0001 ≦ y ≦ 0.03) europium-samarium Katsusan sulfide represented by It is a lanthanum phosphor.

上記半導体ダイオードを構成する発光チップは、特に限定されるものではないが、一般的にInGaN系材料,GaP系材料,GaAsP系材料,GaAlAs系材料等から成るチップが使用される。   The light emitting chip constituting the semiconductor diode is not particularly limited, but generally, a chip made of InGaN-based material, GaP-based material, GaAsP-based material, GaAlAs-based material or the like is used.

上記半導体ダイオードによれば、励起源となる紫外線波長領域において励起スペトクトルの高いピークを有する赤色発光蛍光体を含有しているため、赤色領域における発光輝度を大幅に高めることができる。   According to the semiconductor diode, since the red light emitting phosphor having a high peak of the excitation spectrum is contained in the ultraviolet wavelength region serving as the excitation source, the emission luminance in the red region can be greatly increased.

上記構成に係る半導体ダイオードによれば、赤色発光蛍光体に所定量のSmを添加して励起スペクトル波長を半導体ダイオードの励起紫外線波長側にシフトしているため、波長370nm前後の励起紫外線を効率よく吸収し赤色光に変換でき、赤色領域における発光輝度を大幅に高めることができる。   According to the semiconductor diode having the above configuration, since a predetermined amount of Sm is added to the red light emitting phosphor and the excitation spectrum wavelength is shifted to the excitation ultraviolet wavelength side of the semiconductor diode, the excitation ultraviolet light having a wavelength of around 370 nm is efficiently used. It can be absorbed and converted to red light, and the emission luminance in the red region can be greatly increased.

また、赤色発光蛍光体と、他の青色,緑色発光蛍光体との組合せを適正に選択することにより、任意の色温度を有する白色光のみならず、紫色,桃色,青緑色などの中間色をも高い精度で取り出すことが可能な半導体ダイオードを実現でき、優れた実用上の効果が得られる。   In addition, by appropriately selecting a combination of a red light-emitting phosphor and other blue and green light-emitting phosphors, not only white light having an arbitrary color temperature but also intermediate colors such as purple, pink, and blue-green can be obtained. A semiconductor diode that can be taken out with high accuracy can be realized, and an excellent practical effect can be obtained.

以上説明の通り本発明に係る半導体ダイオードによれば、赤色発光蛍光体に所定量のSmを添加して励起スペクトル波長を半導体ダイオード励起紫外線波長側にシフトしているため、波長370nm前後の励起紫外線を効率よく吸収し赤色光に変換でき、赤色領域における発光輝度を大幅に高めることができる。   As described above, according to the semiconductor diode of the present invention, a predetermined amount of Sm is added to the red light-emitting phosphor to shift the excitation spectrum wavelength to the semiconductor diode excitation ultraviolet wavelength side. Can be efficiently absorbed and converted to red light, and the emission luminance in the red region can be greatly increased.

また、赤色発光蛍光体と、他の青色,緑色発光蛍光体との組合せを適正に選択することにより、任意の色温度を有する白色光のみならず、紫色,桃色,青緑色などの中間色をも高い精度で取り出すことが可能な半導体ダイオードを実現でき、優れた実用上の効果が得られる。   In addition, by appropriately selecting a combination of a red light-emitting phosphor and other blue and green light-emitting phosphors, not only white light having an arbitrary color temperature but also intermediate colors such as purple, pink, and blue-green can be obtained. A semiconductor diode that can be taken out with high accuracy can be realized, and an excellent practical effect can be obtained.

次に本発明に実施形態について以下の実施例に基づいて、より具体的に説明する。   Next, embodiments of the present invention will be described more specifically based on the following examples.

[実施例1]
蛍光体構成原料としてのLa粉末を229.7gと、Eu粉末を16.01gと、Sm粉末を2.64gと、S粉末を61.38gと、融剤としてのNaCO粉末を86.94gと、LiPO粉末を24.84gとを正確に秤量し、ボールミルを使用して均一に混合して原料混合体とした。
[Example 1]
229.7 g of La 2 O 3 powder as a phosphor constituting raw material, 16.01 g of Eu 2 O 3 powder, 2.64 g of Sm 2 O 3 powder, 61.38 g of S powder, and as a flux The Na 2 CO 3 powder of 86.94 g and the Li 3 PO 4 powder of 24.84 g were accurately weighed and uniformly mixed using a ball mill to obtain a raw material mixture.

次に、得られた原料混合体を、蓋付きのアルミナ坩堝内に収容して1250℃の温度で4時間焼成した。得られた焼成物を純水にて十分に洗浄することにより、不要な可溶成分を除去した。その後、ボールミルにより焼成物を細かく粉砕して蛍光体粒子とし、さらに硫酸および硝酸を添加してpH値が2.5の酸性領域に維持しながら酸洗浄を行った後に、純水にて4回洗浄した。そして洗浄した蛍光体粒子を濾過・乾燥することにより、(La0.93Eu0.06Sm0.01Sなる組成を有する実施例1用の赤色発光蛍光体を調製した。 Next, the obtained raw material mixture was housed in an alumina crucible with a lid and baked at a temperature of 1250 ° C. for 4 hours. The obtained fired product was sufficiently washed with pure water to remove unnecessary soluble components. Thereafter, the fired product is finely pulverized with a ball mill to form phosphor particles, and further, acid washing is performed while adding sulfuric acid and nitric acid to maintain an acidic region having a pH value of 2.5, and then 4 times with pure water. Washed. The washed phosphor particles were filtered and dried to prepare a red light-emitting phosphor for Example 1 having a composition of (La 0.93 Eu 0.06 Sm 0.01 ) 2 O 2 S.

得られた赤色発光蛍光体の励起スペクトル分布を図1に示す一方、発光スペクトル分布を図2に示す。図1から明らかなように、実施例1用の蛍光体は、波長330〜400nmの紫外線により高い効率で赤色を発光する。また、図2から明らかなように、実施例1用の蛍光体は、380nmの紫外線励起を行った場合、波長625nm付近において発光のピークを有する赤色発光蛍光体である。   The excitation spectrum distribution of the obtained red light emitting phosphor is shown in FIG. 1, while the emission spectrum distribution is shown in FIG. As is clear from FIG. 1, the phosphor for Example 1 emits red light with high efficiency by ultraviolet rays having a wavelength of 330 to 400 nm. As is clear from FIG. 2, the phosphor for Example 1 is a red light-emitting phosphor having a light emission peak in the vicinity of a wavelength of 625 nm when ultraviolet excitation at 380 nm is performed.

さらに、上記実施例1用の赤色発光蛍光体について、380nm励起下において従来の(Y0.955Eu0.045S蛍光体を標準にして輝度を測定したところ、180%という高い値が得られた。したがって、本実施例用の蛍光体の励起スペクトル分布は半導体ダイオードの放射エネルギーを効率良く赤色光に変換できることが判明した。 Furthermore, when the luminance of the red light emitting phosphor for Example 1 was measured using the conventional (Y 0.955 Eu 0.045 ) 2 O 2 S phosphor as a standard under excitation at 380 nm, it was as high as 180%. A value was obtained. Therefore, it was found that the excitation spectrum distribution of the phosphor for this example can efficiently convert the radiant energy of the semiconductor diode into red light.

[実施例2]
蛍光体構成原料としてのLa粉末を291.5gと、Eu粉末を20.14gと、Sm粉末を0.67gと、S粉末を77.17gと、融剤としてのNaCO粉末を109.3gと、KPO粉末を31.23gとを正確に秤量し、ボールミルを使用して均一に混合して原料混合体とした。
[Example 2]
291.5 g of La 2 O 3 powder as a phosphor constituent raw material, 20.14 g of Eu 2 O 3 powder, 0.67 g of Sm 2 O 3 powder, 77.17 g of S powder, and as a flux 109.3 g of Na 2 CO 3 powder and 31.23 g of K 3 PO 4 powder were accurately weighed and uniformly mixed using a ball mill to obtain a raw material mixture.

次に、得られた原料混合体を、蓋付きのアルミナ坩堝内に収容して1150℃の温度で5時間焼成した。得られた焼成物を純水にて十分に洗浄することにより、不要な可溶成分を除去した。その後、ボールミルにより焼成物を細かく粉砕して蛍光体粒子とし、さらに硫酸および硝酸を添加してpH値が2.5の酸性領域に維持しながら酸洗浄を行った後に、純水にて4回洗浄した。そして洗浄した蛍光体粒子を濾過・乾燥することにより、(La0.938Eu0.060Sm0.002Sなる組成を有する実施例2用の赤色発光蛍光体を調製した。 Next, the obtained raw material mixture was accommodated in an alumina crucible with a lid and baked at a temperature of 1150 ° C. for 5 hours. The obtained fired product was sufficiently washed with pure water to remove unnecessary soluble components. Thereafter, the fired product is finely pulverized with a ball mill to form phosphor particles, and further, acid washing is performed while adding sulfuric acid and nitric acid to maintain an acidic region having a pH value of 2.5, and then 4 times with pure water. Washed. The washed phosphor particles were filtered and dried to prepare a red light emitting phosphor for Example 2 having a composition of (La 0.938 Eu 0.060 Sm 0.002 ) 2 O 2 S.

この実施例2用の赤色発光蛍光体の輝度を、実施例1と同様な方法で測定したところ、185%という高い輝度が得られた。また、実施例2用の蛍光体の励起スペクトル分布および発光スペクトル分布は、実施例1と基本的に同一形状であった。以上の結果から、実施例2用の赤色発光蛍光体についても、発光ダイオード(LED)の放射エネルギーを効率良く赤色光に変換できることが判明した。   When the luminance of the red light emitting phosphor for Example 2 was measured by the same method as in Example 1, a luminance as high as 185% was obtained. The excitation spectrum distribution and emission spectrum distribution of the phosphor for Example 2 were basically the same as those in Example 1. From the above results, it was found that the red light emitting phosphor for Example 2 can also efficiently convert the radiant energy of the light emitting diode (LED) into red light.

[実施例3〜11および比較例1〜4]
蛍光体組成が最終的に表1に示す組成となるように各蛍光体原料粉末を秤量し、実施例1と同様な処理条件で焼成,純水洗浄,粉砕した後に、表1に示すpH値の酸性領域に維持しながら酸洗浄を行い、さらに実施例1と同一条件の純水洗浄,濾過,乾燥処理を実施することにより、実施例3〜11および比較例1〜4用の赤色発光蛍光体をそれぞれ調製した。
[Examples 3 to 11 and Comparative Examples 1 to 4]
Each phosphor raw material powder is weighed so that the phosphor composition finally becomes the composition shown in Table 1, and calcined, washed with pure water and pulverized under the same processing conditions as in Example 1, and then the pH values shown in Table 1 The red emission fluorescence for Examples 3 to 11 and Comparative Examples 1 to 4 is carried out by performing acid cleaning while maintaining the acidic region, and further performing pure water cleaning, filtration and drying under the same conditions as in Example 1. Each body was prepared.

なお、比較例1はSmを含有しない従来のユーロピウム付活酸硫化イットリウム蛍光体を使用し、比較例2はSmを過剰に含有する蛍光体を使用し、比較例3はSm含有量が過少である蛍光体を使用し、比較例4はGdを過量に含有する蛍光体を使用した例である。   Comparative Example 1 uses a conventional europium-activated yttrium oxysulfide phosphor that does not contain Sm, Comparative Example 2 uses a phosphor that contains excessive Sm, and Comparative Example 3 has an excessively low Sm content. A certain phosphor is used, and Comparative Example 4 is an example using a phosphor containing an excessive amount of Gd.

こうして調製した各実施例および比較例用の赤色発光蛍光体について、波長380nmの励起紫外線を照射してその輝度を測定した。なお、各蛍光体の輝度は、比較例1用の蛍光体の輝度を基準値(100%)として相対的に示した。測定結果を下記表1に示す。

Figure 0004188350
The red light-emitting phosphors for the examples and comparative examples thus prepared were irradiated with excitation ultraviolet light having a wavelength of 380 nm, and the luminance was measured. In addition, the brightness | luminance of each fluorescent substance was shown relatively by making the brightness | luminance of the fluorescent substance for Comparative Example 1 into a reference value (100%). The measurement results are shown in Table 1 below.
Figure 0004188350

上記表1に示す結果から明らかなように、所定量のSmを添加した各実施例用の赤色発光蛍光体は、波長380nmの励起光(紫外線)を効率良く吸収し赤色光に変換するため、比較例1〜4に示す従来組成を有する蛍光体と比較して、赤色領域の発光輝度を大幅に高められることが判明した。   As is clear from the results shown in Table 1 above, the red light-emitting phosphor for each example to which a predetermined amount of Sm was added efficiently absorbs excitation light (ultraviolet light) having a wavelength of 380 nm and converts it into red light. As compared with the phosphors having the conventional compositions shown in Comparative Examples 1 to 4, it has been found that the emission luminance in the red region can be significantly increased.

また、各実施例用の赤色発光蛍光体と、他の青色,緑色発光蛍光体とを適正に組み合せることにより、任意の色温度を有する白色光のみならず、紫色,桃色,青緑色などの中間色をも高精度で取り出すことが可能になった。   In addition, by appropriately combining the red light emitting phosphors for each example with other blue and green light emitting phosphors, not only white light having an arbitrary color temperature, but also purple, pink, blue green, etc. Intermediate colors can be extracted with high accuracy.

次に、蛍光体粒子を酸洗浄する際に、pH条件が蛍光体の製品歩留りおよび不純物の除去効率に及ぼす影響について、下記実施例12に基づいて説明する。   Next, the influence of the pH condition on the product yield of the phosphor and the efficiency of removing impurities when the phosphor particles are acid-washed will be described based on Example 12 below.

[実施例12]
実施例1用の赤色発光蛍光体の製造方法において、蛍光体粒子を酸洗浄する工程における分散液のpH値を、表2に示すように、強酸領域(<pH0.8),pH1,pH2,pH4,pH6に維持しながら酸洗浄を実施した場合における蛍光体粒子の製品歩留りと非発光成分の除去効果を測定して下記表2に示す結果を得た。

Figure 0004188350
[Example 12]
In the method for producing a red light-emitting phosphor for Example 1, the pH value of the dispersion in the step of washing the phosphor particles with an acid is as shown in Table 2, with strong acid region (<pH 0.8), pH 1, pH 2, The product yield of phosphor particles and the removal effect of non-luminescent components were measured when acid cleaning was carried out while maintaining pH 4 and pH 6, and the results shown in Table 2 below were obtained.
Figure 0004188350

上記表2に示す結果から明らかなように、強酸領域およびpH1の酸性条件下で酸洗浄を実施した場合には、非発光成分の溶出による除去効果は高いが、蛍光体粒子自体の溶出量も大きくなり製品歩留りが60〜70%と低い値になった。一方、pH6の弱酸性領域で酸洗浄を実施しても、非発光成分の除去効果はほとんど得られなかった。   As is clear from the results shown in Table 2 above, when acid cleaning is performed under acidic conditions in a strong acid region and pH 1, the removal effect by elution of non-luminescent components is high, but the elution amount of the phosphor particles themselves is also high. The product yield increased to a low value of 60-70%. On the other hand, even if the acid cleaning was performed in the weakly acidic region at pH 6, almost no effect of removing the non-luminescent component was obtained.

そしてpH2〜4で酸洗浄を実施した場合には、非発光成分の除去効果および製品歩留りが共に適度であった。したがって、酸洗浄時のpH値は2以上の酸性領域に維持することが蛍光体の純度および製造コストを適正にする上で実用上非常に好ましいことが判明した。   When acid cleaning was performed at pH 2 to 4, both the non-luminescent component removal effect and the product yield were appropriate. Accordingly, it has been found that maintaining the pH value during acid cleaning in an acidic region of 2 or more is very preferable in practice in order to optimize the purity and manufacturing cost of the phosphor.

本発明に係る半導体ダイオードで使用する赤色発光蛍光体の一実施例の励起スペクトル分布を示すグラフ。The graph which shows the excitation spectrum distribution of one Example of the red light emission fluorescent substance used with the semiconductor diode which concerns on this invention. 本発明に係る半導体ダイオードで使用する赤色発光蛍光体の一実施例の発光スペクトル分布を示すグラフ。The graph which shows the emission spectrum distribution of one Example of the red light emission fluorescent substance used with the semiconductor diode which concerns on this invention.

Claims (10)

一般式(La1−x−yEuSmS(但し、0.01≦x≦0.15,0.0001≦y≦0.03)で表わされるユーロピウム・サマリウム付活酸硫化ランタン蛍光体から成る赤色発光蛍光体に、青色発光蛍光体および緑色発光蛍光体を組み合わせて任意の色温度の白色または任意の中間色で発光することを特徴とする半導体ダイオード。 Europium / samarium-activated acid represented by the general formula (La 1-xy Eu x Sm y ) 2 O 2 S (where 0.01 ≦ x ≦ 0.15, 0.0001 ≦ y ≦ 0.03) A semiconductor diode characterized in that a red light-emitting phosphor made of a lanthanum sulfide phosphor is combined with a blue light-emitting phosphor and a green light-emitting phosphor to emit light in white or any intermediate color at any color temperature . 一般式(La1−x−yEuSmS(但し、0.01≦x≦0.15,0.0001≦y≦0.03)で表わされるユーロピウム・サマリウム付活酸硫化ランタン蛍光体から成る赤色発光蛍光体と発光チップとを有する半導体ダイオードにおいて、前記発光チップが紫外線を放射することを特徴とする半導体ダイオード。 Europium / samarium-activated acid represented by the general formula (La 1-xy Eu x Sm y ) 2 O 2 S (where 0.01 ≦ x ≦ 0.15, 0.0001 ≦ y ≦ 0.03) A semiconductor diode having a red light emitting phosphor made of lanthanum sulfide phosphor and a light emitting chip, wherein the light emitting chip emits ultraviolet light. 励起スペクトル分布におけるピーク波長が、紫外線長波長領域に存在することを特徴とする請求項1ないしのいずれかの1項に記載の半導体ダイオード。 3. The semiconductor diode according to claim 1, wherein a peak wavelength in the excitation spectrum distribution is present in an ultraviolet long wavelength region. 励起スペクトル分布におけるピーク波長が、330〜430nmの紫外線波長領域に存在することを特徴とする請求項1ないしのいずれかの1項に記載の半導体ダイオード。 Peak wavelength in an excitation spectrum distribution, semiconductor diode according to any one of claims 1 to 3, characterized in that present in the ultraviolet wavelength region of 330~430Nm. 一般式におけるユーロピウム(Eu)の原子比(x)が0.03〜0.08の範囲であることを特徴とする請求項1ないしのいずれかの1項に記載の半導体ダイオード。 Atomic ratio (x) is a semiconductor diode according to one of claim 1 to 4, characterized in that in the range of 0.03 to 0.08 of europium in the general formula (Eu). 一般式におけるサマリウム(Sm)の原子比(y)が0.001〜0.01の範囲であることを特徴とする請求項1ないしのいずれかの1項に記載の半導体ダイオード。 Atomic ratio (y) is a semiconductor diode according to any one of claims 1 to 5, characterized in that in the range of 0.001 to 0.01 of samarium (Sm) in the general formula. 一般式におけるLaの30mol%以下を、YおよびGdの少なくとも一方の元素で置換したことを特徴とする請求項1ないしのいずれかの1項に記載の半導体ダイオード。 The semiconductor diode according to any one of claims 1 to 6 , wherein 30 mol% or less of La in the general formula is substituted with at least one element of Y and Gd. 一般式におけるLaに対するYおよびGdの少なくとも一方の元素の置換量が5〜20mol%であることを特徴とする請求項記載の半導体ダイオード。 8. The semiconductor diode according to claim 7 , wherein the substitution amount of at least one of Y and Gd with respect to La in the general formula is 5 to 20 mol%. 蛍光体と発光チップとを具備する半導体ダイオードにおいて、上記蛍光体が樹脂層に含有されることを特徴とする請求項1ないしのいずれかの1項に記載の半導体ダイオード。 9. The semiconductor diode according to claim 1, wherein the phosphor is contained in a resin layer. 8. The semiconductor diode comprising a phosphor and a light emitting chip. 請求項1ないしのいずれかの1項に記載の半導体ダイオードを用いた表示装置。 A display device using a semiconductor diode according to any one of claims 1 to 9.
JP2005254040A 2005-09-01 2005-09-01 Semiconductor diode and display device using the same Expired - Lifetime JP4188350B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005254040A JP4188350B2 (en) 2005-09-01 2005-09-01 Semiconductor diode and display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005254040A JP4188350B2 (en) 2005-09-01 2005-09-01 Semiconductor diode and display device using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP04827598A Division JP3950543B2 (en) 1998-02-27 1998-02-27 LED lamp

Publications (2)

Publication Number Publication Date
JP2005350681A JP2005350681A (en) 2005-12-22
JP4188350B2 true JP4188350B2 (en) 2008-11-26

Family

ID=35585405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005254040A Expired - Lifetime JP4188350B2 (en) 2005-09-01 2005-09-01 Semiconductor diode and display device using the same

Country Status (1)

Country Link
JP (1) JP4188350B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100991119B1 (en) 2008-12-09 2010-11-01 한국에너지기술연구원 Nano-porous nano-sized red phosphors and the production method

Also Published As

Publication number Publication date
JP2005350681A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
JP6501030B2 (en) Phosphor, method for producing the same, phosphor-containing composition and light emitting device using the phosphor, and image display device and lighting device using the light emitting device
JP5330263B2 (en) Phosphor and LED light emitting device using the same
CN1561549A (en) Light emitting element and light emitting device using this
JP2008007644A (en) Red light-emitting phosphor and light-emitting device
CN106795429B (en) Phosphor, light emitting device, illumination device, and image display device
JP3950543B2 (en) LED lamp
JP2004359842A (en) Red light-emitting phosphor and light-emitting device
JP6201848B2 (en) Phosphor, phosphor-containing composition, light emitting device, illumination device, and liquid crystal display device
JP4619509B2 (en) Light emitting device
JP2003160785A (en) Red-light-emitting phosphor and light emitter using the same
JP4322824B2 (en) Method for producing red-emitting phosphor
JP4188350B2 (en) Semiconductor diode and display device using the same
JP4987903B2 (en) Method for producing red-emitting phosphor
JP2005243699A (en) Light emitting element, image display device, and lighting device
JP5471021B2 (en) Phosphor and phosphor manufacturing method, phosphor-containing composition, light emitting device, illumination device, and image display device
JP4886221B2 (en) Method for manufacturing light emitting device
JP2002188084A (en) Red light-emitting phosphor and light-emitting apparatus using the same
JP2006165266A (en) Light emitting device
JP2017190434A (en) Fluophor, light-emitting device, luminaire and image display device
JP4503321B2 (en) Phosphor
CN115216296B (en) Synthetic method of efficient blue fluorescent powder for excitation of ultraviolet LED
JP4834312B2 (en) Method for manufacturing phosphor for display device and method for manufacturing display device
JP2009030063A (en) Apparatus having light emitting function
JP2016124929A (en) Phosphor, light emitting device, illumination device and image display device
JP2006019762A (en) Display device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

EXPY Cancellation because of completion of term