JP4186406B2 - Minimum cell voltage detection circuit for assembled batteries - Google Patents

Minimum cell voltage detection circuit for assembled batteries Download PDF

Info

Publication number
JP4186406B2
JP4186406B2 JP2000305374A JP2000305374A JP4186406B2 JP 4186406 B2 JP4186406 B2 JP 4186406B2 JP 2000305374 A JP2000305374 A JP 2000305374A JP 2000305374 A JP2000305374 A JP 2000305374A JP 4186406 B2 JP4186406 B2 JP 4186406B2
Authority
JP
Japan
Prior art keywords
circuit
voltage
analog
minimum value
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000305374A
Other languages
Japanese (ja)
Other versions
JP2002116226A (en
Inventor
徹也 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000305374A priority Critical patent/JP4186406B2/en
Publication of JP2002116226A publication Critical patent/JP2002116226A/en
Application granted granted Critical
Publication of JP4186406B2 publication Critical patent/JP4186406B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、組み電池の最小単電池電圧検出回路に関する。
【0002】
【従来の技術】
高圧大容量の二次電池を組み電池形式で搭載する車両では、この組み電池を構成する各単電池の管理、特にその端子電圧が過小かどうかをモニタすることが電池の安全管理上、重要である。
【0003】
このため、従来は、組電池を構成する各単電池の電圧をいちいち選択してA/Dコンバータに時間順次に入力し、各単電池電圧が所定の最小値を下回っていないかどうかを調べていた。
【0004】
【発明が解決しようとする課題】
ところが、組電池電力を走行エネルギーに用いる場合、配線電力損失の低減や回路の小型化などの観点から組電池を数百の単電池を直列接続して構成するのが通常である。
【0005】
このため、このような多数の単電池の電圧をいちいち選択してA/D変換し、検査するために時間がかかるという問題が生じた。
【0006】
もちろん、A/Dコンバータを多数用いれば、時間短縮を実現できるが回路規模が大きくなり、消費電力も大きくなるために、採用が困難であった。
【0007】
本発明は上記問題点に鑑みなされたものであり、簡素な回路構成で、単電池電圧過小の不具合を高速に検出可能な組み電池の最小単電池電圧検出回路を提供することをその目的としている。
【0008】
【課題を解決するための手段】
請求項1に記載した本発明の組み電池の電圧検出装置は、組み電池(1)の各単電池(11〜15)の電圧を順次選択して出力するアナログマルチプレクサ回路(2)と、前記アナログマルチプレクサ回路(2)から順次出力される前記各単電池(11〜15)の電圧に基づいて前記各単電池(11〜15)の電圧のうちの最小値を出力するアナログ最小値検出回路(3)とを備え、前記アナログ最小値検出回路(2)は、前記各単電池(11〜15)の端子に個別に接続される複数のスイッチ(211〜215)を有して一個の単電池電圧を選択して出力する一次スイッチ回路(21)と、前記一次スイッチ回路(21)から入力される電圧を一対の出力端( Z W )の一方( Z )の電位が他方( W )の電位よりも高電位となるように切り替えて前記アナログ最小値検出回路(3)の一対の入力端に出力する二次スイッチ回路(22)とを有し、前記アナログ最小値検出回路(3)は、前記アナログマルチプレクサ回路(2)の一対の出力端 Z W の一方の電位の増加方向及び減少方向のどちらかのみ追従する一方向ボルテージホロワ回路(303)と、前記一方向ボルテージホロワ回路(303)の出力端と前記アナログマルチプレクサ回路(2)の前記一対の出力端 Z W の他方 W との間に接続されるコンデンサ(302)と、前記アナログマルチプレクサ回路(2)の前記順次選択動作に先だって前記コンデンサ(302)を前記単電池(11〜15)の最大電圧以上の電圧値に充電するチャージスイッチ(301)とを備えることを特徴としている。
【0009】
本構成によれば、単電池の電圧が最初に充電されたコンデンサの蓄電電圧よりも小さい場合に限って、このコンデンサをこの単電池の電圧まで放電する回路構成を採用したので、コンデンサの蓄積電圧は各単電池電圧との比較放電後、最小の電圧をもつ単電池の電圧に等しくすることができ、このコンデンサの残留蓄積電圧を読み出すことにより、一回のA/D変換のみで組み電池のもっとも状況が過酷な単電池の端子電圧を知ることができる。したがって、組み電池をこの最小電圧の単電池に合わせて管理すれば、この最小電圧の単電池が問題を発生することがない。
【0010】
すなわち、本発明によれば、簡素な回路構成で、単電池電圧過小の不具合を高速に検出して、それに対応して組み電池を管理(たとえば入出力電流の制限)することができる。
【0012】
本構成によれば、アナログ最小値検出回路の電位を組み電池と無関係に設定することができるので、回路構成を簡素化することができる。
【0013】
【発明の実施の形態】
以下、本発明の組電池の電圧検出装置の好適な態様を以下の実施例により詳細に説明する。
【0014】
【実施例1】
本発明の組み電池の電圧検出装置の一実施例を図1に示す回路図を参照して説明する。
(回路構成)
1は、単電池11〜15を直列接続してなる組電池であるが実際には更に多数の単電池が直列接続されている。
【0015】
2は、組電池1の各単電池(たとえば11〜15)の各端子電圧(以下、単電池電圧ともいう)を順次選択出力するアナログマルチプレクサ回路、3はアナログマルチプレクサ回路2が順次出力する各単電池電圧のうちの最小値を検出、ホールドし、選択出力する最小値出力回路、4はアナログマルチプレクサ回路2を切り替え制御するコントローラである。最小値出力回路3の出力電圧VoutはA/Dコンバータ5に印加されてA/D変換される。
【0016】
アナログマルチプレクサ回路2は、一次スイッチ回路21と二次スイッチ回路22とからなる。
【0017】
一次スイッチ回路21は、主電極対の一方が各単電池11〜15の正極に個別接続される固体アナログスイッチ又はリレー接点からなるスイッチ211〜215によって構成され、一個の単電池電圧のみを選択して出力する。奇数番目のスイッチ211,213,215の主電極対の他方は二次スイッチ回路22の第一入力端Xに接続され、偶数番目のスイッチ212,214,215の主電極対の他方は二次スイッチ回路22の第二入力端Yに接続されている。
【0018】
二次スイッチ回路22は、固体アナログスイッチ又はリレー接点からなるスイッチ221〜224からなり、
入力端X、Y間に入力される電圧の方向を、出力端Wより出力端Zが高電位となるように切り替える。スイッチ221は第一入力端Xと第一出力端Zとを接続し、スイッチ222は第一入力端Xと第二出力端Wとを接続し、スイッチ223は第二入力端Yと第一出力端Zとを接続し、スイッチ224は第二入力端Yと第二出力端Wとを接続している。
【0019】
最小値出力回路3は、リセットスイッチ31、コンデンサ32、オペアンプ33、ダイオード34、ボルテージホロワ回路35、抵抗36、37からなり、両出力端Z、W間に入力された単電池電圧のうちの最小値を出力する。オペアンプ33、ダイオード34は、入力電圧が低下する場合にのみ出力電圧がそれに追従する一方向ボルテージホロワ回路を構成している。305は通常の双方向ボルテージホロワ回路である。
【0020】
オペアンプ303、305は図示しない電源電圧発生回路から電源電圧を印加されているが、この電源電圧発生回路が発生する電源電圧は接地されていない。また、この電源電圧発生回路は、オペアンプ303の+入力端に電流制限抵抗306を通じて高位電源電位Vddを与え、更にスイッチ301,電流制限抵抗307を通じてコンデンサ302の高位端に高位電源電位Vddを与える。コンデンサ302の低位端Lには上記電源電圧発生回路から低位電源電位Vssが与えられる。すなわち、この電源電圧発生回路の+出力端は高位電源電位Vddを、ー出力端は低位電源電位Vssを発生するが、これら高位電源電位Vdd、低位電源電位Vssは接地電位または接地電位に対して所定電圧値に固定された電位ではなくフローティング電位であり、結局、この電源電圧発生回路はその一対の出力端間に電源電圧ΔV(=(Vdd-Vss))を発生する定電圧回路により構成されている。
【0021】
(動作)
この組電池電圧検出回路の動作を以下に説明する。
【0022】
まず、チャージスイッチ301をオンし、電流制限抵抗307を通じてコンデンサ302を充電し、チャージスイッチ301をオフする。電流制限抵抗307の省略は可能である。コンデンサ302の充電電圧値は各単電池11〜15の最大単電池電圧よりも大きく設定する。
【0023】
次に、単電池11の電圧をコンデンサ302にコピー(ホールド)する。具体的には、スイッチ211、212、221、224のみをオンする。これにより、コンデンサ302が放電してコンデンサ302の充電電圧は、単電池11の電圧に一致する。
【0024】
次に、単電池12の電圧をコンデンサ302にコピー(ホールド)することを試みる。具体的には、スイッチ212、213、222、223のみをオンする。これにより、単電池12の電圧が単電池11の電圧よりも小さい場合にのみ、コンデンサ302が追加放電し、そうでない場合には、コンデンサ302は単電池11の電圧をホールドする。
【0025】
以下、各単電池の電圧が最小値出力回路3に印加され、結局、後から印加される単電池電圧がそれまでの単電池電圧のすべてより小さい場合にのみ、コンデンサ302が追加放電する。
【0026】
すべての単電池電圧を最小値出力回路3に順次入力した後で、コンデンサ302の蓄電電圧はボルテージホロワ回路305を通じて図示しないA/DコンバータにてA/D変換され、図示しないマイクロコンピュータに送信される。
【図面の簡単な説明】
【図1】 本発明の組み電池の最小単電池電圧検出回路の一実施例を示す回路図である。
符号の説明】
1 組み電池
2 アナログマルチプレクサ回路
3 最小値出力回路(アナログ最小値検出回路)
21 一次スイッチ回路
22 二次スイッチ回路
303 オペアンプ(一方向ボルテージホロワ回路)
304 ダイオード(一方向ボルテージホロワ回路)
301 チャージスイッチ
302 コンデンサ
C 一時蓄積コンデンサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a minimum cell voltage detection circuit for an assembled battery.
[0002]
[Prior art]
In vehicles equipped with a high-voltage, large-capacity secondary battery in the form of an assembled battery, it is important for the safety management of the battery to manage each single battery that makes up the assembled battery, especially whether the terminal voltage is too low. is there.
[0003]
For this reason, conventionally, the voltage of each unit cell constituting the assembled battery is selected one by one and sequentially input to the A / D converter to check whether each unit cell voltage is below a predetermined minimum value. It was.
[0004]
[Problems to be solved by the invention]
However, when using the assembled battery power as travel energy, it is usual to configure the assembled battery by connecting several hundred unit cells in series from the viewpoints of reducing wiring power loss and circuit miniaturization.
[0005]
For this reason, a problem arises that it takes time to select and inspect A / D-convert the voltage of such a large number of single cells one by one.
[0006]
Of course, if a large number of A / D converters are used, the time can be shortened, but the circuit scale increases and the power consumption also increases, making it difficult to employ.
[0007]
The present invention has been made in view of the above problems, and an object thereof is to provide a minimum unit cell voltage detection circuit for an assembled battery capable of detecting a malfunction of a unit cell undervoltage at high speed with a simple circuit configuration. .
[0008]
[Means for Solving the Problems]
The voltage detection device for an assembled battery according to claim 1 of the present invention includes an analog multiplexer circuit (2) for sequentially selecting and outputting the voltages of the individual cells (11 to 15) of the assembled battery (1) , and the analog An analog minimum value detection circuit (3 ) that outputs a minimum value among the voltages of the individual cells (11 to 15) based on the voltages of the individual cells (11 to 15) sequentially output from the multiplexer circuit (2). ) and Bei example, said analog minimum value detection circuit (2), said plurality of switches (211-215) one of the cells has a which are individually connected to the terminals of each cell (11 to 15) A primary switch circuit (21) that selects and outputs a voltage, and a voltage input from the primary switch circuit (21) is a potential of one ( Z ) of a pair of output terminals ( Z , W ) of the other ( W ). Cut to a higher potential than the potential. Ete a pair of a secondary switch circuit for outputting the input end (22) of the analog minimum value detecting circuit (3), the analog minimum value detecting circuit (3) has a pair of said analog multiplexer circuit (2) One-way voltage follower circuit (303) that follows only one of the increasing direction and decreasing direction of one of the output terminals ( Z , W ) of the output terminal, and the output terminal of the one-way voltage follower circuit (303) Prior to the sequential selection operation of the analog multiplexer circuit (2) , the capacitor (302) connected between the pair of output terminals ( Z , W ) of the analog multiplexer circuit (2) and the other ( W ). And a charge switch (301) for charging the capacitor (302) to a voltage value equal to or higher than the maximum voltage of the unit cells (11 to 15) .
[0009]
According to this configuration, since the circuit configuration that discharges this capacitor to the voltage of this single cell is adopted only when the voltage of the single cell is smaller than the storage voltage of the capacitor that was initially charged, the accumulated voltage of the capacitor Can be made equal to the voltage of the unit cell having the minimum voltage after the comparison discharge with each unit cell voltage, and by reading out the residual accumulated voltage of this capacitor, the battery of the assembled battery can be obtained by only one A / D conversion. It is possible to know the terminal voltage of the unit cell that is most severe. Therefore, if the assembled battery is managed in accordance with the unit cell having the minimum voltage, the unit cell having the minimum voltage does not cause a problem.
[0010]
That is, according to the present invention, with a simple circuit configuration, it is possible to detect a malfunction of the cell voltage undervoltage at a high speed and manage the assembled battery (for example, restriction of input / output current) correspondingly.
[0012]
According to this configuration, since the potential of the analog minimum value detection circuit can be set regardless of the assembled battery, the circuit configuration can be simplified.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the voltage detection apparatus for an assembled battery of the present invention will be described in detail with reference to the following examples.
[0014]
[Example 1]
An embodiment of a voltage detection apparatus for a battery pack according to the present invention will be described with reference to a circuit diagram shown in FIG.
(Circuit configuration)
Reference numeral 1 denotes an assembled battery formed by connecting the cells 11 to 15 in series, but actually, a larger number of cells are connected in series.
[0015]
2 is an analog multiplexer circuit that sequentially selects and outputs each terminal voltage (hereinafter also referred to as a single cell voltage) of each unit cell (for example, 11 to 15) of the assembled battery 1, and 3 is each unit that the analog multiplexer circuit 2 sequentially outputs. A minimum value output circuit 4 detects and holds the minimum value of the battery voltage and selectively outputs it, and 4 is a controller for switching and controlling the analog multiplexer circuit 2. The output voltage Vout of the minimum value output circuit 3 is applied to the A / D converter 5 and A / D converted.
[0016]
The analog multiplexer circuit 2 includes a primary switch circuit 21 and a secondary switch circuit 22.
[0017]
The primary switch circuit 21 is composed of solid analog switches or relays 211 to 215 in which one of the main electrode pairs is individually connected to the positive electrodes of the unit cells 11 to 15, and selects only one unit cell voltage. Output. The other of the main electrode pairs of the odd-numbered switches 211, 213 and 215 is connected to the first input terminal X of the secondary switch circuit 22, and the other of the main electrode pairs of the even-numbered switches 212, 214 and 215 is the secondary switch. The second input terminal Y of the circuit 22 is connected.
[0018]
The secondary switch circuit 22 is composed of switches 221 to 224 composed of solid analog switches or relay contacts,
The direction of the voltage input between the input terminals X and Y is switched so that the output terminal Z has a higher potential than the output terminal W. The switch 221 connects the first input terminal X and the first output terminal Z, the switch 222 connects the first input terminal X and the second output terminal W, and the switch 223 connects the second input terminal Y and the first output terminal. The end Z is connected, and the switch 224 connects the second input end Y and the second output end W.
[0019]
The minimum value output circuit 3 includes a reset switch 31, a capacitor 32, an operational amplifier 33, a diode 34, a voltage follower circuit 35, and resistors 36 and 37. Of the unit cell voltage input between the output terminals Z and W, Output the minimum value. The operational amplifier 33 and the diode 34 constitute a one-way voltage follower circuit in which the output voltage follows only when the input voltage decreases. Reference numeral 305 denotes a normal bidirectional voltage follower circuit.
[0020]
The operational amplifiers 303 and 305 are supplied with a power supply voltage from a power supply voltage generation circuit (not shown), but the power supply voltage generated by the power supply voltage generation circuit is not grounded. The power supply voltage generation circuit applies a high power supply potential Vdd to the + input terminal of the operational amplifier 303 through the current limiting resistor 306, and further applies a high power supply potential Vdd to the high power terminal of the capacitor 302 through the switch 301 and the current limiting resistor 307. The lower power supply potential Vss is applied to the lower end L of the capacitor 302 from the power supply voltage generation circuit. That is, the + output terminal of this power supply voltage generating circuit generates a high power supply potential Vdd and the-output terminal generates a low power supply potential Vss. These high power supply potential Vdd and low power supply potential Vss are in relation to the ground potential or ground potential. The power supply voltage generating circuit is not a fixed potential but a floating potential. Eventually, this power supply voltage generating circuit is composed of a constant voltage circuit that generates a power supply voltage ΔV (= (Vdd−Vss)) between its pair of output terminals. ing.
[0021]
(Operation)
The operation of this assembled battery voltage detection circuit will be described below.
[0022]
First, the charge switch 301 is turned on, the capacitor 302 is charged through the current limiting resistor 307, and the charge switch 301 is turned off. The current limiting resistor 307 can be omitted. The charging voltage value of the capacitor 302 is set larger than the maximum single cell voltage of each single cell 11-15.
[0023]
Next, the voltage of the unit cell 11 is copied (held) to the capacitor 302. Specifically, only the switches 211, 212, 221, and 224 are turned on. As a result, the capacitor 302 is discharged, and the charging voltage of the capacitor 302 matches the voltage of the unit cell 11.
[0024]
Next, an attempt is made to copy (hold) the voltage of the unit cell 12 to the capacitor 302. Specifically, only the switches 212, 213, 222, and 223 are turned on. As a result, the capacitor 302 is additionally discharged only when the voltage of the unit cell 12 is lower than the voltage of the unit cell 11, and otherwise, the capacitor 302 holds the voltage of the unit cell 11.
[0025]
Thereafter, the voltage of each unit cell is applied to the minimum value output circuit 3, and eventually, the capacitor 302 is additionally discharged only when the unit cell voltage applied later is smaller than all the unit cell voltages up to that point.
[0026]
After all the unit cell voltages are sequentially input to the minimum value output circuit 3, the stored voltage of the capacitor 302 is A / D converted by an A / D converter (not shown) through a voltage follower circuit 305 and transmitted to a microcomputer (not shown). Is done.
[Brief description of the drawings]
[1] Ru circuit view showing an example of a minimum unit cell voltage detecting circuit of the assembled battery of the present invention.
[ Explanation of symbols]
1 assembled battery 2 analog multiplexer circuit 3 minimum value output circuit (analog minimum value detection circuit)
21 Primary switch circuit 22 Secondary switch circuit 303 Operational amplifier (one-way voltage follower circuit)
304 diode (one-way voltage follower circuit)
301 Charge switch 302 Capacitor C Temporary storage capacitor

Claims (1)

組み電池(1)の各単電池(11〜15)の電圧を順次選択して出力するアナログマルチプレクサ回路(2)と、
前記アナログマルチプレクサ回路(2)から順次出力される前記各単電池(11〜15)の電圧に基づいて前記各単電池(11〜15)の電圧のうちの最小値を出力するアナログ最小値検出回路(3)と、
を備え、
前記アナログ最小値検出回路(2)は、
前記各単電池(11〜15)の端子に個別に接続される複数のスイッチ(211〜215)を有して一個の単電池電圧を選択して出力する一次スイッチ回路(21)と、
前記一次スイッチ回路(21)から入力される電圧を一対の出力端( Z W )の一方( Z )の電位が他方( W )の電位よりも高電位となるように切り替えて前記アナログ最小値検出回路(3)の一対の入力端に出力する二次スイッチ回路(22)と、
を有し、
前記アナログ最小値検出回路(3)は、
前記アナログマルチプレクサ回路(2)の一対の出力端 Z W の一方の電位の増加方向及び減少方向のどちらかのみ追従する一方向ボルテージホロワ回路(303)と、
前記一方向ボルテージホロワ回路(303)の出力端と前記アナログマルチプレクサ回路(2)の前記一対の出力端 Z W の他方 W との間に接続されるコンデンサ(302)と、
前記アナログマルチプレクサ回路(2)の前記順次選択動作に先だって前記コンデンサ(302)を前記単電池(11〜15)の最大電圧以上の電圧値に充電するチャージスイッチ(301)と、
を備えることを特徴とする組み電池の最小単電池電圧検出回路。
An analog multiplexer circuit (2) for sequentially selecting and outputting the voltages of the individual cells (11-15) of the assembled battery (1) ;
An analog minimum value detection circuit that outputs a minimum value of the voltages of the individual cells (11 to 15) based on the voltages of the individual cells (11 to 15) sequentially output from the analog multiplexer circuit (2). (3) and
Bei to give a,
The analog minimum value detection circuit (2)
A primary switch circuit (21) which has a plurality of switches (211 to 215) individually connected to terminals of each of the unit cells (11 to 15) and selects and outputs one unit cell voltage;
The voltage input from the primary switch circuit (21) is switched so that the potential of one ( Z ) of the pair of output terminals ( Z , W ) is higher than the potential of the other ( W ), and the analog minimum value A secondary switch circuit (22) for outputting to a pair of input terminals of the detection circuit (3);
Have
The analog minimum value detection circuit (3)
A one-way voltage follower circuit (303) that follows only one of the increasing direction and decreasing direction of the potential of one of the pair of output terminals ( Z , W ) of the analog multiplexer circuit (2) ;
A capacitor (302) connected between an output end of the one-way voltage follower circuit (303) and the other ( W ) of the pair of output ends ( Z , W ) of the analog multiplexer circuit (2) ;
A charge switch (301) for charging the capacitor (302) to a voltage value equal to or higher than the maximum voltage of the single cells (11-15) prior to the sequential selection operation of the analog multiplexer circuit (2) ;
Minimum unit cell voltage detecting circuits of the assembled battery, characterized in that it comprises a.
JP2000305374A 2000-10-04 2000-10-04 Minimum cell voltage detection circuit for assembled batteries Expired - Lifetime JP4186406B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000305374A JP4186406B2 (en) 2000-10-04 2000-10-04 Minimum cell voltage detection circuit for assembled batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000305374A JP4186406B2 (en) 2000-10-04 2000-10-04 Minimum cell voltage detection circuit for assembled batteries

Publications (2)

Publication Number Publication Date
JP2002116226A JP2002116226A (en) 2002-04-19
JP4186406B2 true JP4186406B2 (en) 2008-11-26

Family

ID=18786254

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000305374A Expired - Lifetime JP4186406B2 (en) 2000-10-04 2000-10-04 Minimum cell voltage detection circuit for assembled batteries

Country Status (1)

Country Link
JP (1) JP4186406B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4554452B2 (en) * 2005-06-30 2010-09-29 富士重工業株式会社 Voltage detector for storage element

Also Published As

Publication number Publication date
JP2002116226A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
JP4858378B2 (en) Cell voltage monitoring device for multi-cell series batteries
JP4756301B2 (en) Driving method of flying capacitor type assembled battery voltage detection circuit
EP2341357B1 (en) Apparatus and method for monitoring voltages of cells of battery pack
CN100582805C (en) Apparatus and method for detecting voltage of assembled battery
JP5425777B2 (en) Battery cell voltage measuring apparatus and method using an insulating capacitor
JP5746268B2 (en) Battery cell voltage measuring apparatus and measuring method
JP2001289888A (en) Laminated voltage-measuring apparatus
JP6137007B2 (en) Anomaly detection device
JP2010535010A (en) Battery cell charge amount balancing apparatus and method
JP5168176B2 (en) Battery pack capacity adjustment device
JP2007174894A (en) Battery management system, battery management method, battery system, and automobile
US6541980B2 (en) Multiplex voltage measurement apparatus
JP2009286292A (en) Vehicular power supply device
KR20170097481A (en) Charging or discharging system and method for diagnosing state of contactor
CN101563600A (en) System and method to measure series-connected cell voltages
EP1118869B1 (en) Battery voltage detection apparatus and detection method
JP2003114243A (en) Battery pack voltage detection circuit
JP5100141B2 (en) Power supply for vehicle
JP3458740B2 (en) Battery charging and discharging devices
JP2019110648A (en) Changeover device, power unit with the same, and power system with the same
JP2010288358A (en) Electric storage device
JP4186406B2 (en) Minimum cell voltage detection circuit for assembled batteries
JP2004236486A (en) Battery voltage detecting device
JP4508977B2 (en) Assembled battery voltage measuring device and assembled battery voltage measuring method
JPH04125033A (en) Two-voltage battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080725

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

R150 Certificate of patent or registration of utility model

Ref document number: 4186406

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250