JP3689399B2 - Object detection device for moving objects - Google Patents

Object detection device for moving objects Download PDF

Info

Publication number
JP3689399B2
JP3689399B2 JP2002321085A JP2002321085A JP3689399B2 JP 3689399 B2 JP3689399 B2 JP 3689399B2 JP 2002321085 A JP2002321085 A JP 2002321085A JP 2002321085 A JP2002321085 A JP 2002321085A JP 3689399 B2 JP3689399 B2 JP 3689399B2
Authority
JP
Japan
Prior art keywords
housing
receiving
moving body
object detection
transmitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002321085A
Other languages
Japanese (ja)
Other versions
JP2004156948A (en
Inventor
隼人 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2002321085A priority Critical patent/JP3689399B2/en
Publication of JP2004156948A publication Critical patent/JP2004156948A/en
Application granted granted Critical
Publication of JP3689399B2 publication Critical patent/JP3689399B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、移動体に取り付けられて該移動体の進行方向に送信用および受信用の窓部を有するハウジングと、ハウジング内に配置されて前記進行方向の所定領域に向けて電磁波を送信する送信手段と、ハウジング内に配置されて前記所定領域に存在する物体により反射された反射波を受信する受信手段とを備えた移動体用物体検知装置に関する。
【0002】
【従来の技術】
ACCシステム(アダプティブ・クルーズ・コントロール・システム)、Stop&Goシステム(渋滞追従システム)、車間警報システム等に使用されるレーダー装置を車体に取り付ける場合、そのレーダー装置の軸線が予め設定した方向を正しく指向していないと、隣車線の対向車を誤検知してシステムが誤作動したり、路面、陸橋、看板だけを検知して先行車を検知しないためにシステムが作動しないという問題が発生する。
【0003】
そこで、レーダー装置を車体に対して角度調整自在に取り付け、軸調整テスタやデジタル水準器でレーダー装置の軸線のずれを検出して、そのずれを修正するようにレーダー装置の車体に対する取付角度を調整するものが、下記特許文献1により公知である。
【0004】
また車体に対して固定したレーダー装置の走査範囲の一部を、目標とする軸線を正しく指向する検知範囲として電気的に設定することにより、レーダー装置の車体に対する取付角度を調整することなく軸調整を行えるようにしたものが、下記特許文献2により公知である。
【0005】
【特許文献1】
特開平11−326495号公報
【特許文献2】
特開平9−178856号公報
【0006】
【発明が解決しようとする課題】
ところで、上記特許文献1に記載されたものは、レーダー装置を車体に対して角度調整自在に取り付けるためのブラケットの構造が複雑であるばかりか、調整ボルトを回転させて角度調整を行う作業が面倒であった。
【0007】
また上記特許文献2に記載されたものは、レーダー装置の走査範囲の一部を検知範囲として設定するので、走査範囲の残りの一部が物体の検知に利用できなくなり、しかもレーダー制御ユニットが検知範囲を設定するためのソフト処理が複雑になるという問題があった。
【0008】
本発明は前述の事情に鑑みてなされたもので、物体検知装置の上下方向の軸調整を簡単な構造で、かつ短時間で行えるようにすることを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するために、請求項1に記載された発明によれば、移動体に取り付けられて該移動体の進行方向に送信用および受信用の窓部を有するハウジングと、ハウジング内に配置されて前記進行方向の所定領域に向けて電磁波を送信する送信手段と、ハウジング内に配置されて前記所定領域に存在する物体により反射された反射波を受信する受信手段とを備えた移動体用物体検知装置において、前記受信手段が、ハウジング内に固定されて反射波を受信する受信部と、受信部に反射波を指向させるとともに、ハウジングに軸部材を介して上下揺動可能に軸支されて、自由状態で反射波の受信軸が重力の方向に対して所定角度を成すレンズと、レンズを揺動不能な固定状態と揺動可能な自由状態とに切り換え可能であり、物体検知時には固定状態に、軸調整時には所定時間自由状態に切り換える固定手段とを備えたことを特徴とする移動体用物体検知装置が提案される。
【0010】
上記構成によれば、物体検知装置のハウジング内に設けた受信手段の受信部に反射波を指向させるレンズを、軸部材を介してハウジングに上下揺動可能に軸支して、固定手段で揺動不能な固定状態と揺動可能な自由状態とに切り換えるので、レンズを所定時間自由状態にして受信軸の方向を重力の方向に対して所定角度に調整した後、レンズを固定状態にして上下方向の軸調整を完了させることができる。これにより物体検知装置のハウジングの車体への取付角度を調整することなく、物体検知装置の軸調整を簡単な構造で、かつ短時間で行うことができる。
【0011】
また請求項2に記載された発明によれば、移動体に取り付けられて該移動体の進行方向に送信用および受信用の窓部を有するハウジングと、ハウジング内に配置されて前記進行方向の所定領域に向けて電磁波を送信する送信手段と、ハウジング内に配置されて前記所定領域に存在する物体により反射された反射波を受信する受信手段とを備えた移動体用物体検知装置において、前記受信手段が、反射波を受信する受信部と、受信部に反射波を指向させるレンズと、受信部およびレンズを保持するとともに、ハウジングに軸部材を介して上下揺動可能に軸支されて、自由状態で反射波の受信軸が重力の方向に対して所定角度を成す保持手段と、保持手段を揺動不能な固定状態と揺動可能な自由状態とに切り換え可能であり、物体検知時には固定状態に、軸調整時には所定時間自由状態に切り換える固定手段とを備えたことを特徴とする移動体用物体検知装置が提案される。
【0012】
上記構成によれば、物体検知装置のハウジング内に設けた受信手段の受信部およびレンズを保持する保持手段を、軸部材を介してハウジングに上下揺動可能に軸支して、固定手段で揺動不能な固定状態と揺動可能な自由状態とに切り換えるので、受信部およびレンズを所定時間自由状態にして受信軸の方向を重力の方向に対して所定角度に調整した後、受信部およびレンズを固定状態にして上下方向の軸調整を完了させることができる。これにより物体検知装置のハウジングの車体への取付角度を調整することなく、物体検知装置の軸調整を簡単な構造で、かつ短時間で行うことができ、しかも軸調整によって受信部およびレンズの位置関係が変化しないので、レンズを通過した反射波を確実に受信部に指向させることができる。
【0013】
また請求項3に記載された発明によれば、移動体に取り付けられて該移動体の進行方向に送信用および受信用の窓部を有するハウジングと、ハウジング内に配置されて前記進行方向の所定領域に向けて電磁波を送信する送信手段と、ハウジング内に配置されて前記所定領域に存在する物体により反射された反射波を受信する受信手段とを備えた移動体用物体検知装置において、前記送信手段が、ハウジング内に固定されて電磁波を送信する送信部と、送信部から送信された電磁波を前記所定領域に向けて変向させるとともに、ハウジングに軸部材を介して上下揺動可能に軸支されて、自由状態で電磁波の送信軸が重力の方向に対して所定角度を成す変向手段と、変向手段を揺動不能な固定状態と揺動可能な自由状態とに切り換え可能であり、物体検知時には固定状態に、軸調整時には所定時間自由状態に切り換える固定手段とを備えたことを特徴とする移動体用物体検知装置が提案される。
【0014】
上記構成によれば、物体検知装置のハウジング内に設けた送信手段から送信された電磁波を所定領域に向けて変向させる変向手段を、軸部材を介してハウジングに上下揺動可能に軸支して、固定手段で揺動不能な固定状態と揺動可能な自由状態とに切り換えるので、変向手段を所定時間自由状態にして送信軸の方向を重力の方向に対して所定角度に調整した後、変向手段を固定状態にして上下方向の軸調整を完了させることができる。これにより物体検知装置のハウジングの車体への取付角度を調整することなく、物体検知装置の軸調整を簡単な構造で、かつ短時間で行うことができる。
【0015】
また請求項4に記載された発明によれば、移動体に取り付けられて該移動体の進行方向に送信用および受信用の窓部を有するハウジングと、ハウジング内に配置されて前記進行方向の所定領域に向けて電磁波を送信する送信手段と、ハウジング内に配置されて前記所定領域に存在する物体により反射された反射波を受信する受信手段とを備えた移動体用物体検知装置において、前記送信手段が、電磁波を送信する送信部と、送信部から送信された電磁波を前記所定領域に向けて変向させる変向手段と、送信部および変向手段を保持するとともに、ハウジングに軸部材を介して上下揺動可能に軸支されて、自由状態で電磁波の送信軸が重力の方向に対して所定角度を成す保持手段と、保持手段を揺動不能な固定状態と揺動可能な自由状態とに切り換え可能であり、物体検知時には固定状態に、軸調整時には所定時間自由状態に切り換える固定手段とを備えたことを特徴とする移動体用物体検知装置が提案される。
【0016】
上記構成によれば、物体検知装置のハウジング内に設けた送信手段の送信部および変向手段を保持する保持手段を、軸部材を介してハウジングに上下揺動可能に軸支して、固定手段で揺動不能な固定状態と揺動可能な自由状態とに切り換えるので、送信部および変向手段を所定時間自由状態にして送信軸の方向を重力の方向に対して所定角度に調整した後、送信部および変向手段を固定状態にして上下方向の軸調整を完了させることができる。これにより物体検知装置のハウジングの車体への取付角度を調整することなく、物体検知装置の軸調整を簡単な構造で、かつ短時間で行うことができ、しかも軸調整によって送信部および変向手段の位置関係が変化しないので、送信部から出た電磁波を変向手段で変向させて確実に所定領域に指向させることができる。
【0017】
また請求項5に記載された発明によれば、移動体に取り付けられて該移動体の進行方向に送信用および受信用の窓部を有するハウジングと、ハウジング内に配置されて前記進行方向の所定領域に向けて電磁波を送信する送信手段と、ハウジング内に配置されて前記所定領域に存在する物体により反射された反射波を受信する受信手段とを備えた移動体用物体検知装置において、前記受信手段が、電磁波を受信するとともに、ハウジングに軸部材を介して上下揺動可能に軸支されて、自由状態で反射波の受信軸が重力の方向に対して所定角度を成す受信部と、受信部を揺動不能な固定状態と揺動可能な自由状態とに切り換え可能であり、物体検知時には固定状態に、軸調整時には所定時間自由状態に切り換える固定手段とを備えたことを特徴とする移動体用物体検知装置が提案される。
【0018】
上記構成によれば、物体検知装置のハウジング内に設けた受信手段の受信部を、軸部材を介してハウジングに上下揺動可能に軸支して、固定手段で揺動不能な固定状態と揺動可能な自由状態とに切り換えるので、受信部を所定時間自由状態にして受信軸の方向を重力の方向に対して所定角度に調整した後、受信部を固定状態にして上下方向の軸調整を完了させることができる。これにより物体検知装置のハウジングの車体への取付角度を調整することなく、物体検知装置の軸調整を簡単な構造で、かつ短時間で行うことができる。
【0019】
また請求項6に記載された発明によれば、移動体に取り付けられて該移動体の進行方向に送信用および受信用の窓部を有するハウジングと、ハウジング内に配置されて前記進行方向の所定領域に向けて電磁波を送信する送信手段と、ハウジング内に配置されて前記所定領域に存在する物体により反射された反射波を受信する受信手段とを備えた移動体用物体検知装置において、前記送信手段が、電磁波を送信するとともに、ハウジングに軸部材を介して上下揺動可能に軸支されて、自由状態で電磁波の送信軸が重力の方向に対して所定角度を成す送信部と、送信部を揺動不能な固定状態と揺動可能な自由状態とに切り換え可能であり、物体検知時には固定状態に、軸調整時には所定時間自由状態に切り換える固定手段とを備えたことを特徴とする移動体用物体検知装置が提案される。
【0020】
上記構成によれば、物体検知装置のハウジング内に設けた送信手段の送信部を、軸部材を介してハウジングに上下揺動可能に軸支して固定手段で揺動不能な固定状態と揺動可能な自由状態とに切り換えるので、送信部を所定時間自由状態にして送信軸の方向を重力の方向に対して所定角度に調整した後、送信部を固定状態にして上下方向の軸調整を完了させることができる。これにより物体検知装置のハウジングの車体への取付角度を調整することなく、物体検知装置の軸調整を簡単な構造で、かつ短時間で行うことができる。
【0021】
また請求項7に記載された発明によれば、請求項1〜請求項6の何れか1項の構成に加えて、前記重力の方向に対して成す所定角度は90°であることを特徴とする移動体用物体検知装置が提案される。
【0022】
上記構成によれば、送信軸あるいは受信軸が重力の方向に対して成す角度を90°とすることで、送信軸あるいは受信軸を水平方向に調整することができる。
【0023】
また請求項8に記載された発明によれば、請求項1〜請求項7の何れか1項の構成に加えて、前記所定時間は、固定手段が固定状態から自由状態になったときに揺動が収まるまでに要する時間であることを特徴とする移動体用物体検知装置が提案される。
【0024】
上記構成によれば、固定手段が固定状態から自由状態になってから所定時間が経過して揺動が収まるのを待つので、送信軸あるいは受信軸が重力の方向に対して正確に所定角度を成すように調整することができる。
【0025】
また請求項9に記載された発明によれば、請求項1〜請求項8の何れか1項の構成に加えて、前記固定手段は、固定対象物を押圧して固定するものであることを特徴とする移動体用物体検知装置が提案される。
【0026】
上記構成によれば、固定手段で固定対象物を押圧して固定することにより、固定対象物を確実に固定することができる。
【0027】
また請求項10に記載された発明によれば、請求項1〜請求項9の何れか1項の構成に加えて、前記固定手段は、軸部材の回転を拘束するものであることを特徴とする移動体用物体検知装置が提案される。
【0028】
上記構成によれば、固定手段で軸部材の回転を拘束することにより、軸部材を確実に拘束することができる。
【0029】
尚、実施例の送光部1は本発明の送信部に対応し、実施例の受光部4は本発明の受信部に対応し、実施例の送光ミラー13は本発明の変向手段に対応し、実施例の受光レンズ17は本発明のレンズに対応し、実施例のレンズホルダ31は本発明の保持手段に対応し、実施例のモータホルダ54は本発明の保持手段に対応し、実施例のソレノイド38、モータ45、操作ロッド47、ソレノイド53およびソレノイド70は本発明の固定手段に対応し、実施例の平面送信アンテナ61は本発明の送信部に対応し、実施例の平面受信アンテナ62は本発明の受信部に対応する。
【0030】
【発明の実施の形態】
以下、本発明の実施の形態を、添付図面に示した本発明の実施例に基づいて説明する。
【0031】
図1〜図7は本発明の第1実施例を示すもので、図1はレーダー装置のブロック図、図2はレーダー装置の斜視図、図3は受信手段の三面図、図4はレーダー装置の車体への取付状態を示す図、図5は軸調整の手順を説明するフローチャート、図6は軸調整時の作用説明図、図7はハウジングと受光レンズの受信軸との関係を説明する図である。
【0032】
第1実施例は請求項1に記載された発明に対応するもので、図1および図2に示すように、自車前方の物体の距離および方向を検知するためのレーダー装置Srは、送光部1と、送光走査部2と、受光レンズ部3と、受光部4と、距離計測処理部5とから構成される。送光部1および送光走査部2は送信手段Tを構成し、受光レンズ部3および受光部4は受信手段Rを構成する。
【0033】
送光部1は、送光レンズを一体に備えたレーザーダイオード11と、レーザーダイオード11を駆動するレーザーダイオード駆動回路12とを備える。送光走査部2は、レーザーダイオード11が出力したレーザービームを反射させる送光ミラー13と、送光ミラー13を回動軸14回りに往復回動させるモータ15と、モータ15の駆動を制御するモータ駆動回路16とを備える。上記送信手段Tの送光ミラー13から出る送光ビームは左右幅が制限されて上下方向に細長いパターンを持ち、それが所定周期で左右方向に往復移動して物体を走査する。
【0034】
受光部4は、受光レンズ部3に設けられた受光レンズ17で収束させた反射波を受けて電気信号に変換するフォトダイオード18と、フォトダイオード18の出力信号を増幅する受光アンプ回路19とを備える。上記受信手段Rは、上下方向および左右方向に所定の角度で広がる受光エリアを備える。
【0035】
距離計測処理部5は、前記レーザーダイオード駆動回路12やモータ駆動回路16を制御する制御回路24と、ACCシステムやStop&Goシステムの電子制御ユニット25との間で通信を行う通信回路26と、レーザービームの送光から受光までの時間をカウントするカウンタ回路27と、物体までの距離および物体の方向を算出する中央演算処理装置28とを備える。
【0036】
しかして、送光ビームが送光されてから、該送光ビームが物体に反射された反射波が受光されるまでの時間に基づいて物体までの距離が検知され、そのときの送光ビームが送光方向に基づいて物体の方向が検知される。
【0037】
図3から明らかなように、受信手段Rは合成樹脂製の受光レンズ17を備えており、その中央に同心円状のフレネルレンズ17aが一体に形成される。受光レンズ17の下側の周縁部はウエイトを兼ねるコ字状のレンズホルダ31に支持されており、レンズホルダ31の上部にはフレネルレンズ17aの中心を通って左右方向に延びる一対の軸部材32,32が設けられる。レーダー装置Srのハウジング33(図2参照)は、その前面に物体からの反射波を通過させる窓部33aが設けられており、受光レンズ17およびレンズホルダ31の組立体は軸部材32,32によってハウジング33に回転自在に支持される。受光レンズ17およびレンズホルダ31の組立体の重心Gは軸部材32,32の下方であって受光レンズ17の厚さ方向中心に位置している。従って、受光レンズ17およびレンズホルダ31の組立体が軸部材32,32まわりに自由に揺動可能なとき、その重心Gは軸部材32,32の鉛直方向下方に在り、このとき受光レンズ17の受信軸Lrは水平になる。
【0038】
レンズホルダ31の下方に配置されたレバー状のストッパ34は、その一端に前後方向に設けたピン35によってハウジング33に上下揺動自在に支持されており、ハウジング33との間に設けたコイルスプリング36で上向きに付勢される。ストッパ34の上面にはレンズホルダ31の下面に当接可能な円弧状の摩擦面34aが形成されるとともに、ストッパ34の前後面にはレンズホルダ31の揺動範囲を規制する一対の規制板34b,34bが形成される。レンズホルダ31の他端側の下面に鉄片37が固定されており、ハウジング33に設けられたソレノイド38が前記鉄片37の下方に対向している。
【0039】
受信手段Rはハウジング33に固定された基板39を備えており、基板39に固定されたフォトダイオード18が受光レンズ17の後方に位置し、更にその後方に距離計測処理部5の基板40(図2参照)が位置している。
【0040】
図4から明らかなように、レーダー装置Srを支持するためのブラケット41は、その四隅が支持板42に4本のボルト43…で固定される。レーダー装置Srの直方体状のハウジング33の外周を囲むフランジ33bから4個のステー33c…が左右方向に突出しており、ハウジング33の後半部がブラケット41に形成した開口41aに嵌合した状態で、前記4個のステー33c…がボルト44…でブラケット41に固定される。このように、レーダー装置Srのハウジング33は車体、つまり支持板42に対して角度調整不能に取り付けられている。
【0041】
次に、レーダー装置Srの軸調整時の作用を図5のフローチャートに基づいて説明する。
【0042】
先ずステップS1で車両を水平な場所に設置した後、ステップS2でレーダー装置Srに通電し、ステップS3でレーダー装置Srに上下軸調整コマンドを送信する。すると、ステップS4でレーダー装置Srの受信手段Rのソレノイド38に通電され、図6に示すように、鉄片37をソレノイド38に吸着されたストッパ34がピン35を支点として下方に揺動し、ストッパ34の摩擦面34aがレンズホルダ31の下面から離反する。その結果、ステップS5で受光レンズ17およびレンズホルダ31が拘束を解かれて自由状態となり、受光レンズ17およびレンズホルダ31は軸部材32,32を支点にして自由に揺動できる状態になる。このとき、前述したように受光レンズ17およびレンズホルダ31はその重心Gが軸部材32,32の鉛直方向下方に位置するように重力で上下方向に揺動するため、受光レンズ17のレンズ面が鉛直になり、受光レンズ17の受信軸Lrが水平になる。
【0043】
ステップS6で所定時間が経過して受光レンズ17およびレンズホルダ31の揺動が収まるのを待った後、ステップS7でソレノイド38を消磁すると、ステップS8でストッパ34がコイルスプリング36の弾発力でピン35を支点として上向きに揺動し、その摩擦面34aがレンズホルダ31の下面に当接することで、受光レンズ17およびレンズホルダ31がハウジング33に対して固定される。このようにしてレーダー装置Srの軸調整が完了すると、ステップS9で上下軸調整コマンドを自動解除する。
【0044】
図7(A)に示すように、車体に対するレーダー装置Srの上下方向の取付角度がずれているために、ハウジング33が水平面Hに対して角度αだけ前下がりになっていても、前述した軸調整によって受光レンズ17の受信軸Lrは前記角度αの大小に関わらずに水平に調整される。同様に、図7(B)に示すように、ハウジング33が水平面Hに対して角度αだけ前上がりになっていても、前述した軸調整によって受光レンズ17の受信軸Lrは前記角度αの大小に関わらずに水平に調整される。
【0045】
以上のように、レーダー装置Srのハウジング33の車体に対する取付角度を調整することなく受光レンズ17の受信軸Lrを水平に調整することができるので、レーダー装置Srの構造を簡素化できるだけでなく、軸調整に要する時間を大幅に短縮することができる。
【0046】
次に、請求項1に記載された発明に対応する本発明の第2実施例を図8および図9に基づいて説明する。
【0047】
前述した第1実施例ではコイルスプリング36、鉄片37およびソレノイド38を用いてストッパ34を揺動させているが、第2実施例ではハウジング33に設けたモータ45と、その出力軸に設けた偏心カム46とによってストッパ34を揺動させている。図8に示す固定状態では、偏心カム46でストッパ34を押し上げることで、その摩擦面34aをレンズホルダ31の下面に当接させて受光レンズ17を揺動不能に固定しており、図9に示す自由状態では、偏心カム46をモータ45で回転させてストッパ34の押し上げを解除し、重力でストッパ34を下降させて摩擦面34aとレンズホルダ31の下面との当接を解除することで、受光レンズ17の揺動を許容することができる。
【0048】
この第2実施例によっても、前述した第1実施例と同様の作用効果を達成することができる。
【0049】
次に、請求項1に記載された発明に対応する本発明の第3実施例を図10および図11に基づいて説明する。
【0050】
前述した第1、第2実施例ではストッパ34を電気的に揺動させているが、第3実施例ではストッパ34を手動で揺動させている。ハウジング33の上壁を貫通する操作ロッド47は、その上端に押しボタン48が設けられ、その下端がストッパ34の他端に当接し、その中間部に形成した長孔47aが軸部材32,32の外周に摺動自在に嵌合する。押しボタン48はハウジング33の上壁に固定したゴム製のカバー49で覆われており、操作ロッド47の周囲の隙間を通してハウジング33の内部への塵の侵入が防止される。
【0051】
しかして、図10に示すように、操作ロッド47を操作しない状態では、コイルスプリング36の弾発力でストッパ34を押し上げることで、その摩擦面34aをレンズホルダ31の下面に当接させて受光レンズ17を揺動不能に固定することができる。また図11に示す自由状態では、カバー49の上から押しボタン48を押して操作ロッド47を下降させ、その下端でコイルスプリング36に抗してストッパ34を下降させて摩擦面34aとレンズホルダ31の下面との当接を解除することで、受光レンズ17の揺動を許容することができる。また操作ロッド47の中間部に形成した長孔47aに軸部材32,32を嵌合させたことで、操作ロッド47の傾きを防止することができる。
【0052】
この第3実施例によっても、前述した第1実施例と同様の作用効果を達成することができ、しかもソレノイド38やモータ45が不要になって構造が更に簡素化される。
【0053】
次に、請求項1に記載された発明に対応する本発明の第4実施例を図12に基づいて説明する。
【0054】
前述した第1〜第3実施例では受光レンズ17と一体のレンズホルダ31を固定状態および自由状態に切り換えているが、この第4実施例ではレンズホルダ31に設けた軸部材32,32を固定状態および自由状態に切り換えている。即ち、ハウジング33に固定したU字状のキャリパ部材50が、軸部材32,32に固定したブレーキディスク51を挟むように配置されており、キャリパ部材50に摺動自在に支持した鉄製のブレーキシュー52が図示せぬスプリングの弾発力でブレーキディスク51に当接し、軸部材32,32の回転(つまり受光レンズ17の揺動)を拘束している。キャリパ部材50の外側に設けたソレノイド53を励磁してブレーキシュー52を吸引し、ブレーキシュー52とブレーキディスク51との係合を解除することで、受光レンズ17を揺動可能な自由状態にすることができる。
【0055】
この第4実施例によっても、前述した第1実施例と同様の作用効果を達成することができる。
【0056】
次に、請求項2に記載された発明に対応する本発明の第5実施例を図13に基づいて説明する。
【0057】
第5実施例は前述した第4実施例の変形であって、第4実施例では基板39およびフォトダイオード18がハウジング33に支持されているのに対し、第5実施例では基板39およびフォトダイオード18がレンズホルダ31に支持されている。レンズホルダ31およびそれに支持された各部材よりなる組立体全体の重心Gと軸部材32,32とを結ぶ直線は、受光レンズ17のレンズ面と平行になっている。従って、ソレノイド53を消磁して受光レンズ17を自由状態としたとき、受光レンズ17の受信軸Lrは水平になる。
【0058】
この第5実施例によっても、前述した第4実施例と同様の作用効果を達成することができ、しかも受光レンズ17が揺動しても、受光レンズ17とフォトダイオード18との位置関係を一定に保って物体からの反射波を確実に受信することができる。
【0059】
次に、請求項3に記載された発明に対応する本発明の第6実施例を図14に基づいて説明する。
【0060】
前述した第1実施例〜第5実施例では受光レンズ17の受信軸Lrの上下角度を調整しているが、第6実施例は送光ミラー13の送信軸Ltの上下角度を調整するようになっている。送光ミラー13を一体に備えたモータ15を支持するモータホルダ54が、軸部材55,55を介してハウジング33に上下揺動自在に支持される。送光ミラー13、モータ15およびモータホルダ54の組立体の重心Gと軸部材55,55とを結ぶ直線は送光ミラー13の反射面と平行であり、前記組立体の重心Gが軸部材55,55の鉛直方向下方にあるとき、送光ミラー13の反射面の方向、つまり送信軸Ltの方向は水平になる。
【0061】
軸部材55,55を固定状態および自由状態に切り換える機構は、前述した第4実施例のものと同じであり、キャリパ部材50、ブレーキディスク51、ブレーキシュー52およびソレノイド53により構成される。
【0062】
従って、ハウジング33に固定した基板56に設けた送光部1から出て送光ミラー13に反射された送光ビームは、水平面内で左右方向に振れて物体を走査する。この第6実施例では送光部1をハウジング33に固定し、送光ミラー13の送信軸Ltの上下角度を調整するので、軸調整によって送光部1および送光ミラー13の位置関係が僅かに変化する。その結果、厳密にいうと送光ビームの走査方向は水平面からずれることになるが、送信軸Ltの角度の調整量が2°〜3°程度であれば前記ずれは小さいため、実用上問題はない。
【0063】
この第6実施例によっても、レーダー装置Srのハウジング33の車体に対する取付角度を調整することなく送光ミラー13の送信軸Ltを水平に調整することができるので、レーダー装置Srの構造を簡素化できるだけでなく、軸調整に要する時間を大幅に短縮することができる。
【0064】
次に、請求項4に記載された発明に対応する本発明の第7実施例を図15に基づいて説明する。
【0065】
前述した第6実施例では送光部1をハウジング33に支持しているが、この第7実施例は送光部1をモータホルダ54に一体に支持することで、送光ミラー13と共に送光部1を上下に揺動させて軸調整を行う。
【0066】
この第7実施例によっても、前述した第6実施例と同様の作用効果を達成することができ、しかも軸調整によって送光部1および送光ミラー13の位置関係が変化しないため、送光ビームを厳密に水平面内で振ることができる。
【0067】
次に、請求項5および請求項6に記載された発明に対応する本発明の第8実施例を図16および図17に基づいて説明する。
【0068】
前述した第1〜第7実施例のレーダー装置Srはレーダーレーダー装置であるるが、第8実施例のレーダー装置Srはミリ波レーダー装置であり、その送信手段Tはミリ波を送信する平面送信アンテナ61を備えるとともに、その受信手段Rは物体からの反射波を受信する平面受信アンテナ62を備える。
【0069】
平面送信アンテナ61はモータ63に回動軸64を介して接続されており、左右に往復揺動する平面送信アンテナ61から送信されるミリ波は左右に振れて物体を走査する。平面送光アンテナ61を一体に備えたモータ63を支持するモータホルダ65が、軸部材66,66を介してハウジング33に上下揺動自在に支持されており、その組立体の重心Gと軸部材66,66とを結ぶ直線は平面送信アンテナ61の反射面と平行であり、前記組立体の重心Gが軸部材66,66の鉛直方向下方にあるとき、平面送信アンテナ61の送信面の方向、つまり送信軸Ltの方向は水平になる。
【0070】
軸部材66,66を固定状態および自由状態に切り換える機構は、前述した第4実施例のものと同じであり、キャリパ部材67、ブレーキディスク68、ブレーキシュー69およびソレノイド70により構成される。従って、ソレノイド70を励磁してブレーキシュー69をブレーキディスク68から離反させると、拘束を解かれた軸部材66,66回りに平面送光アンテナ61、モータ63およびモータホルダ65の組立体が重力で揺動し、その重心Gが軸部材66,66の鉛直方向下方に位置するように停止する。続いてソレノイド70を消磁すると、図示せぬスプリングでブレーキシュー69がブレーキディスク68に押し付けられて軸部材66,66の回転が拘束され、この状態で平面送光アンテナ61の送信軸Ltは水平になる。
【0071】
平面受信アンテナ62を保持するアンテナホルダ71は軸部材72,72を介してハウジング33に上下揺動自在に支持されており、その平面受信アンテナ62およびそれを支持するアンテナホルダ71の重心Gと軸部材72,72とを結ぶ直線は平面受信アンテナ62の反射面と平行であり、平面受信アンテナ62およびそれを支持するアンテナホルダ71の重心Gが軸部材72,72の鉛直方向下方にあるとき、平面受信アンテナ62の受信面の方向、つまり受信軸Lrの方向は水平になる。
【0072】
軸部材72,72を固定状態および自由状態に切り換える機構は、前述した送信手段Tのものと同じであり、キャリパ部材67、ブレーキディスク68、ブレーキシュー69およびソレノイド70により構成される。従って、ソレノイド70を励磁して所定時間後に消磁することで、重力の作用で平面受信アンテナ62の受信軸Lrの方向を水平に調整することができる。
【0073】
以上のように、レーダー装置Srのハウジング33の車体に対する取付角度を調整することなく平面送信アンテナ61の送信軸Ltおよび平面受信アンテナ62の受信軸Lrを水平に調整することができるので、レーダー装置Srの構造を簡素化でき、しかも軸調整に要する時間を大幅に短縮することができる。
【0074】
また第8実施例では、送信軸Ltおよび受信軸Lrの両方を調整するようになっているため、送信手段Tから送信される電磁波の上下角度範囲と受信手段Rの検知領域の上下角度範囲とを一致させることができる。つまり受信手段Rの検知領域の上下角度範囲に、上下方向の調整量に相当する余裕分を持たせる必要がなくなり、その結果として前記検知領域の上下角度範囲を最小限に抑えて太陽光や路面反射等の外乱の影響を少なくすることができる。更に、送信手段Tから送信される電磁波の上下角度範囲を最小限に抑えることができるので、送信手段Tからの電磁波の送信密度を高めて検知能力を高めることができる。
【0075】
以上、本発明の実施例を詳述したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。
【0076】
例えば、実施例ではレーダー装置Srの送信軸Ltあるいは受信軸Lrの上下方向角度を水平方向に調整しているが、水平方向よりも所定角度だけ上向きや下向きに調整することもできる。そのためには、重心Gが軸部材32,32,55,55,55,66,66,72,72の鉛直方向下方に位置する状態で、送信軸Ltあるいは受信軸Lrの上下方向角度を水平方向から所定角度ずらせば良い。
【0077】
また第1実施例〜第7実施例では送信軸Ltおよび受信軸Lrの何れか一方を調整しているが、それらの両方を調整することができる。
【0078】
また第8実施例では送信軸Ltおよび受信軸Lrの両方を調整しているが、それらの何れか一方を調整することができる。
【0079】
【発明の効果】
以上のように請求項1に記載された発明によれば、物体検知装置のハウジング内に設けた受信手段の受信部に反射波を指向させるレンズを、軸部材を介してハウジングに上下揺動可能に軸支して、固定手段で揺動不能な固定状態と揺動可能な自由状態とに切り換えるので、レンズを所定時間自由状態にして受信軸の方向を重力の方向に対して所定角度に調整した後、レンズを固定状態にして上下方向の軸調整を完了させることができる。これにより物体検知装置のハウジングの車体への取付角度を調整することなく、物体検知装置の軸調整を簡単な構造で、かつ短時間で行うことができる。
【0080】
また請求項2に記載された発明によれば、物体検知装置のハウジング内に設けた受信手段の受信部およびレンズを保持する保持手段を、軸部材を介してハウジングに上下揺動可能に軸支して、固定手段で揺動不能な固定状態と揺動可能な自由状態とに切り換えるので、受信部およびレンズを所定時間自由状態にして受信軸の方向を重力の方向に対して所定角度に調整した後、受信部およびレンズを固定状態にして上下方向の軸調整を完了させることができる。これにより物体検知装置のハウジングの車体への取付角度を調整することなく、物体検知装置の軸調整を簡単な構造で、かつ短時間で行うことができ、しかも軸調整によって受信部およびレンズの位置関係が変化しないので、レンズを通過した反射波を確実に受信部に指向させることができる。
【0081】
また請求項3に記載された発明によれば、物体検知装置のハウジング内に設けた送信手段から送信された電磁波を所定領域に向けて変向させる変向手段を、軸部材を介してハウジングに上下揺動可能に軸支して、固定手段で揺動不能な固定状態と揺動可能な自由状態とに切り換えるので、変向手段を所定時間自由状態にして送信軸の方向を重力の方向に対して所定角度に調整した後、変向手段を固定状態にして上下方向の軸調整を完了させることができる。これにより物体検知装置のハウジングの車体への取付角度を調整することなく、物体検知装置の軸調整を簡単な構造で、かつ短時間で行うことができる。
【0082】
また請求項4に記載された発明によれば、物体検知装置のハウジング内に設けた送信手段の送信部および変向手段を保持する保持手段を、軸部材を介してハウジングに上下揺動可能に軸支して、固定手段で揺動不能な固定状態と揺動可能な自由状態とに切り換えるので、送信部および変向手段を所定時間自由状態にして送信軸の方向を重力の方向に対して所定角度に調整した後、送信部および変向手段を固定状態にして上下方向の軸調整を完了させることができる。これにより物体検知装置のハウジングの車体への取付角度を調整することなく、物体検知装置の軸調整を簡単な構造で、かつ短時間で行うことができ、しかも軸調整によって送信部および変向手段の位置関係が変化しないので、送信部から出た電磁波を変向手段で変向させて確実に所定領域に指向させることができる。
【0083】
また請求項5に記載された発明によれば、物体検知装置のハウジング内に設けた受信手段の受信部を、軸部材を介してハウジングに上下揺動可能に軸支して、固定手段で揺動不能な固定状態と揺動可能な自由状態とに切り換えるので、受信部を所定時間自由状態にして受信軸の方向を重力の方向に対して所定角度に調整した後、受信部を固定状態にして上下方向の軸調整を完了させることができる。これにより物体検知装置のハウジングの車体への取付角度を調整することなく、物体検知装置の軸調整を簡単な構造で、かつ短時間で行うことができる。
【0084】
また請求項6に記載された発明によれば、物体検知装置のハウジング内に設けた送信手段の送信部を、軸部材を介してハウジングに上下揺動可能に軸支して固定手段で揺動不能な固定状態と揺動可能な自由状態とに切り換えるので、送信部を所定時間自由状態にして送信軸の方向を重力の方向に対して所定角度に調整した後、送信部を固定状態にして上下方向の軸調整を完了させることができる。これにより物体検知装置のハウジングの車体への取付角度を調整することなく、物体検知装置の軸調整を簡単な構造で、かつ短時間で行うことができる。
【0085】
また請求項7に記載された発明によれば、送信軸あるいは受信軸が重力の方向に対して成す角度を90°とすることで、送信軸あるいは受信軸を水平方向に調整することができる。
【0086】
また請求項8に記載された発明によれば、固定手段が固定状態から自由状態になってから所定時間が経過して揺動が収まるのを待つので、送信軸あるいは受信軸が重力の方向に対して正確に所定角度を成すように調整することができる。
【0087】
また請求項9に記載された発明によれば、固定手段で固定対象物を押圧して固定することにより、固定対象物を確実に固定することができる。
【0088】
また請求項10に記載された発明によれば、固定手段で軸部材の回転を拘束することにより、軸部材を確実に拘束することができる。
【図面の簡単な説明】
【図1】レーダー装置のブロック図
【図2】レーダー装置の斜視図
【図3】受信手段の三面図
【図4】レーダー装置の車体への取付状態を示す図
【図5】軸調整の手順を説明するフローチャート
【図6】軸調整時の作用説明図
【図7】ハウジングと受光レンズの受信軸との関係を説明する図
【図8】第2実施例に係る受信手段の二面図
【図9】図8に対応する作用説明図
【図10】第3実施例に係る受信手段の二面図
【図11】図10に対応する作用説明図
【図12】第4実施例に係る受信手段の三面図
【図13】第5実施例に係る受信手段の三面図
【図14】第6実施例に係る受信手段の三面図
【図15】第7実施例に係る受信手段の三面図
【図16】第8実施例に係る送信手段の三面図
【図17】第8実施例に係る受信手段の三面図
【符号の説明】
1 送光部(送信部)
4 受光部(受信部)
13 送光ミラー(変向手段)
17 受光レンズ(レンズ)
31 レンズホルダ(保持手段)
32 軸部材
33 ハウジング
33a 窓部
38 ソレノイド(固定手段)
45 モータ(固定手段)
47 操作ロッド(固定手段)
53 ソレノイド(固定手段)
54 モータホルダ(固定手段)
55 軸部材
61 平面送信アンテナ(送信部)
62 平面受信アンテナ(受信部)
66 軸部材
70 ソレノイド(固定手段)
72 軸部材
Lr 受信軸
Lt 送信軸
R 受信手段
T 送信手段
[0001]
BACKGROUND OF THE INVENTION
The present invention includes a housing attached to a moving body and having transmission and reception windows in the traveling direction of the moving body, and transmitting the electromagnetic wave disposed in the housing toward a predetermined region in the traveling direction. The present invention relates to an object detection apparatus for a moving body, including: a receiving unit configured to receive a reflected wave reflected by an object disposed in a predetermined region and disposed in a housing.
[0002]
[Prior art]
When a radar device used in an ACC system (adaptive cruise control system), Stop & Go system (traffic jam tracking system), inter-vehicle warning system, etc. is mounted on the vehicle body, the axis of the radar device correctly points in the preset direction. Otherwise, the system may malfunction due to erroneous detection of an oncoming vehicle in the adjacent lane, or the system will not operate because only the road surface, overpass and signboard are detected and no preceding vehicle is detected.
[0003]
Therefore, the radar device is attached to the vehicle body so that the angle can be adjusted, and the axis adjustment tester and digital level detect the deviation of the axis line of the radar device, and adjust the attachment angle of the radar device to the vehicle body to correct the deviation. This is known from Patent Document 1 below.
[0004]
A part of the scanning range of the radar device fixed with respect to the vehicle body is electrically set as a detection range in which the target axis is correctly directed, thereby adjusting the axis without adjusting the mounting angle of the radar device to the vehicle body. Japanese Patent Application Laid-Open No. 2004-260688 discloses a method that can perform the above.
[0005]
[Patent Document 1]
JP-A-11-326495
[Patent Document 2]
JP-A-9-178856
[0006]
[Problems to be solved by the invention]
By the way, what was described in the said patent document 1 has not only the structure of the bracket for attaching a radar apparatus with respect to a vehicle body so that angle adjustment is possible, but the work which adjusts an angle by rotating an adjustment bolt is troublesome. Met.
[0007]
Further, in the above-mentioned Patent Document 2, since a part of the scanning range of the radar device is set as the detection range, the remaining part of the scanning range cannot be used for detecting the object, and the radar control unit detects it. There was a problem that the software processing for setting the range was complicated.
[0008]
The present invention has been made in view of the above-described circumstances, and an object of the present invention is to perform vertical axis adjustment of an object detection apparatus with a simple structure and in a short time.
[0009]
[Means for Solving the Problems]
To achieve the above object, according to the first aspect of the present invention, a housing attached to a moving body and having transmission and receiving windows in the traveling direction of the moving body, and disposed in the housing. And a transmission means for transmitting an electromagnetic wave toward the predetermined area in the traveling direction, and a reception means for receiving a reflected wave that is disposed in the housing and reflected by an object existing in the predetermined area In the object detection device, the receiving means is fixed in the housing and receives the reflected wave, and directs the reflected wave to the receiving portion, and is pivotally supported by the housing through the shaft member so as to be swingable up and down. In a free state, it is possible to switch between a lens whose reflected wave reception axis forms a predetermined angle with respect to the direction of gravity, a fixed state in which the lens cannot be swung, and a free state in which the lens can be swung. The constant state, during axial adjustment moving body object detecting apparatus is proposed which is characterized in that a fixing means for switching at predetermined time free state.
[0010]
According to the above configuration, the lens for directing the reflected wave to the receiving portion of the receiving means provided in the housing of the object detection device is pivotally supported on the housing via the shaft member so as to be swingable up and down, and is shaken by the fixing means. Since the lens is switched between an immovable fixed state and a swingable free state, the lens is set in a free state for a predetermined time, the direction of the receiving shaft is adjusted to a predetermined angle with respect to the direction of gravity, and then the lens is fixed and moved up and down. Directional axis adjustment can be completed. As a result, the axis of the object detection device can be adjusted with a simple structure and in a short time without adjusting the mounting angle of the housing of the object detection device to the vehicle body.
[0011]
According to the second aspect of the present invention, the housing is attached to the moving body and has transmission and reception windows in the traveling direction of the moving body, and the housing is disposed in the housing in a predetermined direction in the traveling direction. The object detection apparatus for a moving body, comprising: a transmission unit that transmits an electromagnetic wave toward a region; and a reception unit that is disposed in a housing and receives a reflected wave reflected by an object existing in the predetermined region. The means holds the receiving unit for receiving the reflected wave, the lens for directing the reflected wave to the receiving unit, the receiving unit and the lens, and is pivotally supported by the housing through the shaft member so as to be swingable up and down. In this state, it is possible to switch between holding means in which the reflected wave reception axis forms a predetermined angle with respect to the direction of gravity, and a holding means that cannot be swung and a free state that can be swung. The state, at the time axis adjustment moving body object detecting apparatus is proposed which is characterized in that a fixing means for switching at predetermined time free state.
[0012]
According to the above configuration, the receiving means of the receiving means provided in the housing of the object detection device and the holding means for holding the lens are pivotally supported on the housing via the shaft member so as to be able to swing up and down, and are shaken by the fixing means. Since switching is made between the immovable fixed state and the swingable free state, the receiving unit and the lens are in a free state for a predetermined time, and the direction of the receiving shaft is adjusted to a predetermined angle with respect to the direction of gravity. Can be fixed to complete the vertical axis adjustment. As a result, the axis of the object detection device can be adjusted in a short time without adjusting the mounting angle of the housing of the object detection device to the vehicle body, and the position of the receiver and the lens can be adjusted by adjusting the axis. Since the relationship does not change, the reflected wave that has passed through the lens can be reliably directed to the receiving unit.
[0013]
According to the third aspect of the present invention, the housing is attached to the moving body and has transmission and reception windows in the traveling direction of the moving body, and the housing is disposed in the housing in a predetermined direction in the traveling direction. In the moving object detection apparatus, comprising: a transmission unit that transmits an electromagnetic wave toward a region; and a reception unit that is disposed in a housing and receives a reflected wave reflected by an object existing in the predetermined region. A means for transmitting an electromagnetic wave fixed in the housing, and for changing the direction of the electromagnetic wave transmitted from the transmission part toward the predetermined region, and supporting the shaft to be swingable up and down via a shaft member. The direction change means in which the transmission axis of the electromagnetic wave forms a predetermined angle with respect to the direction of gravity in the free state, and the direction change means can be switched between a fixed state where the swing is impossible and a free state where the swing is possible. In a fixed state at the time the body detection, the time axis adjustment moving body object detecting device being characterized in that a fixing means for switching the predetermined time free state is proposed.
[0014]
According to the above configuration, the turning means for turning the electromagnetic wave transmitted from the transmission means provided in the housing of the object detection device toward the predetermined region is pivotally supported on the housing via the shaft member so as to be swingable up and down. Since the switching means is switched between a fixed state in which it cannot be swung by the fixing means and a free state in which the rocking is possible, the direction changing means is in a free state for a predetermined time and the direction of the transmission shaft is adjusted to a predetermined angle with respect to the direction of gravity. Thereafter, the turning means can be fixed and the vertical axis adjustment can be completed. As a result, the axis of the object detection device can be adjusted with a simple structure and in a short time without adjusting the mounting angle of the housing of the object detection device to the vehicle body.
[0015]
According to a fourth aspect of the present invention, there is provided a housing which is attached to the moving body and has transmission and reception windows in the traveling direction of the moving body, and is disposed in the housing and has a predetermined direction in the traveling direction. In the moving object detection apparatus, comprising: a transmission unit that transmits an electromagnetic wave toward a region; and a reception unit that is disposed in a housing and receives a reflected wave reflected by an object existing in the predetermined region. The means holds the transmitting unit for transmitting the electromagnetic wave, the redirecting unit for redirecting the electromagnetic wave transmitted from the transmitting unit toward the predetermined region, the transmitting unit and the redirecting unit, and the shaft through the housing. And holding means in which the electromagnetic wave transmission shaft forms a predetermined angle with respect to the direction of gravity in a free state, a fixed state in which the holding means cannot be swung, and a free state in which the swinging means can be swung. Cut into A possible place, at the time of object detection in a fixed state, the time axis adjustment moving body object detecting apparatus is proposed which is characterized in that a fixing means for switching at predetermined time free state.
[0016]
According to the above configuration, the holding means for holding the transmitting portion and the deflecting means of the transmitting means provided in the housing of the object detection device is pivotally supported on the housing via the shaft member so as to be swingable up and down. Since the transmitter and the turning means are in a free state for a predetermined time and the direction of the transmission shaft is adjusted to a predetermined angle with respect to the direction of gravity. The transmission unit and the deflecting unit can be fixed and the vertical axis adjustment can be completed. This makes it possible to adjust the axis of the object detection device with a simple structure and in a short time without adjusting the mounting angle of the housing of the object detection device to the vehicle body. Therefore, the electromagnetic wave emitted from the transmitter can be redirected by the redirecting means and reliably directed to the predetermined area.
[0017]
According to the fifth aspect of the present invention, the housing is attached to the moving body and has transmission and reception windows in the traveling direction of the moving body, and the housing is disposed in the housing in a predetermined direction in the traveling direction. The object detection apparatus for a moving body, comprising: a transmission unit that transmits an electromagnetic wave toward a region; and a reception unit that is disposed in a housing and receives a reflected wave reflected by an object existing in the predetermined region. A means for receiving electromagnetic waves and supported by a housing through a shaft member so as to be able to swing up and down, and in a free state, the receiving axis of the reflected wave forms a predetermined angle with respect to the direction of gravity; It is possible to switch between a fixed state in which the part cannot be swung and a free state in which the part can be swung, and is provided with a fixing means that switches to a fixed state when detecting an object and switches to a free state for a predetermined time when adjusting an axis. Moving body object detection device is proposed that.
[0018]
According to the above configuration, the receiving unit of the receiving unit provided in the housing of the object detection device is pivotally supported on the housing via the shaft member so as to be swingable up and down, and the fixed state and the swinging state in which the fixing unit cannot swing are supported. Since it is switched to a movable free state, the receiving unit is in a free state for a predetermined time, the direction of the receiving shaft is adjusted to a predetermined angle with respect to the direction of gravity, and then the receiving unit is fixed and the vertical axis is adjusted. Can be completed. As a result, the axis of the object detection device can be adjusted with a simple structure and in a short time without adjusting the mounting angle of the housing of the object detection device to the vehicle body.
[0019]
According to the invention described in claim 6, the housing is attached to the moving body and has transmission and reception windows in the traveling direction of the moving body, and the housing is disposed in the housing in a predetermined direction in the traveling direction. In the moving object detection apparatus, comprising: a transmission unit that transmits an electromagnetic wave toward a region; and a reception unit that is disposed in a housing and receives a reflected wave reflected by an object existing in the predetermined region. Means for transmitting an electromagnetic wave, and supported by the housing via a shaft member so as to be able to swing up and down, wherein the transmission axis of the electromagnetic wave forms a predetermined angle with respect to the direction of gravity in a free state; It is possible to switch between a fixed state in which rocking is not possible and a free state in which rocking is possible, and is provided with fixing means for switching to a fixed state when detecting an object and switching to a free state for a predetermined time when adjusting an axis. Moving body object detection device is proposed that.
[0020]
According to the above configuration, the transmitting unit of the transmitting unit provided in the housing of the object detection device is pivotally supported on the housing via the shaft member so as to be able to swing up and down, and the fixed unit cannot swing with the fixing unit. Since it switches to the free state possible, after adjusting the direction of the transmission axis to a predetermined angle with respect to the direction of gravity with the transmission unit in the free state for a predetermined time, the transmission unit is fixed and the vertical axis adjustment is completed Can be made. As a result, the axis of the object detection device can be adjusted with a simple structure and in a short time without adjusting the mounting angle of the housing of the object detection device to the vehicle body.
[0021]
According to the invention described in claim 7, in addition to the configuration of any one of claims 1 to 6, the predetermined angle formed with respect to the direction of gravity is 90 °. An object detection apparatus for a moving body is proposed.
[0022]
According to the above configuration, the transmission axis or the reception axis can be adjusted in the horizontal direction by setting the angle formed by the transmission axis or the reception axis to the direction of gravity to be 90 °.
[0023]
According to an eighth aspect of the present invention, in addition to the configuration of any one of the first to seventh aspects, the predetermined time is varied when the fixing means is changed from the fixed state to the free state. There is proposed a moving object detection apparatus characterized by the time required for the movement to settle.
[0024]
According to the above configuration, the transmission means or the reception axis accurately sets the predetermined angle with respect to the direction of gravity because the fixing means waits for the oscillation to cease after a predetermined time has elapsed from the fixed state to the free state. Can be adjusted.
[0025]
According to the invention described in claim 9, in addition to the configuration of any one of claims 1 to 8, the fixing means presses and fixes the object to be fixed. A featured object detection apparatus for a moving body is proposed.
[0026]
According to the said structure, a fixed target object can be reliably fixed by pressing and fixing a fixed target object with a fixing means.
[0027]
According to the invention described in claim 10, in addition to the configuration of any one of claims 1 to 9, the fixing means restrains rotation of the shaft member. An object detection apparatus for a moving body is proposed.
[0028]
According to the above configuration, the shaft member can be reliably restrained by restraining the rotation of the shaft member by the fixing means.
[0029]
The light transmitting unit 1 of the embodiment corresponds to the transmitting unit of the present invention, the light receiving unit 4 of the embodiment corresponds to the receiving unit of the present invention, and the light transmitting mirror 13 of the embodiment serves as the turning means of the present invention. Correspondingly, the light receiving lens 17 of the embodiment corresponds to the lens of the present invention, the lens holder 31 of the embodiment corresponds to the holding means of the present invention, the motor holder 54 of the embodiment corresponds to the holding means of the present invention, The solenoid 38, the motor 45, the operation rod 47, the solenoid 53, and the solenoid 70 of the embodiment correspond to the fixing means of the present invention, and the planar transmission antenna 61 of the embodiment corresponds to the transmission unit of the present invention, and the planar reception of the embodiment. The antenna 62 corresponds to the receiving unit of the present invention.
[0030]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples of the present invention shown in the accompanying drawings.
[0031]
1 to 7 show a first embodiment of the present invention. FIG. 1 is a block diagram of a radar device, FIG. 2 is a perspective view of the radar device, FIG. 3 is a three-view diagram of a receiving means, and FIG. FIG. 5 is a flowchart for explaining the procedure for adjusting the shaft, FIG. 6 is a diagram for explaining the operation during shaft adjustment, and FIG. 7 is a diagram for explaining the relationship between the housing and the receiving shaft of the light receiving lens. It is.
[0032]
The first embodiment corresponds to the invention described in claim 1, and as shown in FIGS. 1 and 2, a radar apparatus Sr for detecting the distance and direction of an object in front of the host vehicle It comprises a part 1, a light transmission scanning part 2, a light receiving lens part 3, a light receiving part 4, and a distance measurement processing part 5. The light transmission unit 1 and the light transmission scanning unit 2 constitute a transmission unit T, and the light receiving lens unit 3 and the light reception unit 4 constitute a reception unit R.
[0033]
The light transmitting unit 1 includes a laser diode 11 integrally provided with a light transmitting lens, and a laser diode driving circuit 12 that drives the laser diode 11. The light transmission scanning unit 2 controls a light transmission mirror 13 that reflects the laser beam output from the laser diode 11, a motor 15 that reciprocates the light transmission mirror 13 around the rotation shaft 14, and driving of the motor 15. And a motor drive circuit 16. The light transmission beam emitted from the light transmission mirror 13 of the transmission means T is limited in the left-right width and has a vertically elongated pattern, which reciprocates in the left-right direction at a predetermined cycle to scan the object.
[0034]
The light receiving unit 4 includes a photodiode 18 that receives a reflected wave converged by the light receiving lens 17 provided in the light receiving lens unit 3 and converts the reflected wave into an electric signal, and a light receiving amplifier circuit 19 that amplifies the output signal of the photodiode 18. Prepare. The receiving means R includes a light receiving area that spreads at a predetermined angle in the vertical direction and the horizontal direction.
[0035]
The distance measurement processing unit 5 includes a control circuit 24 that controls the laser diode drive circuit 12 and the motor drive circuit 16, a communication circuit 26 that performs communication between the electronic control unit 25 of the ACC system and Stop & Go system, and a laser beam. Counter circuit 27 that counts the time from light transmission to light reception and a central processing unit 28 that calculates the distance to the object and the direction of the object.
[0036]
Accordingly, the distance to the object is detected based on the time from when the light transmission beam is transmitted until the reflected wave reflected by the object is received, and the light transmission beam at that time is The direction of the object is detected based on the light transmission direction.
[0037]
As is apparent from FIG. 3, the receiving means R includes a light receiving lens 17 made of synthetic resin, and a concentric Fresnel lens 17a is integrally formed at the center thereof. The lower peripheral portion of the light receiving lens 17 is supported by a U-shaped lens holder 31 that also serves as a weight, and a pair of shaft members 32 that extend in the left-right direction through the center of the Fresnel lens 17a are provided on the upper portion of the lens holder 31. , 32 are provided. A housing 33 (see FIG. 2) of the radar device Sr is provided with a window 33a for allowing a reflected wave from an object to pass through on the front surface thereof. The assembly of the light receiving lens 17 and the lens holder 31 is supported by shaft members 32 and 32. The housing 33 is rotatably supported. The center of gravity G of the assembly of the light receiving lens 17 and the lens holder 31 is located below the shaft members 32 and 32 and at the center of the light receiving lens 17 in the thickness direction. Therefore, when the assembly of the light receiving lens 17 and the lens holder 31 can freely swing around the shaft members 32 and 32, the center of gravity G is below the shaft members 32 and 32 in the vertical direction. The receiving axis Lr is horizontal.
[0038]
A lever-like stopper 34 disposed below the lens holder 31 is supported by a housing 33 by a pin 35 provided at one end thereof in the front-rear direction so as to be swingable up and down. A coil spring provided between the lever 33 and the housing 33 is provided. At 36, it is biased upward. An arcuate friction surface 34 a that can contact the lower surface of the lens holder 31 is formed on the upper surface of the stopper 34, and a pair of regulating plates 34 b that regulate the swing range of the lens holder 31 on the front and rear surfaces of the stopper 34. , 34b are formed. An iron piece 37 is fixed to the lower surface on the other end side of the lens holder 31, and a solenoid 38 provided in the housing 33 faces the lower side of the iron piece 37.
[0039]
The receiving means R includes a substrate 39 fixed to the housing 33, and the photodiode 18 fixed to the substrate 39 is located behind the light receiving lens 17, and further behind that is a substrate 40 (see FIG. 2) is located.
[0040]
As is clear from FIG. 4, the bracket 41 for supporting the radar device Sr is fixed to the support plate 42 with four bolts 43. Four stays 33c project from the flange 33b surrounding the outer periphery of the rectangular housing 33 of the radar device Sr in the left-right direction, and the rear half of the housing 33 is fitted in the opening 41a formed in the bracket 41. The four stays 33c are fixed to the bracket 41 with bolts 44. Thus, the housing 33 of the radar device Sr is attached to the vehicle body, that is, the support plate 42 so that the angle cannot be adjusted.
[0041]
Next, the operation of the radar apparatus Sr during axis adjustment will be described based on the flowchart of FIG.
[0042]
First, after the vehicle is installed in a horizontal place in step S1, power is supplied to the radar device Sr in step S2, and a vertical axis adjustment command is transmitted to the radar device Sr in step S3. Then, in step S4, the solenoid 38 of the receiving means R of the radar device Sr is energized, and as shown in FIG. 6, the stopper 34 attracting the iron piece 37 to the solenoid 38 swings downward with the pin 35 as a fulcrum, and the stopper The friction surface 34 a of 34 is separated from the lower surface of the lens holder 31. As a result, in step S5, the light receiving lens 17 and the lens holder 31 are released from the restraint to be in a free state, and the light receiving lens 17 and the lens holder 31 are in a state that can freely swing around the shaft members 32 and 32 as fulcrums. At this time, as described above, the light receiving lens 17 and the lens holder 31 swing up and down by gravity so that the center of gravity G is positioned below the shaft members 32 and 32 in the vertical direction. It becomes vertical and the receiving axis Lr of the light receiving lens 17 becomes horizontal.
[0043]
After waiting for the light receiving lens 17 and the lens holder 31 to stop swinging after a predetermined time has passed in step S6, if the solenoid 38 is demagnetized in step S7, the stopper 34 is pinned by the elastic force of the coil spring 36 in step S8. The light receiving lens 17 and the lens holder 31 are fixed with respect to the housing 33 by swinging upward with 35 as a fulcrum and the friction surface 34 a contacting the lower surface of the lens holder 31. When the axis adjustment of the radar device Sr is thus completed, the vertical axis adjustment command is automatically canceled in step S9.
[0044]
As shown in FIG. 7 (A), the vertical mounting angle of the radar device Sr with respect to the vehicle body is deviated. By the adjustment, the receiving axis Lr of the light receiving lens 17 is adjusted horizontally regardless of the angle α. Similarly, as shown in FIG. 7B, even if the housing 33 is raised forward by an angle α with respect to the horizontal plane H, the receiving axis Lr of the light receiving lens 17 is increased or decreased by the axis adjustment described above. Regardless of the horizontal adjustment.
[0045]
As described above, since the receiving axis Lr of the light receiving lens 17 can be adjusted horizontally without adjusting the mounting angle of the housing 33 of the radar device Sr with respect to the vehicle body, not only can the structure of the radar device Sr be simplified, The time required for axis adjustment can be greatly reduced.
[0046]
Next, a second embodiment of the present invention corresponding to the first aspect of the present invention will be described with reference to FIGS.
[0047]
In the first embodiment, the stopper 34 is swung using the coil spring 36, the iron piece 37 and the solenoid 38. In the second embodiment, the motor 45 provided on the housing 33 and the eccentricity provided on the output shaft thereof are provided. The stopper 34 is swung by the cam 46. In the fixed state shown in FIG. 8, the stopper 34 is pushed up by the eccentric cam 46, and the friction surface 34a is brought into contact with the lower surface of the lens holder 31 to fix the light receiving lens 17 so as not to swing. In the free state shown, the eccentric cam 46 is rotated by the motor 45 to release the stopper 34, and the stopper 34 is lowered by gravity to release the contact between the friction surface 34a and the lower surface of the lens holder 31. The swinging of the light receiving lens 17 can be allowed.
[0048]
According to the second embodiment, the same effect as that of the first embodiment can be achieved.
[0049]
Next, a third embodiment of the present invention corresponding to the first aspect of the present invention will be described with reference to FIGS.
[0050]
In the first and second embodiments described above, the stopper 34 is electrically swung. In the third embodiment, the stopper 34 is manually swung. The operation rod 47 penetrating the upper wall of the housing 33 is provided with a push button 48 at the upper end, the lower end abuts against the other end of the stopper 34, and a long hole 47 a formed in the middle portion thereof has shaft members 32, 32. It is slidably fitted on the outer periphery of the. The push button 48 is covered with a rubber cover 49 fixed to the upper wall of the housing 33, and dust can be prevented from entering the housing 33 through a gap around the operation rod 47.
[0051]
As shown in FIG. 10, when the operation rod 47 is not operated, the stopper 34 is pushed up by the elastic force of the coil spring 36 to bring the friction surface 34 a into contact with the lower surface of the lens holder 31 to receive light. The lens 17 can be fixed so as not to swing. Further, in the free state shown in FIG. 11, the push button 48 is pushed from above the cover 49 to lower the operation rod 47, and the stopper 34 is lowered against the coil spring 36 at the lower end thereof to bring the friction surface 34 a and the lens holder 31 into contact. By releasing the contact with the lower surface, the light receiving lens 17 can be allowed to swing. Further, since the shaft members 32 and 32 are fitted into the long holes 47 a formed in the intermediate portion of the operation rod 47, the inclination of the operation rod 47 can be prevented.
[0052]
According to the third embodiment, the same effects as those of the first embodiment can be achieved, and the solenoid 38 and the motor 45 are not required, and the structure is further simplified.
[0053]
Next, a fourth embodiment of the present invention corresponding to the invention described in claim 1 will be described with reference to FIG.
[0054]
In the first to third embodiments described above, the lens holder 31 integrated with the light receiving lens 17 is switched between the fixed state and the free state. In this fourth embodiment, the shaft members 32, 32 provided on the lens holder 31 are fixed. Switching between state and free state. That is, the U-shaped caliper member 50 fixed to the housing 33 is arranged so as to sandwich the brake disc 51 fixed to the shaft members 32 and 32, and the iron brake shoe slidably supported on the caliper member 50. 52 abuts against the brake disc 51 by the spring force of a spring (not shown), and restrains the rotation of the shaft members 32 and 32 (that is, swinging of the light receiving lens 17). By energizing the solenoid 53 provided outside the caliper member 50 to attract the brake shoe 52 and releasing the engagement between the brake shoe 52 and the brake disc 51, the light receiving lens 17 is brought into a swingable free state. be able to.
[0055]
Also according to the fourth embodiment, it is possible to achieve the same effect as that of the first embodiment described above.
[0056]
Next, a fifth embodiment of the present invention corresponding to the invention described in claim 2 will be described with reference to FIG.
[0057]
The fifth embodiment is a modification of the above-described fourth embodiment. In the fourth embodiment, the substrate 39 and the photodiode 18 are supported by the housing 33, whereas in the fifth embodiment, the substrate 39 and the photodiode are used. 18 is supported by the lens holder 31. A straight line connecting the center of gravity G of the entire assembly including the lens holder 31 and each member supported by the lens holder 31 and the shaft members 32, 32 is parallel to the lens surface of the light receiving lens 17. Therefore, when the solenoid 53 is demagnetized to place the light receiving lens 17 in a free state, the receiving axis Lr of the light receiving lens 17 becomes horizontal.
[0058]
According to the fifth embodiment, the same effect as that of the fourth embodiment can be achieved, and the positional relationship between the light receiving lens 17 and the photodiode 18 is constant even when the light receiving lens 17 is swung. It is possible to reliably receive the reflected wave from the object.
[0059]
Next, a sixth embodiment of the present invention corresponding to the invention described in claim 3 will be described with reference to FIG.
[0060]
In the first to fifth embodiments described above, the vertical angle of the receiving axis Lr of the light receiving lens 17 is adjusted. In the sixth embodiment, the vertical angle of the transmitting axis Lt of the light transmitting mirror 13 is adjusted. It has become. A motor holder 54 that supports the motor 15 that is integrally provided with the light transmission mirror 13 is supported by the housing 33 via shaft members 55 and 55 so as to be swingable up and down. The straight line connecting the center of gravity G of the assembly of the light transmission mirror 13, the motor 15 and the motor holder 54 and the shaft members 55, 55 is parallel to the reflecting surface of the light transmission mirror 13, and the center of gravity G of the assembly is the shaft member 55. , 55 in the vertical direction, the direction of the reflecting surface of the light transmission mirror 13, that is, the direction of the transmission axis Lt is horizontal.
[0061]
The mechanism for switching the shaft members 55, 55 between the fixed state and the free state is the same as that of the fourth embodiment described above, and is constituted by a caliper member 50, a brake disc 51, a brake shoe 52, and a solenoid 53.
[0062]
Therefore, the light transmission beam that has exited from the light transmission section 1 provided on the substrate 56 fixed to the housing 33 and reflected by the light transmission mirror 13 is swung in the horizontal direction in the horizontal plane to scan the object. In the sixth embodiment, the light transmitting unit 1 is fixed to the housing 33, and the vertical angle of the transmission axis Lt of the light transmitting mirror 13 is adjusted. Therefore, the positional relationship between the light transmitting unit 1 and the light transmitting mirror 13 is slightly adjusted by the axis adjustment. To change. As a result, strictly speaking, the scanning direction of the light transmission beam deviates from the horizontal plane. However, if the amount of adjustment of the angle of the transmission axis Lt is about 2 ° to 3 °, the deviation is small, so there is a practical problem. Absent.
[0063]
Also according to the sixth embodiment, since the transmission axis Lt of the light transmission mirror 13 can be adjusted horizontally without adjusting the mounting angle of the housing 33 of the radar device Sr with respect to the vehicle body, the structure of the radar device Sr is simplified. In addition to this, the time required for axis adjustment can be greatly reduced.
[0064]
Next, a seventh embodiment of the present invention corresponding to the invention described in claim 4 will be described with reference to FIG.
[0065]
In the sixth embodiment described above, the light transmitting section 1 is supported by the housing 33. However, in the seventh embodiment, the light transmitting section 1 is supported by the motor holder 54 so that the light transmitting section 13 and the light transmitting mirror 13 are transmitted. The axis is adjusted by swinging the part 1 up and down.
[0066]
According to the seventh embodiment, the same effect as that of the sixth embodiment can be achieved, and the positional relationship between the light transmitting section 1 and the light transmitting mirror 13 does not change due to the axis adjustment. Can be shaken strictly in a horizontal plane.
[0067]
Next, an eighth embodiment of the present invention corresponding to the invention described in claims 5 and 6 will be described with reference to FIGS.
[0068]
The radar device Sr of the first to seventh embodiments described above is a radar radar device, but the radar device Sr of the eighth embodiment is a millimeter wave radar device, and its transmission means T is a plane transmission that transmits millimeter waves. In addition to the antenna 61, the receiving means R includes a planar receiving antenna 62 that receives a reflected wave from an object.
[0069]
The planar transmission antenna 61 is connected to the motor 63 via a rotating shaft 64, and the millimeter wave transmitted from the planar transmission antenna 61 that reciprocally swings left and right swings left and right to scan an object. A motor holder 65 that supports a motor 63 integrally provided with a planar light transmitting antenna 61 is supported on the housing 33 via shaft members 66 and 66 so as to be swingable up and down. 66, 66 is parallel to the reflecting surface of the planar transmitting antenna 61, and when the center of gravity G of the assembly is below the axial direction of the shaft members 66, 66, the direction of the transmitting surface of the planar transmitting antenna 61, That is, the direction of the transmission axis Lt is horizontal.
[0070]
The mechanism for switching the shaft members 66, 66 between the fixed state and the free state is the same as that of the fourth embodiment described above, and is constituted by a caliper member 67, a brake disk 68, a brake shoe 69, and a solenoid 70. Therefore, when the solenoid 70 is energized and the brake shoe 69 is separated from the brake disk 68, the assembly of the planar light transmitting antenna 61, the motor 63, and the motor holder 65 around the unconstrained shaft members 66, 66 is caused by gravity. It swings and stops so that its center of gravity G is positioned below the shaft members 66, 66 in the vertical direction. Subsequently, when the solenoid 70 is demagnetized, the brake shoe 69 is pressed against the brake disc 68 by a spring (not shown), and the rotation of the shaft members 66 and 66 is restrained. In this state, the transmission axis Lt of the planar light transmitting antenna 61 becomes horizontal. Become.
[0071]
An antenna holder 71 for holding the flat receiving antenna 62 is supported by the housing 33 via shaft members 72 and 72 so as to be swingable up and down. The flat center receiving antenna 62 and the center of gravity G of the antenna holder 71 that supports it and the shaft are supported. When the straight line connecting the members 72 and 72 is parallel to the reflecting surface of the planar receiving antenna 62, and the center of gravity G of the planar receiving antenna 62 and the antenna holder 71 that supports it is below the shaft members 72 and 72 in the vertical direction, The direction of the receiving surface of the flat receiving antenna 62, that is, the direction of the receiving axis Lr is horizontal.
[0072]
The mechanism for switching the shaft members 72, 72 between the fixed state and the free state is the same as that of the transmission means T described above, and is constituted by a caliper member 67, a brake disk 68, a brake shoe 69, and a solenoid 70. Therefore, by exciting the solenoid 70 and demagnetizing it after a predetermined time, the direction of the receiving axis Lr of the flat receiving antenna 62 can be adjusted horizontally by the action of gravity.
[0073]
As described above, the transmission axis Lt of the planar transmission antenna 61 and the reception axis Lr of the planar reception antenna 62 can be adjusted horizontally without adjusting the mounting angle of the housing 33 of the radar apparatus Sr with respect to the vehicle body. The structure of Sr can be simplified, and the time required for axis adjustment can be greatly shortened.
[0074]
In the eighth embodiment, since both the transmission axis Lt and the reception axis Lr are adjusted, the vertical angle range of the electromagnetic wave transmitted from the transmission means T and the vertical angle range of the detection area of the reception means R are Can be matched. That is, it is not necessary to provide a margin corresponding to the adjustment amount in the vertical direction in the vertical angle range of the detection area of the receiving means R. As a result, the vertical angle range of the detection area is minimized and sunlight or road surface is reduced. The influence of disturbances such as reflection can be reduced. Furthermore, since the vertical angle range of the electromagnetic waves transmitted from the transmission means T can be minimized, the transmission density of the electromagnetic waves from the transmission means T can be increased and the detection capability can be increased.
[0075]
As mentioned above, although the Example of this invention was explained in full detail, this invention can perform a various design change in the range which does not deviate from the summary.
[0076]
For example, in the embodiment, the vertical angle of the transmission axis Lt or the reception axis Lr of the radar device Sr is adjusted in the horizontal direction, but it can also be adjusted upward or downward by a predetermined angle from the horizontal direction. For this purpose, the vertical angle of the transmission axis Lt or the reception axis Lr is set in the horizontal direction in the state where the center of gravity G is positioned vertically below the shaft members 32, 32, 55, 55, 55, 66, 66, 72, 72. It is sufficient to deviate from the predetermined angle.
[0077]
In the first to seventh embodiments, one of the transmission axis Lt and the reception axis Lr is adjusted. However, both of them can be adjusted.
[0078]
In the eighth embodiment, both the transmission axis Lt and the reception axis Lr are adjusted, but any one of them can be adjusted.
[0079]
【The invention's effect】
As described above, according to the first aspect of the present invention, the lens that directs the reflected wave to the receiving portion of the receiving means provided in the housing of the object detection device can be swung up and down on the housing via the shaft member. Since the lens is switched between a fixed state that cannot be swung by a fixing means and a free state that can be swung, the lens is freed for a predetermined time and the direction of the receiving shaft is adjusted to a predetermined angle with respect to the direction of gravity. After that, the lens can be fixed and the vertical axis adjustment can be completed. As a result, the axis of the object detection device can be adjusted with a simple structure and in a short time without adjusting the mounting angle of the housing of the object detection device to the vehicle body.
[0080]
According to the second aspect of the present invention, the receiving portion of the receiving means provided in the housing of the object detection device and the holding means for holding the lens are pivotally supported on the housing via the shaft member so as to be swingable up and down. Then, since the fixing means switches between a fixed state that cannot be swung and a free state that can be swung, the receiving unit and the lens are in a free state for a predetermined time, and the direction of the receiving shaft is adjusted to a predetermined angle with respect to the direction of gravity. After that, the receiving unit and the lens can be fixed and the vertical axis adjustment can be completed. As a result, the axis of the object detection device can be adjusted in a short time without adjusting the mounting angle of the housing of the object detection device to the vehicle body, and the position of the receiver and the lens can be adjusted by adjusting the axis. Since the relationship does not change, the reflected wave that has passed through the lens can be reliably directed to the receiving unit.
[0081]
According to the invention described in claim 3, the direction changing means for turning the electromagnetic wave transmitted from the transmission means provided in the housing of the object detection device toward the predetermined region is provided on the housing via the shaft member. Since it is pivotally supported so that it can be swung up and down, it is switched between a fixed state in which it cannot be swung by the fixing means and a free state in which it can be swung. On the other hand, after adjusting to a predetermined angle, the turning means can be fixed to complete the vertical axis adjustment. As a result, the axis of the object detection device can be adjusted with a simple structure and in a short time without adjusting the mounting angle of the housing of the object detection device to the vehicle body.
[0082]
According to the fourth aspect of the present invention, the holding means for holding the transmitting portion and the deflecting means of the transmitting means provided in the housing of the object detection device can swing up and down on the housing via the shaft member. Since it is pivotally supported and switched between a fixed state that cannot be swung by the fixing means and a free state that can be swung, the transmitting unit and the turning means are in a free state for a predetermined time, and the direction of the transmitting shaft is set to the direction of gravity After the adjustment to the predetermined angle, the vertical axis adjustment can be completed by setting the transmitting unit and the turning means in a fixed state. This makes it possible to adjust the axis of the object detection device with a simple structure and in a short time without adjusting the mounting angle of the housing of the object detection device to the vehicle body. Therefore, the electromagnetic wave emitted from the transmitter can be redirected by the redirecting means and reliably directed to the predetermined area.
[0083]
According to the fifth aspect of the invention, the receiving portion of the receiving means provided in the housing of the object detection device is pivotally supported by the housing so as to be able to swing up and down via the shaft member, and is shaken by the fixing means. Since it is switched between the immovable fixed state and the swingable free state, the receiving unit is in a free state for a predetermined time, the direction of the receiving shaft is adjusted to a predetermined angle with respect to the direction of gravity, and then the receiving unit is fixed. Thus, the vertical axis adjustment can be completed. As a result, the axis of the object detection device can be adjusted with a simple structure and in a short time without adjusting the mounting angle of the housing of the object detection device to the vehicle body.
[0084]
According to the sixth aspect of the present invention, the transmission portion of the transmission means provided in the housing of the object detection device is pivotally supported on the housing via the shaft member so as to be swingable up and down. Since it is switched between an immobile fixed state and a swingable free state, the transmitting unit is in a free state for a predetermined time, the direction of the transmitting shaft is adjusted to a predetermined angle with respect to the direction of gravity, and then the transmitting unit is fixed. The vertical axis adjustment can be completed. As a result, the axis of the object detection device can be adjusted with a simple structure and in a short time without adjusting the mounting angle of the housing of the object detection device to the vehicle body.
[0085]
According to the seventh aspect of the present invention, the transmission axis or the reception axis can be adjusted in the horizontal direction by setting the angle formed by the transmission axis or the reception axis with respect to the direction of gravity to 90 °.
[0086]
According to the eighth aspect of the present invention, the transmission means or the reception axis is set in the direction of gravity because the fixing means waits for the oscillation to stop after a predetermined time has elapsed from the fixed state to the free state. On the other hand, it can be adjusted to form a predetermined angle accurately.
[0087]
According to the invention described in claim 9, the fixed object can be reliably fixed by pressing and fixing the fixed object with the fixing means.
[0088]
According to the invention described in claim 10, the shaft member can be reliably restrained by restraining the rotation of the shaft member by the fixing means.
[Brief description of the drawings]
FIG. 1 is a block diagram of a radar device.
FIG. 2 is a perspective view of a radar device.
FIG. 3 is a three-sided view of receiving means.
FIG. 4 is a diagram showing a mounting state of the radar device to the vehicle body
FIG. 5 is a flowchart for explaining an axis adjustment procedure;
FIG. 6 is a diagram for explaining the operation during axis adjustment.
FIG. 7 is a diagram for explaining a relationship between a housing and a receiving shaft of a light receiving lens.
FIG. 8 is a two-side view of a receiving means according to the second embodiment.
FIG. 9 is an operation explanatory diagram corresponding to FIG.
FIG. 10 is a two-side view of a receiving means according to the third embodiment.
11 is an operation explanatory diagram corresponding to FIG.
FIG. 12 is a three-sided view of a receiving means according to the fourth embodiment.
FIG. 13 is a three-sided view of a receiving means according to the fifth embodiment.
FIG. 14 is a three-sided view of a receiving means according to the sixth embodiment.
FIG. 15 is a three-sided view of a receiving means according to the seventh embodiment.
FIG. 16 is a three-sided view of a transmitting means according to the eighth embodiment.
FIG. 17 is a three-sided view of a receiving means according to the eighth embodiment.
[Explanation of symbols]
1 Light transmitter (transmitter)
4 Light receiver (receiver)
13 Transmitting mirror (turning means)
17 Receiving lens (lens)
31 Lens holder (holding means)
32 Shaft member
33 Housing
33a Window
38 Solenoid (fixing means)
45 Motor (fixing means)
47 Operation rod (fixing means)
53 Solenoid (fixing means)
54 Motor holder (fixing means)
55 Shaft member
61 Planar transmit antenna (transmitter)
62 Planar receiving antenna (receiver)
66 Shaft member
70 Solenoid (fixing means)
72 Shaft member
Lr receiving axis
Lt Transmission axis
R receiving means
T transmission means

Claims (10)

移動体に取り付けられて該移動体の進行方向に送信用および受信用の窓部(33a)を有するハウジング(33)と、
ハウジング(33)内に配置されて前記進行方向の所定領域に向けて電磁波を送信する送信手段(T)と、
ハウジング(33)内に配置されて前記所定領域に存在する物体により反射された反射波を受信する受信手段(R)と、
を備えた移動体用物体検知装置において、
前記受信手段(R)が、
ハウジング(33)内に固定されて反射波を受信する受信部(4)と、
受信部(4)に反射波を指向させるとともに、ハウジング(33)に軸部材(32)を介して上下揺動可能に軸支されて、自由状態で反射波の受信軸(Lr)が重力の方向に対して所定角度を成すレンズ(17)と、
レンズ(17)を揺動不能な固定状態と揺動可能な自由状態とに切り換え可能であり、物体検知時には固定状態に、軸調整時には所定時間自由状態に切り換える固定手段(38,45,47)と、
を備えたことを特徴とする移動体用物体検知装置。
A housing (33) attached to the moving body and having transmission and reception windows (33a) in the traveling direction of the moving body;
A transmitting means (T) disposed in the housing (33) for transmitting an electromagnetic wave toward a predetermined region in the traveling direction;
Receiving means (R) for receiving a reflected wave which is disposed in the housing (33) and reflected by an object existing in the predetermined area;
In an object detection apparatus for a moving body comprising
The receiving means (R)
A receiver (4) fixed in the housing (33) for receiving reflected waves;
The reflected wave is directed to the receiving section (4) and supported by the housing (33) via the shaft member (32) so as to be able to swing up and down, so that the reflected wave receiving axis (Lr) is free from gravity. A lens (17) forming a predetermined angle with respect to the direction;
Fixing means (38, 45, 47) for switching the lens (17) between a fixed state in which the lens cannot be swung and a free state in which the lens can be swung, and switching to a fixed state when detecting an object, and to a free state for a predetermined time when adjusting the axis. When,
An object detection apparatus for a moving body, comprising:
移動体に取り付けられて該移動体の進行方向に送信用および受信用の窓部(33a)を有するハウジング(33)と、
ハウジング(33)内に配置されて前記進行方向の所定領域に向けて電磁波を送信する送信手段(T)と、
ハウジング(33)内に配置されて前記所定領域に存在する物体により反射された反射波を受信する受信手段(R)と、
を備えた移動体用物体検知装置において、
前記受信手段(R)が、
反射波を受信する受信部(4)と、
受信部(4)に反射波を指向させるレンズ(17)と、
受信部(4)およびレンズ(17)を保持するとともに、ハウジング(33)に軸部材(32)を介して上下揺動可能に軸支されて、自由状態で反射波の受信軸(Lr)が重力の方向に対して所定角度を成す保持手段(31)と、
保持手段(31)を揺動不能な固定状態と揺動可能な自由状態とに切り換え可能であり、物体検知時には固定状態に、軸調整時には所定時間自由状態に切り換える固定手段(53)と、
を備えたことを特徴とする移動体用物体検知装置。
A housing (33) attached to the moving body and having transmission and reception windows (33a) in the traveling direction of the moving body;
A transmitting means (T) disposed in the housing (33) for transmitting an electromagnetic wave toward a predetermined region in the traveling direction;
Receiving means (R) for receiving a reflected wave which is disposed in the housing (33) and reflected by an object existing in the predetermined area;
In an object detection apparatus for a moving body comprising
The receiving means (R)
A receiving unit (4) for receiving the reflected wave;
A lens (17) for directing reflected waves to the receiver (4);
While holding the receiving portion (4) and the lens (17), the shaft is supported by the housing (33) via the shaft member (32) so that it can swing up and down, and the receiving shaft (Lr) of the reflected wave is free in a free state. Holding means (31) forming a predetermined angle with respect to the direction of gravity;
A holding means (53) capable of switching between a fixed state in which the holding means (31) cannot be swung and a free state in which the holding means can be swung; a fixing means (53) which switches to a fixed state when detecting an object;
An object detection apparatus for a moving body, comprising:
移動体に取り付けられて該移動体の進行方向に送信用および受信用の窓部(33a)を有するハウジング(33)と、
ハウジング(33)内に配置されて前記進行方向の所定領域に向けて電磁波を送信する送信手段(T)と、
ハウジング(33)内に配置されて前記所定領域に存在する物体により反射された反射波を受信する受信手段(R)と、
を備えた移動体用物体検知装置において、
前記送信手段(T)が、
ハウジング(33)内に固定されて電磁波を送信する送信部(1)と、
送信部(1)から送信された電磁波を前記所定領域に向けて変向させるとともに、ハウジング(33)に軸部材(55)を介して上下揺動可能に軸支されて、自由状態で電磁波の送信軸(Lt)が重力の方向に対して所定角度を成す変向手段(13)と、
変向手段(13)を揺動不能な固定状態と揺動可能な自由状態とに切り換え可能であり、物体検知時には固定状態に、軸調整時には所定時間自由状態に切り換える固定手段(53)と、
を備えたことを特徴とする移動体用物体検知装置。
A housing (33) attached to the moving body and having transmission and reception windows (33a) in the traveling direction of the moving body;
A transmitting means (T) disposed in the housing (33) for transmitting an electromagnetic wave toward a predetermined region in the traveling direction;
Receiving means (R) for receiving a reflected wave which is disposed in the housing (33) and reflected by an object existing in the predetermined area;
In an object detection apparatus for a moving body comprising
The transmitting means (T)
A transmitter (1) fixed in the housing (33) for transmitting electromagnetic waves;
The electromagnetic wave transmitted from the transmission unit (1) is redirected toward the predetermined region, and is pivotally supported by the housing (33) via the shaft member (55) so as to be able to swing up and down. Turning means (13) in which the transmission axis (Lt) forms a predetermined angle with respect to the direction of gravity;
A fixing means (53) capable of switching the deflection means (13) between a fixed state in which it cannot swing and a free state in which it can swing;
An object detection apparatus for a moving body, comprising:
移動体に取り付けられて該移動体の進行方向に送信用および受信用の窓部(33a)を有するハウジング(33)と、
ハウジング(33)内に配置されて前記進行方向の所定領域に向けて電磁波を送信する送信手段(T)と、
ハウジング(33)内に配置されて前記所定領域に存在する物体により反射された反射波を受信する受信手段(R)と、
を備えた移動体用物体検知装置において、
前記送信手段(T)が、
電磁波を送信する送信部(1)と、
送信部(1)から送信された電磁波を前記所定領域に向けて変向させる変向手段(13)と、
送信部(1)および変向手段(13)を保持するとともに、ハウジング(33)に軸部材(55)を介して上下揺動可能に軸支されて、自由状態で電磁波の送信軸(Lt)が重力の方向に対して所定角度を成す保持手段(54)と、
保持手段(54)を揺動不能な固定状態と揺動可能な自由状態とに切り換え可能であり、物体検知時には固定状態に、軸調整時には所定時間自由状態に切り換える固定手段(53)と、
を備えたことを特徴とする移動体用物体検知装置。
A housing (33) attached to the moving body and having transmission and reception windows (33a) in the traveling direction of the moving body;
A transmitting means (T) disposed in the housing (33) for transmitting an electromagnetic wave toward a predetermined region in the traveling direction;
Receiving means (R) for receiving a reflected wave which is disposed in the housing (33) and reflected by an object existing in the predetermined area;
In an object detection apparatus for a moving body comprising
The transmitting means (T)
A transmitter (1) for transmitting electromagnetic waves;
Redirecting means (13) for redirecting the electromagnetic wave transmitted from the transmitting unit (1) toward the predetermined area;
While holding the transmitter (1) and the deflecting means (13), the shaft is supported by the housing (33) via the shaft member (55) so as to be able to swing up and down, and in a free state, the transmission shaft (Lt) of electromagnetic waves Holding means (54) which forms a predetermined angle with respect to the direction of gravity;
A holding means (53) capable of switching between a fixed state in which the holding means (54) cannot be swung and a free state in which the holding means can be swung; a fixing means (53) which switches to a fixed state when detecting an object;
An object detection apparatus for a moving body, comprising:
移動体に取り付けられて該移動体の進行方向に送信用および受信用の窓部(33a)を有するハウジング(33)と、
ハウジング(33)内に配置されて前記進行方向の所定領域に向けて電磁波を送信する送信手段(T)と、
ハウジング(33)内に配置されて前記所定領域に存在する物体により反射された反射波を受信する受信手段(R)と、
を備えた移動体用物体検知装置において、
前記受信手段(R)が、
電磁波を受信するとともに、ハウジング(33)に軸部材(72)を介して上下揺動可能に軸支されて、自由状態で反射波の受信軸(Lr)が重力の方向に対して所定角度を成す受信部(62)と、
受信部(62)を揺動不能な固定状態と揺動可能な自由状態とに切り換え可能であり、物体検知時には固定状態に、軸調整時には所定時間自由状態に切り換える固定手段(70)と、
を備えたことを特徴とする移動体用物体検知装置。
A housing (33) attached to the moving body and having transmission and reception windows (33a) in the traveling direction of the moving body;
A transmitting means (T) disposed in the housing (33) for transmitting an electromagnetic wave toward a predetermined region in the traveling direction;
Receiving means (R) for receiving a reflected wave which is disposed in the housing (33) and reflected by an object existing in the predetermined area;
In an object detection apparatus for a moving body comprising
The receiving means (R)
In addition to receiving electromagnetic waves, the housing (33) is pivotally supported via a shaft member (72) so that it can swing up and down, and in a free state, the reflected wave receiving axis (Lr) has a predetermined angle with respect to the direction of gravity. A receiver (62) comprising:
A fixing means (70) capable of switching the receiving unit (62) between a fixed state in which the receiving unit (62) cannot swing and a free state in which the receiving unit (66) can swing;
An object detection apparatus for a moving body, comprising:
移動体に取り付けられて該移動体の進行方向に送信用および受信用の窓部(33a)を有するハウジング(33)と、
ハウジング(33)内に配置されて前記進行方向の所定領域に向けて電磁波を送信する送信手段(T)と、
ハウジング(33)内に配置されて前記所定領域に存在する物体により反射された反射波を受信する受信手段(R)と、
を備えた移動体用物体検知装置において、
前記送信手段(T)が、
電磁波を送信するとともに、ハウジング(33)に軸部材(66)を介して上下揺動可能に軸支されて、自由状態で電磁波の送信軸(Lt)が重力の方向に対して所定角度を成す送信部(61)と、
送信部(61)を揺動不能な固定状態と揺動可能な自由状態とに切り換え可能であり、物体検知時には固定状態に、軸調整時には所定時間自由状態に切り換える固定手段(70)と、
を備えたことを特徴とする移動体用物体検知装置。
A housing (33) attached to the moving body and having transmission and reception windows (33a) in the traveling direction of the moving body;
A transmitting means (T) disposed in the housing (33) for transmitting an electromagnetic wave toward a predetermined region in the traveling direction;
Receiving means (R) for receiving a reflected wave which is disposed in the housing (33) and reflected by an object existing in the predetermined area;
In an object detection apparatus for a moving body comprising
The transmitting means (T)
The electromagnetic wave is transmitted and supported by the housing (33) via the shaft member (66) so as to be swingable up and down, and the electromagnetic wave transmission axis (Lt) forms a predetermined angle with respect to the direction of gravity in a free state. A transmission unit (61);
A fixing means (70) capable of switching the transmitter (61) between a fixed state in which the transmitter cannot be swung and a free state in which the transmitter can be swung;
An object detection apparatus for a moving body, comprising:
前記重力の方向に対して成す所定角度は90°であることを特徴とする、請求項1〜請求項6の何れか1項に記載の移動体用物体検知装置。The object detection apparatus for a moving body according to any one of claims 1 to 6, wherein the predetermined angle formed with respect to the direction of gravity is 90 °. 前記所定時間は、固定手段が固定状態から自由状態になったときに揺動が収まるまでに要する時間であることを特徴とする、請求項1〜請求項7の何れか1項に記載の移動体用物体検知装置。The movement according to any one of claims 1 to 7, wherein the predetermined time is a time required for the swinging to stop when the fixing means is changed from the fixed state to the free state. Body object detection device. 前記固定手段は、固定対象物を押圧して固定するものであることを特徴とする、請求項1〜請求項8の何れか1項に記載の移動体用物体検知装置。The moving object detection device according to claim 1, wherein the fixing unit is configured to press and fix a fixed object. 前記固定手段は、軸部材(32,55,66,72)の回転を拘束するものであることを特徴とする、請求項1〜請求項9の何れか1項に記載の移動体用物体検知装置。10. The object detection for a moving body according to claim 1, wherein the fixing means restrains rotation of the shaft member (32, 55, 66, 72). 11. apparatus.
JP2002321085A 2002-11-05 2002-11-05 Object detection device for moving objects Expired - Fee Related JP3689399B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002321085A JP3689399B2 (en) 2002-11-05 2002-11-05 Object detection device for moving objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002321085A JP3689399B2 (en) 2002-11-05 2002-11-05 Object detection device for moving objects

Publications (2)

Publication Number Publication Date
JP2004156948A JP2004156948A (en) 2004-06-03
JP3689399B2 true JP3689399B2 (en) 2005-08-31

Family

ID=32801745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002321085A Expired - Fee Related JP3689399B2 (en) 2002-11-05 2002-11-05 Object detection device for moving objects

Country Status (1)

Country Link
JP (1) JP3689399B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102346358B1 (en) * 2020-07-08 2022-01-03 세빈기술주식회사 Object detection device
EP4306915A1 (en) * 2022-07-15 2024-01-17 Hosiden Corporation Distance sensor module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110050525A1 (en) 2009-08-26 2011-03-03 Fujitsu Ten Limited Radar device and antenna angle adjusting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102346358B1 (en) * 2020-07-08 2022-01-03 세빈기술주식회사 Object detection device
EP4306915A1 (en) * 2022-07-15 2024-01-17 Hosiden Corporation Distance sensor module

Also Published As

Publication number Publication date
JP2004156948A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
US8000181B2 (en) Beam irradiation device and laser radar
US6119067A (en) Object detecting system for conveyance, etc.
WO1999044074A1 (en) Radar
JP4147947B2 (en) Optical scanning device, object detection device using the same, and drawing device
US11493604B2 (en) Kinematic mount for active reflective mirror alignment with multi-degree-of-freedom
US11675054B2 (en) Kinematic mount for active, multi-degree-of-freedom alignment in a LiDAR system
US20040200149A1 (en) Door area monitoring device for monitoring the swing area of an automobile vehicle door
JP3689399B2 (en) Object detection device for moving objects
US11598852B2 (en) Kinematic mount for active receiver alignment with multi-degree-of-freedom
CN112859048A (en) Light beam scanning apparatus, laser radar including the same, and control method
JPH11160436A (en) Obstacle detecting device
JP4187919B2 (en) Object detection apparatus and axis adjustment method thereof
US5748294A (en) Optical-axis adjusting device for a vehicle light radar service
JP5142434B2 (en) Axis deviation adjusting device in vehicle object detection device
US11614520B2 (en) Kinematic mount for active galvo mirror alignment with multi-degree-of-freedom
JPH11337633A (en) Device for measuring distance between vehicles
JP2013238440A (en) Beam scan type object detector
WO2013176118A1 (en) Radar device inspection method and radar device inspection system
JP4421760B2 (en) Axis adjustment method for object detection device
JP3681485B2 (en) Inter-vehicle distance detection device
JP3057157B2 (en) Object detection device for moving objects
JP2002162470A (en) Object detection device and method for setting reference axis thereof
JP2002022830A (en) Apparatus for measuring distance and its method of measuring distance
US20050219503A1 (en) Object detecting apparatus having reinforcing member
JP3208702B2 (en) Optical radar device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050525

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees