JP4186460B2 - Process for producing purified heparin, salt thereof or heparin derivative and process for producing purified low molecular weight heparin, salt or heparin derivative - Google Patents

Process for producing purified heparin, salt thereof or heparin derivative and process for producing purified low molecular weight heparin, salt or heparin derivative Download PDF

Info

Publication number
JP4186460B2
JP4186460B2 JP2001372897A JP2001372897A JP4186460B2 JP 4186460 B2 JP4186460 B2 JP 4186460B2 JP 2001372897 A JP2001372897 A JP 2001372897A JP 2001372897 A JP2001372897 A JP 2001372897A JP 4186460 B2 JP4186460 B2 JP 4186460B2
Authority
JP
Japan
Prior art keywords
heparin
salt
molecular weight
sodium
anion exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001372897A
Other languages
Japanese (ja)
Other versions
JP2003171403A (en
Inventor
昌和 畠山
正美 戸所
中山  実
靖人 梅田
伸樹 櫻井
通孝 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JNC Corp
Original Assignee
Chisso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chisso Corp filed Critical Chisso Corp
Priority to JP2001372897A priority Critical patent/JP4186460B2/en
Publication of JP2003171403A publication Critical patent/JP2003171403A/en
Application granted granted Critical
Publication of JP4186460B2 publication Critical patent/JP4186460B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ヘパリン、その塩もしくはヘパリン誘導体を特定の陰イオン交換体による処理をすることを特徴とする、精製された、ヘパリン、その塩もしくはヘパリン誘導体の製造方法及びヘパリンもしくはその塩を分子量降下処理し、ついで、得られた低分子ヘパリンもしくはその塩を、特定の陰イオン交換体による処理をすることを特徴とする、精製された、低分子ヘパリン、その塩もしくはヘパリン誘導体の製造方法に関する。
【0002】
【従来の技術】
ヘパリンは、強い血液抗凝固活性を有しており、汎発性血管内血液凝固症候群の治療、心筋梗塞症や脳塞栓症等の種々の血栓塞栓症の治療及び予防の他に、血液透析・人工心肺等の体外循環装置使用時や血管カテーテル挿入時又は輸血、及び血液検査の際等における血液凝固の防止に用いられている。ヘパリンを上記治療もしくは予防に用いる場合、血液凝固時間の延長に伴う出血傾向の増大という問題が生じるため、ヘパリンの低分子化等が検討されており、その中でも陰イオン吸着体を用いることについての検討がなされている(特公昭63−44764号公報)。
【0003】
しかしながら、ヘパリン、その塩もしくはヘパリン誘導体(以下、これらを総称してヘパリン類ということがある)を一旦、陰イオン吸着体に吸着させ、その後に遊離させると、得られるヘパリン類の活性が落ちるという問題点がある。
【0004】
ヘパリンの具体的な精製方法、低分子ヘパリンの具体的な製造方法としては、特公昭63−44764号公報に記載された製造方法を挙げることができるが、該公報に記載された精製方法、製造方法は、高い抗Xa因子活性を保ったヘパリンを得るという点で未だ課題を有している。
【0005】
【発明が解決しようとする課題】
本発明者らは、上記課題を解決すべく鋭意研究した。その結果、陰イオンが共役塩基イオンに置換されている陰イオン交換体に、ヘパリン類を吸着させた後、該ヘパリン類を遊離させる陰イオン交換体による処理を行うこと、好ましくは液体クロマトグラフィー法を用いて該処理を行うことにより、精製された、ヘパリン類を容易に製造できること、およびヘパリンもしくはその塩に分子量降下処理を行い、ついで陰イオン交換体による処理を行うこと、好ましくは液体クロマトグラフィー法を用いて該処理を行うことにより、精製された、低分子ヘパリン、その塩もしくはヘパリン誘導体を容易に製造できることを見出し、これらの知見に基づいて本発明を完成した。以上の記述から明らかなように、本発明の目的は、ヘパリン類の活性が低下しにくい精製ヘパリン類の製造方法および抗Xa因子活性の高い、精製された低分子ヘパリン、その塩もしくはヘパリン誘導体の製造方法を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、陰イオンが共役塩基イオンに置換されている陰イオン交換体に、ヘパリン類を吸着させた後に、再び該ヘパリン類を遊離させる陰イオン交換体による処理を行うこと、好ましくは該処理を液体クロマトグラフィー法を用いて行うことを特徴とする、精製されたヘパリン類の製造方法およびヘパリンもしくはその塩に分子量降下処理を行い、ついで得られた低分子ヘパリンもしくはその塩を陰イオンが共役塩基イオンに置換されている陰イオン交換体を用いて陰イオン交換体による処理を行うこと、好ましくは該処理を液体クロマトグラフィー法を用いて行うことを特徴とする、精製された、低分子ヘパリン、その塩もしくはヘパリン誘導体の製造方法である。
【0007】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明において使用するヘパリンは特に限定されるものではないが、該ヘパリンとしては、例えば、肝臓もしくは肺臓を自己消化させたのち、硫酸アンモニウムで飽和した水酸化ナトリウム溶液で温抽出し、該抽出液を中和後アルコールでヘパリンとたんぱく質の複合体を沈殿させ、アルコール洗浄し、次いでアルカリ溶液に溶かすことにより、タンパク質をトリプシンで消化除去した後、アルコールで沈殿させ粗製品を得て、その粗製品を塩化カドミウムで処理して不純物を除き、アセトンで沈殿させることにより得られたものを挙げることができる。
【0008】
本発明において使用するヘパリン塩は特に限定されるものではないが、例えば、ヘパリンの金属塩等を挙げることができ、該金属としてはナトリウム、カリウム、カルシウム及びカリウム等を挙げることができる。中でもヘパリンナトリウムは、日本薬局方収載品であることから本発明に好ましく使用することができる。また、ヘパリンの金属塩は、前述の方法で得られたヘパリンを、塩酸ベンジジン塩もしくはブルシン塩として分離し、金属塩に変えることにより得られる。また、ヘパリンナトリウムとしては、第13改正 日本薬局方記載のヘパリンナトリウムを用いることが例示できる。
【0009】
なお、本発明において低分子ヘパリンもしくはその塩とは、標準ヘパリンもしくはその塩よりも小さい平均分子量を有するヘパリンもしくはその塩のことである。標準ヘパリンもしくはその塩の平均分子量は抽出源によっても異なることから、本発明の製造方法によって得られる低分子ヘパリンもしくはその塩の平均分子量は特定されるものではないが、具体的には1000〜7000の範囲のものである。
【0010】
本発明で用いるヘパリン誘導体とは、該ヘパリンもしくはその塩を原料として化学構造を変化させたものを例示でき、具体的には亜硝酸ナトリウムもしくは亜硝酸カリウム等を当該ヘパリンやその塩に添加し、分子量を降下させたもの、また、該分子量を降下させたものを還元剤を用いて還元したものなどを例示することができる。還元剤としては水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウム等が例示できる。
【0011】
本発明で用いる陰イオン交換体とは、セルロースを担持体とし、エピクロルヒドリン等をスペーサーとして、アミノエチル基、ジエチルアミノエチル基、トリエチルアミノエチル基、グアニドエチル基、p−アミノベンジル基等をリガントとしたものを例示できる。また、該担持体としてセルロース以外にアガロース、スチレンポリマー等を用いることも例示できる。
【0012】
該陰イオン交換体として、より具体的には、DEAE セファデックス(Sephadex、商標) A−25、DEAE セファデックス(Sephadex、商標) A−50、QAE セファデックス(Sephadex、商標) A−25、QAE セファデックス(Sephadex、商標) A−50、DEAEセファデックス(Sephadex)、DEAE セファデックス(Sephadex、商標) CL−6B、Q−セファロースファストフロー(Sepharose Fast flow、商標)、DEAE セファロースファストフロー(Sepharose Fast flow、商標)、MonoQ(以上、アマシャムファルマシアバイオテク社製)、
【0013】
DEAE−トヨパール(商標)650、QAE−トヨパール(商標)550、SuperQ−トヨパール650(商標、以上、東ソー社製)、DEAE−セルロファイン(商標)A−200−m、DEAE−セルロファイン(商標)A−500−m、DEAE−セルロファイン(商標)A−500−sfおよびDEAE−セルロファイン(商標)A−800−m(以上、生化学工業社製)などの市販の陰イオン交換体を挙げることができる。
【0014】
本発明に用いる陰イオンが共役塩基イオンに置換されている陰イオン交換体とは、上述の陰イオン交換体に、塩酸、硫酸、酢酸等を浸透させたものを例示でき、陰イオン交換体の対イオンを塩素イオン、硫酸イオン、酢酸イオン等の共役塩基に置換したものを例示することができる。該陰イオン交換体を用いて、ヘパリン、その塩を処理することにより、ヘパリン類が薬理作用を有するようになり、ヘパリン分子内のO−もしくはN−硫酸基の加水分解による脱離を抑制し、抗Xa因子活性が高いヘパリン類が得られる。具体的には、陰イオン交換体を0.05〜6.0mol/lの塩酸と振盪させる方法が例示でき、経済性の点で液体クロマトグラフィ−装置を用いて共役塩基イオンに置換された陰イオン交換体に変換することが好ましい。
【0015】
本発明の、精製されたヘパリン類の製造方法は、上述の陰イオン交換体に、上述のヘパリン類を吸着させた後に、再びヘパリン類をを遊離させる陰イオン交換体による処理を行うことを特徴とする製造方法である。ここで、該吸着とは、上述の陰イオン交換体にヘパリン類を水等に溶解させた溶液を浸透させて吸着させることであり、具体的には、上述の陰イオン交換体とヘパリン類の該溶液とを振盪後、溶液を濾過する方法を例示することができ、経済性の点で液体クロマトグラフィ−法を用いて行うことが好ましい。また、該遊離とは、該吸着させた陰イオン交換体に塩化ナトリウム、塩化カリウム、硫酸ナトリウム、硫酸カリウム、酢酸ナトリウム、酢酸カリウム等の水溶液を浸透させ、陰イオン交換体から該水溶液中に上述のヘパリン類を移行させることである。具体的には、上述の陰イオン交換体と、該水溶液とを振盪後、濾過により該水溶液を分離する方法が例示でき、経済性の点で液体クロマトグラフィ−法を用いて行うことが好ましい。該分離した水溶液は、晶析用溶媒中で晶析させることにより、固体状のヘパリン類を得ることができる。
【0016】
本発明における分子量降下処理とは、亜硝酸ナトリウムもしくは亜硝酸カリウム等もしくははヘパリン分解酵素等を当該ヘパリンもしくはその塩に添加することを例示できる。また、収率の点で上述の亜硝酸ナトリウムを添加した後に、塩酸、硫酸、酢酸等の酸性溶液を用いることが好ましい処理方法である。より好ましくは塩酸を用いる方法である。なお、収率の点で酸性溶液を用いた後に水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム等の無機塩基により中和する。収率の点で該中和の後に、還元剤を用いた処理を行うことが好ましく、該還元剤としては水素化ホウ素ナトリウム、シアノ水素化ホウ素ナトリウムが例示できる。
【0017】
【実施例】
以下、実施例により本発明をより詳細に説明する。
実施例に用いた評価方法を下記に示す。
【0018】
(1)平均分子量
較正用試料及び試料を移動相で10mg/mLになるように溶解する。これらの溶液25μLにつき、液体クロマトグラフ法により試験を行う。検出器は紫外可視分光光度計、示差屈折計の順に連結させ、予め紫外可視分光光度計と示差屈折計を用いて紫外可視分光光度と示差屈折率を求め、紫外可視分光光度計から得られたクロマトグラム保持時間を示差屈折計のピーク保持時間に補正する。標準溶液は紫外可視分光光度計及び示差屈折計から得られたクロマトグラムを、試料溶液は示差屈折計から得られたクロマトグラムを一定間隔で分割し、其々の保持時間(i)におけるピーク高さを求める。次の式により相対平均分子量を求め、その値を平均分子量とした。
標準溶液の紫外可視分光光度計及び示差屈折計から得られた2つのクロマトグラムから平均分子量の計算に用いる係数を求める。
r=ΣRISi/ΣUVSi
ΣRISi:標準溶液の示差屈折計から得られた主ピークの保持時間(i)におけるピーク高さの合計
ΣUVSi:標準溶液の紫外可視分光光度計から得られた主ピークの保持時間(i)におけるピーク高さの合計
f=Mn/r
Mn:平均分子量測定用標準品の数平均分子量
Mi(保持時間(i)に対する分子量)=f×RISi/UVSi
RISi:標準溶液の示差屈折計から得られたピークの保持時間(i)におけるピーク高さ
UVSi:標準溶液の紫外可視分光光度計から得られたピークの保持時間(i)におけるピーク高さ
平均相対分子量=ΣRITi/Σ(RITi/Mi)
RITi:試料溶液の示差屈折計から得られたピークの保持時間(i)におけるピーク高さ
尚、較正用試料として分子量校正用低分子量ヘパリン標準品(90/686)(National Institute for Biological Standards and Control製)を用いた。
【0019】
(2)抗Xa因子活性
テストチームヘパリンSキット(第一化学薬品株式会社製)を用い、該キットの添付文章に基づきヘパリン濃度(IU/ml)を測定し、これを抗Xa因子活性とした。
【0020】
実施例1
DEAE−セルロファイン(商標)A−500mを150ml充填させたカラム(44mmφ×100mm)に、0.3mol/lの塩酸を750ml流し、その後イオン交換水900mlを流して共役塩基イオンに置換された陰イオン交換体を調製した。次に、ブタ腸粘膜由来のヘパリンナトリウム2.0gをイオン交換水20mlに溶解させた溶液を、全量、該カラムに流して該陰イオン交換体に吸着させた。ついで、0.28mol/lの塩化ナトリウム水溶液150mlを用いて吸着されたヘパリンナトリウムを遊離、溶出させて、ヘパリンナトリウム水溶液を分取した。この水溶液にエタノールを加えて晶析し、ろ過を行い、精製されたヘパリンナトリウム1.26gを得た。このヘパリンナトリウムの平均分子量は3050、抗Xa因子活性は72IU/mgであった。
【0021】
比較例1
DEAE−セルロファイン(商標)A−500mを150ml充填させたカラム(44mmφ×100mm)に、ブタ腸粘膜由来のヘパリンナトリウム2.0gをイオン交換水20mlに溶解させた溶液を、全量、該カラムに流した。ついで、0.28mol/lの塩化ナトリウム水溶液150mlを用いて吸着されたヘパリンナトリウムを遊離、溶出させて、ヘパリンナトリウム水溶液を分取した。この水溶液にエタノールを加え晶析し、ろ過を行いヘパリンナトリウムを1.21gを得た。このヘパリンナトリウムは、平均分子量3100、抗Xa因子活性58IU/mgであった。
【0022】
実施例2
ブタ腸粘膜由来のヘパリンナトリウム15.0gをイオン交換水220mlに溶解させ5℃に冷却させた。冷却後、亜硝酸ナトリウム0.33gをイオン交換水6mlに溶解させた水溶液を加え、さらに約5℃に冷却させた1mol/l塩酸45.8gを加え15分間撹拌して分解反応を行った。ついで1mol/l水酸化ナトリウム水溶液47.4gを加え反応を停止させた。次に反応液を25℃に加温し、水素化ホウ素ナトリウム0.075gを加え4時間撹拌して還元反応を行った。その後、1mol/l酢酸水溶液22.3gを加え、pHを4にして過剰の水素化ホウ素ナトリウムを分解させ、1mol/l水酸化ナトリウム水溶液を28.1g加えてpHを7にした。ついで反応液に6500gのエタノールを加えて晶析し、濾過することで分解・還元された低分子ヘパリンナトリウムを15.1g得た。
次に、、DEAE−セルロファイン(商標)A−500mを150ml充填させたカラム(44mmφ×100mm)に0.3mol/lの塩酸を750ml流し、その後イオン交換水900ml流して調製された共役塩基イオンに置換された陰イオン交換体が充填されたカラムに、この分解・還元された低分子ヘパリンナトリウム2.0gをイオン交換水20mlに溶解させた溶液を全量流して、該陰イオン交換体に吸着させた。この後、イオン交換水93ml、0.19規定の塩化ナトリウム水溶液を225ml流し、ついで0.28規定の塩化ナトリウム水溶液150mlで、遊離、溶出させてヘパリンナトリウムの分画液を分取した。この分画液(0.28規定の塩化ナトリウム水溶液)にエタノールを加えて晶析し、ろ過を行い低分子ヘパリンナトリウム0.58gを得た。この低分子ヘパリンナトリウムの平均分子量は4800、抗Xa因子活性は126IU/mgであった。
【0023】
実施例3
ブタ腸粘膜由来のヘパリンナトリウム15.0gをイオン交換水220mlに溶解させ5℃に冷却させた。冷却後、亜硝酸ナトリウム0.33gをイオン交換水6mlに溶解させた水溶液を加え、さらに約5℃に冷却させた1mol/l塩酸45.8gを加え15分間撹拌し分解反応を行った。ついで1mol/l水酸化ナトリウム水溶液47.4gを加えて分解反応を停止させた。次に該反応液を25℃に加温し、水素化ホウ素ナトリウム0.075gを加えて4時間撹拌し還元反応を行った後、1mol/l酢酸水溶液22.3gを加えてpHを4にし過剰の水素化ホウ素ナトリウムを分解させ、1mol/l水酸化ナトリウム水溶液を28.1g加えてpHを7にした。ついで反応液に6500gのエタノールを加えて晶析し、濾過することで分解・還元された低分子ヘパリンナトリウム15.1gを得た。
次に、、DEAE−セルロファイン(商標)A−500m 150mlを充填させたカラム(44mmφ×100mm)に0.3mol/lの塩酸を750ml流した後、イオン交換水900mlを流して調製した、共役イオンで置換された陰イオン交換体を充填したカラムに、この分解・還元されたヘパリンナトリウム2.0gをイオン交換水20mlに溶解させた溶液を全量流して、該陰イオン交換体に吸着させた。つぎに、イオン交換水93ml、0.19規定の塩化ナトリウム水溶液を225ml流したのち、0.28規定の塩化ナトリウム水溶液150mlで吸着されたヘパリンナトリウムを遊離、溶出させてヘパリンナトリウムの分画液を分取した。この分画液(0.28規定の塩化ナトリウム水溶液)にエタノールを加えて晶析し、ろ過を行い低分子ヘパリンナトリウム0.50gを得た。この低分子ヘパリンナトリウムの平均分子量は5100、抗Xa因子活性は145IU/mgであった。
【0024】
実施例4
ブタ腸粘膜由来のヘパリンナトリウム15.0gをイオン交換水220mlに溶解させ5℃に冷却させた。冷却後、亜硝酸ナトリウム0.33gをイオン交換水6mlに溶解させた溶液を加え、さらに約5℃に冷却させた1mol/l塩酸45.8gを加えて15分間撹拌し分解反応を行った。ついで1mol/l水酸化ナトリウム水溶液47.4gを加えて分解反応を停止させた。次に反応液を25℃に加温し、水素化ホウ素ナトリウム0.075gを加え4時間撹拌して還元反応を行った後、1mol/l酢酸水溶液22.3gを加えてpHを4にし、過剰の水素化ホウ素ナトリウムを分解させ、ついで、1mol/l水酸化ナトリウム水溶液28.1gを加えてpHを7にした。ついで反応液に6500gのエタノールを加えて晶析し、濾過することで分解・還元された低分子ヘパリンナトリウムを15.1g得た。
次に、、DEAE−セルロファイン(商標)A−500mを150ml充填させたカラム(44mmφ×100mm)に0.3mol/lの塩酸を750ml流し、その後イオン交換水900ml流して調製された共役塩基イオンに置換された陰イオン交換体が充填されたカラムに、この分解・還元されたヘパリンナトリウム2.0gをイオン交換水20mlに溶解させた溶液を全量流した。つぎに、イオン交換水93ml流して、該陰イオン交換体に吸着させたのち、0.28規定の塩化ナトリウム水溶液150mlで吸着された低分子ヘパリンナトリウムを遊離、溶出させてヘパリンナトリウムの分画液を分取した。この分画液(0.28規定の塩化ナトリウム水溶液)にエタノールを加え晶析し、ろ過を行い低分子ヘパリンナトリウム1.12gを得た。この低分子ヘパリンナトリウムの平均分子量は3200、抗Xa因子活性は86IU/mgであった。
【0025】
【発明の効果】
本発明の精製されたヘパリン類の製造方法は、経済性に優れ、ヘパリンの抗Xa因子活性の低下を防ぎながら、精製されたヘパリン類を容易に製造することができる。また、本発明の低分子ヘパリンもしくはその塩の製造方法は、経済性に優れ、抗Xa因子活性が高い低分子ヘパリンもしくはその塩を容易に製造することができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a purified method for producing heparin, a salt thereof or a heparin derivative, which comprises treating heparin, a salt thereof or a heparin derivative with a specific anion exchanger, and reducing the molecular weight of heparin or a salt thereof. The present invention relates to a method for producing a purified low molecular weight heparin, a salt thereof, or a heparin derivative, which comprises treating the resulting low molecular weight heparin or a salt thereof with a specific anion exchanger.
[0002]
[Prior art]
Heparin has strong blood anticoagulant activity. In addition to the treatment of generalized intravascular blood coagulation syndrome, the treatment and prevention of various thromboembolisms such as myocardial infarction and cerebral embolism, It is used for the prevention of blood coagulation when using an extracorporeal circulation device such as an oxygenator, inserting a blood vessel catheter, transfusion, and blood test. When heparin is used for the above treatment or prevention, there is a problem of increased bleeding tendency associated with the prolongation of blood coagulation time. Therefore, low molecular weight of heparin has been studied. Among them, the use of an anion adsorbent is considered. Investigation has been made (Japanese Patent Publication No. 63-44764).
[0003]
However, once heparin, its salts or heparin derivatives (hereinafter sometimes collectively referred to as heparins) are once adsorbed on an anion adsorbent and then released, the activity of the resulting heparin is reduced. There is a problem.
[0004]
Specific examples of the method for purifying heparin and the method for producing low molecular weight heparin include the production method described in Japanese Patent Publication No. 63-44764. The method still has problems in terms of obtaining heparin that retains high anti-factor Xa activity.
[0005]
[Problems to be solved by the invention]
The present inventors have intensively studied to solve the above problems. As a result, after the heparin is adsorbed to the anion exchanger in which the anion is replaced with the conjugated base ion, the treatment with the anion exchanger that liberates the heparin is performed, preferably a liquid chromatography method The purified heparin can be easily produced by carrying out the treatment using the above, and the molecular weight lowering treatment of heparin or a salt thereof, followed by treatment with an anion exchanger, preferably liquid chromatography It was found that purified low molecular weight heparin, a salt thereof or a heparin derivative can be easily produced by carrying out the treatment using a method, and the present invention was completed based on these findings. As is clear from the above description, the object of the present invention is to provide a method for producing purified heparins in which the activity of heparins is unlikely to decrease, and a purified low molecular weight heparin, a salt thereof or a heparin derivative having high anti-factor Xa activity. It is to provide a manufacturing method.
[0006]
[Means for Solving the Problems]
In the present invention, after the heparins are adsorbed to the anion exchanger in which the anions are replaced with conjugated base ions, the treatment with the anion exchanger that liberates the heparins again is performed, preferably the treatment A method for producing purified heparins characterized by using a liquid chromatography method and subjecting heparin or a salt thereof to a molecular weight reduction treatment, and then coupling the resulting low molecular weight heparin or a salt thereof with an anion Purified, low molecular weight heparin, characterized in that treatment with an anion exchanger is carried out using an anion exchanger substituted with a base ion, preferably the treatment is carried out using a liquid chromatography method , A method for producing the salt or heparin derivative thereof.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The heparin used in the present invention is not particularly limited. For example, the heparin may be obtained by warm digestion with a sodium hydroxide solution saturated with ammonium sulfate after self-digestion of the liver or lung. After neutralization, the heparin-protein complex is precipitated with alcohol, washed with alcohol, and then dissolved in an alkaline solution. The protein is digested and removed with trypsin, and then precipitated with alcohol to obtain a crude product. Mention may be made of those obtained by treatment with cadmium chloride to remove impurities and precipitation with acetone.
[0008]
The heparin salt used in the present invention is not particularly limited, and examples thereof include a heparin metal salt, and examples of the metal include sodium, potassium, calcium and potassium. Among these, heparin sodium can be preferably used in the present invention because it is a product in the Japanese Pharmacopoeia. The metal salt of heparin can be obtained by separating the heparin obtained by the above-mentioned method as a benzidine hydrochloride salt or a brucine salt and converting it to a metal salt. Moreover, as heparin sodium, use of heparin sodium described in the 13th revision Japanese Pharmacopoeia can be exemplified.
[0009]
In the present invention, low molecular weight heparin or a salt thereof refers to heparin or a salt thereof having an average molecular weight smaller than that of standard heparin or a salt thereof. Since the average molecular weight of standard heparin or a salt thereof varies depending on the extraction source, the average molecular weight of the low molecular weight heparin or a salt thereof obtained by the production method of the present invention is not specified, but specifically 1000 to 7000. Of the range.
[0010]
The heparin derivative used in the present invention can be exemplified by a chemical structure changed from the heparin or its salt as a raw material. Specifically, sodium nitrite or potassium nitrite or the like is added to the heparin or its salt, and the molecular weight And those obtained by reducing the molecular weight using a reducing agent. Examples of the reducing agent include sodium borohydride and sodium cyanoborohydride.
[0011]
The anion exchanger used in the present invention is a cellulose carrier, epichlorohydrin or the like as a spacer, aminoethyl group, diethylaminoethyl group, triethylaminoethyl group, guanidoethyl group, p-aminobenzyl group or the like as a ligand. Can be illustrated. In addition to cellulose, agarose, styrene polymer or the like can be used as the carrier.
[0012]
More specifically, as the anion exchanger, DEAE Sephadex (trademark) A-25, DEAE Sephadex (trademark) A-50, QAE Sephadex (trademark) A-25, QAE Sephadex (trademark) A-50, DEAE Sephadex (Sephadex), DEAE Sephadex (trademark) CL-6B, Q-Sepharose Fastflow (trademark), DEAE Sepharose Fastflow (Sepharose Fast) flow, trademark), MonoQ (above, Amersham Pharmacia Biotech),
[0013]
DEAE-Toyopearl (trademark) 650, QAE-Toyopearl (trademark) 550, SuperQ-Toyopearl 650 (trademark, manufactured by Tosoh Corp.), DEAE-Cellulofine (trademark) A-200-m, DEAE-Cellulofine (trademark) Examples include commercially available anion exchangers such as A-500-m, DEAE-Cellulofine ™ A-500-sf and DEAE-Cellulofine ™ A-800-m (manufactured by Seikagaku Corporation). be able to.
[0014]
Examples of the anion exchanger in which the anion used in the present invention is substituted with a conjugated base ion include those obtained by permeating hydrochloric acid, sulfuric acid, acetic acid and the like into the above anion exchanger. Examples in which the counter ion is substituted with a conjugate base such as a chloride ion, a sulfate ion, and an acetate ion can be exemplified. By treating heparin and its salts with the anion exchanger, heparins have a pharmacological action and suppress elimination of O- or N-sulfate groups in the heparin molecule due to hydrolysis. Heparins with high anti-factor Xa activity can be obtained. Specifically, a method of shaking an anion exchanger with 0.05 to 6.0 mol / l hydrochloric acid can be exemplified, and an anion exchanger substituted with a conjugated base ion using a liquid chromatography apparatus in terms of economy. It is preferable to convert.
[0015]
The method for producing a purified heparin according to the present invention is characterized in that after the above-mentioned anion exchanger is adsorbed with the above-mentioned heparin, the treatment with the anion exchanger for liberating the heparin is performed again. This is a manufacturing method. Here, the adsorption means that the above-described anion exchanger is infiltrated and adsorbed with a solution in which heparins are dissolved in water or the like, and specifically, the above-described anion exchanger and heparins can be adsorbed. A method of filtering the solution after shaking with the solution can be exemplified, and it is preferable to use a liquid chromatography method in terms of economy. The liberation means that the adsorbed anion exchanger is made to penetrate an aqueous solution of sodium chloride, potassium chloride, sodium sulfate, potassium sulfate, sodium acetate, potassium acetate, etc. from the anion exchanger into the aqueous solution. It is to transfer heparin. Specifically, a method of separating the aqueous solution by filtration after shaking the above-described anion exchanger and the aqueous solution can be exemplified, and it is preferable to use a liquid chromatography method in terms of economy. The separated aqueous solution can be crystallized in a crystallization solvent to obtain solid heparins.
[0016]
The molecular weight reduction treatment in the present invention can be exemplified by adding sodium nitrite or potassium nitrite or the like or heparin degrading enzyme or the like to the heparin or a salt thereof. Moreover, it is a preferable processing method to use acidic solutions, such as hydrochloric acid, a sulfuric acid, an acetic acid, after adding the above-mentioned sodium nitrite in the point of a yield. More preferred is a method using hydrochloric acid. In addition, after using an acidic solution in terms of yield, it is neutralized with an inorganic base such as sodium hydroxide, potassium hydroxide or sodium carbonate. In terms of yield, the neutralization is preferably followed by a treatment using a reducing agent. Examples of the reducing agent include sodium borohydride and sodium cyanoborohydride.
[0017]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples.
The evaluation methods used in the examples are shown below.
[0018]
(1) Dissolve the sample for average molecular weight calibration and the sample so as to be 10 mg / mL in the mobile phase. Test 25 μL of these solutions by liquid chromatography. The detector was connected in the order of the UV-visible spectrophotometer and the differential refractometer, and the UV-visible spectrophotometer and the differential refractive index were obtained in advance using the UV-visible spectrophotometer and the differential refractometer, and obtained from the UV-visible spectrophotometer. The chromatogram retention time is corrected to the differential refractometer peak retention time. The standard solution is obtained by dividing the chromatogram obtained from the UV-visible spectrophotometer and the differential refractometer, and the sample solution is obtained by dividing the chromatogram obtained from the differential refractometer at regular intervals, and the peak height at each retention time (i). I ask for it. The relative average molecular weight was determined by the following formula, and the value was defined as the average molecular weight.
A coefficient used for calculation of the average molecular weight is obtained from two chromatograms obtained from the UV-visible spectrophotometer and the differential refractometer of the standard solution.
r = ΣRI S i / ΣUV S i
ΣRI S i: Total peak height in retention time (i) of main peak obtained from differential refractometer of standard solution ΣUV S i: Retention time of main peak obtained from UV-visible spectrophotometer of standard solution ( Total peak height in i) f = Mn / r
Mn: number average molecular weight Mi (molecular weight with respect to retention time (i)) of standard product for measuring average molecular weight = f × RI S i / UV S i
RI S i: Peak height at retention time (i) of peak obtained from differential refractometer of standard solution
UV S i: Peak height average relative molecular weight at retention time (i) of peak obtained from UV-visible spectrophotometer of standard solution = ΣRI T i / Σ (RI T i / Mi)
RI T i: Peak height of sample solution obtained from differential refractometer at peak retention time (i) Note that low molecular weight heparin standard for molecular weight calibration (90/686) (National Institute for Biological Standards) and Control).
[0019]
(2) Anti-factor Xa activity test team Heparin S kit (Daiichi Kagaku Yakuhin Co., Ltd.) was used, and heparin concentration (IU / ml) was measured based on the attached text of the kit. .
[0020]
Example 1
An anion substituted with conjugated base ions by flowing 750 ml of 0.3 mol / l hydrochloric acid through a column (44 mmφ × 100 mm) packed with 150 ml of DEAE-Cellulofine (trademark) A-500 m and then 900 ml of ion-exchanged water. Exchangers were prepared. Next, a total amount of a solution prepared by dissolving 2.0 g of heparin sodium derived from porcine intestinal mucosa in 20 ml of ion-exchanged water was passed through the column and adsorbed onto the anion exchanger. Subsequently, the adsorbed sodium heparin was released and eluted using 150 ml of 0.28 mol / l sodium chloride aqueous solution, and the aqueous heparin sodium solution was fractionated. Ethanol was added to this aqueous solution for crystallization, followed by filtration to obtain 1.26 g of purified sodium heparin. The average molecular weight of this heparin sodium was 3050, and the anti-factor Xa activity was 72 IU / mg.
[0021]
Comparative Example 1
In a column (44 mmφ × 100 mm) packed with 150 ml of DEAE-Cellulofine ™ A-500 m, a total amount of a solution prepared by dissolving 2.0 g of heparin sodium derived from porcine intestinal mucosa in 20 ml of ion-exchanged water was applied to the column. did. Subsequently, the adsorbed sodium heparin was released and eluted using 150 ml of 0.28 mol / l sodium chloride aqueous solution, and the aqueous heparin sodium solution was fractionated. Ethanol was added to this aqueous solution for crystallization, followed by filtration to obtain 1.21 g of sodium heparin. This heparin sodium had an average molecular weight of 3100 and an anti-factor Xa activity of 58 IU / mg.
[0022]
Example 2
15.0 g of heparin sodium derived from porcine intestinal mucosa was dissolved in 220 ml of ion-exchanged water and cooled to 5 ° C. After cooling, an aqueous solution in which 0.33 g of sodium nitrite was dissolved in 6 ml of ion-exchanged water was added, and 45.8 g of 1 mol / l hydrochloric acid cooled to about 5 ° C. was added, followed by stirring for 15 minutes to carry out a decomposition reaction. Subsequently, 47.4 g of 1 mol / l sodium hydroxide aqueous solution was added to stop the reaction. Next, the reaction solution was heated to 25 ° C., 0.075 g of sodium borohydride was added, and the mixture was stirred for 4 hours to perform a reduction reaction. Thereafter, 22.3 g of a 1 mol / l acetic acid aqueous solution was added to bring the pH to 4 to decompose excess sodium borohydride, and 28.1 g of a 1 mol / l sodium hydroxide aqueous solution was added to adjust the pH to 7. Next, 6500 g of ethanol was added to the reaction solution for crystallization, followed by filtration to obtain 15.1 g of decomposed and reduced low molecular weight sodium heparin.
Next, 750 ml of 0.3 mol / l hydrochloric acid was passed through a column (44 mmφ × 100 mm) packed with 150 ml of DEAE-Cellulofine ™ A-500 m, and then 900 ml of ion-exchanged water was added to the conjugated base ions prepared. A column in which the substituted anion exchanger was packed was flushed with a solution of 2.0 g of this decomposed and reduced low molecular weight sodium heparin dissolved in 20 ml of ion-exchanged water and adsorbed on the anion exchanger. . Thereafter, 93 ml of ion-exchanged water and 225 ml of a 0.19 N aqueous sodium chloride solution were flowed, and then separated and eluted with 150 ml of a 0.28 N aqueous sodium chloride solution to fractionate a heparin sodium fraction. Ethanol was added to this fraction (0.28 N sodium chloride aqueous solution) for crystallization, followed by filtration to obtain 0.58 g of low molecular weight sodium heparin. The average molecular weight of this low molecular weight heparin sodium was 4800, and the anti-factor Xa activity was 126 IU / mg.
[0023]
Example 3
15.0 g of heparin sodium derived from porcine intestinal mucosa was dissolved in 220 ml of ion-exchanged water and cooled to 5 ° C. After cooling, an aqueous solution in which 0.33 g of sodium nitrite was dissolved in 6 ml of ion-exchanged water was added, and 45.8 g of 1 mol / l hydrochloric acid cooled to about 5 ° C. was added, followed by stirring for 15 minutes to carry out a decomposition reaction. Then, 47.4 g of 1 mol / l sodium hydroxide aqueous solution was added to stop the decomposition reaction. Next, the reaction solution was heated to 25 ° C., 0.075 g of sodium borohydride was added and stirred for 4 hours to carry out a reduction reaction, then 22.3 g of 1 mol / l acetic acid aqueous solution was added to adjust the pH to 4, and excess hydrogen was added. Sodium borohydride was decomposed, and 28.1 g of 1 mol / l sodium hydroxide aqueous solution was added to adjust the pH to 7. Subsequently, 6500 g of ethanol was added to the reaction solution for crystallization, followed by filtration to obtain 15.1 g of low molecular weight heparin sodium decomposed and reduced.
Next, a conjugated ion prepared by flowing 750 ml of 0.3 mol / l hydrochloric acid through a column (44 mmφ × 100 mm) packed with 150 ml of DEAE-Cellulofine ™ A-500 m and then 900 ml of ion-exchanged water. In the column packed with the anion exchanger substituted with the above, a whole amount of a solution prepared by dissolving 2.0 g of this decomposed / reduced sodium heparin in 20 ml of ion-exchanged water was flowed and adsorbed on the anion exchanger. Next, 93 ml of ion-exchanged water and 225 ml of 0.19 N sodium chloride aqueous solution were flowed, and then heparin sodium adsorbed with 150 ml of 0.28 N sodium chloride aqueous solution was released and eluted to fractionate a heparin sodium fraction. Ethanol was added to this fraction (0.28 N sodium chloride aqueous solution) for crystallization, followed by filtration to obtain 0.50 g of low molecular weight heparin sodium. The average molecular weight of this low molecular weight sodium heparin was 5100, and the anti-factor Xa activity was 145 IU / mg.
[0024]
Example 4
15.0 g of heparin sodium derived from porcine intestinal mucosa was dissolved in 220 ml of ion-exchanged water and cooled to 5 ° C. After cooling, a solution prepared by dissolving 0.33 g of sodium nitrite in 6 ml of ion-exchanged water was added, and 45.8 g of 1 mol / l hydrochloric acid cooled to about 5 ° C. was added, followed by stirring for 15 minutes to carry out a decomposition reaction. Then, 47.4 g of 1 mol / l sodium hydroxide aqueous solution was added to stop the decomposition reaction. Next, the reaction solution was heated to 25 ° C., 0.075 g of sodium borohydride was added and stirred for 4 hours to carry out the reduction reaction, then 22.3 g of 1 mol / l acetic acid aqueous solution was added to adjust the pH to 4, and excess hydrogen was added. Sodium borohydride was decomposed, and then 28.1 g of 1 mol / l sodium hydroxide aqueous solution was added to adjust the pH to 7. Next, 6500 g of ethanol was added to the reaction solution for crystallization, followed by filtration to obtain 15.1 g of decomposed and reduced low molecular weight sodium heparin.
Next, 750 ml of 0.3 mol / l hydrochloric acid was passed through a column (44 mmφ × 100 mm) packed with 150 ml of DEAE-Cellulofine ™ A-500 m, and then 900 ml of ion-exchanged water was added to the conjugated base ions prepared. A total amount of a solution in which 2.0 g of this decomposed / reduced sodium heparin was dissolved in 20 ml of ion-exchanged water was passed through a column packed with a substituted anion exchanger. Next, after 93 ml of ion-exchanged water is flowed and adsorbed on the anion exchanger, low-molecular-weight heparin sodium adsorbed with 150 ml of 0.28 normal sodium chloride aqueous solution is released and eluted to separate the heparin sodium fraction. I took it. Ethanol was added to this fraction (0.28 N sodium chloride aqueous solution) for crystallization, followed by filtration to obtain 1.12 g of low molecular weight sodium heparin. This low molecular weight heparin sodium had an average molecular weight of 3200 and an anti-factor Xa activity of 86 IU / mg.
[0025]
【The invention's effect】
The method for producing purified heparins of the present invention is excellent in economic efficiency, and can easily produce purified heparins while preventing a decrease in the anti-factor Xa activity of heparin. Moreover, the method for producing low molecular weight heparin or a salt thereof of the present invention can easily produce a low molecular weight heparin or a salt thereof that is excellent in economy and has high anti-factor Xa activity.

Claims (4)

ヘパリン、その塩もしくはヘパリン誘導体を、陰イオンが共役塩基イオンに置換されている陰イオン交換体に吸着させた後、該ヘパリン、その塩もしくはヘパリン誘導体を該陰イオン交換体から遊離させる陰イオン交換体による処理を行うことを特徴とする、精製された、ヘパリン、その塩もしくはヘパリン誘導体の製造方法。Anion exchange in which heparin, its salt or heparin derivative is adsorbed to an anion exchanger in which an anion is substituted with a conjugated base ion, and then heparin, its salt or heparin derivative is released from the anion exchanger A method for producing purified heparin, a salt thereof or a heparin derivative, characterized by performing treatment with a body. 陰イオン交換体による処理を液体クロマトグラフィー法を用いて行うことを特徴とする請求項1記載の精製された、ヘパリン、その塩もしくはヘパリン誘導体の製造方法。The method for producing purified heparin, a salt thereof, or a heparin derivative according to claim 1, wherein the treatment with an anion exchanger is performed using a liquid chromatography method. ヘパリンもしくはその塩を分子量降下処理を行い、ついで、得られた低分子ヘパリンもしくはその塩を、陰イオンが共役塩基イオンに置換されている陰イオン交換体に吸着させた後、該陰イオン交換体から遊離させる陰イオン交換体による処理を行うことを特徴とする、精製された、低分子ヘパリン、その塩もしくはヘパリン誘導体の製造方法。Heparin or a salt thereof is subjected to molecular weight lowering treatment, and then the obtained low molecular weight heparin or a salt thereof is adsorbed to an anion exchanger in which an anion is replaced with a conjugated base ion, and then the anion exchanger A method for producing a purified low-molecular-weight heparin, a salt thereof, or a heparin derivative, characterized in that the treatment is performed with an anion exchanger that is liberated from water. 陰イオン交換体による処理を液体クロマトグラフィー法を用いて行うことを特徴とする請求項3記載の精製された、低分子ヘパリン、その塩もしくはヘパリン誘導体の製造方法。The method for producing a purified low-molecular-weight heparin, a salt thereof, or a heparin derivative according to claim 3, wherein the treatment with an anion exchanger is performed using a liquid chromatography method.
JP2001372897A 2001-12-06 2001-12-06 Process for producing purified heparin, salt thereof or heparin derivative and process for producing purified low molecular weight heparin, salt or heparin derivative Expired - Lifetime JP4186460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001372897A JP4186460B2 (en) 2001-12-06 2001-12-06 Process for producing purified heparin, salt thereof or heparin derivative and process for producing purified low molecular weight heparin, salt or heparin derivative

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001372897A JP4186460B2 (en) 2001-12-06 2001-12-06 Process for producing purified heparin, salt thereof or heparin derivative and process for producing purified low molecular weight heparin, salt or heparin derivative

Publications (2)

Publication Number Publication Date
JP2003171403A JP2003171403A (en) 2003-06-20
JP4186460B2 true JP4186460B2 (en) 2008-11-26

Family

ID=19181705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001372897A Expired - Lifetime JP4186460B2 (en) 2001-12-06 2001-12-06 Process for producing purified heparin, salt thereof or heparin derivative and process for producing purified low molecular weight heparin, salt or heparin derivative

Country Status (1)

Country Link
JP (1) JP4186460B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050186679A1 (en) * 2004-02-24 2005-08-25 Christian Viskov Method for determining specific groups constituting heparins or low molecular weight heparins
CN100335506C (en) * 2004-05-20 2007-09-05 汕头市金丰医疗器械科技有限公司 Heparin compound, and its preparing method and use
JP2006291028A (en) * 2005-04-11 2006-10-26 Q P Corp Low-molecular heparin or salt thereof, and manufacturing method thereof
CN100425624C (en) * 2006-05-11 2008-10-15 中国农业大学 Method for simultaneous extraction of sodium heparin and antibacterial peptide of pig intestinal mucosa
EP3144325B1 (en) 2010-09-14 2020-11-04 University Of Miyazaki High purity heparin and production method therefor
CN103145875B (en) * 2012-12-07 2015-11-25 青岛九龙生物医药有限公司 A kind of processing method reducing organic solvent residual in heparin sodium
CN103755837A (en) * 2013-11-25 2014-04-30 青岛九龙生物医药有限公司 Method for preparing heparin sodium by utilizing small intestines of pigs
KR101447123B1 (en) 2014-02-27 2014-10-06 박상협 Extraction Method of Heparin
CN106986954B (en) * 2017-04-19 2020-12-25 烟台东诚药业集团股份有限公司 Joint preparation method of dalteparin sodium and nadroparin calcium

Also Published As

Publication number Publication date
JP2003171403A (en) 2003-06-20

Similar Documents

Publication Publication Date Title
JP5389140B2 (en) Heparin-derived polysaccharide mixture, its production and pharmaceutical composition containing it
US4981955A (en) Depolymerization method of heparin
EP0302034B1 (en) Novel heparin derivatives, a process for their preparation and their use in pharmaceuticals
JPS6344765B2 (en)
JPH0264102A (en) New heparin derivative and its manufacture
HU188657B (en) Process for the preparation of anticoagulant mycopolysaccharides
JP4594298B2 (en) High purity fondaparinux sodium composition
JP4186460B2 (en) Process for producing purified heparin, salt thereof or heparin derivative and process for producing purified low molecular weight heparin, salt or heparin derivative
SI9111886A (en) Heparosan-n,o-sulphates, process for preparing them and pharmaceutical compositions containing them
US8546354B2 (en) Acylated decasaccharides and their use as antithrombotic agents
EP2985298A1 (en) Low-molecular-weight glycosaminoglycan derivative containing terminal 2,5-anhydrated talose or derivative thereof
JP2006291028A (en) Low-molecular heparin or salt thereof, and manufacturing method thereof
JP2012526172A (en) Novel sulfated heptasaccharide and its use as an antithrombotic agent
FR2548672A1 (en) SULPHATE OLIGOSACCHARIDES AND THEIR USE AS MEDICAMENTS
EP2427502B1 (en) Novel sulfated octasaccharide and its use as antithrombotic
JP2003096104A (en) Process for manufacturing low-molecular heparin or salt thereof
US8501711B2 (en) Acylated 1,6-anhydro decasaccharide and its use as an antithrombotic agent
KR101104107B1 (en) Heparin-derived polysaccharide mixtures, preparation thereof and pharmaceutical compositions containing same
RU2333222C2 (en) Epimerised k5 polysaccharide derivatives with high sulfation degree
WO2018159604A1 (en) Heparin conjugate
CN112076211A (en) Glycosaminoglycan composition and preparation method and application thereof
JPH02184339A (en) Adsorbent for heparin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4