JP4187919B2 - Object detection apparatus and axis adjustment method thereof - Google Patents

Object detection apparatus and axis adjustment method thereof Download PDF

Info

Publication number
JP4187919B2
JP4187919B2 JP2000323644A JP2000323644A JP4187919B2 JP 4187919 B2 JP4187919 B2 JP 4187919B2 JP 2000323644 A JP2000323644 A JP 2000323644A JP 2000323644 A JP2000323644 A JP 2000323644A JP 4187919 B2 JP4187919 B2 JP 4187919B2
Authority
JP
Japan
Prior art keywords
object detection
rotating shaft
detection device
reflecting
rotating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000323644A
Other languages
Japanese (ja)
Other versions
JP2002131431A5 (en
JP2002131431A (en
Inventor
隼人 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2000323644A priority Critical patent/JP4187919B2/en
Publication of JP2002131431A publication Critical patent/JP2002131431A/en
Publication of JP2002131431A5 publication Critical patent/JP2002131431A5/ja
Application granted granted Critical
Publication of JP4187919B2 publication Critical patent/JP4187919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電磁波を送信する送信手段と、物体による反射波を受信する受信手段とを備えた物体検知装置と、その物体検知装置の軸調整方法とに関する。
【0002】
【従来の技術】
アダプティブ・クルーズ・コントロール・システム、渋滞追従システム、車間距離警報システム等に用いられて先行車や対向車のような移動物、あるいはデリニエータやキャッツアイのような停止物を検知するレーダー装置は、そのレーザービームの光軸が正しく調整(エイミング)されていることが必要であり、光軸がずれていると目的とするターゲットを確実に検知できなくなる可能性がある。特に、車載のレーダ装置の検知領域の幅は左右方向に比べて上下方向に狭いため、上下方向の光軸の調整は特に重要なものとなる。
【0003】
特開平7−225277号公報には、レーダー装置のレーザーヘッドを3個の取付プレートを介して車体に支持することにより、上下方向および左右方向のエイミングを可能にしたものが記載されている。
【0004】
【発明が解決しようとする課題】
ところで、上記特開平7−225277号公報に記載されたものは、上下方向および左右方向のエイミングを行うべくレーザーヘッドが3個の取付プレートを介して車体に支持されているために、3個の取付プレートにより部品点数の増加、重量の増加、取付スペースの増加が発生するだけでなく、作業員の手作業によってエイミングを行うために、作業に多くの時間と労力が必要であるばかりかエイミングの精度にばらつきが発生する可能性があった。
【0005】
本発明は前述の事情に鑑みてなされたもので、物体検知装置の上下方向のエイミングを自動的に行えるようにすることを目的とする。
【0006】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載された発明によれば、電磁波を送信する送信手段と、送信手段の送信した電磁波が物体に反射された反射波を受信する受信手段と、往復回動する回転軸を有するモータと、回転軸に偏心して一体的に取り付けられ、外周の少なくとも一部に係合部を有する偏心回転部材と、送信手段の送信した電磁波を反射する反射面を有するとともに、該反射面の反対側に前記係合部に係合可能な被係合部を有する反射部材と、反射部材の反射面を回転軸に直交する軸線まわりに揺動自在に、かつ回転軸に対して相対回転自在に支持する支軸と、反射部材の被係合部が偏心回転部材の係合部に当接するように付勢する付勢部材と、回転軸の回転に伴って反射部材が当接可能であり、回転軸の更なる回転に伴って係合部および被係合部の係合を付勢部材の付勢力に抗して解除するストッパー部材とを備えたことを特徴とする物体検知装置が提案される。
【0007】
上記構成によれば、モータの回転軸を物体検知時の回転角を越えて回転させると反射部材が何れか一方のストッパー部材に当接して回転を規制され、回転軸と一体の偏心回転部材の係合部が反射部材の被係合部に対して相対回転するため、反射部材が支軸まわりに揺動して上下方向にエイミングされる。このように物体検知装置の上下方向のエイミングが作業者の手作業によらずに可能になるため、時間や労力が節減されるだけでなく、作業者の熟練の程度に左右されずに精度の高いエイミングが可能になる。
【0008】
また請求項2に記載された発明によれば、請求項1の構成に加えて、反射部材は、前記反射面を有する反射体と、反射体を前記支軸を介して揺動自在に支持するとともに、前記被係合部を有して偏心回転部材に対して相対回転自在な反射体ホルダーとを備えたことを特徴とする物体検知装置が提案される。
【0009】
上記構成によれば、回転軸に偏心回転部材を介して相対回転自在に支持された反射体ホルダーと、この反射体ホルダーに支軸を介して揺動自在に支持された反射体とで反射部材を構成したので、偏心回転部材との相対回転により反射体ホルダーを移動させることにより反射面を有する反射体を上下方向に揺動させることができる。
【0010】
また請求項3に記載された発明によれば、請求項2の構成に加えて、反射体に当接して反射体ホルダーに対する反射体の角度を保持する位置決め部材を備えたことを特徴とする物体検知装置が提案される。
【0011】
上記構成によれば、反射体を位置決め部材に当接させることにより反射体ホルダーに対する反射体の角度を保持することができる。
【0012】
また請求項4に記載された発明によれば、請求項2または請求項3の構成に加えて、反射体ホルダーは偏心回転部材を囲繞する貫通孔の内周面に前記被係合部を有することを特徴とする物体検知装置が提案される。
【0013】
上記構成によれば、反射体ホルダーに形成されて偏心回転部材を囲繞する貫通孔の内周面に被係合部を設けたので、被係合部を反射体ホルダーの内部にコンパクトに形成することができる。
【0014】
また請求項5に記載された発明によれば、請求項4の構成に加えて、偏心回転部材の係合部は、径方向に設けられた孔と、この孔に収納された係止部材と、この係止部材を孔から突出する方向に付勢する弾発部材とを備えたことを特徴とする物体検知装置が提案される。
【0015】
上記構成によれば、偏心回転部材に径方向に設けた孔に収納した係止部材を弾発部材で突出する方向に付勢して係合部を構成したので、係合部を偏心回転部材の内部にコンパクに形成することができる。
【0016】
また請求項6に記載された発明によれば、請求項1〜請求項5の何れか1項の構成に加えて、ストッパー部材は、回転軸が一方向に回転したときに反射部材に当接する第1ストッパー部材と、回転軸が他方向に回転したときに反射部材に当接する第2ストッパー部材とから構成されることを特徴とする物体検知装置が提案される。
【0017】
上記構成によれば、回転軸が一方向に回転すると反射部材が第1ストッパー部材に当接し、回転軸が他方向に回転すると反射部材が第2ストッパー部材に当接するので、回転軸の回転方向に応じて反射部材を上向きおよび下向きにエイミングすることができる。
【0018】
また請求項7に記載された発明によれば、請求項1〜請求項6の何れか1項の構成に加えて、偏心回転部材の一方向への回転および他方向への回転により、反射部材の反射面の角度を回転軸に平行な面を含んで変更可能であることを特徴とする物体検知装置が提案される。
【0019】
上記構成によれば、偏心回転部材の回転方向を変化させると反射部材の反射面の角度が回転軸に平行な面を含んで変更されるので、上向きおよび下向きのエイミングが可能になる。
【0020】
また請求項8に記載された発明によれば、請求項1〜請求項7の何れか1項の構成に加えて、物体検知モードとエイミングモードとを切替え可能であり、物体検知モードにおいて、反射部材がストッパー部材に当接しない範囲で回転軸が往復回動するようにモータを制御する制御手段を備えたことを特徴とする物体検知装置が提案される。
【0021】
上記構成によれば、物体検知モードでは反射部材がストッパー部材に当接しない範囲で回転軸が往復回動するので、反射部材が不用意に上下揺動することが防止される。
【0022】
また請求項9に記載された発明によれば、電磁波を送信する送信手段と、送信手段の送信した電磁波が物体に反射された反射波を受信する受信手段と、往復回動する回転軸を有するモータと、回転軸にその軸線と直交する支軸を介して揺動可能に支持され、外周の少なくとも一部に係合部を有する角度保持部材と、送信手段の送信した電磁波を反射する反射面を有するとともに、該反射面の反対側において角度保持部材に固定された反射部材と、角度保持部と回転軸との間に設けられ、角度保持部材の係合部に弾発的に係合する係止部材と、回転軸の回転に伴って反射部材が当接するとともに、回転軸に更なる回転に伴って係合部および係止部材の係合を解除して角度保持部材を回転させるストッパー部材とを備えたことを特徴とする物体検知装置が提案される。
【0023】
上記構成によれば、モータの回転軸を物体検知時の回転角を越えて回転させると、反射部材が何れか一方のストッパー部材に当接して回転軸まわりの回転を規制され、係合部および係止部材の係合が解除されて角度保持部材が支軸まわりに揺動し、反射部材が上下方向にエイミングされる。このように物体検知装置の上下方向のエイミングが作業者の手作業によらずに可能になるため、時間や労力が節減されるだけでなく、作業者の熟練の程度に左右されずに精度の高いエイミングが可能になる。
【0024】
また請求項10に記載された発明によれば、請求項9の構成に加えて、ストッパー部材は、回転軸が一方向に回転したときに反射部材に当接する第1ストッパー部材と、回転軸が他方向に回転したときに反射部材に当接する第2ストッパー部材とから構成されることを特徴とする物体検知装置が提案される。
【0025】
上記構成によれば、回転軸が一方向に回転すると反射部材が第1ストッパー部材に当接し、回転軸が他方向に回転すると反射部材が第2ストッパー部材に当接するので、回転軸の回転方向に応じて反射部材を上向きおよび下向きにエイミングすることができる。
【0026】
また請求項11に記載された発明によれば、請求項9または請求項10の構成に加えて、物体検知モードとエイミングモードとを切替え可能であり、物体検知モードにおいて、反射部材がストッパー部材に当接しない範囲で回転軸が往復回動するようにモータを制御する制御手段を備えたことを特徴とする物体検知装置が提案される。
【0027】
上記構成によれば、物体検知モードでは反射部材がストッパー部材に当接しない範囲で回転軸が往復回動するので、反射部材が不用意に上下揺動することが防止される。
【0028】
また請求項12に記載された発明によれば、請求項10または請求項11の構成に加えて、角度保持部材は反射部材の裏面の略中央部に固定され、第1ストッパー部材は回転軸の一方向への回転により角度保持部材の支軸よりも高い位置において反射部材に当接し、第2のストッパー部材は回転軸の他方向への回転により角度保持部材の支軸よりも低い位置において反射部材に当接することを特徴とする物体検知装置が提案される。
【0029】
上記構成によれば、回転軸が一方向に回転すると第1ストッパー部材が角度保持部材の支軸よりも高い位置において反射部材に当接し、反射部材を下向きに揺動させることができる。また回転軸が他方向に回転すると第2のストッパー部材が角度保持部材の支軸よりも低い位置において反射部材に当接し、反射部材を上向きに揺動させることができる。
【0030】
また請求項13に記載された発明によれば、請求項1〜請求項12の何れか1項に記載の物体検知装置の軸調整方法であって、物体検知装置の検知範囲内の所定位置に設置される基準反射体と、物体検知モードとエイミングモードとを切替え可能であり、電磁波の送受信およびモータの回転を制御する制御手段とを設け、制御手段は、物体検知モードにおいて、基準反射体からの反射波の受信結果に基づいて物体検知装置の軸ずれを判定し、軸ずれが判定されたときに前記軸ずれを修正する方向にモータを駆動して反射部材がストッパー部材に当接したことを判定し、反射部材がストッパー部材に当接したことが判定されたときにモータを更に駆動して反射部材を揺動させることにより前記軸ずれを修正することを特徴とする物体検知装置の軸調整方法が提案される。
【0031】
上記構成によれば、物体検知モードにおいて基準反射体の位置を検知して物体検知装置の軸ずれを検知した後、エイミングモードに切り換えて軸ずれを修正する方向にモータを駆動し、反射部材がストッパー部材に当接するとモータを更に駆動して反射部材を揺動させるので、物体検知モードをエイミングモードに切り換えるだけで物体検知装置の軸ずれを自動的に修正することができる。
【0032】
尚、実施例の送光部1および受光部3はそれぞれ本発明の送信手段および受信手段に対応し、実施例の送光ミラー13は本発明の反射部材に対応し、実施例の制御回路24は本発明の制御手段に対応する。
【0033】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面に示した本発明の実施例に基づいて説明する。
【0034】
図1〜図8は本発明の第1実施例を示すもので、図1は物体検知装置のブロック図、図2は物体検知装置の斜視図、図3は送光走査部の平面図、図4は図3の4方向矢視図、図5は図3の5方向矢視図、図6は図4の6−6線矢視図、図7は作用の説明図、図8はエイミングの手順を説明するフローチャートである。
【0035】
図1および図2に示すように、自車前方の物体の距離および方向を検知するための物体検知装置Stはレーザーレーダー装置を備えるもので、送光部1と、送光走査部2と、受光部3と、距離計測処理部5とから構成される。送光部1は、送光レンズを一体に備えたレーザーダイオード11と、レーザーダイオード11を駆動するレーザーダイオード駆動回路12とを備える。送光走査部2は、レーザーダイオード11が出力したレーザーを反射させる送光ミラー13と、送光ミラー13を上下方向の回転軸14回りに往復回動させるモータ15と、モータ15の駆動を制御するモータ駆動回路16と、走光ミラー13の角度を上下方向に変化させてレーザーの送光方向を上下に調整するエイミング機構29とを備える。送光ミラー13から出る送光ビームは左右幅が制限されて上下方向に細長いパターンを持ち、それが所定周期で左右方向に往復移動して物体を走査する。
【0036】
受光部3は、受光レンズ17と、受光レンズ17で収束させた反射波を受けて電気信号に変換するフォトダイオード18と、フォトダイオード18の出力信号を増幅する受光アンプ回路19とを備える。受光部3の受光エリアは固定とされる。
【0037】
距離計測処理部5は、前記レーザーダイオード駆動回路12やモータ駆動回路16を制御する制御回路24と、アダプティブクルーズコントロール装置を制御する電子制御ユニット25との間で通信を行う通信回路26と、レーザーの送光から受光までの時間をカウントするカウンタ回路27と、物体までの距離および物体の方向を算出する中央演算処理装置28とを備える。
【0038】
次に、図3〜図6に基づいてエイミング機構29の構造を説明する。
【0039】
モータ15から鉛直方向上向きに延びる回転軸14の上部に支持ブラケット32が相対回転自在に支持されており、この支持ブラケット32に水平方向に延びる支軸33を介して送光ミラー13の上端が上下揺動自在に枢支される。回転軸14の下部に円板状の偏心回転部材34が固定されており、この偏心回転部材34の中心は回転軸14の中心に対して距離δ(図3参照)だけ偏心している。偏心回転部材34の外周にギヤ歯状の係合部34aが形成され、この係合部34aに係合可能なギヤ歯状の被係合部13a(図6参照)が送光ミラー13の反射面13bの裏面に形成される。送光ミラー13はスプリングよりなる付勢部材35で支軸33まわりに付勢され、偏心回転部材34の係合部34aが送光ミラー13の被係合部13aに弾発的に係合する。モータ15のハウジング15aに第1ストッパー部材36および第2ストッパー部材37が固定される。第1ストッパー部材36および第2ストッパー部材37は回転軸14と平行に延びており、回転軸14と共に回転する送光ミラー13に裏面に当接可能である。
【0040】
物体検知装置Stの上下エイミング可能角は、送光ミラー13がモータ15の回転軸14と平行になるニュートラル位置を基準として、上下に各3.5°(60mrad)である。支持ブラケット32と偏心回転部材34との上下距離を10mmとすると、送光ミラー13を3.5°揺動させるための該送光ミラー13の下端の移動量は0.6mmとなる。従って、回転軸14に対して偏心回転部材34を0.6mm偏心させれば、偏心回転部材34の回転に応じて送光ミラー13をニュートラル位置を基準として上下に各3.5°揺動させることができる。上下エイミング可能な±3.5°の範囲を0.3°(5mrad)間隔で24段階に調整するために、偏心回転部材34の外周の係合部34aを構成するギヤ歯の歯数は48個になる。尚、左右方向のエイミングは、機械的なエイミング機構を必要とせずに、モータ15の回転軸14の回転角を変更するだけで任意に行うことができる。
【0041】
図2に示すように、送光走査部2における上下送光範囲は3°に設定されており、これに上下方向のエイミング可能角である±3.5°を加算した10°の範囲が上下送光範囲となる。また受光部3における左右検知範囲は半径300mのコーナーを検知できるように車体前後軸を中心として±8°の範囲に左右方向のエイミング可能角である±3.5°を加算して23°(400mrad)の範囲が左右受光範囲となる。
【0042】
次に、上記構成を備えた第1実施例の作用を、図8のフローチャートを参照して説明する。
【0043】
ステップS1で物体検知装置Stが物体検知モードであるとき、ステップS2でモータ15の回転軸14を送光ミラー13と共に往復復回動させ、車体中心軸を基準として±200mradの範囲を走査する(図7(A)参照)。回転軸14の回転角が±200mradの範囲にあれば、送光ミラー13が第1、第2ストッパー36,37に当接することはない。
【0044】
前記ステップS1で物体検知装置Stが物体検知モードでないときには、ステップS3でエイミングモードになる。物体検知モードおよびエイミングモードの切り替えは図示せぬスイッチにより行われる。続くステップS4で目標とするエイミング方向が上向きであるか下向きであるかを判定する。この判定は、自動車の車体の正面に設置した基準反射体(図示せず)の位置を物体検知装置Stで検知し、検知された基準反射体の位置が車体の正面よりも下にずれていれば、送光ミラー13からのビームが正しい方向よりも上向きに送光されている場合であり、送光ミラー13を下向きに揺動させてビームを正面に向けて送光する必要がある。そして検知された基準反射体のずれ量に基づいて、送光ミラー13の上下方向の必要調整角度が算出される。
【0045】
前記ステップS4で目標とするエイミング方向が上向きであれば、ステップS5でモータ15で回転軸14を真上から見て時計回りに回転させる。物体検知モードでの回転軸14の回転角は±200mradであるが、エイミングモードでの回転角は±400mradまで回転可能である。従って、回転軸14が回転する過程で送光ミラー13の裏面が第2ストッパー部材37に当接する(図7(B)参照)。ステップS6で送光ミラー13の裏面が第2ストッパー部材37に当接してモータ15の回転が強制的に停止され、そのことが例えばモータ15の負荷電流から検知されると、ステップS7でモータ15のトルクを増加させて更に時計回りに回転させる。
【0046】
すると、ステップS8で偏心回転部材34の係合部34aと送光ミラー13の被係合部13aとの間に荷重が加わり、送光ミラー13が付勢部材35の付勢力に抗して支軸33まわりに僅かに揺動し、係合部34aと被係合部13aとの係合がギヤ歯の1ピッチ分だけずれて再係合する。このようにして偏心回転部材34が送光ミラー13に対して1ピッチ分相対回転すると、ステップS9でモータ15の回転を停止し、前記ステップS7〜S9を、ステップS10で送光ミラー13の必要調整角度に相当するピッチ数の相対回転が終了するまで繰り返す。その結果、偏心回転部材34の係合部34aは半径が大きい部分において送光ミラー13の被係合部13aに係合し、送光ミラー13の下部が回転軸14から離間して上向きにエイミングされる。
【0047】
一方、前記ステップS4で目標とするエイミング方向が下向きであれば、ステップS11でモータ15で回転軸14を真上から見て反時計回りに回転させ、ステップS12で送光ミラー13の裏面が第1ストッパー部材36に当接したことが検知されると、ステップS13でモータ15のトルクを増加させて更に反時計回りに回転させる。すると、ステップS14で偏心回転部材34の係合部34aと送光ミラー13の被係合部13aとの間に荷重が加わり、送光ミラー13が付勢部材35の付勢力に抗して支軸33まわりに僅かに揺動し、係合部34aと被係合部13aとの係合がギヤ歯の1ピッチ分ずれて再係合する。このようにして偏心回転部材34が送光ミラー13に対して1ピッチ分だけ相対回転すると、続くステップS15でモータ15の回転を停止し、前記ステップS13〜S15を、ステップS16で送光ミラー13の必要調整角度に相当するピッチ数の相対回転が終了するまで繰り返す。その結果、偏心回転部材34の係合部34aは半径が小さい部分において送光ミラー13の被係合部13aに係合し、送光ミラー13の下部が回転軸14に接近して下向きにエイミングされる。
【0048】
以上のように、モータ15の回転軸14を通常の回転角を越えて回転させるだけで、送光ミラー13を回転軸14と平行な角度を基準にして上方および下方にエイミングすることができるので、作業者が複数の取付プレートの取付角を微調整してエイミングを行う必要がなくなり、作業時間や労力を大幅に節減できるだけでなく、作業者の熟練に依存せずに常に精密なエイミングを行うことができる。
【0049】
図9〜図13は本発明の第2実施例を示すもので、図9は送光走査部の平面図、図10は図9の10方向矢視図、図11は図9の11方向矢視図、図12は図10の12−12線拡大矢視図、図13は作用の説明図である。
【0050】
第2実施例は、モータ15の回転軸14の下部に偏心して固定された円板状の偏心回転部材34がギヤ歯状の係合部を備えておらず、その代わりに偏心回転部材34の外周面に開口する2個の孔34b,34bに保持された2個のボールよりなる係止部材41,41と、この係止部材41,41を孔34b,34bから押し出す方向に付勢するコイルばねよりなる弾発部材42,42とを備える。孔34b、係止部材41および弾発部材42は本実施例の係合部46を構成する。送光ミラー13は、反射面13bを有する反射体43と、この反射体43を支軸33を介して枢支する反射体ホルダー44とから構成される。反射体ホルダー44には偏心回転部材34が嵌合する円形の貫通孔44aが形成されており、この貫通孔44aの内周面にギヤ歯状の被係合部44bが形成される。
【0051】
モータ15の回転軸14の上部に円板状の位置決め部材45が固定されており、付勢部材35で付勢された反射体43の上部裏面が位置決め部材45に当接して反射面13bの角度を保持する。尚、位置決め部材45を回転軸14に固定する代わりに、回転軸14に回転自在に支持しても良い。モータ15のハウジング15aに第1ストッパー部材36および第2ストッパー部材37が固定される。第1ストッパー部材36および第2ストッパー部材37は回転軸14と平行に延びており、回転軸14と共に回転する送光ミラー13の反射体ホルダー44の側面に当接可能である。
【0052】
本第2実施例のエイミング機構29の制御は、第1実施例と同様に図8のフローチャートに基づいて行われる。即ち、物体検知モードでモータ15の回転軸14が±200mradの範囲で往復回動するとき、送光ミラー13の反射体ホルダー44は第1ストッパー部材36および第2ストッパー部材37に当接することはない。エイミングモードにおいてモータ15の回転軸14が±200mradの範囲を越えて真上から見て時計回りに回転すると、送光ミラー13の反射体ホルダー44の側面が第2ストッパー部材37に当接して回転を規制されるが、回転軸14が更に回転すると偏心回転部材34に設けた係止部材41,41が弾発部材42,42の弾発力に抗して後退し、反射体ホルダー44の被係合部44bのギヤ歯を乗り越えることにより、偏心回転部材34に対して反射体ホルダー44が必要ピッチ分だけ相対回転する。その結果、回転軸14に対して反射体ホルダー44が移動して反射体43の下端が回転軸14から離れるため、上端を位置決め部材45に規制された反射体が支軸33まわりに上向きにエイミングされる。逆にモータ15の回転軸14が±200mradの範囲を越えて真上から見て反時計回りに回転すると、回転軸14に対して反射体ホルダー44が移動して反射体43の下端が回転軸14に近づくため、上端を位置決め部材45に規制された反射体が支軸33まわりに下向きにエイミングされる。
【0053】
而して、この第2実施例によっても第1実施例と同様の作用効果を達成することができる。
【0054】
図14〜図18は本発明の第3実施例を示すもので、図15は送光走査部の平面図、図16は図15の16方向矢視図、図17は図15の17方向矢視図、図18は作用の説明図である。
【0055】
第3実施例は、レーザーダイオード11から下向きに出たビームが約45°の角度で斜め上方を向く送光ミラー13により反射して車体前方に送光される(図14参照)。モータ15の回転軸14の上端は二股になっており、そこに水平方向に延びる支軸33を介して角度保持部材51が揺動自在に支持される。角度保持部材51はギヤ状の部材の一部を切り取った形状であり、外周にギヤ歯状の係合部51aが形成される。回転軸14の二股部に形成された孔14aにボールよりなる係止部材52が嵌合し、コイルばねよりなる弾発部材53で角度保持部材51の係合部51aに係合する方向に付勢される。そして反射面13bが約45°の角度で斜め上方を向く送光ミラー13の裏面が前記角度保持部材51に一体に固定される。モータ15のハウジング15aに第1ストッパー部材36および第2ストッパー部材37が固定される。第1ストッパー部材36の高さおよび第2ストッパー部材37の高さは異なっており、高い方の第1ストッパー部材36は送光ミラー13の支軸33よりも高い位置において当接可能であり、低い方の第2ストッパー部材37は送光ミラー13の支軸33よりも低い位置において当接可能である。
【0056】
本第3実施例のエイミング機構29の制御は、第1実施例および第2実施例と実質的に同様に行われる。即ち、物体検知モードでモータ15の回転軸14が±200mradの範囲で往復回動するとき、送光ミラー13は第1ストッパー部材36および第2ストッパー部材37に当接することはない。エイミングモードにおいてモータ15の回転軸14が±200mradの範囲を越えて真上から見て時計回りに回転すると、送光ミラー13の下部が第2ストッパー部材37に当接して水平方向への回転を規制されるが、回転軸14が更に回転すると角度規制部材51に設けた係合部51aが弾発部材53で付勢された係止部材52を押し戻すことにより、角度規制部材51と共に送光ミラー13が必要ピッチ分だけ上向きに回転してエイミングされる。逆にモータ15の回転軸14が±200mradの範囲を越えて真上から見て反時計回りに回転すると、送光ミラー13の上部が第1ストッパー部材36に当接して水平方向への回転を規制されるが、回転軸14が更に回転すると角度規制部材51に設けた係合部51aが弾発部材53で付勢された係止部材52を押し戻すことにより、角度規制部材51と共に送光ミラー13が必要ピッチ分だけ下向きに回転してエイミングされる。
【0057】
而して、この第3実施例によっても第1実施例および第2実施例と同様の作用効果を達成することができる。
【0058】
以上、本発明の実施例を詳述したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
【0059】
例えば、実施例の物体検知装置Stはレーザーレーダー装置を備えているが、ミリ波レーダー装置を備えるものであっても良い。
【0060】
また第2実施例では係合部46,46を180°間隔で2個設けているが(図12参照)、120°間隔で3個設けても良い。更に、角度保持部材51側にギヤ歯状の係合部を設け、反射体ホルダー44側に係止部材41,41および弾発部材42,42よりなる被係合部を設けても良い。
【0061】
【発明の効果】
以上のように請求項1に記載された発明によれば、モータの回転軸を物体検知時の回転角を越えて回転させると反射部材が何れか一方のストッパー部材に当接して回転を規制され、回転軸と一体の偏心回転部材の係合部が反射部材の被係合部に対して相対回転するため、反射部材が支軸まわりに揺動して上下方向にエイミングされる。このように物体検知装置の上下方向のエイミングが作業者の手作業によらずに可能になるため、時間や労力が節減されるだけでなく、作業者の熟練の程度に左右されずに精度の高いエイミングが可能になる。
【0062】
また請求項2に記載された発明によれば、回転軸に偏心回転部材を介して相対回転自在に支持された反射体ホルダーと、この反射体ホルダーに支軸を介して揺動自在に支持された反射体とで反射部材を構成したので、偏心回転部材との相対回転により反射体ホルダーを移動させることにより反射面を有する反射体を上下方向に揺動させることができる。
【0063】
また請求項3に記載された発明によれば、反射体を位置決め部材に当接させることにより反射体ホルダーに対する反射体の角度を保持することができる。
【0064】
また請求項4に記載された発明によれば、反射体ホルダーに形成されて偏心回転部材を囲繞する貫通孔の内周面に被係合部を設けたので、被係合部を反射体ホルダーの内部にコンパクトに形成することができる。
【0065】
また請求項5に記載された発明によれば、偏心回転部材に径方向に設けた孔に収納した係止部材を弾発部材で突出する方向に付勢して係合部を構成したので、係合部を偏心回転部材の内部にコンパクに形成することができる。
【0066】
また請求項6に記載された発明によれば、回転軸が一方向に回転すると反射部材が第1ストッパー部材に当接し、回転軸が他方向に回転すると反射部材が第2ストッパー部材に当接するので、回転軸の回転方向に応じて反射部材を上向きおよび下向きにエイミングすることができる。
【0067】
また請求項7に記載された発明によれば、偏心回転部材の回転方向を変化させると反射部材の反射面の角度が回転軸に平行な面を含んで変更されるので、上向きおよび下向きのエイミングが可能になる。
【0068】
また請求項8に記載された発明によれば、物体検知モードでは反射部材がストッパー部材に当接しない範囲で回転軸が往復回動するので、反射部材が不用意に上下揺動することが防止される。
【0069】
また請求項9に記載された発明によれば、モータの回転軸を物体検知時の回転角を越えて回転させると、反射部材が何れか一方のストッパー部材に当接して回転軸まわりの回転を規制され、係合部および係止部材の係合が解除されて角度保持部材が支軸まわりに揺動し、反射部材が上下方向にエイミングされる。このように物体検知装置の上下方向のエイミングが作業者の手作業によらずに可能になるため、時間や労力が節減されるだけでなく、作業者の熟練の程度に左右されずに精度の高いエイミングが可能になる。
【0070】
また請求項10に記載された発明によれば、回転軸が一方向に回転すると反射部材が第1ストッパー部材に当接し、回転軸が他方向に回転すると反射部材が第2ストッパー部材に当接するので、回転軸の回転方向に応じて反射部材を上向きおよび下向きにエイミングすることができる。
【0071】
また請求項11に記載された発明によれば、物体検知モードでは反射部材がストッパー部材に当接しない範囲で回転軸が往復回動するので、反射部材が不用意に上下揺動することが防止される。
【0072】
また請求項12に記載された発明によれば、回転軸が一方向に回転すると第1ストッパー部材が角度保持部材の支軸よりも高い位置において反射部材に当接し、反射部材を下向きに揺動させることができる。また回転軸が他方向に回転すると第2のストッパー部材が角度保持部材の支軸よりも低い位置において反射部材に当接し、反射部材を上向きに揺動させることができる。
【0073】
また請求項13に記載された発明によれば、物体検知モードにおいて基準反射体の位置を検知して物体検知装置の軸ずれを検知した後、エイミングモードに切り換えて軸ずれを修正する方向にモータを駆動し、反射部材がストッパー部材に当接するとモータを更に駆動して反射部材を揺動させるので、物体検知モードをエイミングモードに切り換えるだけで物体検知装置の軸ずれを自動的に修正することができる。
【図面の簡単な説明】
【図1】物体検知装置のブロック図
【図2】物体検知装置の斜視図
【図3】送光走査部の平面図
【図4】図3の4方向矢視図
【図5】図3の5方向矢視図
【図6】図4の6−6線矢視図
【図7】作用の説明図
【図8】エイミングの手順を説明するフローチャート
【図9】第2実施例の送光走査部の平面図
【図10】図9の10方向矢視図
【図11】図9の11方向矢視図
【図12】図10の12−12線拡大矢視図
【図13】作用の説明図
【図14】第3実施例の物体検知装置の斜視図
【図15】送光走査部の平面図
【図16】図15の16方向矢視図
【図17】図15の17方向矢視図
【図18】作用の説明図
【符号の説明】
1 送光部(送信手段)
3 受光部(受信手段)
13 送光ミラー(反射部材)
13a 被係合部
13b 反射面
15 モータ
24 制御回路(制御手段)
14 回転軸
33 支軸
34 偏心回転部材
34a 係合部
34b 孔
35 付勢部材
36 第1ストッパー部材(ストッパー部材)
37 第2ストッパー部材(ストッパー部材)
41 係止部材
42 弾発部材
43 反射体
44 反射体ホルダー
44a 貫通孔
44b 被係合部
45 位置決め部材
46 係合部
51 角度保持部材
51a 係合部
52 係止部材
St 物体検知装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an object detection device including a transmission unit that transmits electromagnetic waves and a reception unit that receives a reflected wave from an object, and an axis adjustment method of the object detection device.
[0002]
[Prior art]
Radar devices used in adaptive cruise control systems, traffic jam tracking systems, inter-vehicle distance warning systems, etc. to detect moving objects such as preceding cars and oncoming vehicles, or stationary objects such as delineators and cat's eyes, It is necessary for the optical axis of the laser beam to be adjusted (aimed) correctly. If the optical axis is deviated, the target target may not be detected reliably. In particular, since the width of the detection area of the on-vehicle radar device is narrower in the vertical direction than in the left-right direction, the adjustment of the optical axis in the vertical direction is particularly important.
[0003]
Japanese Patent Application Laid-Open No. 7-225277 discloses a device that enables aiming in the vertical direction and the horizontal direction by supporting a laser head of a radar apparatus on a vehicle body via three mounting plates.
[0004]
[Problems to be solved by the invention]
By the way, in the above-mentioned Japanese Patent Application Laid-Open No. 7-225277, the laser head is supported on the vehicle body through three mounting plates so as to perform aiming in the vertical direction and the horizontal direction. The mounting plate not only increases the number of parts, increases the weight, and increases the installation space, but also requires a lot of time and effort to perform the aiming manually by the worker. There could be variations in accuracy.
[0005]
The present invention has been made in view of the above-described circumstances, and an object thereof is to automatically perform the aiming in the vertical direction of an object detection device.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, according to the first aspect of the present invention, a transmission means for transmitting an electromagnetic wave, a reception means for receiving a reflected wave in which the electromagnetic wave transmitted by the transmission means is reflected by an object, and a round trip. A motor having a rotating shaft that rotates, an eccentric rotating member that is integrally attached eccentrically to the rotating shaft and has an engaging portion at least at a part of the outer periphery, and a reflecting surface that reflects electromagnetic waves transmitted by the transmitting means; And a reflecting member having an engaged portion that is engageable with the engaging portion on the opposite side of the reflecting surface, and the reflecting surface of the reflecting member is swingable about an axis orthogonal to the rotating shaft, and the rotating shaft A support shaft that is supported so as to be relatively rotatable with respect to the shaft, an urging member that urges the engaged portion of the reflecting member to abut against the engaging portion of the eccentric rotating member, and the reflecting member as the rotating shaft rotates. Can be brought into contact with each other as the rotary shaft rotates further. Object detecting apparatus characterized by comprising a stopper member for releasing against the engagement parts and the engaged portion on the biasing force of the biasing member is proposed.
[0007]
According to the above configuration, when the rotation shaft of the motor is rotated beyond the rotation angle at the time of object detection, the reflecting member comes into contact with one of the stopper members to restrict the rotation, and the eccentric rotation member integrated with the rotation shaft is Since the engaging portion rotates relative to the engaged portion of the reflecting member, the reflecting member swings around the support shaft and is aimed in the vertical direction. In this way, the vertical aiming of the object detection device is possible without depending on the operator's manual work, which not only saves time and labor but also increases accuracy without depending on the skill level of the operator. High aiming is possible.
[0008]
According to the second aspect of the invention, in addition to the configuration of the first aspect, the reflecting member supports the reflector having the reflecting surface and the reflector through the support shaft so as to be swingable. In addition, there is proposed an object detection apparatus including a reflector holder that has the engaged portion and is rotatable relative to an eccentric rotation member.
[0009]
According to the above configuration, the reflector holder that is rotatably supported by the rotating shaft via the eccentric rotating member, and the reflector holder is swingably supported by the reflector holder via the support shaft. Reflector Thus, the reflector having the reflecting surface can be swung vertically by moving the reflector holder by relative rotation with the eccentric rotating member.
[0010]
According to the invention described in claim 3, in addition to the configuration of claim 2, the object further comprises a positioning member that contacts the reflector and holds the angle of the reflector with respect to the reflector holder. A detection device is proposed.
[0011]
According to the above configuration, the angle of the reflector with respect to the reflector holder can be maintained by bringing the reflector into contact with the positioning member.
[0012]
According to the invention described in claim 4, in addition to the structure of claim 2 or claim 3, the reflector holder has the engaged portion on the inner peripheral surface of the through hole surrounding the eccentric rotating member. An object detection apparatus characterized by this is proposed.
[0013]
According to the above configuration, since the engaged portion is provided on the inner peripheral surface of the through hole formed in the reflector holder and surrounding the eccentric rotating member, the engaged portion is formed compactly inside the reflector holder. be able to.
[0014]
According to the invention described in claim 5, in addition to the configuration of claim 4, the engaging portion of the eccentric rotating member includes a hole provided in the radial direction, and a locking member accommodated in the hole. An object detection device is provided that includes a resilient member that urges the locking member in a direction protruding from the hole.
[0015]
According to the above configuration, since the engaging member is configured by urging the engaging member housed in the hole provided in the radial direction in the eccentric rotating member in the protruding direction by the elastic member, the engaging portion is configured as the eccentric rotating member. It can be compactly formed inside.
[0016]
According to the invention described in claim 6, in addition to the configuration of any one of claims 1 to 5, the stopper member abuts on the reflection member when the rotation shaft rotates in one direction. An object detection device is proposed that includes a first stopper member and a second stopper member that contacts the reflecting member when the rotation shaft rotates in the other direction.
[0017]
According to the above configuration, the reflecting member contacts the first stopper member when the rotating shaft rotates in one direction, and the reflecting member contacts the second stopper member when the rotating shaft rotates in the other direction. Accordingly, the reflecting member can be aimed upward and downward.
[0018]
According to the invention described in claim 7, in addition to the configuration of any one of claims 1 to 6, the reflecting member is formed by rotating the eccentric rotating member in one direction and rotating in the other direction. There is proposed an object detection device characterized in that the angle of the reflection surface can be changed including a plane parallel to the rotation axis.
[0019]
According to the above configuration, when the rotation direction of the eccentric rotation member is changed, the angle of the reflection surface of the reflection member is changed including the plane parallel to the rotation axis, so that upward and downward aiming is possible.
[0020]
Further, according to the invention described in claim 8, in addition to the configuration of any one of claims 1 to 7, the object detection mode and the aiming mode can be switched. There is proposed an object detection device comprising a control means for controlling the motor so that the rotation shaft reciprocally rotates within a range in which the member does not contact the stopper member.
[0021]
According to the above configuration, in the object detection mode, since the rotating shaft reciprocates within a range where the reflecting member does not contact the stopper member, the reflecting member is prevented from being swung up and down carelessly.
[0022]
According to the ninth aspect of the invention, there is provided a transmission means for transmitting electromagnetic waves, a reception means for receiving reflected waves in which the electromagnetic waves transmitted from the transmission means are reflected by an object, and a rotary shaft that reciprocally rotates. A motor, an angle holding member supported by a rotating shaft via a support shaft orthogonal to the axis thereof, and having an engaging portion on at least a part of the outer periphery, and a reflecting surface for reflecting electromagnetic waves transmitted by the transmitting means A reflection member fixed to the angle holding member on the opposite side of the reflection surface, and provided between the angle holding portion and the rotation shaft, and elastically engages with the engagement portion of the angle holding member. A stopper member that contacts the locking member with the rotation of the rotation shaft and rotates the angle holding member by releasing the engagement of the engaging portion and the locking member with the rotation of the rotation shaft. An object inspection characterized by comprising Device is proposed.
[0023]
According to the above configuration, when the rotation shaft of the motor is rotated beyond the rotation angle at the time of object detection, the reflecting member comes into contact with any one of the stopper members and the rotation around the rotation shaft is restricted, and the engaging portion and The engagement of the locking member is released, the angle holding member swings around the support shaft, and the reflecting member is aimed in the vertical direction. In this way, the vertical aiming of the object detection device is possible without depending on the operator's manual work, which not only saves time and labor but also increases accuracy without depending on the skill level of the operator. High aiming is possible.
[0024]
According to the invention described in claim 10, in addition to the configuration of claim 9, the stopper member includes a first stopper member that contacts the reflecting member when the rotation shaft rotates in one direction, and a rotation shaft. There is proposed an object detection device comprising a second stopper member that contacts the reflecting member when rotated in the other direction.
[0025]
According to the above configuration, the reflecting member contacts the first stopper member when the rotating shaft rotates in one direction, and the reflecting member contacts the second stopper member when the rotating shaft rotates in the other direction. Accordingly, the reflecting member can be aimed upward and downward.
[0026]
According to the invention described in claim 11, in addition to the configuration of claim 9 or claim 10, the object detection mode and the aiming mode can be switched, and in the object detection mode, the reflecting member serves as the stopper member. There is proposed an object detection device comprising a control means for controlling the motor so that the rotary shaft reciprocally rotates in a range where it does not contact.
[0027]
According to the above configuration, in the object detection mode, since the rotating shaft reciprocates within a range where the reflecting member does not contact the stopper member, the reflecting member is prevented from being swung up and down carelessly.
[0028]
According to the invention described in claim 12, in addition to the structure of claim 10 or claim 11, the angle holding member is fixed to a substantially central portion of the back surface of the reflecting member, and the first stopper member is the rotating shaft. The second stopper member is reflected at a position lower than the support shaft of the angle holding member by rotating in the other direction by rotating in one direction. There is proposed an object detection device that is in contact with a member.
[0029]
According to the above configuration, when the rotation shaft rotates in one direction, the first stopper member abuts on the reflection member at a position higher than the support shaft of the angle holding member, and the reflection member can be swung downward. When the rotation shaft rotates in the other direction, the second stopper member abuts on the reflection member at a position lower than the support shaft of the angle holding member, and the reflection member can be swung upward.
[0030]
According to a thirteenth aspect of the present invention, there is provided the object detection device axis adjusting method according to any one of the first to twelfth aspects, wherein the object detection device is positioned at a predetermined position within a detection range of the object detection device. A reference reflector to be installed, and an object detection mode and an aiming mode can be switched, and a control means for controlling transmission / reception of electromagnetic waves and rotation of a motor is provided. The axis deviation of the object detection device is determined based on the reception result of the reflected wave, and when the axis deviation is determined, the motor is driven in a direction to correct the axis deviation and the reflecting member comes into contact with the stopper member. And determining that the reflecting member is in contact with the stopper member, the motor is further driven to swing the reflecting member to correct the axial deviation. Adjustment method is proposed.
[0031]
According to the above configuration, after detecting the position of the reference reflector in the object detection mode and detecting the axis deviation of the object detection device, the motor is driven in a direction to correct the axis deviation by switching to the aiming mode, and the reflecting member is When it comes into contact with the stopper member, the motor is further driven to swing the reflecting member, so that the axis deviation of the object detection device can be automatically corrected simply by switching the object detection mode to the aiming mode.
[0032]
The light transmitting unit 1 and the light receiving unit 3 of the embodiment correspond to the transmitting unit and the receiving unit of the present invention, respectively. The light transmitting mirror 13 of the embodiment corresponds to the reflecting member of the present invention, and the control circuit 24 of the embodiment. Corresponds to the control means of the present invention.
[0033]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples of the present invention shown in the accompanying drawings.
[0034]
1 to 8 show a first embodiment of the present invention. FIG. 1 is a block diagram of an object detection device, FIG. 2 is a perspective view of the object detection device, and FIG. 3 is a plan view of a light transmission scanning unit. 4 is a view in the direction of the arrow 4 in FIG. 3, FIG. 5 is a view in the direction of the arrow 5 in FIG. 3, FIG. 6 is a view in the direction of arrow 6-6 in FIG. It is a flowchart explaining a procedure.
[0035]
As shown in FIGS. 1 and 2, the object detection device St for detecting the distance and direction of an object ahead of the host vehicle includes a laser radar device, and includes a light transmission unit 1, a light transmission scanning unit 2, It comprises a light receiving unit 3 and a distance measurement processing unit 5. The light transmission unit 1 includes a laser diode 11 integrally provided with a light transmission lens, and a laser diode drive circuit 12 that drives the laser diode 11. The light transmission scanning unit 2 controls a light transmission mirror 13 that reflects a laser output from the laser diode 11, a motor 15 that reciprocates the light transmission mirror 13 around a vertical rotation shaft 14, and driving of the motor 15. And an aiming mechanism 29 that adjusts the laser beam transmission direction up and down by changing the angle of the traveling mirror 13 in the vertical direction. The light transmission beam emitted from the light transmission mirror 13 is limited in the left-right width and has an elongated pattern in the vertical direction, which reciprocates in the left-right direction in a predetermined cycle to scan the object.
[0036]
The light receiving unit 3 includes a light receiving lens 17, a photodiode 18 that receives a reflected wave converged by the light receiving lens 17 and converts it into an electrical signal, and a light receiving amplifier circuit 19 that amplifies an output signal of the photodiode 18. The light receiving area of the light receiving unit 3 is fixed.
[0037]
The distance measurement processing unit 5 includes a communication circuit 26 that performs communication between the control circuit 24 that controls the laser diode drive circuit 12 and the motor drive circuit 16, and an electronic control unit 25 that controls the adaptive cruise control device, and a laser. Counter circuit 27 that counts the time from light transmission to light reception and a central processing unit 28 that calculates the distance to the object and the direction of the object.
[0038]
Next, the structure of the aiming mechanism 29 will be described with reference to FIGS.
[0039]
A support bracket 32 is supported on an upper portion of the rotary shaft 14 extending vertically upward from the motor 15 so as to be relatively rotatable. The upper end of the light transmission mirror 13 is vertically moved to the support bracket 32 via a support shaft 33 extending in the horizontal direction. It is pivotably supported. A disc-shaped eccentric rotating member 34 is fixed to the lower portion of the rotating shaft 14, and the center of the eccentric rotating member 34 is eccentric by a distance δ (see FIG. 3) with respect to the center of the rotating shaft 14. A gear tooth-shaped engaging portion 34 a is formed on the outer periphery of the eccentric rotating member 34, and a gear tooth-shaped engaged portion 13 a (see FIG. 6) that can be engaged with the engaging portion 34 a is reflected by the light transmission mirror 13. It is formed on the back surface of the surface 13b. The light transmission mirror 13 is biased around the support shaft 33 by a biasing member 35 made of a spring, and the engaging portion 34a of the eccentric rotating member 34 is elastically engaged with the engaged portion 13a of the light transmitting mirror 13. . A first stopper member 36 and a second stopper member 37 are fixed to the housing 15 a of the motor 15. The first stopper member 36 and the second stopper member 37 extend in parallel with the rotation shaft 14 and can contact the back surface of the light transmission mirror 13 that rotates together with the rotation shaft 14.
[0040]
The up and down aiming possible angles of the object detection device St are 3.5 degrees (60 mrad) up and down with respect to the neutral position where the light transmission mirror 13 is parallel to the rotating shaft 14 of the motor 15. When the vertical distance between the support bracket 32 and the eccentric rotating member 34 is 10 mm, the amount of movement of the lower end of the light transmission mirror 13 for swinging the light transmission mirror 13 by 3.5 ° is 0.6 mm. Therefore, if the eccentric rotating member 34 is eccentric by 0.6 mm with respect to the rotating shaft 14, the light transmission mirror 13 is swung up and down by 3.5 degrees with respect to the neutral position according to the rotation of the eccentric rotating member 34. be able to. In order to adjust the range of ± 3.5 ° in which vertical aiming is possible in 24 stages at intervals of 0.3 ° (5 mrad), the number of gear teeth constituting the engaging portion 34a on the outer periphery of the eccentric rotating member 34 is 48. Become a piece. Note that the aiming in the left-right direction can be arbitrarily performed by simply changing the rotation angle of the rotating shaft 14 of the motor 15 without requiring a mechanical aiming mechanism.
[0041]
As shown in FIG. 2, in the light transmission scanning unit 2 Up and down The light transmission range is set to 3 °, and a range of 10 °, which is obtained by adding ± 3.5 °, which is an aiming angle in the vertical direction, is the vertical light transmission range. In addition, the left / right detection range in the light receiving unit 3 is 23 ° by adding ± 3.5 °, which is an aiming angle in the left / right direction, to a range of ± 8 ° centered on the longitudinal axis of the vehicle body so as to detect a corner having a radius of 300 m. 400 mrad) is the left and right light receiving range.
[0042]
Next, the operation of the first embodiment having the above configuration will be described with reference to the flowchart of FIG.
[0043]
When the object detection device St is in the object detection mode in step S1, in step S2, the rotation shaft 14 of the motor 15 is reciprocally rotated together with the light transmission mirror 13 to scan a range of ± 200 mrad with respect to the vehicle body center axis ( (See FIG. 7A). If the rotation angle of the rotation shaft 14 is within a range of ± 200 mrad, the light transmission mirror 13 does not come into contact with the first and second stoppers 36 and 37.
[0044]
When the object detection device St is not in the object detection mode in step S1, the aiming mode is set in step S3. Switching between the object detection mode and the aiming mode is performed by a switch (not shown). In subsequent step S4, it is determined whether the target aiming direction is upward or downward. In this determination, the position of a reference reflector (not shown) installed in front of the car body of the automobile is detected by the object detection device St, and the detected position of the reference reflector is shifted below the front of the car body. For example, the beam from the light transmission mirror 13 is transmitted upward from the correct direction, and it is necessary to swing the light transmission mirror 13 downward and transmit the beam toward the front. Based on the detected deviation amount of the reference reflector, the necessary adjustment angle in the vertical direction of the light transmission mirror 13 is calculated.
[0045]
If the target aiming direction is upward in step S4, the rotating shaft 14 is rotated clockwise as viewed from directly above by the motor 15 in step S5. The rotation angle of the rotating shaft 14 in the object detection mode is ± 200 mrad, but the rotation angle in the aiming mode can be rotated up to ± 400 mrad. Therefore, the back surface of the light transmission mirror 13 comes into contact with the second stopper member 37 in the process of rotating the rotating shaft 14 (see FIG. 7B). In step S6, the back surface of the light transmission mirror 13 comes into contact with the second stopper member 37 and the rotation of the motor 15 is forcibly stopped. If this is detected from the load current of the motor 15, for example, the motor 15 is detected in step S7. The torque is increased to rotate further clockwise.
[0046]
Then, in step S8, a load is applied between the engaging portion 34a of the eccentric rotating member 34 and the engaged portion 13a of the light transmission mirror 13, and the light transmission mirror 13 supports the urging force of the urging member 35. The shaft 33 is slightly swung around the shaft 33, and the engagement between the engaging portion 34a and the engaged portion 13a is shifted by one pitch of the gear teeth and re-engaged. When the eccentric rotating member 34 rotates relative to the light transmission mirror 13 by one pitch in this way, the rotation of the motor 15 is stopped in step S9, and the steps S7 to S9 are performed, and the light transmission mirror 13 is required in step S10. Repeat until the relative rotation of the number of pitches corresponding to the adjustment angle is completed. As a result, the engaging portion 34a of the eccentric rotating member 34 is engaged with the engaged portion 13a of the light transmitting mirror 13 at a portion where the radius is large, and the lower portion of the light transmitting mirror 13 is spaced apart from the rotating shaft 14 and aiming upward. Is done.
[0047]
On the other hand, if the target aiming direction is downward in step S4, the rotation shaft 14 is rotated counterclockwise by the motor 15 as viewed from directly above in step S11, and the back surface of the light transmission mirror 13 is moved to the first position in step S12. When it is detected that the first stopper member 36 is in contact with the stopper member 36, the torque of the motor 15 is increased in step S13 to further rotate it counterclockwise. Then, in step S14, a load is applied between the engaging portion 34a of the eccentric rotating member 34 and the engaged portion 13a of the light transmission mirror 13, and the light transmission mirror 13 is supported against the urging force of the urging member 35. It swings slightly around the shaft 33, and the engagement between the engaging portion 34a and the engaged portion 13a is shifted by one pitch of the gear teeth and re-engaged. When the eccentric rotating member 34 rotates relative to the light transmission mirror 13 by one pitch in this way, the rotation of the motor 15 is stopped in the subsequent step S15, and the steps S13 to S15 are performed in step S16. Repeat until the relative rotation of the number of pitches corresponding to the necessary adjustment angle is completed. As a result, the engaging portion 34a of the eccentric rotating member 34 is engaged with the engaged portion 13a of the light transmitting mirror 13 at a portion having a small radius, and the lower portion of the light transmitting mirror 13 approaches the rotating shaft 14 and aiming downward. Is done.
[0048]
As described above, it is possible to aim the light transmission mirror 13 upward and downward on the basis of an angle parallel to the rotation shaft 14 only by rotating the rotation shaft 14 of the motor 15 beyond the normal rotation angle. , It eliminates the need for the operator to fine-tune the mounting angles of multiple mounting plates, significantly reducing work time and labor, and always performing precise aiming without depending on the skill of the operator be able to.
[0049]
9 to 13 show a second embodiment of the present invention. FIG. 9 is a plan view of a light transmission scanning unit, FIG. 10 is a view in the direction of arrow 10 in FIG. 9, and FIG. FIG. 12 is an enlarged view taken along the line 12-12 in FIG. 10, and FIG.
[0050]
In the second embodiment, the disc-shaped eccentric rotating member 34 that is eccentrically fixed to the lower portion of the rotating shaft 14 of the motor 15 does not include a gear tooth-shaped engaging portion, but instead of the eccentric rotating member 34. Engaging members 41, 41 made of two balls held in two holes 34b, 34b opened on the outer peripheral surface, and a coil for urging the engaging members 41, 41 in a direction to push out from the holes 34b, 34b Elastic members 42, 42 made of springs. The hole 34b, the locking member 41, and the resilient member 42 constitute an engaging portion 46 of this embodiment. The light transmission mirror 13 includes a reflector 43 having a reflecting surface 13 b and a reflector holder 44 that pivotally supports the reflector 43 via a support shaft 33. The reflector holder 44 is formed with a circular through hole 44a into which the eccentric rotating member 34 is fitted, and a gear tooth-like engaged portion 44b is formed on the inner peripheral surface of the through hole 44a.
[0051]
A disc-shaped positioning member 45 is fixed to the upper portion of the rotating shaft 14 of the motor 15, and the upper rear surface of the reflector 43 urged by the urging member 35 abuts on the positioning member 45 and the angle of the reflecting surface 13 b. Hold. Instead of fixing the positioning member 45 to the rotating shaft 14, the positioning member 45 may be rotatably supported on the rotating shaft 14. A first stopper member 36 and a second stopper member 37 are fixed to the housing 15 a of the motor 15. The first stopper member 36 and the second stopper member 37 extend in parallel with the rotation shaft 14 and can contact the side surface of the reflector holder 44 of the light transmission mirror 13 that rotates together with the rotation shaft 14.
[0052]
The control of the aiming mechanism 29 of the second embodiment is performed based on the flowchart of FIG. 8 as in the first embodiment. That is, when the rotating shaft 14 of the motor 15 reciprocates in the range of ± 200 mrad in the object detection mode, the reflector holder 44 of the light transmission mirror 13 does not contact the first stopper member 36 and the second stopper member 37. Absent. In the aiming mode, when the rotating shaft 14 of the motor 15 rotates clockwise beyond the range of ± 200 mrad as viewed from directly above, the side surface of the reflector holder 44 of the light transmission mirror 13 contacts the second stopper member 37 and rotates. However, when the rotating shaft 14 further rotates, the locking members 41 and 41 provided on the eccentric rotating member 34 retreat against the elastic force of the elastic members 42 and 42, and the reflector holder 44 is covered. By overcoming the gear teeth of the engaging portion 44b, the reflector holder 44 rotates relative to the eccentric rotating member 34 by a necessary pitch. As a result, the reflector holder 44 moves with respect to the rotating shaft 14 and the lower end of the reflector 43 moves away from the rotating shaft 14, so that the reflector whose upper end is regulated by the positioning member 45 is aiming upward around the support shaft 33. Is done. Conversely, when the rotating shaft 14 of the motor 15 rotates counterclockwise when viewed from directly above beyond the range of ± 200 mrad, the reflector holder 44 moves with respect to the rotating shaft 14 so that the lower end of the reflector 43 becomes the rotating shaft. 14, the reflector whose upper end is restricted by the positioning member 45 is aiming downward around the support shaft 33.
[0053]
Thus, the second embodiment can achieve the same effects as the first embodiment.
[0054]
14 to 18 show a third embodiment of the present invention. FIG. 15 is a plan view of a light transmission scanning unit, FIG. 16 is a view in the direction of arrow 16 in FIG. 15, and FIG. FIG. 18 is an explanatory view of the operation.
[0055]
In the third embodiment, the beam emitted downward from the laser diode 11 is reflected by the light transmission mirror 13 directed obliquely upward at an angle of about 45 ° and transmitted to the front of the vehicle body (see FIG. 14). The upper end of the rotating shaft 14 of the motor 15 is bifurcated, and the angle holding member 51 is swingably supported through a support shaft 33 extending in the horizontal direction. The angle holding member 51 has a shape obtained by cutting a part of a gear-shaped member, and a gear tooth-shaped engaging portion 51a is formed on the outer periphery. A locking member 52 made of a ball is fitted into a hole 14a formed in the bifurcated portion of the rotating shaft 14, and is attached in a direction to engage with the engaging portion 51a of the angle holding member 51 by a resilient member 53 made of a coil spring. Be forced. The back surface of the light transmission mirror 13 whose reflecting surface 13b faces obliquely upward at an angle of about 45 ° is integrally fixed to the angle holding member 51. A first stopper member 36 and a second stopper member 37 are fixed to the housing 15 a of the motor 15. The height of the first stopper member 36 and the height of the second stopper member 37 are different, and the higher first stopper member 36 can contact at a position higher than the support shaft 33 of the light transmission mirror 13. The lower second stopper member 37 can abut at a position lower than the support shaft 33 of the light transmission mirror 13.
[0056]
The aiming mechanism 29 of the third embodiment is controlled in substantially the same manner as in the first and second embodiments. That is, when the rotation shaft 14 of the motor 15 reciprocates in the range of ± 200 mrad in the object detection mode, the light transmission mirror 13 does not contact the first stopper member 36 and the second stopper member 37. In the aiming mode, when the rotating shaft 14 of the motor 15 rotates clockwise beyond the range of ± 200 mrad when viewed from directly above, the lower part of the light transmission mirror 13 contacts the second stopper member 37 and rotates in the horizontal direction. Although being regulated, when the rotating shaft 14 is further rotated, the engaging portion 51 a provided on the angle regulating member 51 pushes back the locking member 52 urged by the elastic member 53, thereby the light transmission mirror together with the angle regulating member 51. Aiming 13 is performed by rotating upward by the required pitch. Conversely, when the rotating shaft 14 of the motor 15 rotates counterclockwise beyond the range of ± 200 mrad when viewed from directly above, the upper portion of the light transmission mirror 13 contacts the first stopper member 36 and rotates in the horizontal direction. Although being regulated, when the rotating shaft 14 is further rotated, the engaging portion 51 a provided on the angle regulating member 51 pushes back the locking member 52 urged by the elastic member 53, thereby the light transmission mirror together with the angle regulating member 51. Aiming 13 is performed by rotating downward by the required pitch.
[0057]
Thus, the third embodiment can achieve the same effects as the first embodiment and the second embodiment.
[0058]
As mentioned above, although the Example of this invention was explained in full detail, this invention can perform a various design change in the range which does not deviate from the summary.
[0059]
For example, the object detection device St of the embodiment includes a laser radar device, but may include a millimeter wave radar device.
[0060]
In the second embodiment, two engaging portions 46 are provided at intervals of 180 ° (see FIG. 12), but three engaging portions 46 may be provided at intervals of 120 °. Further, a gear tooth-like engaging portion may be provided on the angle holding member 51 side, and an engaged portion including the locking members 41 and 41 and the resilient members 42 and 42 may be provided on the reflector holder 44 side.
[0061]
【The invention's effect】
As described above, according to the first aspect of the present invention, when the rotation shaft of the motor is rotated beyond the rotation angle at the time of object detection, the reflecting member comes into contact with one of the stopper members to restrict the rotation. Since the engaging portion of the eccentric rotating member integral with the rotating shaft rotates relative to the engaged portion of the reflecting member, the reflecting member swings around the support shaft and is aimed in the vertical direction. In this way, the vertical aiming of the object detection device is possible without depending on the operator's manual work, which not only saves time and labor but also increases accuracy without depending on the skill level of the operator. High aiming is possible.
[0062]
According to the second aspect of the present invention, the reflector holder is rotatably supported on the rotating shaft via the eccentric rotating member, and is supported by the reflector holder so as to be swingable via the support shaft. Since the reflecting member is constituted by the reflector, the reflector having the reflecting surface can be swung in the vertical direction by moving the reflector holder by relative rotation with the eccentric rotating member.
[0063]
According to the invention described in claim 3, the angle of the reflector with respect to the reflector holder can be maintained by bringing the reflector into contact with the positioning member.
[0064]
According to the fourth aspect of the present invention, since the engaged portion is provided on the inner peripheral surface of the through hole that is formed in the reflector holder and surrounds the eccentric rotation member, the engaged portion is the reflector holder. It is possible to form a compact inside.
[0065]
Further, according to the invention described in claim 5, since the engaging member is configured by biasing the engaging member housed in the hole provided in the radial direction in the eccentric rotating member in the protruding direction by the elastic member, The engaging portion can be formed compactly inside the eccentric rotating member.
[0066]
According to the sixth aspect of the present invention, when the rotation shaft rotates in one direction, the reflection member contacts the first stopper member, and when the rotation shaft rotates in the other direction, the reflection member contacts the second stopper member. Therefore, it is possible to aim the reflecting member upward and downward according to the rotation direction of the rotation shaft.
[0067]
According to the seventh aspect of the present invention, when the rotation direction of the eccentric rotation member is changed, the angle of the reflection surface of the reflection member is changed to include the plane parallel to the rotation axis. Is possible.
[0068]
According to the eighth aspect of the invention, in the object detection mode, the rotating shaft reciprocates within a range in which the reflecting member does not contact the stopper member, so that the reflecting member is prevented from being swung up and down inadvertently. Is done.
[0069]
According to the ninth aspect of the present invention, when the rotation shaft of the motor is rotated beyond the rotation angle at the time of object detection, the reflecting member comes into contact with one of the stopper members and rotates around the rotation shaft. As a result, the engagement between the engaging portion and the locking member is released, the angle holding member swings around the support shaft, and the reflecting member is aimed in the vertical direction. In this way, the vertical aiming of the object detection device is possible without depending on the operator's manual work, which not only saves time and labor but also increases accuracy without depending on the skill level of the operator. High aiming is possible.
[0070]
According to the tenth aspect of the present invention, when the rotation shaft rotates in one direction, the reflection member contacts the first stopper member, and when the rotation shaft rotates in the other direction, the reflection member contacts the second stopper member. Therefore, it is possible to aim the reflecting member upward and downward according to the rotation direction of the rotation shaft.
[0071]
According to the eleventh aspect of the invention, in the object detection mode, the rotating shaft reciprocates in a range in which the reflecting member does not contact the stopper member, so that the reflecting member is prevented from inadvertently swinging up and down. Is done.
[0072]
According to the invention described in claim 12, when the rotation shaft rotates in one direction, the first stopper member abuts on the reflection member at a position higher than the support shaft of the angle holding member, and the reflection member swings downward. Can be made. When the rotation shaft rotates in the other direction, the second stopper member abuts on the reflection member at a position lower than the support shaft of the angle holding member, and the reflection member can be swung upward.
[0073]
According to the invention described in claim 13, after detecting the position of the reference reflector in the object detection mode and detecting the axis deviation of the object detection device, the motor is switched to the aiming mode to correct the axis deviation. When the reflecting member comes into contact with the stopper member, the motor is further driven to swing the reflecting member, so that the axis deviation of the object detecting device can be automatically corrected simply by switching the object detecting mode to the aiming mode. Can do.
[Brief description of the drawings]
FIG. 1 is a block diagram of an object detection device.
FIG. 2 is a perspective view of an object detection device.
FIG. 3 is a plan view of a light transmission scanning unit.
4 is a view in the direction of arrow 4 in FIG.
FIG. 5 is a view in the direction of arrow 5 in FIG.
6 is a view taken along line 6-6 in FIG.
FIG. 7 is an explanatory diagram of the operation.
FIG. 8 is a flowchart for explaining the aiming procedure;
FIG. 9 is a plan view of a light transmission scanning unit according to a second embodiment.
10 is a view in the direction of arrow 10 in FIG. 9;
11 is a view taken in the direction of arrow 11 in FIG. 9;
12 is an enlarged view taken along line 12-12 in FIG.
FIG. 13 is an explanatory diagram of the operation.
FIG. 14 is a perspective view of an object detection apparatus according to a third embodiment.
FIG. 15 is a plan view of a light transmission scanning unit.
16 is a view in the direction of arrow 16 in FIG.
17 is a view in the direction of arrow 17 in FIG.
FIG. 18 is an explanatory diagram of the operation.
[Explanation of symbols]
1 Light transmitter (transmission means)
3 Light receiving part (receiving means)
13 Transmitting mirror (reflective member)
13a engaged part
13b Reflective surface
15 motor
24 Control circuit (control means)
14 Rotating shaft
33 Spindle
34 Eccentric rotating member
34a Engagement part
34b hole
35 Biasing member
36 First stopper member (stopper member)
37 Second stopper member (stopper member)
41 Locking member
42 Impact member
43 Reflector
44 Reflector holder
44a Through hole
44b engaged portion
45 Positioning member
46 engaging part
51 Angle holding member
51a Engagement part
52 Locking member
St object detection device

Claims (13)

電磁波を送信する送信手段(1)と、
送信手段(1)の送信した電磁波が物体に反射された反射波を受信する受信手段(3)と、
往復回動する回転軸(14)を有するモータ(15)と、
回転軸(14)に偏心して一体的に取り付けられ、外周の少なくとも一部に係合部(34a,46)を有する偏心回転部材(34)と、
送信手段(1)の送信した電磁波を反射する反射面(13b)を有するとともに、該反射面(13b)の反対側に前記係合部(34a,46)に係合可能な被係合部(13a,44b)を有する反射部材(13)と、
反射部材(13)の反射面(13b)を回転軸(14)に直交する軸線まわりに揺動自在に、かつ回転軸(14)に対して相対回転自在に支持する支軸(33)と、
反射部材(13)の被係合部(13a,44b)が偏心回転部材(34)の係合部(34a,46)に当接するように付勢する付勢部材(35)と、
回転軸(14)の回転に伴って反射部材(13)が当接可能であり、回転軸(14)の更なる回転に伴って係合部(34a,46)および被係合部(13a,44b)の係合を付勢部材(35)の付勢力に抗して解除するストッパー部材(36,37)と、
を備えたことを特徴とする物体検知装置。
A transmission means (1) for transmitting electromagnetic waves;
A receiving means (3) for receiving a reflected wave in which the electromagnetic wave transmitted by the transmitting means (1) is reflected by an object;
A motor (15) having a rotating shaft (14) reciprocally rotating;
An eccentric rotating member (34) eccentrically attached to the rotating shaft (14) and having engaging portions (34a, 46) on at least a part of the outer periphery;
An engaged portion (having a reflecting surface (13b) for reflecting the electromagnetic wave transmitted by the transmitting means (1) and engageable with the engaging portions (34a, 46) on the opposite side of the reflecting surface (13b). A reflective member (13) having 13a, 44b);
A supporting shaft (33) for supporting the reflecting surface (13b) of the reflecting member (13) so as to be swingable about an axis perpendicular to the rotating shaft (14) and relatively rotatable with respect to the rotating shaft (14);
A biasing member (35) for biasing the engaged portions (13a, 44b) of the reflecting member (13) so as to contact the engaging portions (34a, 46) of the eccentric rotating member (34);
The reflecting member (13) can come into contact with the rotation of the rotating shaft (14), and the engaging portions (34a, 46) and the engaged portions (13a, 44b) a stopper member (36, 37) for releasing the engagement against the biasing force of the biasing member (35);
An object detection device comprising:
反射部材(13)は、前記反射面(13b)を有する反射体(43)と、反射体(43)を前記支軸(33)を介して揺動自在に支持するとともに、前記被係合部(44b)を有して偏心回転部材(34)に対して相対回転自在な反射体ホルダー(44)とを備えたことを特徴とする、請求項1に記載の物体検知装置。The reflection member (13) supports the reflector (43) having the reflection surface (13b) and the reflector (43) so as to be swingable via the support shaft (33), and also the engaged portion. The object detection device according to claim 1, further comprising a reflector holder (44) having a (44b) and rotatable relative to the eccentric rotation member (34). 反射体(43)に当接して反射体ホルダー(44)に対する反射体(43)の角度を保持する位置決め部材(45)を備えたことを特徴とする、請求項2に記載の物体検知装置。The object detection device according to claim 2, further comprising a positioning member (45) that contacts the reflector (43) and maintains an angle of the reflector (43) with respect to the reflector holder (44). 反射体ホルダー(44)は偏心回転部材(34)を囲繞する貫通孔(44a)の内周面に前記被係合部(44b)を有することを特徴とする、請求項2または請求項3に記載の物体検知装置。The reflector holder (44) has the engaged portion (44b) on an inner peripheral surface of a through hole (44a) surrounding the eccentric rotating member (34). The object detection apparatus described. 偏心回転部材(34)の係合部(46)は、径方向に設けられた孔(34b)と、この孔(34b)に収納された係止部材(41)と、この係止部材(41)を孔(34b)から突出する方向に付勢する弾発部材(42)とを備えたことを特徴とする、請求項4に記載の物体検知装置。The engaging portion (46) of the eccentric rotating member (34) includes a hole (34b) provided in the radial direction, a locking member (41) accommodated in the hole (34b), and the locking member (41). The object detection device according to claim 4, further comprising a resilient member (42) for urging the projection in a direction protruding from the hole (34b). ストッパー部材(36,37)は、回転軸(14)が一方向に回転したときに反射部材(13)に当接する第1ストッパー部材(36)と、回転軸(14)が他方向に回転したときに反射部材(13)に当接する第2ストッパー部材(37)とから構成されることを特徴とする、請求項1〜請求項5の何れか1項に記載の物体検知装置。The stopper member (36, 37) includes a first stopper member (36) that contacts the reflecting member (13) when the rotating shaft (14) rotates in one direction, and the rotating shaft (14) rotated in the other direction. The object detection device according to any one of claims 1 to 5, wherein the object detection device comprises a second stopper member (37) that sometimes contacts the reflecting member (13). 偏心回転部材(34)の一方向への回転および他方向への回転により、反射部材(13)の反射面(13b)の角度を回転軸(14)に平行な面を含んで変更可能であることを特徴とする、請求項1〜請求項6の何れか1項に記載の物体検知装置。By rotating the eccentric rotating member (34) in one direction and rotating in the other direction, the angle of the reflecting surface (13b) of the reflecting member (13) can be changed including the plane parallel to the rotation axis (14). The object detection device according to any one of claims 1 to 6, wherein the object detection device is characterized in that: 物体検知モードとエイミングモードとを切替え可能であり、物体検知モードにおいて、反射部材(13)がストッパー部材(36,37)に当接しない範囲で回転軸(14)が往復回動するようにモータ(15)を制御する制御手段(24)を備えたことを特徴とする、請求項1〜請求項7の何れか1項に記載の物体検知装置。It is possible to switch between the object detection mode and the aiming mode, and in the object detection mode, a motor is provided so that the rotating shaft (14) reciprocates in a range where the reflecting member (13) does not contact the stopper member (36, 37). 8. The object detection apparatus according to claim 1, further comprising a control unit (24) for controlling (15). 電磁波を送信する送信手段(1)と、
送信手段(1)の送信した電磁波が物体に反射された反射波を受信する受信手段(3)と、
往復回動する回転軸(14)を有するモータ(15)と、
回転軸(14)にその軸線と直交する支軸(33)を介して揺動可能に支持され、外周の少なくとも一部に係合部(51a)を有する角度保持部材(51)と、
送信手段(1)の送信した電磁波を反射する反射面(13b)を有するとともに、該反射面(13b)の反対側において角度保持部材(51)に固定された反射部材(13)と、
角度保持部(51)と回転軸(14)との間に設けられ、角度保持部材(51)の係合部(51a)に弾発的に係合する係止部材(52)と、
回転軸(14)の回転に伴って反射部材(13)が当接するとともに、回転軸(14)に更なる回転に伴って係合部(51a)および係止部材(52)の係合を解除して角度保持部材(51)を回転させるストッパー部材(36,37)と、
を備えたことを特徴とする物体検知装置。
A transmission means (1) for transmitting electromagnetic waves;
A receiving means (3) for receiving a reflected wave in which the electromagnetic wave transmitted by the transmitting means (1) is reflected by an object;
A motor (15) having a rotating shaft (14) reciprocally rotating;
An angle holding member (51) supported by the rotating shaft (14) through a support shaft (33) orthogonal to the axis thereof so as to be swingable, and having an engaging portion (51a) at least at a part of the outer periphery;
A reflection member (13) having a reflection surface (13b) for reflecting the electromagnetic wave transmitted by the transmission means (1) and fixed to the angle holding member (51) on the opposite side of the reflection surface (13b);
A locking member (52) provided between the angle holding portion (51) and the rotating shaft (14) and elastically engaging with the engaging portion (51a) of the angle holding member (51);
The reflecting member (13) comes into contact with the rotation of the rotating shaft (14), and the engaging portion (51a) and the engaging member (52) are disengaged with further rotation of the rotating shaft (14). A stopper member (36, 37) for rotating the angle holding member (51),
An object detection device comprising:
ストッパー部材(36,37)は、回転軸(14)が一方向に回転したときに反射部材(13)に当接する第1ストッパー部材(36)と、回転軸(14)が他方向に回転したときに反射部材(13)に当接する第2ストッパー部材(37)とから構成されることを特徴とする、請求項9に記載の物体検知装置。The stopper member (36, 37) includes a first stopper member (36) that contacts the reflecting member (13) when the rotating shaft (14) rotates in one direction, and the rotating shaft (14) rotated in the other direction. 10. The object detection device according to claim 9, wherein the object detection device comprises a second stopper member (37) that sometimes contacts the reflecting member (13). 物体検知モードとエイミングモードとを切替え可能であり、物体検知モードにおいて、反射部材(13)がストッパー部材(36,37)に当接しない範囲で回転軸(14)が往復回動するようにモータ(15)を制御する制御手段(24)を備えたことを特徴とする、請求項9または請求項10に記載の物体検知装置。It is possible to switch between the object detection mode and the aiming mode, and in the object detection mode, a motor is provided so that the rotating shaft (14) reciprocates in a range where the reflecting member (13) does not contact the stopper member (36, 37). The object detection device according to claim 9 or 10, further comprising a control means (24) for controlling (15). 角度保持部材(51)は反射部材(13)の裏面の略中央部に固定され、第1ストッパー部材(36)は回転軸(14)の一方向への回転により角度保持部材(51)の支軸(33)よりも高い位置において反射部材(13)に当接し、第2のストッパー部材(37)は回転軸(14)の他方向への回転により角度保持部材(51)の支軸(33)よりも低い位置において反射部材(13)に当接することを特徴とする、請求項10または請求項11に記載の物体検知装置。The angle holding member (51) is fixed to a substantially central portion of the back surface of the reflecting member (13), and the first stopper member (36) is supported by the angle holding member (51) by rotating in one direction of the rotating shaft (14). The second stopper member (37) comes into contact with the reflecting member (13) at a position higher than the shaft (33), and the second stopper member (37) rotates in the other direction of the rotating shaft (14) to support the shaft (33) of the angle holding member (51). The object detection device according to claim 10 or 11, wherein the object detection device is in contact with the reflecting member (13) at a position lower than (). 請求項1〜請求項12の何れか1項に記載の物体検知装置(St)の軸調整方法であって、
物体検知装置(St)の検知範囲内の所定位置に設置される基準反射体と、物体検知モードとエイミングモードとを切替え可能であり、電磁波の送受信およびモータ(15)の回転を制御する制御手段(24)とを設け、
制御手段(24)は、物体検知モードにおいて、基準反射体からの反射波の受信結果に基づいて物体検知装置(St)の軸ずれを判定し、軸ずれが判定されたときに前記軸ずれを修正する方向にモータ(15)を駆動して反射部材(13)がストッパー部材(36,37)に当接したことを判定し、反射部材(13)がストッパー部材(36,37)に当接したことが判定されたときにモータ(15)を更に駆動して反射部材(13)を揺動させることにより前記軸ずれを修正することを特徴とする物体検知装置の軸調整方法。
A method for adjusting an axis of an object detection device (St) according to any one of claims 1 to 12,
A reference reflector installed at a predetermined position within the detection range of the object detection device (St), and a control means capable of switching between the object detection mode and the aiming mode, and for controlling transmission / reception of electromagnetic waves and rotation of the motor (15). (24)
In the object detection mode, the control means (24) determines the axis deviation of the object detection device (St) based on the reception result of the reflected wave from the reference reflector, and determines the axis deviation when the axis deviation is determined. The motor (15) is driven in the correction direction to determine that the reflecting member (13) has come into contact with the stopper member (36, 37), and the reflecting member (13) comes into contact with the stopper member (36, 37). A method of adjusting an axis of an object detection device, wherein when the determination is made, the motor (15) is further driven to swing the reflecting member (13) to correct the axis deviation.
JP2000323644A 2000-10-24 2000-10-24 Object detection apparatus and axis adjustment method thereof Expired - Fee Related JP4187919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000323644A JP4187919B2 (en) 2000-10-24 2000-10-24 Object detection apparatus and axis adjustment method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000323644A JP4187919B2 (en) 2000-10-24 2000-10-24 Object detection apparatus and axis adjustment method thereof

Publications (3)

Publication Number Publication Date
JP2002131431A JP2002131431A (en) 2002-05-09
JP2002131431A5 JP2002131431A5 (en) 2006-08-17
JP4187919B2 true JP4187919B2 (en) 2008-11-26

Family

ID=18801287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000323644A Expired - Fee Related JP4187919B2 (en) 2000-10-24 2000-10-24 Object detection apparatus and axis adjustment method thereof

Country Status (1)

Country Link
JP (1) JP4187919B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7826117B2 (en) 2006-02-20 2010-11-02 Sanyo Electric Co., Ltd. Beam irradiation apparatus
KR101306391B1 (en) 2009-12-29 2013-09-09 주식회사 만도 Apparatus for Radar Alignment
JP5402772B2 (en) * 2010-03-25 2014-01-29 株式会社日本自動車部品総合研究所 Optical radar device
KR101293198B1 (en) 2011-05-20 2013-08-16 주성도 a 3D range finder
JP5729358B2 (en) 2011-09-22 2015-06-03 株式会社リコー Optical beam scanner and laser radar unit
JP2013238440A (en) * 2012-05-14 2013-11-28 Mitsubishi Electric Corp Beam scan type object detector
JP2014059222A (en) * 2012-09-18 2014-04-03 Denso Corp Optical radar device

Also Published As

Publication number Publication date
JP2002131431A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
US7650239B2 (en) Object recognition apparatus for motor vehicle
US7853374B2 (en) Apparatus for alignment adjusting of radar equipped in a vehicle
JP3730956B2 (en) Axis adjusting device for transmitter / receiver for moving body
US6119067A (en) Object detecting system for conveyance, etc.
US20110050525A1 (en) Radar device and antenna angle adjusting method
JP4187919B2 (en) Object detection apparatus and axis adjustment method thereof
CN113093149B (en) Rotary mirror device and laser radar
JP2019106942A (en) Mower automatic travel system
JP4421760B2 (en) Axis adjustment method for object detection device
CN103858020B (en) The optical measuring device of vehicle, passenger's auxiliary device of measurement apparatus and the vehicle of measurement apparatus
JP5142434B2 (en) Axis deviation adjusting device in vehicle object detection device
JP4200649B2 (en) Automatic guided vehicle position detection device
EP3579014A1 (en) Measurement device
JPH11337633A (en) Device for measuring distance between vehicles
JP3057157B2 (en) Object detection device for moving objects
JP3681485B2 (en) Inter-vehicle distance detection device
WO2020194648A1 (en) Distance measuring device
JP2008268088A (en) Support device for adjusting mounting angle of on-vehicle radar
JP3569684B2 (en) Travel control device for vehicles
JPH10147197A (en) Obstruction detecting device
JP3689399B2 (en) Object detection device for moving objects
JP2002162470A (en) Object detection device and method for setting reference axis thereof
EP0943892B1 (en) Laser beam emitting apparatus
WO2019181692A1 (en) Distance measurement device and moving body
JPH11326517A (en) Obstacle detecting apparatus

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060704

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080827

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080910

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees