JP4185429B2 - Internal reflux multipurpose distillation column and batch distillation using the same - Google Patents

Internal reflux multipurpose distillation column and batch distillation using the same Download PDF

Info

Publication number
JP4185429B2
JP4185429B2 JP2003330194A JP2003330194A JP4185429B2 JP 4185429 B2 JP4185429 B2 JP 4185429B2 JP 2003330194 A JP2003330194 A JP 2003330194A JP 2003330194 A JP2003330194 A JP 2003330194A JP 4185429 B2 JP4185429 B2 JP 4185429B2
Authority
JP
Japan
Prior art keywords
distillation
liquid
component
azeotropic
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003330194A
Other languages
Japanese (ja)
Other versions
JP2005095721A (en
Inventor
元澄 三谷
隆昌 南
行雄 秋丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel and Sumikin Chemical Co Ltd
Original Assignee
Nippon Steel and Sumikin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumikin Chemical Co Ltd filed Critical Nippon Steel and Sumikin Chemical Co Ltd
Priority to JP2003330194A priority Critical patent/JP4185429B2/en
Publication of JP2005095721A publication Critical patent/JP2005095721A/en
Application granted granted Critical
Publication of JP4185429B2 publication Critical patent/JP4185429B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Description

本発明は、内部還流式の多目的蒸留塔に関し、特に沸点差が僅かであるために通常の蒸留方式では分離が困難な2成分以上の多品種混合溶液等を初期段階で共沸剤の存在下に共沸蒸留して付加価値成分を精製分離するのに好適な内部還流式の多目的蒸留塔とこれを使用する回分式蒸留法に関するものである。   The present invention relates to a multi-purpose distillation column of internal reflux type, and in particular, in the presence of an azeotropic agent at the initial stage, a multi-component mixed solution of two or more components that are difficult to separate by a normal distillation method due to a slight difference in boiling point. The present invention relates to an internal reflux type multipurpose distillation column suitable for purifying and separating added-value components by azeotropic distillation, and a batch distillation method using the same.

従来、沸点の差が非常に小さく通常の蒸留法では分離が困難な2成分以上の混合溶液を、分離する方法として共沸蒸留法がある。以下、従来から知られる添付図4に基づいて説明する。この場合、2成分以上の混合溶液Fの少なくとも一成分と最低共沸混合物を形成し且つ液液分離しうる共沸剤αを混合して蒸留塔Aへ供給し、共沸蒸留処理すると塔頂部から最低共沸混合物の蒸気成分が排出され、外部に設けられた冷却凝縮器(コンデンサー部)Bで凝縮液化される。この凝縮液化成分はコンデンサーの下部に設置されたデカンタCで静置分離し、一部の軽質主成分Dを含む共沸剤α’は塔頂部へ還流させ、同時に軽質主成分Dは分留成分として抜取られ、該軽質主成分Dは必要に応じて後続の第2蒸留塔にて蒸留処理して残存する共沸剤αを除去して精製成分として分離される。一方側流部又は塔底部からは少なくとも軽質成分が分離された中間成分Sや重質成分W等が抜き出され、これらは必要に応じて更に第3蒸留塔にて処理することにより2成分以上にそれぞれ精製分離することが可能である。   Conventionally, there is an azeotropic distillation method as a method of separating a mixed solution of two or more components that has a very small difference in boiling point and is difficult to separate by a normal distillation method. Hereinafter, description will be made based on FIG. In this case, an azeotropic agent α that forms a minimum azeotrope with at least one component of the mixed solution F of two or more components and can be liquid-liquid separated is mixed and supplied to the distillation column A. The vapor component of the lowest azeotrope is discharged from the refrigerant and condensed and liquefied by a cooling condenser (condenser part) B provided outside. This condensed liquefied component is left and separated by a decanter C installed at the bottom of the condenser, and the azeotropic agent α ′ containing a part of the light main component D is refluxed to the top of the column, and at the same time, the light main component D is a fractionated component The light main component D is distilled as necessary in the subsequent second distillation column to remove the remaining azeotropic agent α and separated as a purified component. On the other hand, at least the intermediate component S and heavy component W separated from the light components are extracted from the side stream portion or the bottom of the column, and these are further processed in the third distillation column as necessary to obtain two or more components. Each can be purified and separated.

例えば酢酸と水との混合物からなる原料液を、水と最低共沸混合物を形成しうる沸点が100℃以上で水と液液分離し得る第一共沸剤の存在下に共沸蒸留して塔頂部から最低共沸混合物の蒸気成分を凝縮分離し、第一共沸剤は追加の共沸剤と共に還流し、水は分留して抜き出す。塔底部からの含水酢酸には更に水と最低共沸混合物を形成しうる沸点が100℃未満で水と液液分離し得る第二共沸剤の存在下に第二の蒸留塔で共沸蒸留して塔頂部から残りの水を分離し、塔底部からは脱水された精製酢酸を回収する連続共沸蒸留方法(例えば特許文献1参照)が知られている。また、オレフィンをヒドロカルボキシメチル化する際に得られる混合物からピリジン化合物を連続共沸蒸留精製する方法として、水を共沸剤として共沸蒸留し共沸混合物を側流部から抜出す蒸留分離法(例えば特許文献2参照)も知られている。さらに回分式蒸留方法及び装置の一例(例えば特許文献3参照)も知られている。
特許第3202150号公報 特開平6−166675号公報 特公平7−4485号公報
For example, a raw material liquid composed of a mixture of acetic acid and water is azeotropically distilled in the presence of a first azeotropic agent capable of forming a minimum azeotrope with water at a boiling point of 100 ° C. or higher and capable of liquid-liquid separation from water. The vapor component of the lowest azeotrope is condensed and separated from the top of the column, the first azeotropic agent is refluxed with additional azeotropic agent, and water is fractionated and extracted. Hydrous acetic acid from the bottom of the column is further azeotropically distilled in the second distillation column in the presence of a second azeotropic agent capable of forming a minimum azeotrope with water and having a boiling point of less than 100 ° C. and capable of liquid-liquid separation from water. Then, a continuous azeotropic distillation method (for example, see Patent Document 1) is known in which the remaining water is separated from the top of the column and dehydrated purified acetic acid is recovered from the bottom of the column. In addition, as a method for continuous azeotropic distillation purification of a pyridine compound from a mixture obtained when hydrocarboxymethylating an olefin, a distillation separation method in which water is azeotropically distilled using an azeotropic agent and the azeotropic mixture is extracted from the side stream portion. (For example, see Patent Document 2) is also known. Furthermore, an example (for example, refer patent document 3) of a batch distillation method and an apparatus is also known.
Japanese Patent No. 3202150 JP-A-6-166675 Japanese Patent Publication No. 7-4485

このように、従来の連続式共沸蒸留法又は回分式蒸留方法では蒸留塔の頂部又は側流部から抜き出される最低共沸混合物は、蒸留塔の外部に設置されたコンデンサー部Bで過冷却され、さらにデカンタCで共沸剤成分と軽質成分とに液液分離し、共沸剤主成分α’は塔頂部へ還流させると同時に軽質成分Dは分留成分として抜取られている。上記したコンデンサーBやデカンタC及びこれらへの配管等には多大な設備費用とその設置場所をも必要とするが、大量の原料溶液を蒸留処理するような工業的な大型設備には従来から利用されてきている。   As described above, in the conventional continuous azeotropic distillation method or batch distillation method, the lowest azeotrope extracted from the top or the side stream of the distillation column is supercooled in the condenser part B installed outside the distillation column. Furthermore, liquid-liquid separation into an azeotropic agent component and a light component is carried out with a decanter C, and the light component D is extracted as a fractionation component at the same time as the azeotropic agent main component α ′ is refluxed to the top of the column. The above condenser B and decanter C and piping to them require a large equipment cost and installation location, but have been conventionally used for industrial large-scale equipment for distillation of a large amount of raw material solution. Has been.

しかしながら、多品種の原料溶液中から、少量の高付加価値成分を(共沸)蒸留処理にて分離したい場合は、設備全体を小型化したとしても外部コンデンサーBやデカンタC及び配管等は原料溶液の切替の都度洗浄処理する必要があり、かかる原料変更への迅速な対応ができない。特にタール系留分中には製品化に至っていない高付加価値成分が多量に含まれており、例えばタール塩基中のピリジン、キノリン、インドール等のヘテロ環を有する化合物が医農薬原料として注目されて利用されており、これらの精製分離法としての多目的蒸留塔の開発が強く望まれている。   However, when it is desired to separate a small amount of high value-added components from a wide variety of raw material solutions by (azeotropic) distillation, the external condenser B, decanter C, and piping are used as raw material solutions even if the entire equipment is downsized. Therefore, it is necessary to perform a cleaning process every time of switching, and it is impossible to respond quickly to such a raw material change. In particular, tar-based fractions contain a large amount of high-value-added components that have not yet been commercialized. For example, compounds having heterocycles such as pyridine, quinoline, and indole in tar bases have attracted attention as raw materials for pharmaceuticals and agrochemicals. The development of a multipurpose distillation column as a purification and separation method is strongly desired.

かかる現状から、本発明の課題は、多品種少量の原料溶液の処理切替が容易で、少量の高付加価値成分を回分式、又は連続式の(共沸)蒸留処理にて分離するのに有効な多目的蒸留塔を提供することであり、さらに沸点が近接する2成分以上の混合溶液を初期段階で共沸剤の存在下に効率よく蒸留処理する方法を提供することである。   From such a current situation, the problem of the present invention is that it is easy to switch the processing of a large variety of raw material solutions and is effective for separating a small amount of high value-added components by batch or continuous (azeotropic) distillation. It is to provide a method for efficiently distilling a mixed solution of two or more components having close boiling points in the presence of an azeotropic agent at an initial stage.

本発明者等は、上記課題を達成するために鋭意検討した結果、塔頂部の内部にコンデンサー部(凝縮器)を内蔵した内部乾留式の多目的蒸留塔で課題を解決できることを見いだし、本発明を完成した。
すなわち本発明の内部還流式の多目的蒸留塔は、
(1)内部に複数の気液接触層を備え、底部にリボイラー付き蒸留釜を備えた蒸留塔において、塔頂部の内部に上昇蒸気成分のコンデンサー部(凝縮器)を内蔵し、該コンデンサー部直下の空間部には上昇蒸気通過用の隙間を残して降下凝縮液だけを塔内周壁方向へ変位して流下させる溝状流下機能を有するコレクターラミナー層が設置され、且つ該コレクターラミナー層の下方部の塔内全周壁には上部解放で周壁を利用した断面U型状の降下凝縮液の貯液部(以下コレクターボックスと称する)が設けられ、さらに該コレクターボックスは同心状に設置された仕切り堰板によって底部が連通する内外二室に区分されており、一方の区分室には塔内還流液用の下降管が、他方の区分室には外部への留出液抜取り管が設けられていることを特徴とするものである。
As a result of intensive investigations to achieve the above-mentioned problems, the present inventors have found that the problems can be solved by an internal dry distillation multi-purpose distillation column having a condenser (condenser) inside the top of the column. completed.
That is, the multi-purpose distillation column of the internal reflux type of the present invention is
(1) In a distillation column equipped with a plurality of gas-liquid contact layers inside and a distillation kettle equipped with a reboiler at the bottom, a condenser part (condenser) of the rising vapor component is built in the top of the tower, and immediately below the condenser part A collector laminar layer having a groove-like flow function is installed in the space portion of the collector laminar layer, leaving a gap for passage of ascending steam and displacing only the descending condensate in the direction of the inner wall of the tower. The entire wall in the tower is provided with a U-shaped cross-section condensate storage section (hereinafter referred to as a collector box) that uses the peripheral wall with the upper part open, and the collector box is a concentric partition weir. It is divided into two chambers, the inner part and the outer part of which communicate with each other by a plate. One of the compartments is provided with a descending pipe for reflux liquid in the column, and the other of the compartments is provided with a distillate extraction pipe for the outside. That features It is intended to.

また本発明の回分式蒸留法は、
(2)上記(1)に記載の多目的蒸留塔のリボイラー付き蒸留釜に2成分以上の混合溶液と、少なくとも該混合溶液中の一成分と共沸混合物を形成し且つ液液分離しうる共沸剤とを供給して加熱し、発生した蒸気成分を塔頂部の内部コンデンサーで凝縮液化させると共に、当初は留出液の抜取りなしで塔内へ全還流した後、定常状態になった段階からは降下する凝縮液化物をコレクターボックス内にて共沸剤を主成分とする液相と共沸成分である液相とに比重差により液液分離し、共沸剤を主成分とする液相は一方の区分室から塔内還流させると同時に共沸成分である液相は他方の区分室から軽沸点成分として外部へ抜取ることを特徴とするものである。
(3)上記の軽沸点成分の抜取りが略完了した後は、常法により回分式蒸留処理を続けて中間沸点留分を分留して外部へ抜取る(2)に記載の回分式蒸留法である。
(4)2成分以上の混合溶液がタール系塩基中のピリジン分留後のピリジン残油であって、少なくとも2,6ルチジンとβ−ピコリン、γ−ピコリンを含み、水を共沸剤として共沸蒸留を開始し、定常状態になった段階から塔頂部で2,6ルチジンと水との共沸混合物である蒸気成分を凝縮液化してコレクターボックスで比重差により液液分離し、内側区分室から水を主成分として塔内還流させると共に、外側区分室からは2,6ルチジンを主成分として抜出した後で、β−、γ−ピコリンは混合状態の高沸点ピコリン留分として抜出し、塔底部からは高沸点成分の釜残物を抜出す(2)または(3)に記載の回分式蒸留法である。
In addition, the batch distillation method of the present invention,
(2) An azeotrope capable of forming an azeotrope with a mixed solution of two or more components and at least one component in the mixed solution in the distillation tank equipped with a reboiler of the multipurpose distillation column described in (1) above, and performing liquid-liquid separation From the stage where the generated vapor components are condensed and liquefied in the internal condenser at the top of the tower, and after the total reflux to the tower without extraction of the distillate, The condensed liquefied liquid descending is liquid-liquid separated by the specific gravity difference between the liquid phase mainly composed of the azeotropic agent and the liquid phase which is the azeotropic component in the collector box, and the liquid phase mainly composed of the azeotropic agent is The liquid phase as an azeotropic component is withdrawn to the outside as a light boiling component from the other compartment at the same time as refluxing from one compartment.
(3) After the extraction of the light-boiling components is substantially completed, the batch-type distillation method according to (2), wherein the batch-type distillation treatment is continued by a conventional method, and the middle-boiling fraction is fractionated and extracted to the outside. It is.
(4) two or more components of the mixed solution is a pyridine residue oil after pyridine fractionation of tar in the base, at least 2,6-lutidine and β- picoline, it includes γ- picolyl down, the water as azeotropic agent Azeotropic distillation was started, and the vapor component, which is an azeotropic mixture of 2,6 lutidine and water, was condensed and liquefied at the top of the column from the stage when it reached a steady state, and liquid-liquid separation was performed by the specific gravity difference in the collector box. After refluxing in the column with water as the main component from the chamber and extracting 2,6 lutidine as the main component from the outer compartment, β- and γ-picoline were extracted as a high-boiling picoline fraction in a mixed state. The batch distillation method according to (2) or (3), in which the kettle residue of a high boiling point component is extracted from the bottom.

かかる本発明によれば、塔頂部の内部にコンデンサー部(凝縮器)と液液分離器を内蔵していることから、蒸留塔の外部でコンデンサーやデカンタ及び配管等の設置を必要とせず、また多品種少量の原料溶液の切替に際しても、蒸留塔内部の洗浄処理による液液置換だけで済み切替作業が簡略化される。また回分式蒸留法においては、初期段階において塔内の共沸混合物は凝縮温度付近にて液液分離されて共沸剤を主成分とする重質液相のみを塔内還流されることから、初期段階での共沸蒸留の釜効率化が達成される。一方共沸剤の同伴がより少ない塔頂分留成分は、その後の精製蒸留塔での負荷低減につながる等の効果が発揮される。   According to the present invention, since the condenser part (condenser) and the liquid-liquid separator are built in the top of the column, it is not necessary to install a condenser, a decanter, a pipe, or the like outside the distillation column. When switching a variety of small quantities of raw material solutions, only the liquid-liquid replacement by washing treatment inside the distillation tower is sufficient, and the switching work is simplified. In the batch distillation method, the azeotropic mixture in the column is liquid-liquid separated in the vicinity of the condensation temperature in the initial stage, and only the heavy liquid phase mainly composed of the azeotropic agent is refluxed in the column. Efficient azeotropic distillation in the initial stage is achieved. On the other hand, the column top fraction component with less entraining of the azeotropic agent exhibits the effect of reducing the load in the subsequent purification distillation column.

以下、本発明を実施するための最良の形態について添付図面に従って詳細に説明する。図1は本発明の一例を示す多目的蒸留塔の概略の全体構造図、図2は第1図の塔頂部の一部を模式的に示す拡大断面図、図3はコレクターラミナー層での凝縮液の流れを矢印で示す図2のA−A’矢視の平面図である。図1において、本発明の多目的蒸留塔1は、内部に泡鐘トレイ、多孔板トレイ、バルブトレイ等のいずれかで構成された複数の棚段又は複数の充填層からなる気液接触層3を備え、底部にスチーム等の加熱源によるリボイラー付き蒸留釜4を備えている。なお回分蒸留法として使用する際は、蒸留釜4に原料2の供給ラインに連通するノズルを設けて1バッチ処理量相当分を供給するものとする。また連続蒸留法として使用する際は、塔の中間部に原料2’の供給ラインに連通する原料供給ノズルを設けて一定流量速度で連続供給するものとする。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a schematic overall structural view of a multipurpose distillation column showing an example of the present invention, FIG. 2 is an enlarged cross-sectional view schematically showing a part of the top of FIG. 1, and FIG. 3 is a condensate in a collector laminar layer. It is a top view of the AA 'arrow of FIG. In FIG. 1, a multipurpose distillation column 1 of the present invention has a gas-liquid contact layer 3 composed of a plurality of shelves or a plurality of packed layers, which is comprised of any one of a bubble tray, a perforated plate tray, a valve tray and the like. Equipped with a reboiler-equipped distillation kettle 4 with a heating source such as steam. In addition, when using as a batch distillation method, the nozzle corresponding to the supply line of the raw material 2 is provided in the distillation pot 4, and the part for 1 batch processing amount shall be supplied. When used as a continuous distillation method, a raw material supply nozzle communicating with the supply line of the raw material 2 'is provided in the middle of the column and continuously supplied at a constant flow rate.

該蒸留塔1の塔頂部の内部には水等の冷却媒体5で冷却されている上昇蒸気成分のコンデンサー部(凝縮器)6を内蔵し、該コンデンサー部6の直下の空間部には、第2図に示すように上昇蒸気通過用の隙間7が介在されて、降下凝縮液だけを塔内周壁方向へ変位させて傾斜し流下させる溝状流下機能を有するコレクターラミナー層8が設置されている。また該コレクターラミナー層8の下方部の塔内全周壁には上部解放で周壁を利用した断面U型状の凝縮液の貯液部(以下コレクターボックスと称する)9が設けられ、さらに該コレクターボックス9は同心状に設置された仕切り堰板10によって底部が連通する内外二室に区分されている。ここで内側区分室には、下段の気液接触層3への塔内還流液用の下降管11が、外側区分室には外部への留出液抜取り管12が設けられていることを特徴とする。   A condenser part (condenser) 6 of an ascending steam component cooled by a cooling medium 5 such as water is built in the top of the distillation tower 1, and a space immediately below the condenser part 6 has a second part. As shown in FIG. 2, a collector laminator layer 8 having a groove-like flow function is provided, in which a gap 7 for passing ascending steam is interposed, and only the descending condensate is displaced toward the inner peripheral wall of the tower to incline and flow down. . Further, a condensate storage section (hereinafter referred to as a collector box) 9 having a U-shaped cross-section utilizing the peripheral wall is provided on the entire peripheral wall in the tower below the collector laminar layer 8 and the peripheral wall is used. Further, the collector box 9 is divided into two chambers, the inner part and the outer part, which communicate with each other by a partition weir plate 10 installed concentrically. Here, the inner compartment is provided with a descending pipe 11 for the reflux liquid in the tower to the lower gas-liquid contact layer 3, and the outer compartment is provided with a distillate extraction pipe 12 to the outside. And

ここで、共沸剤が液液分離しうる留出液より比重が大きい場合には、コレクターラミナー層8の溝状流下先端部を塔内周壁へ傾斜近接させて、降下凝縮液を外側区分室へ流入させることで外側区分室に比重の小さい軽質留出液が、内側区分室には比重の大きい共沸剤主成分が仕切り堰板10によって液液分離させるものである。また共沸剤が留出液より比重が小さい場合には、コレクターラミナー層8の溝状流下先端部を塔内周壁まで到達させないで降下凝縮液を内側区分室へ流入させることで外側区分室に比重の大きい軽質留出液が、内側区分室には比重の小さい共沸剤主成分が仕切り堰板10によって液液分離させるものである。   Here, when the specific gravity is larger than the distillate from which the azeotropic agent can be separated into liquid and liquid, the grooved flow tip of the collector laminar layer 8 is inclined and brought close to the inner wall of the tower, and the descending condensate is separated from the outer compartment. The light distillate having a small specific gravity in the outer compartment is separated into the outer compartment, and the main component of the azeotropic agent having a large specific gravity is separated into the inner compartment by the partition weir plate 10. When the specific gravity of the azeotropic agent is smaller than that of the distillate, the descending condensate is allowed to flow into the inner compartment without allowing the groove-like tip of the collector laminar layer 8 to reach the inner wall of the tower. The light distillate having a large specific gravity is liquid-liquid separated by the partition weir plate 10 with the main component of the azeotropic agent having a small specific gravity in the inner compartment.

ここで下段の気液接触層が棚段の場合には、下降管11からの塔内還流液は出口ウエアからダウンカマー部を経て順次、さらに下方の棚段へと還流される。下段の気液接触層が充填層の場合には、塔内還流液用の下降管11はヘッダー13に接続され、さらにデイストリビューターヘ経て下段の気液接触層3へ均一分散されて還流されるようになっている。さらに外側区分室の外部への軽質留出液抜取り管12は仕切り堰板10によって液液分離された軽質成分Dを抜取れるようにコレクターボックス9の最低位置よりも高めに設けられるが、多目的蒸留用として機能させるために、必要に応じて最低位置にも第2の留出液抜取り管14を設けておき、通常は開閉弁で遮断しておく。   Here, when the lower gas-liquid contact layer is a shelf, the reflux liquid in the tower from the downcomer 11 is sequentially refluxed from the outlet wear to the lower shelf via the downcomer section. When the lower gas-liquid contact layer is a packed bed, the downcomer pipe 11 for the reflux liquid in the tower is connected to the header 13 and further uniformly dispersed to the lower gas-liquid contact layer 3 through the distributor and refluxed. It is like that. Furthermore, the light distillate extraction pipe 12 to the outside of the outer compartment is provided higher than the lowest position of the collector box 9 so that the light component D separated from the liquid by the partition weir plate 10 can be extracted. For this purpose, the second distillate extraction pipe 14 is provided at the lowest position as necessary, and is normally shut off by an on-off valve.

次に本発明の上記の多目的蒸留塔を使用した回分蒸留法の一例について説明する。リボイラー付き加熱釜4に沸点が近接する2成分以上の混合溶液2と少なくとも混合溶液中の一成分と共沸混合物を形成し、且つ液液分離しうる共沸剤αを供給しポンプで循環混合して加熱する。発生した蒸気成分は蒸留塔内部の気液接触層へ順次上昇させ、下降してくる還流液と気液接触を繰返させることで塔頂部へ近づくに従って低沸点成分ほど次第に濃縮されていくが、一方高沸点成分は塔底方向に下がるにつれて濃縮される。最頂部の気液接触部から上昇する共沸混合物の蒸気成分はコレクターラミナー層8の隙間7を通過して塔頂部の内部コンデンサー6で凝縮液化される。   Next, an example of the batch distillation method using the above-mentioned multipurpose distillation column of the present invention will be described. A mixed solution 2 of two or more components whose boiling points are close to the reboiler 4 and an azeotropic mixture with at least one component in the mixed solution are formed, and an azeotropic agent α capable of liquid-liquid separation is supplied and circulated and mixed by a pump And heat. The generated vapor component is gradually raised to the gas-liquid contact layer inside the distillation tower, and the lower boiling point component is gradually concentrated as it approaches the top of the tower by repeating the descending reflux liquid and gas-liquid contact. The high boiling point component is concentrated as it decreases toward the bottom of the column. The vapor component of the azeotropic mixture rising from the top gas-liquid contact portion passes through the gap 7 of the collector laminar layer 8 and is condensed and liquefied by the internal condenser 6 at the top of the tower.

当初は留出液の抜取りなしで塔内へ全還流した後、必要に応じて低沸点成分の初留分を抜取り、定常状態になった段階からは共沸混合物として降下する凝縮液化物をコレクターボックス9にて共沸剤を主成分とする液相と共沸成分である液相とに比重差により液液分離し、共沸剤を主成分とする液相は一方の区分室から下降管11を経て塔内還流させると同時に、共沸成分である液相は他方の区分室から抜取り管12を経て軽沸点成分Dとして外部へ抜取る。かかる軽沸点成分Dの抜取りが略完了した後は、常法により共沸剤と一部の軽沸点成分D及び一部の中間沸点留分S等を含む中間品を抜取った後は、回分式蒸留処理を続けて中間沸点成分S等を分留し、塔底からは重質成分等を残渣成分Wとして外部へ抜取ることができる。   At first, after refluxing all the way into the column without removing the distillate, the initial fraction of low-boiling components is withdrawn if necessary, and the condensate liquefaction that descends as an azeotrope is collected from the steady state. In box 9, the liquid phase containing the azeotropic agent as the main component and the liquid phase as the azeotropic component are separated from each other by the specific gravity, and the liquid phase containing the azeotropic agent as the main component is dropped from one of the compartments. At the same time, the liquid phase as an azeotropic component is withdrawn to the outside as a light boiling point component D through the extraction pipe 12 from the other compartment. After the extraction of the light-boiling component D is substantially completed, the intermediate product containing the azeotropic agent, a part of the light-boiling component D and a part of the intermediate-boiling fraction S, etc. is extracted by a conventional method. The intermediate boiling component S and the like can be fractionally distilled by continuing the distillation process, and the heavy component and the like can be withdrawn to the outside as the residue component W from the bottom of the column.

なお、コレクターボックスでの仕切り堰板10によって液液分離される場合、共沸剤と軽質留出液との相互溶解度が小さいほど液液分離した上下層での溶液濃度が高まるので溶液濃度の高い還流液または溶液濃度の高い外部抜取りには望ましい。従って、予めコレクターボックスでの混合温度と両者の相互溶解度の関係を求めておき、最適な温度に保持することが望ましい。これによって高濃度状態の共沸剤が塔内還流されることから初期段階における共沸蒸留の釜効率化が達成される。一方共沸剤の同伴がより少ない高濃度状態の塔頂分留成分は、その後の精製蒸留塔での負荷低減につながる等の効果が発揮される。   In addition, when liquid-liquid separation is performed by the partition weir plate 10 in the collector box, the lower the mutual solubility between the azeotropic agent and the light distillate, the higher the solution concentration in the upper and lower layers where the liquid-liquid separation is performed. Desirable for external extraction with reflux or high solution concentration. Therefore, it is desirable to obtain the relationship between the mixing temperature in the collector box and the mutual solubility in advance and maintain the optimum temperature. As a result, since the azeotropic agent in a high concentration state is refluxed in the column, the efficiency of the azeotropic distillation in the initial stage can be increased. On the other hand, the high-concentration column top fraction component with less entraining of the azeotropic agent exhibits the effect of reducing the load in the subsequent purification distillation column.

上記した本発明の内部乾留式の多目的蒸留塔は、原料溶液の種類に応じて回分式又は連続式で共沸蒸留処理するのに好適に利用できるだけでなく、共沸剤を使用しない通常の蒸留処理にも利用することができる。液液分離しない共沸剤を使用した場合や通常の蒸留処理の場合には、当然にコレクターボックス内で液液分離することなく、一部が塔内還流されると共に残りが塔頂分留成分として抜出が行われる。本発明の内部乾留式の多目的蒸留塔で処理できる原料溶液としては、特に限定されないが石油系又はタール系の各留分中には、未だ製品化に至っていない高付加価値成分が多量に含まれており、これら高付加価値成分を蒸留処理にて分離するのに好適に利用される。   The above-described multi-purpose distillation column of the present invention is not only suitable for batch-wise or continuous azeotropic distillation depending on the type of raw material solution, but also a normal distillation that does not use an azeotropic agent. It can also be used for processing. In the case of using an azeotropic agent that does not separate liquid and liquid, or in the case of normal distillation treatment, naturally, liquid / liquid separation does not occur in the collector box, and part of it is refluxed in the column and the rest is the fraction obtained from the top of the column. As withdrawing. The raw material solution that can be treated in the internal dry distillation multipurpose distillation column of the present invention is not particularly limited, but each petroleum-based or tar-based fraction contains a large amount of high-value-added components that have not yet been commercialized. Therefore, these high value-added components are preferably used for separation by distillation.

以下に2成分以上の混合溶液がコールタールや石炭液化油から分離されたタール塩基中からピリジンを分留後のピリジン残油を処理する実施例によって、本発明を更に具体的に説明するが、本発明はこの実施例によって、何等限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to an example in which a mixed solution of two or more components is treated with pyridine residual oil after fractionating pyridine from a tar base separated from coal tar or coal liquefied oil. This invention is not limited at all by this Example.

実施例1
コールタールの蒸留・酸抽出等により分離されたタール塩基油であって、蒸留処理でピリジンを分離した後の下記表1に示す組成物からなるピリジン残油(CPB)は、沸点が近似した成分を含み通常の蒸留法では高濃度成分として分離できない。そこでこのピリジン残油(CPB)を図5に示すブロックフローに従って回分式蒸留処理した。
Example 1
A tar base oil separated by coal tar distillation / acid extraction, etc., and pyridine residual oil (CPB) comprising the composition shown in Table 1 below after separation of pyridine by distillation treatment is a component having an approximate boiling point It cannot be separated as a high concentration component by a normal distillation method. Therefore, this pyridine residue (CPB) was subjected to batch distillation according to the block flow shown in FIG.

Figure 0004185429
Figure 0004185429

図5に示すブロックフローの内、蒸留(1)と蒸留(2)は図1〜3で説明した本発明の多目的蒸留塔を使用した回分式蒸留法が採用され、蒸留(3)は他の蒸留塔による回分式蒸留法が採用されたものである。特に蒸留(2)では初期段階に水を共沸剤として混合して共沸蒸留したものである。なおコレクターボックス内の温度条件で液液分離される上層と下層における2,6−ルチジン/水の相互溶解度曲線は図6に示す通りである。図6から両者の共沸温度96℃の場合に上層の2,6−ルチジン濃度が最大であり、逆に下層の水の濃度が最大となることが分かる。従って本実施例では蒸留(2)の共沸蒸留段階におけるコレクターボックス内の温度を96℃に保持して蒸留処理したものである。このときの蒸留(1)、蒸留(2)、蒸留(3)における各蒸留条件は下記表2に示すとおりである。   Of the block flow shown in FIG. 5, distillation (1) and distillation (2) employ the batch distillation method using the multipurpose distillation column of the present invention described in FIGS. A batch distillation method using a distillation tower is employed. In particular, in the distillation (2), water is mixed as an azeotropic agent in the initial stage and azeotropically distilled. The mutual solubility curve of 2,6-lutidine / water in the upper layer and the lower layer, which are separated from each other under the temperature conditions in the collector box, is as shown in FIG. FIG. 6 shows that when the azeotropic temperature of both is 96 ° C., the concentration of 2,6-lutidine in the upper layer is the maximum, and the concentration of water in the lower layer is the maximum. Therefore, in this example, the distillation was performed while maintaining the temperature in the collector box at 96 ° C. in the azeotropic distillation step of distillation (2). The distillation conditions in distillation (1), distillation (2), and distillation (3) at this time are as shown in Table 2 below.

Figure 0004185429
Figure 0004185429

図5に示したブロックフローに従って表2の蒸留条件で処理して得られた製品2,6−ルチジンの性状を表3に、高沸点ピコリンの性状を表4に示す。いずれも規格値の目標品質を上回る製品が得られた。   Table 3 shows the properties of product 2,6-lutidine obtained by processing under the distillation conditions shown in Table 2 according to the block flow shown in FIG. 5, and Table 4 shows the properties of high-boiling picoline. In both cases, products exceeding the standard quality target were obtained.

Figure 0004185429
Figure 0004185429

Figure 0004185429
Figure 0004185429

本発明の一例を示す多目的蒸留塔の概略の全体構造図である。1 is an overall schematic diagram of a multipurpose distillation column showing an example of the present invention. 図1の塔頂部の一部を模式的に示す拡大断面図である。It is an expanded sectional view which shows a part of tower top part of FIG. 1 typically. コレクターラミナー層での凝縮液の流れを示す図2のA−A’矢視平面図である。It is an A-A 'arrow top view of FIG. 2 which shows the flow of the condensate in a collector laminar layer. 従来の共沸蒸留塔の概略構成図である。It is a schematic block diagram of the conventional azeotropic distillation tower. ピリジン残油(CPB)の蒸留処理を示すブロックフローである。It is a block flow which shows the distillation process of a pyridine residual oil (CPB). 上層と下層における2,6−ルチジン/水の相互溶解度曲線である。It is a mutual solubility curve of 2,6-lutidine / water in the upper layer and the lower layer.

符号の説明Explanation of symbols

1 多目的蒸留塔
2 原料供給ライン
3 気液接触層
4 リボイラー付き蒸留釜
5 冷却媒体
6 コンデンサー部
7 上昇蒸気通過用の隙間
8 コレクターラミナー層
9 コレクターボックス
10 仕切り堰板
11 塔内還流液用の下降管
12 留出液抜取り管
13 ヘッダー
14 第2の留出液抜取り管
DESCRIPTION OF SYMBOLS 1 Multi-purpose distillation column 2 Raw material supply line 3 Gas-liquid contact layer 4 Distiller with reboiler 5 Cooling medium 6 Condenser part 7 Gap for passage of rising steam 8 Collector laminar layer 9 Collector box 10 Partition weir plate 11 Lowering for reflux liquid in the tower Pipe 12 Distillate extraction pipe 13 Header 14 Second distillate extraction pipe

Claims (6)

内部に複数の気液接触層を備え、底部にリボイラー付き蒸留釜を備えた蒸留塔において、塔頂部の内部に上昇蒸気成分のコンデンサー部(凝縮器)を内蔵し、該コンデンサー部直下の空間部には上昇蒸気通過用の隙間を残して降下凝縮液だけを塔内周壁方向へ変位して流下させる溝状流下機能を有するコレクターラミナー層が設置され、且つ該コレクターラミナー層の下方部の塔内全周壁には上部解放で周壁を利用した断面U型状の降下凝縮液の貯液部(以下コレクターボックスと称する)が設けられ、さらに該コレクターボックスは同心状に設置された仕切り堰板によって底部が連通する内外二室に区分されており、一方の区分室には塔内還流液用の下降管が、他方の区分室には外部への留出液抜取り管が設けられていることを特徴とする内部還流式の多目的蒸留塔。   In a distillation column equipped with a plurality of gas-liquid contact layers inside and equipped with a distillation tank with a reboiler at the bottom, a condenser part (condenser) for the rising vapor component is built in the top of the tower, and a space directly under the condenser part Is provided with a collector laminar layer having a grooved flow function that displaces and flows only the descending condensate in the direction of the inner wall of the tower while leaving a gap for passage of the rising steam, and in the tower below the collector laminar layer The entire peripheral wall is provided with a U-shaped cross-section condensate storage part (hereinafter referred to as a collector box) that uses the peripheral wall with the upper part open, and the collector box is further bottomed by a concentric partition weir plate. Is divided into two chambers that communicate with each other, one of the compartments is provided with a descending pipe for the reflux liquid in the column, and the other of the compartments is provided with a pipe for extracting the distillate to the outside. To Part reflux type of multi-purpose distillation column. 請求項1に記載の多目的蒸留塔のリボイラー付き蒸留釜に2成分以上の混合溶液と、少なくとも該混合溶液中の一成分と共沸混合物を形成し且つ液液分離しうる共沸剤とを供給して加熱し、発生した蒸気成分を塔頂部の内部コンデンサーで凝縮液化させると共に、当初は留出液の抜取りなしで塔内へ全還流した後、定常状態になった段階からは降下する凝縮液化物をコレクターボックス内にて共沸剤を主成分とする液相と共沸成分である液相とに比重差により液液分離し、共沸剤を主成分とする液相は一方の区分室から塔内還流させると同時に共沸成分である液相は他方の区分室から軽沸点成分として外部へ抜取ることを特徴とする回分式蒸留法。 2. A mixed solution of two or more components and an azeotropic agent capable of forming an azeotrope with at least one component in the mixed solution and separating the liquid into a liquid are supplied to the multi-purpose distillation column equipped with a reboiler. The vapor component generated is condensed and liquefied by the internal condenser at the top of the tower, and after the total reflux to the tower without extraction of the distillate, the condensate liquefaction descends from the steady state. In a collector box, the liquid phase is separated into a liquid phase mainly composed of an azeotropic agent and a liquid phase that is an azeotropic component by a specific gravity difference, and the liquid phase mainly composed of the azeotropic agent is in one compartment. A batch distillation method characterized in that the liquid phase as an azeotropic component is withdrawn to the outside as a light boiling component from the other compartment at the same time as refluxing from the column. 軽沸点成分の抜取りが略完了した後は、常法により回分式蒸留処理を続けて中間沸点留分を分留して外部へ抜取る請求項2に記載の回分式蒸留法。 After the removal of the light-boiling components is substantially complete, batch distillation process according to claim 2 withdrawn to the outside by fractionating the intermediate boiling fraction followed by a conventional method batch distillation process. 2成分以上の混合溶液がタール系塩基中のピリジン分留後のピリジン残油であって、少なくとも2,6ルチジンとβ−ピコリン、γ−ピコリンを含み、水を共沸剤として共沸蒸留を開始し、定常状態になった段階から塔頂部で2,6ルチジンと水との共沸混合物である蒸気成分を凝縮液化してコレクターボックスで比重差により液液分離し、内側区分室から水を主成分として塔内還流させると共に、外側区分室からは2,6ルチジンを主成分として抜出した後で、β−、γ−ピコリンは混合状態の高沸点ピコリン留分として抜出し、塔底部からは高沸点成分の釜残物を抜出す請求項2または3に記載の回分式蒸留法。 Two or more components of the mixed solution is a pyridine residue oil after pyridine fractionation of tar in the base, at least 2,6-lutidine and β- picoline, include γ- picolyl down, azeotropic distillation with water as an azeotropic agent The vapor component, which is an azeotropic mixture of 2,6 lutidine and water, is condensed and liquefied at the top of the tower from the stage where it reaches a steady state, and liquid-liquid separation is performed by the specific gravity difference in the collector box, and water is separated from the inner compartment. And 2,6 lutidine as the main component are extracted from the outer compartment, and β- and γ-picoline are extracted as a high-boiling picoline fraction in a mixed state. The batch distillation method according to claim 2 or 3, wherein the residue of the high boiling point component is withdrawn. コレクターボックス内での2,6ルチジンと水との凝縮液化物は比重差により液液分離させる請求項4に記載の回分式蒸留法。 Batch distillation process according to claim 4 for liquid-liquid separation by condensation liquefied material is specific gravity difference between the 2,6-lutidine and water in the collector box. 抜き出された塔頂留分の2,6ルチジンは、別工程の蒸留塔にて蒸留処理し、少なくとも水を除去して精製2,6ルチジンを得る請求項4又は5に記載の回分式蒸留法。   6. The batchwise distillation according to claim 4 or 5, wherein 2,6 lutidine extracted from the top fraction is distilled in a distillation column in a separate step to obtain at least water to obtain purified 2,6 lutidine. Law.
JP2003330194A 2003-09-22 2003-09-22 Internal reflux multipurpose distillation column and batch distillation using the same Expired - Fee Related JP4185429B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003330194A JP4185429B2 (en) 2003-09-22 2003-09-22 Internal reflux multipurpose distillation column and batch distillation using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003330194A JP4185429B2 (en) 2003-09-22 2003-09-22 Internal reflux multipurpose distillation column and batch distillation using the same

Publications (2)

Publication Number Publication Date
JP2005095721A JP2005095721A (en) 2005-04-14
JP4185429B2 true JP4185429B2 (en) 2008-11-26

Family

ID=34459238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003330194A Expired - Fee Related JP4185429B2 (en) 2003-09-22 2003-09-22 Internal reflux multipurpose distillation column and batch distillation using the same

Country Status (1)

Country Link
JP (1) JP4185429B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010533578A (en) * 2007-07-19 2010-10-28 バール,フランク How to control and cool a distillation column
KR101352832B1 (en) * 2011-07-18 2014-01-20 한국에너지기술연구원 Method of concentratiing hydrogen peroxide using azeotropic agent
KR101434462B1 (en) 2012-12-26 2014-08-26 한국화학연구원 Batch type distillation apparatus for the purification of lactide, and the distillation method for the purification of lactide using the same
CN109224488A (en) * 2018-09-27 2019-01-18 谢兆钟 Utilize the device of tobacco waste no three wastes extraction nicotine
CN113262515B (en) * 2021-05-18 2022-06-24 河南中托力合化学有限公司 Partition rectifying tower for separating mixed fraction of C8-C11 normal paraffins
CN114307215B (en) * 2021-12-17 2023-09-08 新奥科技发展有限公司 Pyrene rectifying device and pyrene rectifying method

Also Published As

Publication number Publication date
JP2005095721A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP2673788B2 (en) Method for recovering benzene from mixed hydrocarbons
RU2672591C1 (en) Improvements relating to propylene oxide purification
US4664786A (en) Process for the separation of hydrocarbons from a mixed feedstock
CN102036726B (en) Improved extractive distillation processes using water-soluble extractive solvents
EA002638B1 (en) Method of re-refining waste oil by distillation and extraction
JP2000334201A (en) Continuous isolation of substance having comparatively high melting point by distillation
EP1551522A2 (en) Purification of n,n-dimethylacetamide
JP2006520784A (en) Low capital implementation of distributed distillation in ethylene recovery
JP4185429B2 (en) Internal reflux multipurpose distillation column and batch distillation using the same
CN110028376A (en) The purification of extracting, rectifying and separating phenylethylene solvent for use and styrene separation process
JP2005511813A5 (en)
US3425935A (en) Distillation in the presence of water
CN100378048C (en) Method of extracting, rectifying and separating aromatic hydrocarbons and extracting and rectifying apparatus
US8696871B2 (en) Apparatus for removing a contaminant from a solvent separation process
EP3078730A1 (en) Method for increasing the yield of lubricating bases in the regeneration of used oils
CN1073544C (en) Liquid phthalic anhydride recovery process using rectifying tower
JP6916936B2 (en) Methods and equipment for processing tall oil
KR20190035011A (en) Dividing wall column and method of purificaiton for vinylidene dichloride using the same
RU2701153C1 (en) Method of separating isoprene from an isoamylene-isoprene fraction by extractive rectification
US1898579A (en) Method and apparatus for absorption of constituents from gases and vaporous mixtures
RU2087178C1 (en) Method and installation for vacuum distillation of multicomponent predominantly hydrocarbon liquid mixture
RU2221836C1 (en) Vacuum gas oil purification process associated with production of carbon black manufacture feedstock
US1820573A (en) Process of and apparatus for distilling oil
KR100216412B1 (en) Process for reprocessing the bottom product of an extractive distillation for recovering pure hydrocarbons
US8864952B2 (en) Apparatuses and methods for separating paraffin isomerization-zone effluents

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080902

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080905

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140912

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140912

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140912

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees