JP4185977B2 - Polymers with phenazacillin compounds as the main chain skeleton - Google Patents

Polymers with phenazacillin compounds as the main chain skeleton Download PDF

Info

Publication number
JP4185977B2
JP4185977B2 JP2000051316A JP2000051316A JP4185977B2 JP 4185977 B2 JP4185977 B2 JP 4185977B2 JP 2000051316 A JP2000051316 A JP 2000051316A JP 2000051316 A JP2000051316 A JP 2000051316A JP 4185977 B2 JP4185977 B2 JP 4185977B2
Authority
JP
Japan
Prior art keywords
polymer
phenazacillin
main chain
compound
chain skeleton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000051316A
Other languages
Japanese (ja)
Other versions
JP2000313739A (en
Inventor
英樹 林
晃一 沖田
輝幸 林
正人 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000051316A priority Critical patent/JP4185977B2/en
Publication of JP2000313739A publication Critical patent/JP2000313739A/en
Application granted granted Critical
Publication of JP4185977B2 publication Critical patent/JP4185977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、フェナザシリン化合物を主鎖骨格とする高分子、さらにはフェナザシリン化合物とジエチニル芳香族化合物とを主鎖骨格とする高分子化合物に関するものであり、耐熱性、酸化防止性、正孔輸送性等の特性を保有する素材として利用できる。
【0002】
【従来の技術】
フェナザシリン化合物は酸化を防止する機能を持つ化合物としてIssled. Ob1. Fiz. Khim.. Kauch. Rezin. 2, 14(1973)に記載されている。また、特開平8−302339号公報、特開平10−218884号公報には、このフェナザシリン化合物を発光素子の正孔輸送材料として好適に使用できることが記載されている。このフェナザシリン化合物は、可視光領域で大きな吸収を持たず、また高いガラス転移温度(Tg)を持つことから、発光素子の構成材料として用いた際に、通常の低分子化合物が時間の経過とともに結晶化し、界面が凸凹になることから電気短絡を起こすという欠点があるのに対し、フェナザシリン化合物は経時変化により結晶化の進行の少ないことが特徴となっていた。
【0003】
【発明が解決しようとする課題】
本発明は、酸化防止機能を持ち、かつ高いガラス転移温度を持ち、更に発光素子の構成材料としても有用なフェナザシリン化合物を、真空蒸着などの高価の機器を用いないと利用しにくい低分子化合物のままで適用するのではなく、もっと簡便な手段によって利用できるように高分子化合物に変えて提供することにある。
【0004】
【課題を解決するための手段】
本発明はこの課題を解決するために、ハロゲン化されたフェナザシリン化合物を合成し、ニッケルゼロ価錯体などを用いる脱ハロゲン化カップリング反応による単一化合物の重合、あるいは他のジエチニル芳香族化合物との交互共重合を行って、フェナザシリンを主鎖骨格とする高分子に変化させることにある。それゆえに、酸化防止機能、あるいは正孔の輸送機能を果たす用途においても、スピンコートなど、成形加工でも非常に簡便な手法で薄膜化が出来るような素材を提供することにある。又、このように高分子量化合物に変更することにより、電気化学的な酸化・還元反応によって、さまざまな色を呈するエレクトロクロミズム特性を持ち、なおかつ発光素子の構成材料としても有用な材料を提供することになる。
【0005】
即ち本発明は、下記式(1)で表される繰り返し単位構造(フェナザシリン化合物)を主鎖骨格とする高分子
【0006】
【化3】

Figure 0004185977
【0007】
(式中、Rはn−オクチル基又はフェニル基を表す。)
及び、下記式(2)で表される繰り返し単位構造(フェナザシリン化合物とジエチニル芳香族化合物とから形成される構造)を主鎖骨格とする高分子
【0008】
【化4】
Figure 0004185977
【0009】
(式中、Rはn−オクチル基又はフェニル基を表す。Arは1,3−フェニレン又は1,4−フェニレンを表す。)に関するものである。
【0010】
【発明の実施の形態】
本発明で使用する原料のフェナザシリン化合物の合成では、下記反応式に示すように、まず、N−メチルジフェニルアミン(a)の2,2’の位置をハロゲン原子、特に臭素原子で置換したビス(2,4−ジブロモフェニル)メチルアミン(b)を合成し、ハロゲン原子をn−ブチルリチウムなどを用いてリチウムに置換し、ついでジクロロシランなどのケイ素化合物を添加して脱リチオ化とともにケイ素で架橋・環化させることで目的のフェナザシリン化合物(c)が得られる。
【0011】
【化5】
Figure 0004185977
【0012】
この原料モノマーを用いてホモポリマーを合成するには、0価のニッケル錯体、例えば、ビス(1,5−シクロオクタジエン)ニッケル(0)〔Ni(cod)2〕などを用いて適当な溶媒中で単独重合させることで、ホモポリマーを合成することができる。
【0013】
【化6】
Figure 0004185977
【0014】
又、コポリマーの合成は、式(c)で表されるモノマーとジエチニルベンゼンとを、0価のパラジウム錯体、例えば、テトラキス(トリフェニルホスフィン)パラジウム(0)〔Pd(PPh3)4〕を用いてカップリング反応させることで目的のコポリマーが得られる。
【0015】
【化7】
Figure 0004185977
【0016】
【実施例】
以下には本発明を実施例により具体的に説明する。
【0017】
合成例1〔モノマーの合成1〕
5.42g(29.6mmol)のN−メチルジフェニルアミンを四塩化炭素とクロロホルムの混合溶媒(60mL/60mL)に溶かした後に25g(140mmol)のN−ブロモこはく酸イミドを加えた。12時間かくはんした後に水溶液を加えて反応を終了させた。更にクロロホルムで抽出した後にヘキサン−クロロホルム混合溶媒で再結晶することにより9.02gのビス(2,4−ジブロモフェニル)メチルアミンを単離した。
【0018】
次に、水浴中で6.53g(13mmol)のビス(2,4−ジブロモフェニル)メチルアミンを75mLのエーテルに懸濁させた後にn−ブチルリチウムのヘキサン溶液(1.6M)を17mL加えた。懸濁液が均一になったところでさらにジ−n−オクチルジクロロシランを4.49g(14mmol)加えた。沈殿が生成した後に水浴を外して12時間かくはんした。反応液に水を加えてエーテルで抽出した後にシリカゲルのカラムで精製することにより4.51g(7.6mmol)の2,8−ジブロモ−5,10−ジヒドロ−10,10−ジオクチル−5−メチルフェナザシリンを単離した。収率は58%であった。元素分析の結果を以下に示す。又、NMR測定の結果は13C(N−CH3):38.59,29Si:−19.03ppmであった。
【0019】
【表1】
Figure 0004185977
【0020】
合成例2〔モノマーの合成2〕
合成例1において、ジ−n−オクチルジクロロシラン4.49g(14mmol)に代えて、ジフェニルジクロロシラン3.54g(14mmol)を使用した以外合成例1と同様にして2,8−ジブロモ−5,10−ジヒドロ−10,10−ジフェニル−5−メチルフェナザシリンを単離した。収率は42%であった。元素分析の結果を以下に示す。又、NMR測定の結果は13C(N−CH3):38.65,29Si:−29.32ppmであった。
【0021】
【表2】
Figure 0004185977
【0022】
実施例1〔ホモポリマーの合成1〕
窒素雰囲気下でNi(cod)20.45g(1.6mmol)に1,5−シクロオクタジエン1mLを加えた後にトルエンを15mL加えて懸濁させた。更に2,2’−ビピリジル0.26g(1.6mmol)を加えてかくはんした。更に合成例1で得た2,8−ジブロモ−15,10−ジヒドロ−10,10−ジオクチル−5−メチルフェナザシリン0.80g(1.3mmol)を加えた後に60℃に昇温して48時間かくはんした。反応液をメタノールに注ぎ、得られた粉末をろ過した。この粉末を2M塩酸、水、メタノール、ヘキサンの順で洗浄した後にTHFに溶かしてメタノールで再沈殿することにより、0.54g(1.2mmol monomer unit)のポリ(5,10−ジヒドロ−10,10−ジオクチル−5−メチルフェナザシリン)を単離した。結果を表3に示す。
【0023】
実施例2〔ホモポリマーの合成2〕
反応溶媒をトルエンからN,N−ジメチルフォルムアミド(DMF)に代えた以外は実施例1と同様にしてポリマー合成を行った。結果を表3に示す。
【0024】
実施例3〔ホモポリマーの合成3〕
原料モノマーを合成例2で得られた2,8−ジブロモ−5,10−ジヒドロ−10,10−ジフェニル−5−メチルフェナザシリンに代えた以外は、実施例2と同様にしてポリマー合成を行った。結果を表3に示す。
【0025】
【表3】
Figure 0004185977
【0026】
a)ゲル浸透クロマトグラフィー法(GPC法、CHCl3、ポリスチレン基準)、かっこ内はMw/Mnを示す。
b)CHCl3への溶解性が低いために未測定
c)CDCl3溶液
d)CP−MAS測定
【0027】
なお、実施例1と2で収率及び分子量が溶媒によって異なるのは、生成したポリマーの溶媒への溶解度の違いによるものと考えられる。又、13C−及び29Si−NMR測定の結果、それぞれ原料のモノマーとほぼ同じ位置にピークが現れ、フェナザシリン骨格を保持したまま重合反応が進行していることが確認された。
【0028】
実施例4〔コポリマーの合成1〕
2,8−ジブロモ−5,10−ジヒドロ−10,10−ジオクチル−5−メチルフェナザシリン301mg(0.51mmol)と1,3−ジエチニルベンゼン64mg(0.51mmol)を窒素雰囲気下でトルエン10mLに溶かし、更にトリエチルアミン1mLを加えた。更にヨウ化銅5mgとPd(PPh3429mgを加えて60℃に昇温して48時間かくはんした。反応液をメタノールに注ぎ、得られた粉末をろ過した。この粉末をヘキサン、メタノールの順で洗浄することにより90mg(0.16mmol monomer unit)のコポリマーを単離した。結果を表4に示す。
【0029】
実施例5〜8
原料モノマーの組み合わせを表4に示すように変更して実施例4と同様にしてコポリマーの合成を行った。結果を表4にあわせて示す。
【0030】
【表4】
Figure 0004185977
【0031】
a)ゲル浸透クロマトグラフィー法(GPC法、CHCl3、ポリスチレン基準)、かっこ内はMw/Mnを示す。
b)CHCl3へ部分的に溶解
c)CDCl3溶液
d)CP−MAS測定
【0032】
13C−及び29Si−NMR測定の結果、それぞれ原料のモノマーとほぼ同じ位置にピークが現れ、フェナザシリン骨格を保持したまま重合反応が進行していることが確認された。
【0033】
〔溶解性の評価〕
以上の実施例で得られたホモポリマー及びコポリマーについて、溶媒に対する溶解性を評価した。結果を表5に示す。なお、評価基準としては、可溶なものを(◎)、一部可溶なものを{○、△(溶解性:○>△)}、不溶なものを(×)とした。
【0034】
【表5】
Figure 0004185977
【0035】
上記の結果から、ケイ素上の置換基がフェニル基からオクチル基に変わることによりCHCl3への溶解性が向上することが分かる。更に主鎖への三重結合の導入によってトリフルオロ酢酸への溶解性が低下している。
【0036】
〔光学的特性〕
次に各ポリマーの光学的特性について評価した。測定項目としては、紫外線領域における吸収極大波長(UVλmax)と、紫外光照射による蛍光スペクトルの極大波長(EMλmax)を求めた。結果を表6に示す。
【0037】
【表6】
Figure 0004185977
【0038】
a)CHCl3溶液中
b)CHCl3に一部可溶
【0039】
コポリマーの場合、エチニル基に挟まれたベンゼン環への結合位置の違いにより吸収極大が変化することが確認された。又、ポリマー主鎖への三重結合の導入によりポリマーのCHCl3溶液中での発光が強くなることが観測された。
【0040】
〔ポリマーの電気化学的測定〕
(a)フィルム状態におけるポリマーの電気化学的応答を測定するため、ポリマー1mgを200μLのジクロロエタン又はトリフルオロ酢酸に溶解し、そのポリマー溶液をグラッシーカーボン電極上にキャストし、対極として白金棒、参照極として銀・銀イオン電極からなる三極式の電気化学セルを用いて、支持電解質として過塩素酸テトラブチルアンモニウム(TBAP)、溶媒として脱水アセトニトリル又は脱水ジクロロメタンを使用し、サイクリックボルタンメトリー(CV)測定した。
(b)溶存状態におけるポリマーの電気化学的応答は支持電解質を含んだジクロロメタン溶液にポリマーを溶解して観察した。
(c)ポリマーの分光電気化学応答は、市販の透明電極(50×5mm)上にポリマー溶液をキャストし、これを作用極とした。これを対極(白金板)、参照極と共に石英セル内に配置し、電位変化におけるポリマーの色調変化を分光器により検出した。
【0041】
以上の結果を図に示す。実施例と図面との対応については下表の通りである。
【0042】
【表7】
Figure 0004185977
【0043】
1)走査速度:50mV/秒
2)200μlのジクロロメタン中に2mgのポリマーを溶解、走査速度:50mV
3)図5中、(a)は酸化電位、(b)は還元電位
4)図6〜8中、(a)は印加電圧の違いによる吸光度、(b)は電位によるABS強度の変化
又、実施例4、6、7、8のポリマーの酸化及び還元電位のピークを以下に示す。
【0044】
【表8】
Figure 0004185977
【0045】
以上の結果から、本発明のホモポリマー及びコポリマーのいずれも多段階の酸化還元を伴う可逆な電気化学応答性を有しており、またこのポリマーは酸化還元状態の違いにより様々な色調を呈することが確認された。
【0046】
参考例
図9はエレクトロルミネッセンス素子(EL素子)の概略断面図を示すものである。透明絶縁性の基板1として、厚さ1.1mmのガラス板を用い、この上に120nmのITOをスパッタリング法で成膜し、陽極2とした。この陽極を形成した基板を使用前に水洗、オゾン洗浄、プラズマ洗浄により十分に洗浄した。正孔輸送層3として、ポリ(5,10−ジヒドロ−10,10−ジオクチル−5−メチルフェナザシリン−2,8−ジイル)を有機溶媒(1,2−ジクロロエタン、トルエンなど)に溶解し、陽極2上にスピンコート法により40nmの厚さで成膜した。
【0047】
次に有機発光層4としてトリス(8−キノリノール)アルミニウムを60nm蒸着し、その上面に陰極5としてMgとAlを蒸着速度比10:1で150nm蒸着した。最後に、封止層6としてGeOを1.6μm蒸着後、ガラス板7を光硬化性樹脂8で接着して密封した。なお、図中、9は電源、10はリード線、11は陰極端子を示す。
【0048】
この素子は5V以上の直流電圧により緑色に発光し、13Vにおける輝度は5630cd/m2、電流密度は388mA/cm2であった。
【0049】
【発明の効果】
以上説明したように、本発明によれば、成形加工でも非常に簡便な手法で薄膜化が出来るような素材の提供が可能となり、電気化学的な酸化・還元反応によって、さまざまな色を呈するエレクトロクロミズム特性を持つ材料を提供することができる。
【図面の簡単な説明】
【図1】実施例1で得られたホモポリマーの電気化学的応答を示すCV曲線であり、トリフルオロ酢酸を用いてフィルム化した状態で測定したものである。
【図2】実施例1で得られたホモポリマーの電気化学的応答を示すCV曲線であり、ジクロロエタンを用いてフィルム化した状態で測定したものである。
【図3】実施例3で得られたホモポリマーの電気化学的応答を示すCV曲線であり、トリフルオロ酢酸を用いてフィルム化した状態で測定したものである。
【図4】実施例1で得られたホモポリマーの電気化学的応答を示すCV曲線であり、ジクロロメタンに溶解した状態で測定したものである。
【図5】実施例7で得られたコポリマーの電気化学的応答を示すCV曲線である。
【図6】実施例1で得られたホモポリマーの分光電気化学応答を示すもので、トリフルオロ酢酸を用いてフィルム化した状態で測定し、(a)は印加電圧の違いによる吸光度、(b)は電位によるABS強度の変化を示す。
【図7】実施例1で得られたホモポリマーの分光電気化学応答を示すもので、ジクロロメタンを用いてフィルム化した状態で測定し、(a)は印加電圧の違いによる吸光度、(b)は電位によるABS強度の変化を示す。
【図8】実施例3で得られたホモポリマーの分光電気化学応答を示すもので、トリフルオロ酢酸を用いてフィルム化した状態で測定し、(a)は印加電圧の違いによる吸光度、(b)は電位によるABS強度の変化を示す。
【図9】参考例に示したEL素子の模式的断面図である。
【符号の説明】
1 基板
2 陽極
3 正孔注入輸送層
4 有機発光層
5 陰極
6 封止層
7 接着性材料層
8 ガラス板
9 電源
10 リード線
11 陰極端子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer having a main chain skeleton of a phenazacillin compound, and further to a polymer compound having a main chain skeleton of a phenazacillin compound and a diethynyl aromatic compound, and has heat resistance, antioxidant properties, and hole transport properties. It can be used as a material possessing characteristics such as.
[0002]
[Prior art]
The phenazacillin compound is described in Issled. Ob1. Fiz. Khim .. Kauch. Rezin. 2, 14 (1973) as a compound having a function of preventing oxidation. JP-A-8-302339 and JP-A-10-218884 describe that this phenazacillin compound can be suitably used as a hole transport material of a light-emitting element. Since this phenazacillin compound does not have a large absorption in the visible light region and has a high glass transition temperature (Tg), when used as a constituent material of a light-emitting element, an ordinary low-molecular compound is crystallized over time. However, the phenazacillin compound is characterized in that the crystallization of the phenazacillin compound hardly progresses with the passage of time, whereas there is a drawback that an electrical short circuit is caused because the interface becomes uneven.
[0003]
[Problems to be solved by the invention]
The present invention is a low molecular weight compound that has an antioxidant function, has a high glass transition temperature, and is a low molecular weight compound that is difficult to use without using expensive equipment such as vacuum deposition, which is also useful as a constituent material of a light emitting device. Instead of applying as it is, it is to provide a polymer compound that can be used by a simpler means.
[0004]
[Means for Solving the Problems]
In order to solve this problem, the present invention synthesizes a halogenated phenazacillin compound and polymerizes a single compound by a dehalogenation coupling reaction using a nickel zero-valent complex or the like, or with another diethynyl aromatic compound. By alternating copolymerization, the polymer is changed to a polymer having phenazacillin as the main chain skeleton. Therefore, an object of the present invention is to provide a material that can be formed into a thin film by a very simple technique such as spin coating even in an application that fulfills an antioxidant function or a hole transport function. In addition, by changing to a high molecular weight compound in this way, it is possible to provide materials that have electrochromic properties that exhibit various colors by electrochemical oxidation / reduction reactions and that are also useful as constituent materials for light-emitting elements. become.
[0005]
That is, the present invention provides a polymer having a repeating unit structure (phenazacillin compound) represented by the following formula (1) as a main chain skeleton.
[Chemical 3]
Figure 0004185977
[0007]
(In the formula, R represents an n-octyl group or a phenyl group.)
And a polymer having a repeating unit structure represented by the following formula (2) (structure formed from a phenazacillin compound and a diethynyl aromatic compound) as a main chain skeleton :
[Formula 4]
Figure 0004185977
[0009]
(Wherein R represents an n-octyl group or a phenyl group, Ar represents 1,3-phenylene or 1,4-phenylene).
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the synthesis of the raw material phenazacillin compound used in the present invention, as shown in the following reaction formula, first, the bis (2) in which the 2,2 ′ position of N-methyldiphenylamine (a) is substituted with a halogen atom, particularly a bromine atom, is used. , 4-Dibromophenyl) methylamine (b), the halogen atom is replaced with lithium using n-butyllithium, etc., and then a silicon compound such as dichlorosilane is added to delithiate and crosslink with silicon. The target phenazacillin compound (c) is obtained by cyclization.
[0011]
[Chemical formula 5]
Figure 0004185977
[0012]
In order to synthesize a homopolymer using this raw material monomer, an appropriate solvent is used using a zero-valent nickel complex such as bis (1,5-cyclooctadiene) nickel (0) [Ni (cod) 2 ]. A homopolymer can be synthesized by homopolymerization in the polymer.
[0013]
[Chemical 6]
Figure 0004185977
[0014]
The copolymer is synthesized by combining a monomer represented by the formula (c) and diethynylbenzene with a zerovalent palladium complex, for example, tetrakis (triphenylphosphine) palladium (0) [Pd (PPh 3 ) 4 ]. The desired copolymer is obtained by using it for a coupling reaction.
[0015]
[Chemical 7]
Figure 0004185977
[0016]
【Example】
Hereinafter, the present invention will be described specifically by way of examples.
[0017]
Synthesis Example 1 [Monomer Synthesis 1]
After dissolving 5.42 g (29.6 mmol) of N-methyldiphenylamine in a mixed solvent of carbon tetrachloride and chloroform (60 mL / 60 mL), 25 g (140 mmol) of N-bromosuccinimide was added. After stirring for 12 hours, an aqueous solution was added to terminate the reaction. Furthermore, 9.02 g of bis (2,4-dibromophenyl) methylamine was isolated by recrystallization from a hexane-chloroform mixed solvent after extraction with chloroform.
[0018]
Next, 6.53 g (13 mmol) of bis (2,4-dibromophenyl) methylamine was suspended in 75 mL of ether in a water bath, and then 17 mL of hexane solution (1.6 M) of n-butyllithium was added. . When the suspension became uniform, 4.49 g (14 mmol) of di-n-octyldichlorosilane was further added. After the precipitate was formed, the water bath was removed and the mixture was stirred for 12 hours. Water was added to the reaction solution, and the mixture was extracted with ether and purified by a silica gel column to obtain 4.51 g (7.6 mmol) of 2,8-dibromo-5,10-dihydro-10,10-dioctyl-5-methyl. Phenazacillin was isolated. The yield was 58%. The results of elemental analysis are shown below. The results of NMR measurement were 13 C (N—CH 3 ): 38.59, 29 Si: -19.03 ppm.
[0019]
[Table 1]
Figure 0004185977
[0020]
Synthesis Example 2 [Monomer Synthesis 2]
In Synthesis Example 1, 2,8-dibromo-5,5 was prepared in the same manner as in Synthesis Example 1 except that 3.54 g (14 mmol) of diphenyldichlorosilane was used instead of 4.49 g (14 mmol) of di-n-octyldichlorosilane. 10-dihydro-10,10-diphenyl-5-methylphenazacillin was isolated. The yield was 42%. The results of elemental analysis are shown below. The results of NMR measurement were 13 C (N—CH 3 ): 38.65, 29 Si: −29.32 ppm.
[0021]
[Table 2]
Figure 0004185977
[0022]
Example 1 [Synthesis of homopolymer 1]
Under a nitrogen atmosphere, 1 mL of 1,5-cyclooctadiene was added to 0.45 g (1.6 mmol) of Ni (cod) 2 , and then 15 mL of toluene was added and suspended. Further, 0.26 g (1.6 mmol) of 2,2′-bipyridyl was added and stirred. Furthermore, after adding 0.80 g (1.3 mmol) of 2,8-dibromo-15,10-dihydro-10,10-dioctyl-5-methylphenazacillin obtained in Synthesis Example 1, the temperature was raised to 60 ° C. Stirred for 48 hours. The reaction solution was poured into methanol, and the resulting powder was filtered. This powder was washed with 2M hydrochloric acid, water, methanol, and hexane in this order, dissolved in THF, and reprecipitated with methanol, whereby 0.54 g (1.2 mmol monomer unit) of poly (5,10-dihydro-10, 10-dioctyl-5-methylphenazacillin) was isolated. The results are shown in Table 3.
[0023]
Example 2 [Synthesis of homopolymer 2]
Polymer synthesis was carried out in the same manner as in Example 1 except that the reaction solvent was changed from toluene to N, N-dimethylformamide (DMF). The results are shown in Table 3.
[0024]
Example 3 [Synthesis of homopolymer 3]
Polymer synthesis was carried out in the same manner as in Example 2 except that the raw material monomer was changed to 2,8-dibromo-5,10-dihydro-10,10-diphenyl-5-methylphenazacillin obtained in Synthesis Example 2. went. The results are shown in Table 3.
[0025]
[Table 3]
Figure 0004185977
[0026]
a) Gel permeation chromatography method (GPC method, CHCl 3 , polystyrene standard), parentheses indicate Mw / Mn.
b) Unmeasured due to low solubility in CHCl 3 c) CDCl 3 solution d) CP-MAS measurement
The difference in yield and molecular weight between Examples 1 and 2 depending on the solvent is considered to be due to the difference in solubility of the produced polymer in the solvent. As a result of 13 C- and 29 Si-NMR measurements, it was confirmed that a peak appeared at almost the same position as the raw material monomer, and that the polymerization reaction proceeded while maintaining the phenazacillin skeleton.
[0028]
Example 4 [Synthesis of Copolymer 1]
301 mg (0.51 mmol) of 2,8-dibromo-5,10-dihydro-10,10-dioctyl-5-methylphenazacillin and 64 mg (0.51 mmol) of 1,3-diethynylbenzene in toluene Dissolved in 10 mL, and further added 1 mL of triethylamine. Further, 5 mg of copper iodide and 29 mg of Pd (PPh 3 ) 4 were added, and the mixture was heated to 60 ° C. and stirred for 48 hours. The reaction solution was poured into methanol, and the resulting powder was filtered. The powder was washed with hexane and methanol in this order to isolate 90 mg (0.16 mmol monomer unit) of copolymer. The results are shown in Table 4.
[0029]
Examples 5-8
A copolymer was synthesized in the same manner as in Example 4 except that the combinations of raw material monomers were changed as shown in Table 4. The results are shown in Table 4.
[0030]
[Table 4]
Figure 0004185977
[0031]
a) Gel permeation chromatography method (GPC method, CHCl 3 , polystyrene standard), parentheses indicate Mw / Mn.
b) Partially dissolved in CHCl 3 c) CDCl 3 solution d) CP-MAS measurement
As a result of 13 C- and 29 Si-NMR measurements, it was confirmed that a peak appeared at approximately the same position as the raw material monomer, and that the polymerization reaction was proceeding while retaining the phenazacillin skeleton.
[0033]
[Evaluation of solubility]
The homopolymers and copolymers obtained in the above examples were evaluated for solubility in solvents. The results are shown in Table 5. In addition, as an evaluation standard, a soluble thing is ((double-circle)), a partly soluble thing is ((circle)) (triangle | delta) (solubility: (circle)> (triangle | delta))}, and insoluble thing was made into (x).
[0034]
[Table 5]
Figure 0004185977
[0035]
From the above results, it is understood that the solubility in CHCl 3 is improved by changing the substituent on silicon from a phenyl group to an octyl group. Furthermore, the solubility in trifluoroacetic acid is reduced by the introduction of a triple bond into the main chain.
[0036]
(Optical characteristics)
Next, the optical properties of each polymer were evaluated. As measurement items, the absorption maximum wavelength (UVλmax) in the ultraviolet region and the maximum wavelength (EMλmax) of the fluorescence spectrum by ultraviolet light irradiation were determined. The results are shown in Table 6.
[0037]
[Table 6]
Figure 0004185977
[0038]
a) In CHCl 3 solution b) Partially soluble in CHCl 3
In the case of the copolymer, it was confirmed that the absorption maximum varies depending on the difference in the bonding position to the benzene ring sandwiched between ethynyl groups. It was also observed that the light emission in the CHCl 3 solution of the polymer became stronger by introducing a triple bond into the polymer main chain.
[0040]
[Electrochemical measurement of polymer]
(A) In order to measure the electrochemical response of the polymer in the film state, 1 mg of the polymer was dissolved in 200 μL of dichloroethane or trifluoroacetic acid, the polymer solution was cast on a glassy carbon electrode, and a platinum rod, a reference electrode as a counter electrode Cyclic voltammetry (CV) measurement using a tripolar electrochemical cell consisting of silver and silver ion electrodes, tetrabutylammonium perchlorate (TBAP) as the supporting electrolyte, and dehydrated acetonitrile or dehydrated dichloromethane as the solvent did.
(B) The electrochemical response of the polymer in the dissolved state was observed by dissolving the polymer in a dichloromethane solution containing a supporting electrolyte.
(C) The spectroelectrochemical response of the polymer was obtained by casting a polymer solution on a commercially available transparent electrode (50 × 5 mm) and using this as the working electrode. This was placed in a quartz cell together with a counter electrode (platinum plate) and a reference electrode, and a change in the color tone of the polymer due to a potential change was detected by a spectrometer.
[0041]
The above results are shown in the figure. The correspondence between the examples and the drawings is as shown in the table below.
[0042]
[Table 7]
Figure 0004185977
[0043]
1) Scan rate: 50 mV / sec 2) 2 mg of polymer dissolved in 200 μl of dichloromethane, scan rate: 50 mV
3) In FIG. 5, (a) is the oxidation potential, (b) is the reduction potential 4) In FIGS. 6 to 8, (a) is the absorbance due to the difference in applied voltage, (b) is the change in ABS intensity due to the potential, The oxidation and reduction potential peaks of the polymers of Examples 4, 6, 7, and 8 are shown below.
[0044]
[Table 8]
Figure 0004185977
[0045]
From the above results, both the homopolymer and the copolymer of the present invention have reversible electrochemical responsiveness accompanied by multi-step redox, and the polymer exhibits various colors depending on the redox state. Was confirmed.
[0046]
Reference Example FIG. 9 shows a schematic cross-sectional view of an electroluminescence element (EL element). A glass plate having a thickness of 1.1 mm was used as the transparent insulating substrate 1, and a 120 nm ITO film was formed thereon by sputtering to form an anode 2. The substrate on which the anode was formed was sufficiently washed by water, ozone and plasma before use. As the hole transport layer 3, poly (5,10-dihydro-10,10-dioctyl-5-methylphenazacillin-2,8-diyl) is dissolved in an organic solvent (1,2-dichloroethane, toluene, etc.). Then, a film having a thickness of 40 nm was formed on the anode 2 by spin coating.
[0047]
Next, 60 nm of tris (8-quinolinol) aluminum was vapor-deposited as the organic light emitting layer 4, and Mg and Al were vapor-deposited as a cathode 5 on the upper surface thereof at a vapor deposition rate ratio of 10: 1. Finally, after depositing 1.6 μm of GeO as the sealing layer 6, the glass plate 7 was adhered and sealed with a photocurable resin 8. In the figure, 9 is a power source, 10 is a lead wire, and 11 is a cathode terminal.
[0048]
This device emitted green light by a DC voltage of 5 V or more, the luminance at 13 V was 5630 cd / m 2 , and the current density was 388 mA / cm 2 .
[0049]
【The invention's effect】
As described above, according to the present invention, it is possible to provide a material that can be made into a thin film by a very simple method even in molding processing. Electrochemical materials exhibiting various colors by electrochemical oxidation / reduction reactions can be provided. Materials with chromic properties can be provided.
[Brief description of the drawings]
FIG. 1 is a CV curve showing the electrochemical response of the homopolymer obtained in Example 1, measured in the form of a film using trifluoroacetic acid.
FIG. 2 is a CV curve showing the electrochemical response of the homopolymer obtained in Example 1, which was measured in a film state using dichloroethane.
FIG. 3 is a CV curve showing the electrochemical response of the homopolymer obtained in Example 3, measured in the state of film formation using trifluoroacetic acid.
FIG. 4 is a CV curve showing the electrochemical response of the homopolymer obtained in Example 1, measured in a state dissolved in dichloromethane.
5 is a CV curve showing the electrochemical response of the copolymer obtained in Example 7. FIG.
FIG. 6 shows the spectroelectrochemical response of the homopolymer obtained in Example 1, measured in the state of film formation using trifluoroacetic acid, (a) is the absorbance due to the difference in applied voltage, (b ) Indicates the change in ABS intensity with potential.
FIG. 7 shows the spectroelectrochemical response of the homopolymer obtained in Example 1, measured in the state of film formation using dichloromethane, (a) is the absorbance due to the difference in applied voltage, and (b) is The change of ABS intensity by electric potential is shown.
FIG. 8 shows the spectroelectrochemical response of the homopolymer obtained in Example 3, which was measured in the state of film formation using trifluoroacetic acid. (A) shows the absorbance due to the difference in applied voltage, (b ) Indicates the change in ABS intensity with potential.
FIG. 9 is a schematic cross-sectional view of an EL element shown in a reference example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Substrate 2 Anode 3 Hole injection transport layer 4 Organic light emitting layer 5 Cathode 6 Sealing layer 7 Adhesive material layer 8 Glass plate 9 Power supply 10 Lead wire 11 Cathode terminal

Claims (2)

下記式(1)で表される繰り返し単位構造を主鎖骨格とする高分子。
Figure 0004185977
(式中、Rはn−オクチル基又はフェニル基を表す。)
A polymer having a repeating unit structure represented by the following formula (1) as a main chain skeleton.
Figure 0004185977
(In the formula, R represents an n-octyl group or a phenyl group.)
下記式(2)で表される繰り返し単位構造を主鎖骨格とする高分子。
Figure 0004185977
(式中、Rはn−オクチル基又はフェニル基を表す。Arは1,3−フェニレン又は1,4−フェニレンを表す。)
A polymer having a repeating unit structure represented by the following formula (2) as a main chain skeleton.
Figure 0004185977
(In the formula, R represents an n-octyl group or a phenyl group. Ar represents 1,3-phenylene or 1,4-phenylene.)
JP2000051316A 1999-03-01 2000-02-28 Polymers with phenazacillin compounds as the main chain skeleton Expired - Lifetime JP4185977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000051316A JP4185977B2 (en) 1999-03-01 2000-02-28 Polymers with phenazacillin compounds as the main chain skeleton

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP5295099 1999-03-01
JP11-52950 1999-03-01
JP2000051316A JP4185977B2 (en) 1999-03-01 2000-02-28 Polymers with phenazacillin compounds as the main chain skeleton

Publications (2)

Publication Number Publication Date
JP2000313739A JP2000313739A (en) 2000-11-14
JP4185977B2 true JP4185977B2 (en) 2008-11-26

Family

ID=26393627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000051316A Expired - Lifetime JP4185977B2 (en) 1999-03-01 2000-02-28 Polymers with phenazacillin compounds as the main chain skeleton

Country Status (1)

Country Link
JP (1) JP4185977B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8293380B2 (en) 2004-12-27 2012-10-23 Sumitomo Chemical Company, Limited Polymer compound and polymer light emitting device using the same
JP4904805B2 (en) * 2004-12-27 2012-03-28 住友化学株式会社 Polymer compound and polymer light emitting device using the same
JP5391392B2 (en) * 2008-06-13 2014-01-15 名古屋市 Phenazacillin polymer and organic thin-film transistor using the phenazacillin polymer
JP5391386B2 (en) * 2008-06-13 2014-01-15 名古屋市 Bisphenazacillin compound, method for producing bisphenazacillin compound, organic thin film transistor using bisphenazacillin compound
JP2010111830A (en) * 2008-11-10 2010-05-20 Yamamoto Chem Inc Polymer compound, method for producing the same and organic electronic device containing the same
JP5234660B2 (en) * 2009-08-25 2013-07-10 名古屋市 Phenazacillin polymer, method for producing phenazacillin polymer, and organic thin film transistor using the phenazacillin polymer
KR20110049244A (en) * 2009-11-04 2011-05-12 다우어드밴스드디스플레이머티리얼 유한회사 Novel organic electroluminescent compounds and organic electroluminescent device using the same
JP5435726B2 (en) * 2010-03-01 2014-03-05 名古屋市 Bis (vinylphenazacillin) compound-derived polymer, method for producing bis (vinylphenazacillin) compound-derived polymer, and organic thin film transistor using the bis (vinylphenazacillin) compound-derived polymer

Also Published As

Publication number Publication date
JP2000313739A (en) 2000-11-14

Similar Documents

Publication Publication Date Title
JP3886381B2 (en) Polymers and their production and use
JP3948532B2 (en) Partially conjugated polymers with spiro centers and their use as electroluminescent materials
Usluer et al. Fluorene‐carbazole dendrimers: Synthesis, thermal, photophysical and electroluminescent device properties
TW411728B (en) Polymer fluorescent substance and organic electroluminescence device
JPH11501955A (en) Nitrogen-containing polymers as electroluminescent materials
WO2004039859A1 (en) High-molecular compounds and polymerer light emitting devices made by using the same
CN105452326B (en) Polymer compound, material for organic electroluminescent element using same, and organic electroluminescent element
JP3375791B2 (en) Conjugated polymers containing ansa substructures and their use as electroluminescent materials
US6344286B1 (en) Diacetylene-based polymer containing light emitting group and electroluminescent device using the same
Ng et al. Novel efficient blue fluorescent polymers comprising alternating phenylene pyridine repeat units: Their syntheses, characterization, and optical properties
JP4185977B2 (en) Polymers with phenazacillin compounds as the main chain skeleton
TW200540195A (en) Polymers having pendant triarylmethane groups and electronic devices made with such polymers
JP3413492B2 (en) TPD polymer fused with silicon
KR20060113881A (en) Material for organic electroluminescent element and organic electroluminescent element employing the same
WO2004003053A1 (en) Polymer and polymeric luminescent element comprising the same
Yu et al. Thermally cross-linkable hyperbranched polymers containing triphenylamine moieties: Synthesis, curing and application in light-emitting diodes
JP4591652B2 (en) Material for organic electroluminescence device and organic electroluminescence device using the same
CN113906577A (en) Organic light emitting device
JP5196747B2 (en) Polymer for luminescence
JP3289143B2 (en) Polydiphenylamine compound fused with silicon, and organic thin film element using the compound
JPH07196780A (en) Poly(alkyl substituted-2,5-pyrimidin-diyl) and its production
Du et al. Alkyl side chain driven tunable red–yellow–green emission: Investigation on the new π‐conjugated polymers comprising of 2, 7‐carbazole unit and 2, 1, 3‐benzo‐thiadiazole units with different side chains
JP2002275249A (en) Pi conjugated polymer including phenazacilin
KR20030008993A (en) Spirobifluorene compounds, electroluminescence polymer and electroluminescence element having the same
JP4185976B2 (en) Dibenzazepine compound, polymer having skeleton of dibenzoazepine compound, and organic thin film EL device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20000229

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20000623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20001004

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20010111

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20011002

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050530

RD07 Notification of extinguishment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7427

Effective date: 20050530

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050530

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071101

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080812

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4185977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term