JP4834312B2 - Method for manufacturing phosphor for display device and method for manufacturing display device - Google Patents

Method for manufacturing phosphor for display device and method for manufacturing display device Download PDF

Info

Publication number
JP4834312B2
JP4834312B2 JP2005037331A JP2005037331A JP4834312B2 JP 4834312 B2 JP4834312 B2 JP 4834312B2 JP 2005037331 A JP2005037331 A JP 2005037331A JP 2005037331 A JP2005037331 A JP 2005037331A JP 4834312 B2 JP4834312 B2 JP 4834312B2
Authority
JP
Japan
Prior art keywords
phosphor
light
display device
manufacturing
emitting component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2005037331A
Other languages
Japanese (ja)
Other versions
JP2005200659A (en
Inventor
伸行 須藤
賢二 寺島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005037331A priority Critical patent/JP4834312B2/en
Publication of JP2005200659A publication Critical patent/JP2005200659A/en
Application granted granted Critical
Publication of JP4834312B2 publication Critical patent/JP4834312B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は表示装置用蛍光体の製造方法とそれを用いた表示装置の製造方法に関する。   The present invention relates to a method for manufacturing a phosphor for a display device and a method for manufacturing a display device using the same.

近年、道路標識のような大型の表示装置として、蛍光体を含有させた塗料を所定の形状に塗布し、これに蛍光ランプからの紫外線を照射して発光させる表示装置が広く用いられるようになってきている。このような表示装置の光源には、ブラックライトのような長波長の紫外線を発する蛍光ランプが用いられている。   In recent years, as a large display device such as a road sign, a display device in which a coating material containing a phosphor is applied in a predetermined shape and irradiated with ultraviolet rays from a fluorescent lamp is widely used. It is coming. As a light source of such a display device, a fluorescent lamp that emits ultraviolet light having a long wavelength such as black light is used.

すなわち、紫外線を光源とする場合には、眼に有害な波長300nm以下というような紫外線は避け、波長330〜380nm前後の長波長の紫外線が用いられる。具体的には、BaSi25:Pb蛍光体(ピーク波長:353nm)や、SrB47:Eu蛍光体(ピーク波長:370nm)を用いた蛍光ランプが使用されている。なお、図3にこれら蛍光体の発光スペクトル分布を示す。 That is, when ultraviolet rays are used as a light source, ultraviolet rays having a wavelength of 300 nm or less harmful to the eyes are avoided, and ultraviolet rays having a long wavelength of around 330 to 380 nm are used. Specifically, fluorescent lamps using BaSi 2 O 5 : Pb phosphor (peak wavelength: 353 nm) and SrB 4 O 7 : Eu phosphor (peak wavelength: 370 nm) are used. FIG. 3 shows the emission spectrum distribution of these phosphors.

また、発光ダイオード(LED)を用いたLEDランプにおいても、LEDチップの表面に青色、緑色および赤色発光蛍光体を塗布したり、あるいはLEDを構成する樹脂中に各色発光の蛍光体粉末を含有させることにより、1個のLEDランプから白色もしくは任意の中間色の発光を取り出すことが試みられている。このようなLEDランプにおいてもLEDから放射される波長370nm前後の長波長の紫外線により蛍光体が励起される。   Also in LED lamps using light emitting diodes (LEDs), blue, green and red light emitting phosphors are applied to the surface of the LED chip, or phosphor powders of each color light emission are included in the resin constituting the LED. Therefore, it has been attempted to take out light emission of white or any intermediate color from one LED lamp. In such an LED lamp, the phosphor is excited by ultraviolet light having a long wavelength of about 370 nm emitted from the LED.

このようなことから、表示装置用の蛍光体には長波長の紫外線(330〜380nm前後)で効率よく可視光を放射することが求められている。また、道路標識等の表示装置は屋外で用いられることから、そのような表示装置に用いられる蛍光体には耐候性に優れる等、化学的に安定であることが求められている。   For this reason, phosphors for display devices are required to emit visible light efficiently with long-wavelength ultraviolet light (around 330 to 380 nm). In addition, since display devices such as road signs are used outdoors, the phosphors used in such display devices are required to be chemically stable, such as excellent weather resistance.

しかしながら、赤色発光蛍光体は青色や緑色等の他の発光色の蛍光体に比べて、波長330〜380nm前後の励起光(紫外線)に対して吸収が弱いという問題があり、赤色発光蛍光体の励起スペクトルの長波長化が望まれている。   However, the red light-emitting phosphor has a problem that it is weakly absorbed with respect to excitation light (ultraviolet light) having a wavelength of about 330 to 380 nm, compared with other light-emitting color phosphors such as blue and green. It is desired to increase the wavelength of the excitation spectrum.

また最近では、色彩感覚が豊かになり、各種表示装置にも微妙な色合い(色再現)が要求されており、このような点からも赤色発光蛍光体の長波長の紫外線による発光効率を高めることが望まれている。さらに、交通標識に上記したような蛍光体表示装置を使用した場合、夜間の識別性をより一層高めことが望まれており、このような点からも赤色発光蛍光体を含む蛍光体の長波長の紫外線による発光効率を高めることが望まれている。   In recent years, the color sense has been enriched, and various display devices have been required to have subtle hues (color reproduction). From this point of view, the luminous efficiency of long-wavelength ultraviolet light emitted from red phosphors has been increased. Is desired. Furthermore, when the above-mentioned phosphor display device is used for a traffic sign, it is desired to further improve nighttime discrimination, and from this point of view, the long wavelength of the phosphor including the red light emitting phosphor It is desired to increase the luminous efficiency of ultraviolet rays.

本発明はこのような課題に対処するためになされたもので、蛍光体の長波長の紫外線による発光効率、特に赤色発光蛍光体の長波長紫外線による発光効率を高めることによって、任意の色温度の白色光や各種の中間色光を効率および精度よく取り出すことを可能にした表示装置用蛍光体の製造方法、およびそのような表示装置用蛍光体の製造方法を適用した表示装置の製造方法を提供することを目的としている。   The present invention has been made to cope with such a problem. By increasing the light emission efficiency of long-wavelength ultraviolet light of a phosphor, particularly the light emission efficiency of long-wavelength ultraviolet light of a red light-emitting phosphor, an arbitrary color temperature can be obtained. Provided are a method for manufacturing a phosphor for a display device that can efficiently and accurately extract white light and various intermediate color lights, and a method for manufacturing a display device to which such a method for manufacturing a phosphor for a display device is applied. The purpose is that.

本発明の表示装置用蛍光体の製造方法は、青色発光成分、緑色発光成分および赤色発光成分を含有する表示装置用蛍光体の製造方法において、前記赤色発光成分として、
一般式:(La1-x-yEuxSmy22
(式中、xおよびyは0.01≦x≦0.15、0.0001≦y≦0.03を満足する数である)
で実質的に表される3価のユーロピウムおよびサマリウム付活酸硫化ランタン蛍光体を用いることを特徴としている。
The method for producing a phosphor for a display device according to the present invention is a method for producing a phosphor for a display device containing a blue light emitting component, a green light emitting component, and a red light emitting component.
General formula: (La 1-xy Eu x Sm y) 2 O 2 S
(Wherein x and y are numbers satisfying 0.01 ≦ x ≦ 0.15 and 0.0001 ≦ y ≦ 0.03)
The trivalent europium and samarium activated lanthanum oxysulfide phosphors substantially represented by the formula (1) are used.

本発明の表示装置の製造方法は、蛍光体を含む発光部と、前記発光部に光を照射する光源と有する表示装置の製造方法において、前記発光部の前記蛍光体を、上記した表示装置用蛍光体の製造方法を適用して作製する工程を具備することを特徴としている。   The display device manufacturing method of the present invention is a display device manufacturing method including a light emitting unit including a phosphor and a light source that irradiates light to the light emitting unit, and the phosphor of the light emitting unit is used for the display device described above. The method is characterized by comprising a step of applying a phosphor manufacturing method.

本発明の表示装置用蛍光体の製造方法においては、赤色発光成分として例えば波長330〜380nm前後の長波長の紫外線を効率よく吸収し、かつこのような長波長の紫外線に対する発光特性に優れる3価のユーロピウムおよびサマリウム付活酸硫化ランタン蛍光体を用いているため、長波長の紫外線で励起した際に任意の色温度の白色光や各種の中間色光が効率および精度よく得られる表示装置用蛍光体を提供することが可能となる。また、このような表示装置用蛍光体の製造方法を適用することによって、長波長の紫外線を励起源とする表示装置の発光効率等を向上させることができる。   In the method for producing a phosphor for a display device of the present invention, a trivalent compound that efficiently absorbs long-wavelength ultraviolet light having a wavelength of, for example, around 330 to 380 nm as a red light-emitting component and is excellent in light-emitting characteristics with respect to such long-wavelength ultraviolet light. Phosphors for display devices that can produce white light of various color temperatures and various intermediate color lights efficiently and accurately when excited by long-wavelength ultraviolet light because of the use of the europium and samarium activated lanthanum oxysulfide phosphors Can be provided. Further, by applying such a method for manufacturing a phosphor for a display device, it is possible to improve the light emission efficiency and the like of the display device using long-wavelength ultraviolet light as an excitation source.

以下、本発明を実施するための形態について説明する。本発明の一実施形態による表示装置用蛍光体の製造方法において、表示装置用蛍光体は青色発光成分、緑色発光成分および赤色発光成分を含有する。これら各発光成分のうち、
一般式:(La 1-x-y-z Eu x Sm y 2 2 S…(1)
(式中、AはY及びGaの少なくとも一方であり、xおよびyは0.01≦x≦0.15、0.0001≦y≦0.03、0<z≦0.3を満足する数である)
で実質的に表される3価のユーロピウムおよびサマリウム付活酸硫化ランタノイド蛍光体を赤色発光成分として用いる。
Hereinafter, modes for carrying out the present invention will be described. In the method for manufacturing a phosphor for a display device according to an embodiment of the present invention, the phosphor for a display device contains a blue light emitting component, a green light emitting component, and a red light emitting component. Of these luminescent components,
General formula: (La 1-xy-z Eu x Sm y A z) 2 O 2 S ... (1)
(In the formula, A is at least one of Y and Ga, and x and y are numbers satisfying 0.01 ≦ x ≦ 0.15, 0.0001 ≦ y ≦ 0.03, and 0 <z ≦ 0.3)
A trivalent europium and samarium activated lanthanide oxysulfide phosphor substantially represented by the formula (1) is used as a red light emitting component.

ここで、3価のユーロピウム(Eu)は、蛍光体母体としての酸硫化ランタンの発光効率を高める付活剤であり、上記(1)式のxの値として0.01〜0.15の範囲で含有させる。Euの含有量を示すxの値が0.01未満であると、発光効率の改善効果が少なく、十分な輝度を得ることができない。一方、xの値が0.15を超えると濃度消光等により輝度が著しく低下する。xの値は0.03〜0.08の範囲とすることがさらに好ましい。   Here, trivalent europium (Eu) is an activator for enhancing the light emission efficiency of lanthanum oxysulfide as a phosphor matrix, and is contained in the range of 0.01 to 0.15 as the value of x in the above formula (1). When the value of x indicating the Eu content is less than 0.01, the effect of improving the light emission efficiency is small, and sufficient luminance cannot be obtained. On the other hand, when the value of x exceeds 0.15, the luminance is significantly lowered due to concentration quenching or the like. More preferably, the value of x is in the range of 0.03 to 0.08.

サマリウム(Sm)は付活剤として機能するほかに、酸硫化ランタンを母体とする蛍光体の励起スペクトルの形状を長波長側にシフトさせる作用を示す。これによって、例えば波長330〜380nm前後の長波長の紫外線の吸収効率が改善され、その際の発光効率を向上させることが可能となる。Smは上記(1)式のyの値として0.0001〜0.03の範囲で含有させる。Smの含有量を示すyの値が0.0001未満であると、上記した励起スペクトル波長を長波長側にシフトさせる効果を十分に得ることができない。一方、yの値が0.03を超えると着色が生じやすくなり、濃度消光等により輝度が著しく低下する。yの値は0.001〜0.01の範囲とすることがさらに好ましい。   In addition to functioning as an activator, samarium (Sm) has an effect of shifting the shape of the excitation spectrum of a phosphor based on lanthanum oxysulfide to the longer wavelength side. As a result, for example, the absorption efficiency of ultraviolet light having a long wavelength of about 330 to 380 nm is improved, and the light emission efficiency at that time can be improved. Sm is contained in the range of 0.0001 to 0.03 as the value of y in the above formula (1). If the value of y indicating the Sm content is less than 0.0001, the effect of shifting the excitation spectrum wavelength to the long wavelength side cannot be sufficiently obtained. On the other hand, when the value of y exceeds 0.03, coloring tends to occur, and the luminance is significantly reduced due to concentration quenching or the like. The value of y is more preferably in the range of 0.001 to 0.01.

また、蛍光体母体としての酸硫化ランタンにおいて、ランタン(La)の一部はイットリウム(Y)およびガドリニウム(Gd)から選ばれる少なくとも1種の元素、具体的にはY、Gd、Y+Gdのいずれかにより置換する。YやGdは蛍光体中に固溶することにより、赤色領域における発光エネルギーを高める効果を示す。ただし、YやGdによるLaの置換量が多すぎると、結晶の歪みが無視できなくなり、逆に発光強度が低下するため、YやGdによる置換量はLaの30モル%以下とすることが好ましい。より好ましい置換量は5〜20モル%の範囲である。 In the lanthanum oxysulfide as the phosphor matrix, a part of the lanthanum (La) is at least one element selected from yttrium (Y) and gadolinium (Gd), specifically any one of Y, Gd, and Y + Gd. Replace with Y and Gd exhibit the effect of increasing the emission energy in the red region by being dissolved in the phosphor. However, if the amount of substitution of La by Y or Gd is too large, crystal distortion cannot be ignored, and conversely, the emission intensity decreases. Therefore, the amount of substitution by Y or Gd is preferably 30 mol% or less of La. . A more preferable substitution amount is in the range of 5 to 20 mol%.

このような赤色発光成分としての3価のユーロピウムおよびサマリウム付活酸硫化ランタン蛍光体は、波長330〜380nm前後の長波長の紫外線を効率よく吸収する。従って、このような長波長の紫外線で励起した際に、赤色光を効率よく得ることができる。   Such trivalent europium and samarium activated lanthanum oxysulfide phosphors as red light-emitting components efficiently absorb long-wavelength ultraviolet light having a wavelength of about 330 to 380 nm. Therefore, red light can be efficiently obtained when excited with such a long wavelength ultraviolet ray.

3価のユーロピウムおよびサマリウム付活酸硫化ランタン蛍光体は、例えば以下のようにして作製される。すなわち、まずLa23、Eu23、Sm23、S等の各原料粉末を、上記した(1)式の組成となるように所定量秤量し、これらをNa2CO3やLi3PO4等の融剤と共に、ボールミル等を用いて十分に混合する。このようにして得られた原料混合物をアルミナるつぼ等に収容して、大気中にて1100〜1400℃程度の温度で3〜6時間程度焼成する。 The trivalent europium and samarium activated lanthanum oxysulfide phosphors are produced, for example, as follows. That is, the first La 2 O 3, Eu 2 O 3, Sm 2 O 3, each raw material powder S and the like, the above-mentioned (1) were weighed predetermined amounts so as to have the composition of formula, Ya These Na 2 CO 3 Mix well with a flux such as Li 3 PO 4 using a ball mill or the like. The raw material mixture thus obtained is housed in an alumina crucible or the like and fired in the atmosphere at a temperature of about 1100 to 1400 ° C. for about 3 to 6 hours.

この後、得られた焼成物を純水にて洗浄し、不要な可溶成分を除去する。さらに、例えばpH2以上の酸性液で洗浄した後、純水で3〜5回程度洗浄し、ろ過・乾燥させることにより、目的とする赤色発光蛍光体が得られる。ここで、酸洗浄の際に、洗浄液のpHを2以上に保つことによって、蛍光体粒子に混入した非発光成分を効率よく除去することができる。酸洗浄時の洗浄液のpHは2〜4の範囲に保つことがさらに好ましい。   Thereafter, the fired product obtained is washed with pure water to remove unnecessary soluble components. Further, for example, after washing with an acidic solution having a pH of 2 or more, washing with pure water about 3 to 5 times, filtering and drying, the desired red light-emitting phosphor can be obtained. Here, during acid cleaning, by maintaining the pH of the cleaning liquid at 2 or more, non-luminescent components mixed in the phosphor particles can be efficiently removed. More preferably, the pH of the cleaning solution during acid cleaning is kept in the range of 2-4.

この実施形態による表示装置用蛍光体の製造方法においては、上述した3価のユーロピウムおよびサマリウム付活酸硫化ランタン蛍光体からなる赤色発光成分に、青色発光成分と緑色発光成分を混合して表示装置用蛍光体を作製する。ここで、青色および緑色発光成分としての蛍光体は、特に限定されるものではないが、長波長の紫外線による発光効率に優れる蛍光体を使用することが好ましい。   In the method for manufacturing a phosphor for a display device according to this embodiment, a blue light-emitting component and a green light-emitting component are mixed with a red light-emitting component composed of the above-described trivalent europium and samarium-activated lanthanum oxysulfide phosphor. A phosphor is prepared. Here, the phosphor as the blue and green light-emitting components is not particularly limited, but it is preferable to use a phosphor that is excellent in light emission efficiency by long-wavelength ultraviolet rays.

例えば、青色発光成分としては、
一般式:(M1,Eu)10(PO46・Cl2 …(2)
(式中、M1はMg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示す)
で実質的に表される2価のユーロピウム付活ハロ燐酸塩蛍光体や、
一般式:a(M2,Eu)O・bAl23 …(3)
(式中、M2はMg、Ca、Sr、Ba、Zn、Li、RbおよびCsから選ばれる少なくとも1種の元素を示し、aおよびbはa>0、b>0、0.2≦a/b≦1.5を満足する数である)
で実質的に表される2価のユーロピウム付活アルミン酸塩蛍光体を使用することが好ましい。
For example, as a blue light emitting component,
General formula: (M1, Eu) 10 (PO 4 ) 6 · Cl 2 (2)
(Wherein M1 represents at least one element selected from Mg, Ca, Sr and Ba)
A divalent europium-activated halophosphate phosphor substantially represented by
General formula: a (M2, Eu) O.bAl 2 O 3 (3)
(Wherein M2 represents at least one element selected from Mg, Ca, Sr, Ba, Zn, Li, Rb and Cs, and a and b are a> 0, b> 0, 0.2 ≦ a / b ≦ 1.5)
It is preferable to use a divalent europium activated aluminate phosphor substantially represented by

また、緑色発光成分としては、
一般式:a(M2,Eu,Mn)O・bAl23 …(4)
(式中、M2はMg、Ca、Sr、Ba、Zn、Li、RbおよびCsから選ばれる少なくとも1種の元素を示し、aおよびbはa>0、b>0、0.2≦a/b≦1.5を満足する数である)
で実質的に表される2価のユーロピウムおよびマンガン付活アルミン酸塩蛍光体を用いることが好ましい。
Moreover, as a green light emission component,
General formula: a (M2, Eu, Mn ) O · bAl 2 O 3 ... (4)
(Wherein M2 represents at least one element selected from Mg, Ca, Sr, Ba, Zn, Li, Rb and Cs, and a and b are a> 0, b> 0, 0.2 ≦ a / b ≦ 1.5)
It is preferable to use a divalent europium and manganese activated aluminate phosphor substantially represented by

上記したような青色発光蛍光体および緑色発光蛍光体は、いずれも波長330〜380nm前後の長波長の紫外線の吸収効率に優れるものであり、従って長波長の紫外線で励起した際に青色光および緑色光を効率よく得ることができる。   Both the blue light-emitting phosphor and the green light-emitting phosphor described above are excellent in absorption efficiency of long-wavelength ultraviolet light having a wavelength of about 330 to 380 nm. Therefore, when excited with long-wavelength ultraviolet light, blue light and green light Light can be obtained efficiently.

青色、緑色、赤色の各色発光成分の混合比率は、目的とする発光色に応じて適宜設定することができる。例えば、白色光を得る際には質量比で、青色発光成分を65%以下、緑色発光成分を5〜65%の範囲、赤色発光成分を15〜95%の範囲とすることが好ましい。このような混合比率によれば、例えば色温度2700K前後から8000K前後の白色光を任意に得ることができ、さらには従来の波長254nmで励起した三波長蛍光体と遜色のない明るさが得られる。各色成分の比率は、青色発光成分を50%以下、緑色発光成分を15〜45%の範囲、赤色発光成分を30〜80%の範囲とすることがさらに好ましい。   The mixing ratio of the blue, green, and red light emitting components can be appropriately set according to the target light emission color. For example, when obtaining white light, it is preferable that the blue light-emitting component is 65% or less, the green light-emitting component is in the range of 5 to 65%, and the red light-emitting component is in the range of 15 to 95%. According to such a mixing ratio, for example, white light having a color temperature of about 2700 K to about 8000 K can be arbitrarily obtained, and furthermore, brightness comparable to that of a conventional three-wavelength phosphor excited at a wavelength of 254 nm can be obtained. . The ratio of each color component is more preferably 50% or less for the blue light emitting component, 15 to 45% for the green light emitting component, and 30 to 80% for the red light emitting component.

このように、本発明の一実施形態による表示装置用蛍光体の製造方法によれば、赤色発光成分として波長330〜380nm前後の長波長の紫外線を効率よく吸収し、このような長波長の紫外線に対する発光特性に優れる3価のユーロピウムおよびサマリウム付活酸硫化ランタン蛍光体を用いることで、それと共に青色および緑色発光成分を含む表示装置用蛍光体の長波長の紫外線の吸収効率、青色、緑色、赤色の各色の可視光の発光効率を高めることができる。従って、このような表示装置用蛍光体は、各色成分の組合せを適切に選択することによって、任意の色温度の白色光および紫色、桃色、青緑色等の中間色光を効率よく取り出すことができ、さらには各色の色再現性を大幅に向上させることができる。   Thus, according to the method for manufacturing a phosphor for a display device according to an embodiment of the present invention, long-wavelength ultraviolet light having a wavelength of about 330 to 380 nm is efficiently absorbed as a red light-emitting component, and such long-wavelength ultraviolet light is used. By using trivalent europium and samarium activated lanthanum oxysulfide phosphors with excellent light emission characteristics for the long-wavelength ultraviolet absorption efficiency of the phosphors for display devices containing blue and green light emitting components, blue, green, The luminous efficiency of visible light of each red color can be increased. Therefore, such a phosphor for a display device can efficiently extract white light of an arbitrary color temperature and intermediate color light such as purple, pink, and blue-green by appropriately selecting a combination of each color component. Furthermore, the color reproducibility of each color can be greatly improved.

上述した実施形態の製造方法を適用した表示装置用蛍光体は、波長330〜380nm前後の長波長の紫外線に対して発光効率に優れるものである。従って、このような長波長の紫外線を発する光源を有する表示装置に用いられる蛍光体として、本発明の製造方法を適用した表示装置用蛍光体は好適である。   The phosphor for a display device to which the manufacturing method of the above-described embodiment is applied has excellent luminous efficiency with respect to ultraviolet rays having a long wavelength of about 330 to 380 nm. Therefore, a phosphor for a display device to which the manufacturing method of the present invention is applied is suitable as a phosphor used in a display device having a light source that emits ultraviolet light having a long wavelength.

本発明の一実施形態による表示装置の製造方法は、蛍光体を含む発光部に光源から長波長の紫外線等を照射し、これにより発光部から可視光を得るように構成された表示装置を製造するにあたって、発光部の蛍光体を、上述した実施形態の表示装置用蛍光体の製造方法を適用して作製する工程を具備するものである。   A manufacturing method of a display device according to an embodiment of the present invention manufactures a display device configured to irradiate a light emitting unit including a phosphor with a long wavelength ultraviolet ray or the like from a light source, thereby obtaining visible light from the light emitting unit. In doing so, the method includes the step of producing the phosphor of the light emitting unit by applying the method for producing the phosphor for display device of the above-described embodiment.

具体的には、本発明の表示装置用蛍光体を塗料と共に塗布した発光部と、この発光部に紫外線特に長波長の紫外線を照射する光源(蛍光ランプ等)とを具備する標識用表示装置の製造に適用される。また、本発明の表示装置用蛍光体を含有する発光部としての樹脂層を、この発光部に長波長の紫外線等の光を照射する発光チップの外周側に配置したLEDランプ等の製造にも適用可能である。なお、このようなLEDランプでは、LEDから放射される波長370nm前後の長波長の紫外線により蛍光体が励起される。   Specifically, a sign display device comprising a light emitting part in which the phosphor for display device of the present invention is applied together with a paint, and a light source (fluorescent lamp or the like) for irradiating the light emitting part with ultraviolet rays, particularly long-wavelength ultraviolet rays. Applicable to manufacturing. In addition, for the manufacture of LED lamps and the like in which the resin layer as the light emitting part containing the phosphor for display device of the present invention is disposed on the outer peripheral side of the light emitting chip that irradiates the light emitting part with light such as ultraviolet light having a long wavelength. Applicable. In such an LED lamp, the phosphor is excited by ultraviolet light having a long wavelength of about 370 nm emitted from the LED.

次に、本発明の具体的な実施例およびその評価結果について述べる。   Next, specific examples of the present invention and evaluation results thereof will be described.

実施例1、比較例1〜2
まず、La22S:Eu0.06,Sm0.002で表される赤色発光蛍光体と、(Sr0.73Ba0.22Ca0.0510(PO46・Cl2:Euで表される青色発光蛍光体と、3(Ba,Mg)O・8Al2O3:Eu0.20,Mn0.40で表される緑色発光蛍光体を用意した。これら各色発光の蛍光体を質量比で、赤色発光成分が60.5%、青色発光成分が18.0%、緑色発光成分が21.5%となるように秤量し、これらを十分に混合することによって、目的とする表示装置用蛍光体を得た。このようにして得た蛍光体(混合蛍光体)について、波長380nmの紫外線で励起したときの発光スペクトル分布を測定した。その結果を図1に示す。
Example 1, Comparative Examples 1-2
First, a red light emitting phosphor represented by La 2 O 2 S: Eu 0.06 , Sm 0.002 and a blue light emitting phosphor represented by (Sr 0.73 Ba 0.22 Ca 0.05 ) 10 (PO 4 ) 6 · Cl 2 : Eu And a green light emitting phosphor represented by 3 (Ba, Mg) O.8Al 2 O3: Eu 0.20 and Mn 0.40 was prepared. These phosphors of each color emission are weighed so that the red light emission component is 60.5%, the blue light emission component is 18.0%, and the green light emission component is 21.5% by mass ratio. A phosphor for a display device was obtained. The phosphor (mixed phosphor) thus obtained was measured for the emission spectrum distribution when excited with ultraviolet light having a wavelength of 380 nm. The result is shown in FIG.

一方、本発明との比較例1として、既知の三波長蛍光体[赤色発光蛍光体=Y23:Eu/34.0%、青色発光蛍光体=(Sr,Ba,Ca)10(PO46・Cl2:Eu/36.0%、緑色発光蛍光体=(La,Ce)(P,B)O4:Tb/30.0%]を、波長254nmの紫外線で励起した際の発光スペクトル分布を図2に示す。なお、これら各混合蛍光体から発せられる白色光の色温度はそれぞれ5000K前後である。 On the other hand, as Comparative Example 1 with the present invention, a known three-wavelength phosphor [red light-emitting phosphor = Y 2 O 3 : Eu / 34.0%, blue light-emitting phosphor = (Sr, Ba, Ca) 10 (PO 4 ) FIG. 2 shows the emission spectrum distribution when 6 · Cl 2 : Eu / 36.0%, green light emitting phosphor = (La, Ce) (P, B) O 4 : Tb / 30.0%] is excited with ultraviolet light having a wavelength of 254 nm. Shown in The color temperature of the white light emitted from each of these mixed phosphors is about 5000K.

図1および図2に示したスペクトル分布からそれぞれの面積を求めて発光輝度を比較した結果、比較例1の三波長蛍光体を100%とすると、実施例1の混合蛍光体は長波長の紫外線で励起しているにもかかわらず80%であり、ほぼ実用的に満足し得る明るさを有していることが分かった。   As a result of obtaining the respective areas from the spectral distributions shown in FIG. 1 and FIG. 2 and comparing the emission luminance, assuming that the three-wavelength phosphor of Comparative Example 1 is 100%, the mixed phosphor of Example 1 has a long wavelength ultraviolet ray. It was found that the brightness was 80% despite being excited by the light, and that the brightness was practically satisfactory.

また比較例2として、Y22S:Eu0.05で表される赤色発光蛍光体を80.0%、(Sr0.73Ba0.22Ca0.0510(PO46・Cl2:Euで表される青色発光蛍光体を8.5%、3(Ba,Mg)O・8Al23:Eu0.20,Mn0.40で表される緑色発光蛍光体を11.5%の割合(質量比)で混合した蛍光体(混合蛍光体)について、波長380nmの紫外線で励起したときの発光スペクトル分布を測定した。この比較例2の混合蛍光体を100%とすると、実施例1の混合蛍光体の明るさは216%であり、長波長の紫外線で励起した際の明るさ(効率)が著しく向上していた。 Further, as Comparative Example 2, a red light-emitting phosphor represented by Y 2 O 2 S: Eu 0.05 was 80.0%, and (Sr 0.73 Ba 0.22 Ca 0.05 ) 10 (PO 4 ) 6 · Cl 2 : blue represented by Eu. A phosphor (mixed fluorescence) in which a green phosphor expressed by 8.5%, 3 (Ba, Mg) O.8Al 2 O 3 : Eu 0.20 and Mn 0.40 is mixed at a ratio (mass ratio) of 11.5%. ) Was measured for the emission spectrum distribution when excited with ultraviolet light having a wavelength of 380 nm. Assuming that the mixed phosphor of Comparative Example 2 is 100%, the brightness of the mixed phosphor of Example 1 is 216%, and the brightness (efficiency) when excited with long-wavelength ultraviolet light is significantly improved. .

上述した各測定結果から、実施例1による混合蛍光体は、長波長の紫外線(330〜380nm前後)を励起源とする表示装置用の蛍光体として非常に有用であることが分かる。   From each measurement result mentioned above, it turns out that the mixed fluorescent substance by Example 1 is very useful as a fluorescent substance for the display apparatus which uses long wavelength ultraviolet rays (around 330-380 nm) as an excitation source.

実施例2
La22S:Eu0.06,Sm0.002で表される赤色発光蛍光体を64.5%、3(Ba,Mg)O・8Al23:Eu0.20で表される青色発光蛍光体を12.5%、3(Ba,Mg)O・8Al23:Eu0.20,Mn0.40で表される緑色発光蛍光体を23.0%の割合(質量比)で十分に混合することによって、目的とする表示装置用蛍光体を得た。このようにして得た蛍光体(混合蛍光体)について、波長380nmの紫外線で励起したときの発光のスペクトル分布を測定した。発光色は色温度5000K前後の白色光であった。
Example 2
La 2 O 2 S: Eu 0.06 , 64.5% of the red light-emitting phosphor represented by Sm 0.002, 3 (Ba, Mg ) O · 8Al 2 O 3: 12.5% blue emitting phosphor represented by Eu 0.20, 3 (Ba, Mg) O.8Al 2 O 3 : The green fluorescent material represented by Eu 0.20 and Mn 0.40 is sufficiently mixed at a ratio (mass ratio) of 23.0% to achieve the desired fluorescence for a display device. Got the body. The phosphor (mixed phosphor) thus obtained was measured for the spectral distribution of light emission when excited with ultraviolet light having a wavelength of 380 nm. The emission color was white light with a color temperature of around 5000K.

得られた発光スペクトル分布から面積を求めて、前述した比較例1の蛍光体による発光スペクトル分布と比較した。比較例1を100%とすると、実施例2の混合蛍光体は長波長の紫外線で励起しているにもかかわらず85%であり、ほぼ実用的に満足し得る明るさを有していた。さらに、前述した比較例2の混合蛍光体を100%とすると、実施例2の混合蛍光体の明るさは232%であり、長波長の紫外線で励起した際の明るさ(効率)が著しく向上していた。   The area was obtained from the obtained emission spectrum distribution and compared with the emission spectrum distribution by the phosphor of Comparative Example 1 described above. Assuming that Comparative Example 1 was 100%, the mixed phosphor of Example 2 was 85% despite being excited by ultraviolet light having a long wavelength, and had a brightness that was practically satisfactory. Furthermore, if the mixed phosphor of Comparative Example 2 described above is 100%, the brightness of the mixed phosphor of Example 2 is 232%, and the brightness (efficiency) when excited with long-wavelength ultraviolet light is significantly improved. Was.

上述した各測定結果から、実施例2による混合蛍光体は、長波長の紫外線(330〜380nm前後)を励起源とする表示装置用の蛍光体として非常に有用であることが分かる。   From the measurement results described above, it can be seen that the mixed phosphor according to Example 2 is very useful as a phosphor for a display device using a long wavelength ultraviolet ray (about 330 to 380 nm) as an excitation source.

実施例3、比較例3
La22S:Eu0.06,Sm0.01で表される赤色発光蛍光体を61.0%、(Sr0.80Ba0.15Ca0.0510(PO46・Cl2:Euで表される青色発光蛍光体を22.0%、2(Ba,Mg)O・5Al23:Eu0.20,Mn0.40で表される緑色発光蛍光体を17.0%の割合(質量比)で十分に混合することによって、目的とする表示装置用蛍光体を得た。このようにして得た蛍光体(混合蛍光体)について、波長380nmの紫外線で励起したときの発光のスペクトル分布を測定した。この際の発光色は色温度6500K前後の白色光であった。
Example 3 and Comparative Example 3
La 2 O 2 S: Eu 0.06 , red emitting phosphor represented by Sm 0.01 , 61.0%, (Sr 0.80 Ba 0.15 Ca 0.05 ) 10 (PO 4 ) 6 · Cl 2 : blue emitting phosphor represented by Eu 22.0%, 2 (Ba, Mg) O.5Al 2 O 3 : Eu 0.20 , Mn 0.40 and the green light emitting phosphor represented by Mn 0.40 are sufficiently mixed at a ratio (mass ratio) of 17.0%. A phosphor for a display device was obtained. The phosphor (mixed phosphor) thus obtained was measured for the spectral distribution of light emission when excited with ultraviolet light having a wavelength of 380 nm. The emission color at this time was white light with a color temperature of around 6500K.

一方、本発明との比較例3として、既知の三波長蛍光体[赤色発光蛍光体=Y23:Eu/32.0%、青色発光蛍光体=(Sr,Ba,Ca)10(PO46・Cl2:Eu/42.0%、緑色発光蛍光体=(La,Ce)(P,B)O4:Tb/26.0%]を、波長254nmの紫外線で励起し、その際の発光スペクトル分布を測定した。 On the other hand, as Comparative Example 3 with the present invention, a known three-wavelength phosphor [red-emitting phosphor = Y 2 O 3 : Eu / 32.0%, blue-emitting phosphor = (Sr, Ba, Ca) 10 (PO 4 ) 6 · Cl 2 : Eu / 42.0%, green light emitting phosphor = (La, Ce) (P, B) O 4 : Tb / 26.0%] was excited with ultraviolet light having a wavelength of 254 nm, and the emission spectrum distribution at that time was It was measured.

実施例3および比較例3によるスペクトル分布からそれぞれの面積を求めて発光輝度を比較した結果、比較例3の三波長蛍光体を100%とすると、実施例3の混合蛍光体は長波長の紫外線で励起しているにもかかわらず83%であり、ほぼ実用的に満足し得る明るさを有していた。従って、実施例3による混合蛍光体は、長波長の紫外線(330〜380nm前後)を励起源とする表示装置用の蛍光体として非常に有用であることが分かる。   As a result of obtaining the respective areas from the spectrum distributions of Example 3 and Comparative Example 3 and comparing the emission luminance, assuming that the three-wavelength phosphor of Comparative Example 3 is 100%, the mixed phosphor of Example 3 is a long wavelength ultraviolet ray. It was 83% despite being excited by the light, and had a brightness that was practically satisfactory. Therefore, it turns out that the mixed fluorescent substance by Example 3 is very useful as a fluorescent substance for display apparatuses which use long wavelength ultraviolet rays (around 330-380 nm) as an excitation source.

本発明の実施例1による表示装置用蛍光体を波長380nmの紫外線で励起した際の発光スペクトル分布を示す図である。It is a figure which shows the emission spectrum distribution at the time of exciting the fluorescent substance for display apparatuses by Example 1 of this invention with the ultraviolet-ray with a wavelength of 380 nm. 比較例1による三波長蛍光体を波長254nmの紫外線で励起した際の発光スペクトル分布を示す図である。It is a figure which shows the emission spectrum distribution at the time of exciting the three wavelength fluorescent substance by the comparative example 1 with the ultraviolet-ray with a wavelength of 254 nm. 紫外線発光ランプに用いられる蛍光体の代表的な発光スペクトル分布を示す図である。It is a figure which shows the typical light emission spectrum distribution of the fluorescent substance used for a ultraviolet light-emitting lamp.

Claims (7)

波長330〜380nmの範囲の長波長紫外線の照射により可視光を発光し、前記可視光の青色発光成分、緑色発光成分および赤色発光成分を含有する表示装置用蛍光体の製造方法において、
前記赤色発光成分として、
一般式:(La 1-x-y-z Eu x Sm y 2 2
(式中、AはY及びGaの少なくとも一方であり、xおよびyは0.01≦x≦0.15、0.0001≦y≦0.03、0<z≦0.3を満足する数である)
で実質的に表される3価のユーロピウムおよびサマリウム付活酸硫化ランタノイド蛍光体を準備する工程と、
前記酸硫化ランタノイド蛍光体の酸洗浄工程において、前記酸硫化ランタノイド蛍光体を純水で洗浄した後、pHを2〜4(除くpH=2)の範囲に保持する工程と、
前記酸硫化ランタノイド蛍光体、前記青色発光成分の蛍光体、及び前記緑色発光成分の蛍光体を混合し、前記表示装置用蛍光体の製造する工程と、
を具えることを特徴とする表示装置用蛍光体の製造方法。
In the method for producing a phosphor for a display device that emits visible light by irradiation with long-wavelength ultraviolet light in the wavelength range of 330 to 380 nm, and contains the blue light-emitting component, green light-emitting component, and red light-emitting component of the visible light ,
As the red light emitting component,
General formula: (La 1-xy-z Eu x Sm y A z) 2 O 2 S
(In the formula, A is at least one of Y and Ga, and x and y are numbers satisfying 0.01 ≦ x ≦ 0.15, 0.0001 ≦ y ≦ 0.03, and 0 <z ≦ 0.3)
Preparing a trivalent europium and samarium with Katsusan sulfide lanthanide phosphor substantially represented in,
In the acid washing step of the oxysulfide lanthanide phosphor, after washing the oxysulfide lanthanide phosphor with pure water, a step of holding the pH in the range of 2 to 4 (pH = 2 with the exception),
Mixing the lanthanide oxysulfide phosphor, the phosphor of the blue light emitting component, and the phosphor of the green light emitting component to produce the phosphor for display device;
A method for producing a phosphor for a display device, comprising:
請求項1記載の表示装置用蛍光体の製造方法において、
前記青色発光成分の蛍光体として、
一般式:(M1,Eu)10(PO46・Cl2
(式中、M1はMg、Ca、SrおよびBaから選ばれる少なくとも1種の元素を示す)
で実質的に表される2価のユーロピウム付活ハロ燐酸塩蛍光体、および
一般式:a(M2,Eu)O・bAl23
(式中、M2はMg、Ca、Sr、Ba、Zn、Li、RbおよびCsから選ばれる少な
くとも1種の元素を示し、aおよびbはa>0、b>0、0.2≦a/b≦1.5を満足する数で
ある)
で実質的に表される2価のユーロピウム付活アルミン酸塩蛍光体から選ばれる少なくと
も1種を用いることを特徴とする表示装置用蛍光体の製造方法。
In the manufacturing method of the fluorescent substance for display apparatuses of Claim 1,
As the phosphor of the blue light emitting component,
General formula: (M1, Eu) 10 (PO 4 ) 6 · Cl 2
(Wherein M1 represents at least one element selected from Mg, Ca, Sr and Ba)
And a divalent europium-activated halophosphate phosphor substantially represented by the general formula: a (M 2 , Eu) O.bAl 2 O 3
(Wherein M2 represents at least one element selected from Mg, Ca, Sr, Ba, Zn, Li, Rb and Cs, and a and b are a> 0, b> 0, 0.2 ≦ a / b ≦ 1.5)
A method for producing a phosphor for a display device, comprising using at least one selected from divalent europium activated aluminate phosphors substantially represented by:
請求項1記載の表示装置用蛍光体の製造方法において、
前記緑色発光成分の蛍光体として、
一般式:a(M2,Eu,Mn)O・bAl23
(式中、M2はMg、Ca、Sr、Ba、Zn、Li、RbおよびCsから選ばれる少なくとも1種の元素を示し、aおよびbはa>0、b>0、0.2≦a/b≦1.5を満足する数である)
で実質的に表される2価のユーロピウムおよびマンガン付活アルミン酸塩蛍光体を用いることを特徴とする表示装置用蛍光体の製造方法。
In the manufacturing method of the fluorescent substance for display apparatuses of Claim 1,
As the phosphor of the green light emitting component,
General formula: a (M 2, Eu, Mn) O · bAl 2 O 3
(Wherein M2 represents at least one element selected from Mg, Ca, Sr, Ba, Zn, Li, Rb and Cs, and a and b are a> 0, b> 0, 0.2 ≦ a / b ≦ 1.5)
A method for producing a phosphor for a display device, comprising using a divalent europium and manganese activated aluminate phosphor substantially represented by the formula:
請求項1、請求項2または請求項3記載の表示装置用蛍光体の製造方法において、
質量比で、65%以下の範囲の前記青色発光成分の蛍光体と、5〜65%の範囲の前記緑色発光成分の蛍光体と、15〜95%の範囲の前記赤色発光成分の蛍光体とを混合することを特徴とする表示装置用蛍光体の製造方法。
In the manufacturing method of the fluorescent substance for display apparatuses of Claim 1, Claim 2 or Claim 3,
The blue light-emitting component phosphor in a mass ratio of 65% or less, the green light-emitting component phosphor in a range of 5 to 65%, and the red light-emitting component phosphor in a range of 15 to 95%. A method of manufacturing a phosphor for a display device, comprising mixing
蛍光体を含む発光部と、前記発光部に光を照射する光源とを有する表示装置の製造方法において、
前記発光部の前記蛍光体を、請求項1記載の表示装置用蛍光体の製造方法を適用して作製する工程を具備することを特徴とする表示装置の製造方法。
In a method of manufacturing a display device having a light emitting unit including a phosphor and a light source that irradiates light to the light emitting unit,
The manufacturing method of the display apparatus characterized by comprising the process which produces the said fluorescent substance of the said light emission part by applying the manufacturing method of the fluorescent substance for display apparatuses of Claim 1.
請求項記載の表示装置の製造方法において、
前記表示装置は前記光源として前記発光部に紫外線を照射する蛍光ランプを有する標識用表示装置であることを特徴とする表示装置の製造方法。
In the manufacturing method of the display device according to claim 5 ,
The display device is a sign display device having a fluorescent lamp that irradiates the light emitting unit with ultraviolet rays as the light source.
請求項記載の表示装置の製造方法において、
前記表示装置は前記光源として前記発光部に光を照射する発光チップを有するLEDランプであることを特徴とする表示装置の製造方法。
In the manufacturing method of the display device according to claim 5 ,
The display device is an LED lamp having a light emitting chip that irradiates light to the light emitting portion as the light source.
JP2005037331A 2005-02-15 2005-02-15 Method for manufacturing phosphor for display device and method for manufacturing display device Expired - Lifetime JP4834312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005037331A JP4834312B2 (en) 2005-02-15 2005-02-15 Method for manufacturing phosphor for display device and method for manufacturing display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005037331A JP4834312B2 (en) 2005-02-15 2005-02-15 Method for manufacturing phosphor for display device and method for manufacturing display device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP24625298A Division JP3949290B2 (en) 1998-08-31 1998-08-31 Display device

Publications (2)

Publication Number Publication Date
JP2005200659A JP2005200659A (en) 2005-07-28
JP4834312B2 true JP4834312B2 (en) 2011-12-14

Family

ID=34824747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037331A Expired - Lifetime JP4834312B2 (en) 2005-02-15 2005-02-15 Method for manufacturing phosphor for display device and method for manufacturing display device

Country Status (1)

Country Link
JP (1) JP4834312B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104449726A (en) * 2014-11-13 2015-03-25 苏州斯迪克新材料科技股份有限公司 Red long afterglow luminescence film and preparation method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104449726A (en) * 2014-11-13 2015-03-25 苏州斯迪克新材料科技股份有限公司 Red long afterglow luminescence film and preparation method thereof

Also Published As

Publication number Publication date
JP2005200659A (en) 2005-07-28

Similar Documents

Publication Publication Date Title
JP4799549B2 (en) White light emitting diode
TWI466985B (en) Non stoichiometric tetragonal copper alkaline earth silicate phosphors and method of preparing the same
JP4223879B2 (en) Sm-activated red light emitting phosphor and light emitting device using the same
KR20080003435A (en) Novel materials used for emitting light
CN101134895A (en) Wide-spectrum excitation fluorescent material and synthesizing method and light-emitting apparatus using the same
JP3949290B2 (en) Display device
KR101528413B1 (en) Fluorescent body for light-emitting device, method for producing same, and light-emitting device using same
CN108753277A (en) White light LEDs narrow-band blue light fluorescent powder and preparation method and White LED light-emitting device
JP4619509B2 (en) Light emitting device
CN100560688C (en) Long after glow luminous material and manufacture method thereof
JP2003160785A (en) Red-light-emitting phosphor and light emitter using the same
JP4433793B2 (en) Phosphor and light emitting device using the same
CN101451685A (en) White light illuminating device
JP5172553B2 (en) Device having light emitting function
JP4834312B2 (en) Method for manufacturing phosphor for display device and method for manufacturing display device
JP3954304B2 (en) Light emitting device
JP4834358B2 (en) Display device
JP4834359B2 (en) Display device
CN101570688B (en) Red light-emitting material and light emitting device using same
JP4343161B2 (en) Sign display device
JP4834357B2 (en) Display device
JP4886221B2 (en) Method for manufacturing light emitting device
JP2757889B2 (en) Method for producing luminescent composition
CN102399554A (en) Nitride red luminescence material, and luminescent part and luminescent device containing the same
CN109423285A (en) Chlorate MClO 3 fluorescent substance and light emitting device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080408

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090309

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090324

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20090515

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110523

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

EXPY Cancellation because of completion of term