JP4186343B2 - Oil separator - Google Patents

Oil separator Download PDF

Info

Publication number
JP4186343B2
JP4186343B2 JP27794599A JP27794599A JP4186343B2 JP 4186343 B2 JP4186343 B2 JP 4186343B2 JP 27794599 A JP27794599 A JP 27794599A JP 27794599 A JP27794599 A JP 27794599A JP 4186343 B2 JP4186343 B2 JP 4186343B2
Authority
JP
Japan
Prior art keywords
container
oil
refrigerant
separation plate
oil separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27794599A
Other languages
Japanese (ja)
Other versions
JP2001099526A (en
Inventor
クマール ドット オシット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP27794599A priority Critical patent/JP4186343B2/en
Publication of JP2001099526A publication Critical patent/JP2001099526A/en
Application granted granted Critical
Publication of JP4186343B2 publication Critical patent/JP4186343B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、冷凍機油が混合した冷媒から冷凍機油を分離する油分離器に関するものである。
【0002】
【従来の技術】
従来の油分離器は、図4の断面図に示すように、入口管9より容器8内に流入した冷凍機油が混合した高圧の冷媒蒸気は、分離板11に衝突して油滴を析出し、ここで分離しきれなかった油滴が混在した冷媒は前記分離板11に形成された通過孔14から前記容器8の下方空間13へ導入される。前記容器8底面から突出した出口管17は、カバー21に覆われているため、前記下方空間13へ流入した冷媒は直接出口管17に流入することができず、流下した後に反転して前記カバー21の下方から回り込むようにして前記出口管17に流入し、この反転のとき冷媒より密度の高い冷凍機油が更に分離される。
しかしながら、上記構成では、冷凍機油の分離過程が少なく、また通過孔14の通過面積が大きく、孔数が少ないため、各通過孔当たりに通過する冷媒量(冷凍機油を含む)が多く、冷媒が通過孔を通過後、油分離しきれないという問題点があた。
【0003】
【発明が解決しようとする課題】
本発明においては、上記の問題点に鑑み、冷凍機油の分離過程を増し、冷凍機油の分離をより確実に行うことができる油分離器を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、上記課題を解決するため、容器内に上方より冷凍機油を混合した冷媒を流入させる入口管を備え、同入口管の下方に前記容器を上下に区画し、前記容器中心より外側に複数の通過孔を形成した分離板を備え、前記容器底面から突出し同分離板に近接して開口し、前記冷媒を前記容器から流出させる出口管を備えてなる油分離器において、
前記入口管の先端に絞り部を設けるとともに、同絞り部上部の外周に透孔を設け、前記分離板の下面に、前記通過孔の容器中心側より前記通過孔を覆うように下方に突出し、前記容器の側壁方向に傾斜して張り出すヒサシ体を設け、前記通過孔を通過した冷媒を前記容器の側壁方向に導いた構成となっている。
【0005】
また、前記ヒサシ体の傾斜角度を45゜以下とした構成となっている。
【0006】
また、前記ヒサシ体の両側に側壁を設け、両側を閉じるようにした構成となっている。
【0007】
また、前記分離板を板金製とし、前記ヒサシ体を絞り加工にて前記分離板と一体に形成した構成となっている。
【0008】
また、前記複数の通過孔を前記分離板の径方向の同一円周上に設けた構成となっている。
【0009】
また、前記複数の通過孔を前記分離板の径方向の二列の円周上に、放射状に設けた構成となっている。
【0010】
また、前記透孔を複数設けた構成となっている。
【0011】
【発明の実施の形態】
図1乃至図3にて示す本発明の実施例により、本発明の実施の形態について説明する。
図1の冷房専用の空気調和機の冷媒回路図に示すように、1は冷媒蒸気を圧縮する圧縮機、2は前記圧縮機1より吐出する冷凍機油が混合した冷媒蒸気より冷凍機油を分離する油分離器で、油戻り管3により冷媒から分離された冷凍機油が前記圧縮機1へ戻される。
4は室外に設置され外気に対して冷媒の熱交換を行う室外熱交換器、5は冷媒が通過し断熱膨張するキャピラリーチューブ、6は室内に設置され室内空気に対して冷媒の熱交換を行う室内熱交換器、7は前記圧縮機1への液バック量を規制するアキュムレータである。
【0012】
前記圧縮機1より吐出した冷凍機油が混合した高温高圧の冷媒蒸気は、前記油分離器2により冷凍機油が分離され、分離された冷凍機油は前記油戻り管3を通り前記圧縮機1へ戻り、高温高圧の冷媒蒸気は前記室外熱交換器4へ送られ外気に放熱することにより凝縮して高温高圧の冷媒液となり、同高温高圧の冷媒液は前記キャピラリチューブ5にて断熱膨張することにより低温低圧の冷媒液となり、同低温低圧の冷媒液は前記室内熱交換器6にて室内空気から吸熱し、冷房することにより蒸発して低温低圧の冷媒蒸気となり、同低温低圧の冷媒蒸気は混入する冷媒液を前記アキュムレータ7にて分離され前記圧縮機1の吸込側へ戻る。
【0013】
先ず、図2の油分離器の断面図に示す第一の実施例について説明する。
8は円筒形状の容器、9は同容器8の上方より前記容器8内に突出し、冷媒を流入するの入口管で、同入口管9の先端に絞り部9aを設けるとともに、同絞り部9a上部の前記入口管9の外周に複数の透孔9bが設けられている。
11は前記入口管9の下方に前記容器8を上方空間12と下方空間13とに上下に区画し、径方向の二列の同一円周上に、放射状に冷媒が通過する複数の通過孔14が形成された分離板である。
なお、前記通過孔14は比較的小径で数を多くした構成となっている。
【0014】
15は前記分離板11の下面に前記通過孔14の容器中心側より下方に突出し、その先端をL字状に折曲して前記通過孔14の下方を覆うように前記容器8の側壁10方向に、水平に対し先端が45゜以下の角度で下方に傾斜して張り出したヒサシ体で、同ヒサシ体15の両側には側壁16が設けられている。
17は前記容器8の底面から突出し、前記分離板11に近接して開口した冷媒が前記容器8から流出する出口管である。
なお、前記容器8の底面に開口した前記油戻り管3は、前記容器8の底に貯留した冷凍機油を前記圧縮機1へと戻す。
【0015】
上記構成において、次にその作用について説明する。
前記入口管9の先端に絞り部9aを設け、同絞り部9a上部の前記入口管9の外周に複数の透孔9bを設けることにより、前記入口管9より前記容器8内に流入した冷凍機油が混合した高温高圧の冷媒蒸気は、前記絞り部9aで絞られ分離板11に衝突し油滴の析出を促進することができ、更に、絞られた分の冷媒が前記透孔9bより、前記容器8の上方空間12の側壁10に衝突することにより、冷凍機油の油滴を析出する。同析出した油滴は前記容器8の側壁10を伝わり、前記通過孔14を通過して前記容器8の底に冷凍機油が貯留される。
【0016】
前記容器8の側壁10に衝突した冷凍機油が残留した高温高圧の冷媒蒸気は、前記通過孔14を通過し、前記ヒサシ体15に衝突することにより、ここでも油滴を析出し、上記同様に前記容器8の底に冷凍機油が貯留される。
前記ヒサシ体15に衝突した冷凍機油が残留した高温高圧の冷媒蒸気は、前記ヒサシ体15に導かれて前記容器8の下方空間13の側壁10に衝突することにより、ここでも油滴を析出し、上記同様に前記容器8の底に冷凍機油が貯留される。
【0017】
前記ヒサシ体15により斜め下方に導かれた冷凍機油が残留した高温高圧の冷媒蒸気は、前記容器8の下方空間13を流下した後に反転して下方から回り込むようにして前記出口管17に流入し、前記室外熱交換器4へと送出される。この反転のとき冷媒より密度の高い冷凍機油が重力と遠心力とにより更に分離され、前記容器8の底に貯留される。
以上のようにして前記容器8の底に貯留された冷凍機油は、前記油戻り管3を通って、前記圧縮機1へと戻される。
上記のように、冷凍機油の分離過程が上記しただけでも5過程と多段階にわたり行われ、また通過孔14を多くすることにより、冷凍機油の分離をより確実に行うことができる。
【0018】
また、前記ヒサシ体15の傾斜角度を、水平に対し先端が45゜以下の角度で下方に傾斜したように形成することにより、前記容器8の側壁10に衝突した冷媒を下方空間13の斜め下方に導くことができ、下方への冷媒の流速が増し反転時の遠心力が増大するため、更に油滴の析出が促進される。
一方、傾斜角度が大きくなると前記容器8の側壁10に斜めから衝突すため、衝突する力が弱くなり、衝突による油滴の析出は少なくなる。
従って、前記ヒサシ体15の傾斜角度の適正値は、遠心力と衝突力による油滴の析出が総合的に大きくなるように設定する必要がある。
一般に、衝突力による速度の変化と遠心力によるベクトル速度の変化を比較した場合、衝突力による速度の変化の方が大きい。
従って、前記ヒサシ体15の傾斜角度は、側方への速度と下方への速度とが等しくなる傾斜角度45゜以下にすべきであると考えられる。
【0019】
前記ヒサシ体15の両側に側壁16を設け両側を閉じることにより、前記ヒサシ体15に衝突した冷媒が、前記ヒサシ体15の側方に回り込み、前記出口管17にショートカットして流入するのを防止することができる。
【0020】
次に、図3の分離板の要部断面図に示す第二の実施例について説明する。
上記第一の実施例とは、分離板に対するヒサシ体とその側壁との形成方法が異なる。
板金製の分離板11を絞り加工して、ヒサシ体15とその側壁16とを一体に形成することにより、前記ヒサシ体15とその側壁16との形成が一工程となり、極めて安価に作製することができる。
【0021】
【発明の効果】
以上説明したように、本発明によれば、冷凍機油の分離過程を増し、また通過孔14を多くすることにより、冷凍機油の分離をより確実に行うことができる油分離器となる。
【図面の簡単な説明】
【図1】高圧側に油分離器を備えた冷房専用の空気調和機の冷媒回路図である。
【図2】本発明による油分離器の第一の実施例を示す断面図である。
【図3】本発明による油分離器の第二の実施例の分離板部分の要部断面図である。
【図4】従来の油分離器の断面図である。
【符号の説明】
1 圧縮機
2 油分離器
3 油戻り管
4 室外熱交換器
5 キャピラリチューブ
6 室内熱交換器
7 アキュムレータ
8 容器
9 入口管
9a 絞り部
9b 透孔
10 側壁
11 分離板
12 上方空間
13 下方空間
14 通過孔
15 ヒサシ体
16 側壁
17 出口管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an oil separator that separates refrigeration oil from refrigerant mixed with refrigeration oil.
[0002]
[Prior art]
In the conventional oil separator, as shown in the sectional view of FIG. 4, the high-pressure refrigerant vapor mixed with the refrigeration oil flowing into the container 8 from the inlet pipe 9 collides with the separation plate 11 to deposit oil droplets. The refrigerant mixed with oil droplets that could not be separated here is introduced into the lower space 13 of the container 8 from the passage hole 14 formed in the separation plate 11. Since the outlet pipe 17 protruding from the bottom surface of the container 8 is covered with the cover 21, the refrigerant that has flowed into the lower space 13 cannot flow directly into the outlet pipe 17, but is reversed after flowing down to the cover. The refrigerant flows into the outlet pipe 17 so as to wrap around from below, and at the time of this reversal, the refrigeration oil having a higher density than the refrigerant is further separated.
However, in the above configuration, the separation process of the refrigeration oil is small, the passage area of the passage hole 14 is large, and the number of holes is small. Therefore, the amount of refrigerant passing through each passage hole (including the refrigeration oil) is large, and the refrigerant is There was a problem that the oil could not be separated after passing through the passage hole.
[0003]
[Problems to be solved by the invention]
In view of the above problems, an object of the present invention is to provide an oil separator that can increase the separation process of refrigerating machine oil and more reliably perform refrigerating machine oil separation.
[0004]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the present invention includes an inlet pipe into which a refrigerant mixed with refrigerating machine oil flows from above into a container, the container is partitioned vertically below the inlet pipe, and outside the center of the container. In an oil separator comprising a separation plate having a plurality of passage holes, protruding from the bottom of the container and opening in the vicinity of the separation plate, and having an outlet pipe for allowing the refrigerant to flow out of the container,
A throttle part is provided at the tip of the inlet pipe, a through hole is provided on the outer periphery of the upper part of the throttle part, and the lower surface of the separation plate protrudes downward from the container center side of the passage hole so as to cover the passage hole. An elongate body is provided that protrudes in the direction of the side wall of the container, and the refrigerant that has passed through the passage hole is guided in the direction of the side wall of the container.
[0005]
Also, the inclination angle of the Hisashi body is set to 45 ° or less.
[0006]
Further, side walls are provided on both sides of the sheep body, and both sides are closed.
[0007]
Further, the separation plate is made of sheet metal, and the Hisashi body is integrally formed with the separation plate by drawing.
[0008]
Further, the plurality of passage holes are provided on the same circumference in the radial direction of the separation plate.
[0009]
Further, the plurality of passage holes are radially provided on two rows in the radial direction of the separation plate.
[0010]
Further, a plurality of the through holes are provided.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment of the present invention will be described with reference to the embodiment of the present invention shown in FIGS.
As shown in the refrigerant circuit diagram of the air conditioner for cooling only in FIG. 1, 1 is a compressor that compresses refrigerant vapor, and 2 is a refrigerant oil that is separated from refrigerant vapor mixed with the refrigerant oil discharged from the compressor 1. In the oil separator, the refrigerating machine oil separated from the refrigerant by the oil return pipe 3 is returned to the compressor 1.
4 is an outdoor heat exchanger that is installed outdoors and exchanges heat with the outside air, 5 is a capillary tube through which the refrigerant passes and adiabatically expands, and 6 is installed indoors and performs heat exchange of the refrigerant with room air. An indoor heat exchanger 7 is an accumulator that regulates the amount of liquid back to the compressor 1.
[0012]
The high-temperature and high-pressure refrigerant vapor mixed with the refrigerating machine oil discharged from the compressor 1 is separated from the refrigerating machine oil by the oil separator 2, and the separated refrigerating machine oil returns to the compressor 1 through the oil return pipe 3. The high-temperature and high-pressure refrigerant vapor is sent to the outdoor heat exchanger 4 and dissipates heat to the outside air to condense and become a high-temperature and high-pressure refrigerant liquid. The high-temperature and high-pressure refrigerant liquid adiabatically expands in the capillary tube 5. The low-temperature and low-pressure refrigerant liquid is absorbed by the indoor heat exchanger 6 from the indoor air, and is cooled to evaporate into low-temperature and low-pressure refrigerant vapor. The refrigerant liquid to be separated is separated by the accumulator 7 and returned to the suction side of the compressor 1.
[0013]
First, the first embodiment shown in the sectional view of the oil separator in FIG. 2 will be described.
8 is a cylindrical container, 9 is an inlet pipe that protrudes into the container 8 from above the container 8 and into which the refrigerant flows. A throttle part 9a is provided at the tip of the inlet pipe 9, and an upper part of the throttle part 9a. A plurality of through holes 9 b are provided on the outer periphery of the inlet pipe 9.
11 divides the container 8 vertically into an upper space 12 and a lower space 13 below the inlet pipe 9, and a plurality of passage holes 14 through which the refrigerant passes radially on the same circumference in two rows in the radial direction. Is a separation plate formed.
The passage hole 14 has a relatively small diameter and a large number.
[0014]
15 protrudes downward from the container center side of the passage hole 14 on the lower surface of the separation plate 11, and its tip is bent in an L shape to cover the lower side of the passage hole 14 toward the side wall 10 of the container 8. In addition, the body has a tip that protrudes downward at an angle of 45 ° or less with respect to the horizontal, and side walls 16 are provided on both sides of the body 15.
Reference numeral 17 denotes an outlet pipe that protrudes from the bottom surface of the container 8 and that opens in the vicinity of the separation plate 11 and flows out from the container 8.
The oil return pipe 3 opened at the bottom of the container 8 returns the refrigeration oil stored at the bottom of the container 8 to the compressor 1.
[0015]
Next, the operation of the above configuration will be described.
Refrigerating machine oil that has flowed into the container 8 from the inlet pipe 9 by providing a throttle part 9a at the tip of the inlet pipe 9 and providing a plurality of through holes 9b on the outer periphery of the inlet pipe 9 above the throttle part 9a. The high-temperature and high-pressure refrigerant vapor mixed with is collided with the separation plate 11 by the throttle portion 9a and can promote the precipitation of oil droplets. By colliding with the side wall 10 of the upper space 12 of the container 8, oil droplets of the refrigerating machine oil are deposited. The deposited oil droplets travel along the side wall 10 of the container 8, pass through the passage hole 14, and refrigerating machine oil is stored at the bottom of the container 8.
[0016]
The high-temperature and high-pressure refrigerant vapor remaining in the refrigerating machine oil that has collided with the side wall 10 of the container 8 passes through the passage hole 14 and collides with the elongate body 15, so that oil droplets are deposited here as well. Refrigerating machine oil is stored at the bottom of the container 8.
The high-temperature and high-pressure refrigerant vapor remaining in the refrigerating machine oil that has collided with the body 15 is led to the body 15 and collides with the side wall 10 of the lower space 13 of the container 8, thereby precipitating oil droplets. Refrigerator oil is stored at the bottom of the container 8 in the same manner as described above.
[0017]
The high-temperature and high-pressure refrigerant vapor in which the refrigerating machine oil guided obliquely downward by the elongate body 15 flows down the lower space 13 of the container 8 and then reverses and flows into the outlet pipe 17 so as to wrap around from below. , And sent to the outdoor heat exchanger 4. At the time of this reversal, the refrigerating machine oil having a density higher than that of the refrigerant is further separated by gravity and centrifugal force and stored in the bottom of the container 8.
The refrigerating machine oil stored in the bottom of the container 8 as described above is returned to the compressor 1 through the oil return pipe 3.
As described above, the refrigerating machine oil separation process is performed in multiple stages as described above, and the refrigerating machine oil can be more reliably separated by increasing the number of passage holes 14.
[0018]
Further, by forming the inclination angle of the corpse body 15 so that the tip thereof is inclined downward at an angle of 45 ° or less with respect to the horizontal, the refrigerant colliding with the side wall 10 of the container 8 is obliquely below the lower space 13. Since the flow rate of the refrigerant in the downward direction increases and the centrifugal force at the time of inversion increases, the precipitation of oil droplets is further promoted.
On the other hand, when the inclination angle is increased, the collision with the side wall 10 of the container 8 is performed obliquely, so that the collision force is weakened and oil droplets are not deposited due to the collision.
Therefore, it is necessary to set an appropriate value for the inclination angle of the elongate body 15 so that the precipitation of oil droplets due to the centrifugal force and the collision force is increased overall.
In general, when a change in velocity due to a collision force is compared with a change in vector velocity due to a centrifugal force, the change in velocity due to the collision force is greater.
Accordingly, it is considered that the inclination angle of the corpse body 15 should be 45 ° or less at which the lateral speed and the downward speed are equal.
[0019]
By providing side walls 16 on both sides of the body 15 and closing both sides, the refrigerant that has collided with the body 15 is prevented from flowing into the side of the body 15 and entering the outlet pipe 17 as a shortcut. can do.
[0020]
Next, a second embodiment shown in the cross-sectional view of the main part of the separation plate in FIG.
It differs from the first embodiment in the formation method of the Hisashi body and its side wall with respect to the separation plate.
By forming the separator body 11 and the side wall 16 integrally by drawing the separation plate 11 made of sheet metal, the formation of the long body 15 and the side wall 16 is a one-step process, which is extremely inexpensive. Can do.
[0021]
【The invention's effect】
As described above, according to the present invention, by increasing the number of refrigerating machine oil separation processes and increasing the number of passage holes 14, the oil separator can be more reliably separated.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram of a cooling-only air conditioner equipped with an oil separator on the high-pressure side.
FIG. 2 is a cross-sectional view showing a first embodiment of an oil separator according to the present invention.
FIG. 3 is a cross-sectional view of an essential part of a separation plate portion of a second embodiment of the oil separator according to the present invention.
FIG. 4 is a cross-sectional view of a conventional oil separator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Oil separator 3 Oil return pipe 4 Outdoor heat exchanger 5 Capillary tube 6 Indoor heat exchanger 7 Accumulator 8 Container 9 Inlet pipe
9a Aperture
9b Through-hole 10 Side wall 11 Separation plate 12 Upper space 13 Lower space 14 Pass-through hole 15 Body 16 Side wall 17 Exit pipe

Claims (4)

容器内に上方から冷凍機油混合した冷媒を流入させる入口管を備え、容器内を上下に区画し、前記入口管から吐出された冷媒から冷凍機油を分離する、中央から外側に複数の通過孔を形成した分離板を備え、同分離板により冷凍機油を分離した冷媒を前記容器内から流出させる出口管とを備えてなる油分離器において、
前記入口管の先端に絞り部を設けるとともに、同絞り部上部の外周に透孔を設け、前記分離板の下面に、前記通過孔の容器中心側より前記通過孔を覆うように下方に突出し、前記容器の側壁方向に傾斜して張り出すヒサシ体を設け、前記通過孔を通過した冷媒を前記容器の側壁方向に導いてなることを特徴とする油分離器。
An inlet tube for flowing a refrigerant refrigeration oil mixed from above into the container, partition the container up and down to separate refrigerating machine oil from refrigerant discharged from the inlet pipe, a plurality of passage holes from the center to the outside In an oil separator comprising: a separator plate formed with an outlet pipe for allowing a refrigerant separated from the refrigerating machine oil by the separator plate to flow out of the container;
A throttle part is provided at the tip of the inlet pipe, a through hole is provided on the outer periphery of the upper part of the throttle part, and the lower surface of the separation plate protrudes downward from the container center side of the passage hole so as to cover the passage hole. An oil separator is provided, comprising an elongate body that projects in an inclined manner toward the side wall of the container, and guides the refrigerant that has passed through the passage hole toward the side wall of the container.
前記ヒサシ体の傾斜角度を45°以下としてなることを特徴とする請求項1記載の油分離器。The oil separator according to claim 1, wherein an inclination angle of the elongate body is 45 ° or less. 前記ヒサシ体の両側に側壁を設け、両側を閉じるようにしてなることを特徴とする請求項1または請求項2記載の油分離器。The oil separator according to claim 1 or 2, wherein side walls are provided on both sides of the elongate body and both sides are closed. 前記油分離板を板金製とし、前記ヒサシ体を絞り加工にて前記油分離板と一体に形成してなることを特徴とする請求項1、2または請求項3記載の油分離器。4. The oil separator according to claim 1, wherein the oil separation plate is made of sheet metal, and the elongate body is formed integrally with the oil separation plate by drawing. 5.
JP27794599A 1999-09-30 1999-09-30 Oil separator Expired - Fee Related JP4186343B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27794599A JP4186343B2 (en) 1999-09-30 1999-09-30 Oil separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27794599A JP4186343B2 (en) 1999-09-30 1999-09-30 Oil separator

Publications (2)

Publication Number Publication Date
JP2001099526A JP2001099526A (en) 2001-04-13
JP4186343B2 true JP4186343B2 (en) 2008-11-26

Family

ID=17590474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27794599A Expired - Fee Related JP4186343B2 (en) 1999-09-30 1999-09-30 Oil separator

Country Status (1)

Country Link
JP (1) JP4186343B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2169332A3 (en) * 2008-09-29 2014-12-03 Sanyo Electric Co., Ltd. Oil separator for separating refrigerant and oil
JP2010078262A (en) * 2008-09-29 2010-04-08 Sanyo Electric Co Ltd Oil separator
JP2012007864A (en) * 2010-06-28 2012-01-12 Mitsubishi Electric Corp Liquid receiver and refrigerating cycle device using the same
CN106546041B (en) * 2017-01-24 2022-05-13 浙江零火线智能科技有限公司 Multilayer concentric oil attachment device and separator comprising same
CN106766431B (en) * 2017-03-22 2023-09-05 珠海格力电器股份有限公司 Oil content system and air conditioning system
CN111256399B (en) * 2018-11-30 2023-04-28 浙江三花智能控制股份有限公司 Oil separator and refrigerating system with same

Also Published As

Publication number Publication date
JP2001099526A (en) 2001-04-13

Similar Documents

Publication Publication Date Title
CN207299634U (en) Economizer and centrifugal refrierator
JP4191847B2 (en) Gas-liquid separator
AU2020334589B2 (en) Refrigerant Distributor and Evaporator Comprising the Refrigerant Distributor
JP4186343B2 (en) Oil separator
CN110513921A (en) Water-saving evaporative condenser
JP3215614B2 (en) Refrigeration cycle and refrigeration cycle parts for air conditioners
JP2000329430A (en) Oil separator
JP2011027293A (en) Oil separator
JP4294764B2 (en) Refrigeration cycle
JP2000274889A (en) Oil separator
JP2505194B2 (en) Gas-liquid separator for freezing and cooling
JP6601022B2 (en) Gas-liquid separator
JP7361907B2 (en) Accumulator and refrigeration cycle equipment
JP7304518B2 (en) Refrigerant circulation system with gas-liquid separator and gas-liquid separator
JPH09243209A (en) Oil separator
CN110285606A (en) Flooded evaporator
CN214148438U (en) Falling film evaporator and heat pump unit comprising same
JPH04139366A (en) Accumulator for rotary compressor
CN115485517B (en) Evaporator
CN216897555U (en) Air duct machine
CN215832237U (en) Oil-gas separation device, condenser and air conditioner
CN219318781U (en) Refrigerating unit and refrigerating equipment
CN110455020B (en) Flash tank, air-supplying and enthalpy-increasing air conditioning system and control method thereof
JP3372170B2 (en) refrigerator
KR100331806B1 (en) device for cooling compressor in the refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060728

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080819

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110919

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120919

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130919

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees