JP4184767B2 - Process for producing bicyclo [2.2.1] heptenes - Google Patents

Process for producing bicyclo [2.2.1] heptenes Download PDF

Info

Publication number
JP4184767B2
JP4184767B2 JP2002336487A JP2002336487A JP4184767B2 JP 4184767 B2 JP4184767 B2 JP 4184767B2 JP 2002336487 A JP2002336487 A JP 2002336487A JP 2002336487 A JP2002336487 A JP 2002336487A JP 4184767 B2 JP4184767 B2 JP 4184767B2
Authority
JP
Japan
Prior art keywords
reaction
cyclopentadiene
hept
butene
ene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002336487A
Other languages
Japanese (ja)
Other versions
JP2004168708A (en
Inventor
就基 早坂
直弥 河野
雅志 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co Ltd filed Critical Idemitsu Kosan Co Ltd
Priority to JP2002336487A priority Critical patent/JP4184767B2/en
Publication of JP2004168708A publication Critical patent/JP2004168708A/en
Application granted granted Critical
Publication of JP4184767B2 publication Critical patent/JP4184767B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、ビシクロ[2.2.1]ヘプテン類の製造方法の改良に関し、さらに詳しくは、本発明は、機能性モノマーやトラクションドライブ用流体の基油製造原料などとして有用なビシクロ[2.2.1]ヘプテン類を、効率よく製造する方法に関するものである。
【0002】
【従来の技術】
自動車用トラクション式CVT(無段変速機)は、大型車から小型車まで搭載可能で、燃費が良い上、加速が鋭く、変速ショックがない快適な変速機として、今後の自動変速機の主流を占めるものと予測されている。このCVTには、動力伝達のために、高温(約140℃)においてトラクション係数が高く、かつ低温始動性のために、低温(約−40℃)においても低い粘度をもつ優れた性能を有するトラクションオイルが必要である。
【0003】
この高温でのトラクション係数と低温粘度とは、相反する性能であって、この相反する性能を高い次元で両立させた優れたトラクションオイル基油が開示されている(例えば、特許文献1、特許文献2参照)。また、これらの特許文献には、上記基油の中間体として、2−メチレン−3−メチルビシクロ[2.2.1]ヘプタン、2,3−ジメチルビシクロ[2.2.1]ヘプト−2−エンなどが開示されている。上記中間体の前駆体の一つとして、5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エンなどのビシクロ[2.2.1]ヘプテン類が考えられ、そのビシクロ[2.2.1]ヘプテン類を高効率で得る方法が望まれている。
一方、シクロペンタジエンと2−ブテンをディールス・アルダー反応させて、5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エンを得、それを異性化させることにより、2−メチレン−3−メチルビシクロ[2.2.1]ヘプタン及び2,3−ジメチルビシクロ[2.2.1]ヘプト−2−エンを製造する方法が開示されている(例えば、特許文献3参照)。さらに、前半のディールス・アルダー反応において、炭素数3若しくは4の非環状オレフィン又はシクロペンタジエンが気相あるいは超臨界状態の条件で反応を行うことにより、ビシクロ[2.2.1]ヘプテン類を高選択率で得ることができる製造方法も開示されている(例えば、特許文献4参照)。
【0004】
しかしながら、これらの方法においては、副生する重質生成物が反応器内で析出し、さらに重合が進行(重質化)したりして、反応器の汚れや閉塞などを引き起こし、反応装置の連続運転を妨げる場合があり、また、シクロペンタジエンの転化率も十分に満足し得るほど高いとはいえず、改良の余地があった。
【0005】
【特許文献1】
特公平7−103387号公報
【特許文献2】
特開2000−17280号公報
【特許文献3】
特開2001−226296号公報
【特許文献4】
特開2002−114714号公報
【0006】
【発明が解決しようとする課題】
本発明は、このような状況下で、機能性モノマーやトラクションドライブ用流体の基油製造原料などとして有用なビシクロ[2.2.1]ヘプテン類の製造に際し、原料のシクロペンタジエンの転化率及び目的化合物の選択率を向上させ得ると共に、反応系内での重質成分の析出及びさらなる重質化を抑え、反応装置の長期連続運転を可能とする方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明者らは、前記目的を達成するために鋭意研究を重ねた結果、溶剤を加えて、反応場の密度がある値以上の液相になる条件で反応を行うことにより、その目的を達成し得ることを見出した。本発明は、かかる知見に基づいて完成したものである。
すなわち、本発明は、
(1)2−ブテンとシクロペンタジエンをディールス・アルダー反応させて5,6−ジメチルビシクロ [ . . ] ヘプト−2−エンを製造するに際し、溶剤を添加し、温度200℃以上、圧力4MPa・G以上2−ブテン/シクロペンタジエンのモル比が5〜15、反応場の密度が100kg/m3以上の液相になる条件で反応を行うことを特徴とする5,6−ジメチルビシクロ [ . . ] ヘプト−2−エンの製造方法、
(2)反応場が、混合物の臨界温度以上及び臨界圧以上の超臨界状態になる条件にて反応を行う上記(1)記載5,6−ジメチルビシクロ [ . . ] ヘプト−2−エンの製造方法、
(3)溶剤が、脂肪族系炭化水素溶剤、脂環式系炭化水素溶剤及び芳香族系炭化水素溶剤の中から選ばれる少なくとも一種である上記(1)又は(2)記載の5,6−ジメチルビシクロ [ . . ] ヘプト−2−エンの製造方法、
(4)温度200〜350℃、圧力4〜20MPa・Gの条件で反応を行う上記(1)、(2)又は(3)記載5,6−ジメチルビシクロ [ . . ] ヘプト−2−エンの製造方法、
を提供するものである。
【0008】
【発明の実施の形態】
本発明のビシクロ[2.2.1]ヘプテン類の製造方法においては、炭素数3若しくは4の非環状オレフィンとシクロペンタジエンをディールス・アルダー反応させて、ビシクロ[2.2.1]ヘプテン類を製造する。この反応において、原料の一つとして用いられる炭素数3若しくは4の非環状オレフィンとしては、プロピレン、1−ブテン及び2−ブテンを挙げることができるが、これらの中で特に2−ブテンが好ましい。この2−ブテンはシス体、トランス体のいずれを用いてもよいし、その混合物を用いてもよい。以下、非環状オレフィンが2−ブテンである場合を例に説明する。
もう一方の原料であるシクロペンタジエンについては、シクロペンタジエンそのものを用いてもよいが、反応器にジシクロペンタジエンやトリシクロペンタジエンを仕込み、熱分解によりシクロペンタジエンを生成させながら、ディールス・アルダー反応を行ってもよい。
【0009】
前記2−ブテンとシクロペンタジエンの使用割合については特に制限はないが、2−ブテンを理論値よりも過剰、すなわち2−ブテン/シクロペンタジエンモル比が1を超えることが好ましい。このモル比が1以下では、重質の副生物が多く生成しやすくなる。該モル比の好ましい値は2〜30の範囲であり、特に5〜15の範囲が好ましい。このモル比が2未満では目的物質の選択率が低くなりやすく、一方30を超えると反応器の容積が大きくなりすぎ、経済性の面で好ましくない。
本発明においては、溶剤が用いられる。該溶剤としては、炭化水素系溶剤や非プロトン性有機溶剤を使用することができるが、脂肪族系炭化水素溶剤、脂環式系炭化水素溶剤及び芳香族系炭化水素溶剤が好ましい。
【0010】
ここで、脂肪族系炭化水素溶剤としては、例えば炭素数6〜30の直鎖状又は分岐鎖状の炭化水素化合物が挙げられる。また、脂環式炭化水素溶剤としては、例えばシクロヘキサン、デカリン、及びこれらにアルキル基が導入された炭素数6〜15の炭化水素化合物が挙げられる。さらに、芳香族系炭化水素溶剤としては、例えばベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、テトラリンなどの炭素数6〜15の芳香環を有する炭化水素化合物が挙げられる。
これらの溶剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。また、その添加量は、反応の際の温度及び圧力条件で液相あるいは超臨界状態を維持し得る量であればよく、特に制限はないが、溶剤/2−ブテンの質量比が0.2〜10の範囲にあるのが好ましく、特に0.5〜5の範囲が好ましい。該質量比が0.2未満ではシクロペンタジエンの転化率が低くなるおそれがあり、一方、10を超えると反応器の容積が大きくなりすぎ、経済性の面で好ましくない。
【0011】
本発明においては、前記溶剤を加え、反応場の密度が100kg/m以上の液相になる条件で反応を行うことが必要である。該密度が100kg/m未満では重質分の反応器内での析出及び重合が進行し、閉塞等により連続運転ができなくなり、本発明の目的が達せられない。反応場の好ましい密度は100〜600kg/mの範囲であり、特に200〜600kg/mの範囲が好ましい。したがって、反応温度及び反応圧力は、前記の液相を保持する条件が選択されるが、混合物の臨界温度以上及び臨界圧力以上の超臨界状態の条件を選択することができる。
2−ブテンとシクロペンタジエンのディールス・アルダー反応における好ましい反応温度は180〜450℃の範囲で選定される。この反応温度が180℃未満ではジシクロペンタジエンが多く存在するようになり、目的物質の収率が低下するおそれがあり、一方450℃を超えると重質副生物の生成量が増加し、目的物質の収率が低下する原因となる。より好ましい反応温度は200〜350℃の範囲で選定される。
【0012】
反応圧力は、上記反応温度において、反応場の密度が100kg/m以上の液相を保持し得る圧力、あるいは混合物の臨界圧以上の圧力であればよく、特に制限はないが、4〜20MPa・Gの範囲が好適である。2−ブテンの臨界圧は4MPa・Gであり、4MPa・G未満では気相が生成し、一方20MPa・Gを超えると反応器の耐圧が高くなりすぎ、経済性の面で好ましくない。
反応方式としては、連続流通式、回分式など、いずれの方式であってもよいが、生産性の面などから、連続流通式が好ましい。この連続流通式を採用する場合、管型(単管、多管、空塔、充填塔のいずれも使用できる)でも攪拌槽型でもよい。管型の連続流通式反応の場合、LHSV(液時空間速度)は、通常0.1〜20h−1、好ましくは0.5〜10h−1の範囲である。このLHSVが0.5h−1未満では滞留時間が長くなりすぎて重質副生物が増加し、目的物の選択率が低下する原因となり、一方10h−1を超えると滞留時間が短くなりすぎて、シクロペンタジエンの転化率が低下し、経済性の面で好ましくない。
【0013】
特開2002−114714号公報では、前記ディールス・アルダー反応を高温(220〜350℃)、低圧(1〜4MPa・G)で行うことが開示されているが、この条件では、副生した重質成分は気相への溶解度が低く反応器内で析出し、反応器内の汚れを引き起こしやすい。この析出した重質物は、反応器内で高温にさらされると、さらなる重質化(重合)を起こし、最終的には反応器の閉塞を引き起こす。また、2−ブテンの臨界圧力は、前記したように4MPa・Gであり、反応器内を超臨界状態にするためには、4MPa・G以上の圧力が必要となる。さらに溶剤を添加しない系では、反応温度が2−ブテンの臨界温度(160℃)に比べるとかなり高いために、臨界圧以上(超臨界状態)であっても、反応器内の密度は気相に近く、気相と同様に重質副生物の析出、重合による反応器の閉塞が起こる。
溶剤を添加し、反応温度条件で液相あるいは超臨界状態(臨界点近傍)を維持した場合、副生した重質成分は、液相あるいは超臨界相に溶解した状態で反応器から排出されるため、反応器内での析出や重合は起こりにくく、反応器の汚れや閉塞を回避することができる。さらに、反応系の圧力を上げることで、シクロペンタジエンの転化率が向上すると共に、溶剤の添加により、反応器内のシクロペンタジエン濃度が低下することによって、シクロペンタジエンが関与する副生物(トリシクロペンタジエンなど)の生成を抑制することができ、1パス収率が向上する。
【0014】
非環状オレフィンが2−ブテンの場合、目的化合物のビシクロ[2.2.1]ヘプテン類として、5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エンが得られる。また、非環状オレフィンが1−ブテンの場合には、5−エチルビシクロ[2.2.1]ヘプト−2−エンが得られ、プロピレンの場合には、5−メチルビシクロ[2.2.1]ヘプト−2−エンが得られる。
【0015】
【実施例】
次に、本発明を実施例により、さらに詳細に説明するが、本発明は、これらの例によってなんら限定されるものではない。
実施例1
内径12mm、長さ40cmステンレス製流通式加圧反応管(空塔)を用いて連続流通実験を行った。
原料タンクにジシクロペンタジエン57.8g(シクロペンタジエン換算0.87モル)、混合2−ブテン(トランス体/シス体=62/38)489.6g(8.73モル)及び溶剤としてp−ジエチルベンゼン491.6gを仕込み、原料混合物を調製した(2−ブラン/シクロペンタジエンモル比=5、溶剤/2−ブテン質量比=1)。
原料混合物を定量ポンプを用いて160mL/hで、200℃の予熱管を介して、290℃、9MPa・Gに調整した管型反応器に連続的に供給した。この際の1/LHSVは0.23hであった。
反応液は、圧力調整弁を介して常圧に戻したのち、50℃に保温した受器内で気液分離を行った。定常状態到達後、液相はそのまま採取し、一方、気相は全量を−10℃で液化させたのち、採取した。両相をガスクロマトグラフィーを用いて分析したところ、シクロペンタジエン基準で、転化率は44.0%、5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エン選択率は83.4%、収率は36.7%であった。
【0016】
実施例2
実施例1において、原料混合物の供給速度を50mL/h(1/LHSV=0.74h)に変えた以外は、実施例1と同様にして実施した。その結果、シクロペンタジエン転化率は60.1%、5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エン選択率は77.3%、収率は46.4%であった。
実施例3
実施例1において、溶剤として、p−ジエチルベンゼンの代わりにテトラリンを用いた以外は、実施例1と同様にして実施した。その結果、シクロペンタジエン転化率は45.0%、5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エン収率は79.3%、収率は35.7%であった。
この条件で、約100時間の連続運転を行った。実験終了後、反応器を開放したところ、反応器内に析出物、重合物は見られなかった。
【0017】
比較例1
内径20mm、長さ1000mmのステンレス鋼製流通式加圧反応管を用い、300℃、3MPa・Gの条件で、1/GHSV(1/ガス時空間速度)が0.1hになるように、実施例1と同じ混合2−ブテンとジシクロペンタジエンとを、2−ブテン/シクロペンタジエンモル比が10になるように供給した。その結果、シクロペンタジエン基準で転化率は23.5%、5,6−ジメチルビシクロ[2.2.1]ヘプト−2−エン選択率は67.6%、収率は15.9%であった。
運転開始直後から、反応器にΔPがつき始め、約24時間で連続運転が不可能となった。反応器を開放した結果、反応器内に黒色ポリマーが多量に生成しており、ΔPの上昇は重合物の生成に起因することが確認された。
比較例2
内径24.9mm、長さ2000mmのチューブを10本備えた多管式連続流通装置を用い、270℃、3MPa・Gの条件で、1/LHSVが2hとなるように、実施例1と同様の混合2−ブテンとジシクロペンタジエンとを、2−ブテン/シクロペンタジエンモル比が10になるように供給した。その結果、1パス収率は約5%と低かった。
連続運転開始数時間後から、反応器のΔPの上昇が見られ、1日で連続運転ができなくなった。反応器を開放した結果、反応器内に多量のポリマーの生成が見られた。
【0018】
実施例4
内径24.9mm、長さ2000mmのチューブを10本備えた多管式連続流通装置を用い、230℃、5.5MPa・Gの条件で、1/LHSVが1hとなるように、実施例1と同様の混合2−ブテンとジシクロペンタジエンとを、2−ブテン/シクロぺンタジエンモル比が10、溶剤としてのジエチルベンゼン(o、m、p体混合物)を2−ブテンとの質量比が1になるように供給した。その結果、1パスの収率は約21.0%であった。
8日間の連続運転後、反応器の開放点検を行ったところ、反応器内に析出物及び重合物の生成は見られなかった。
【0019】
【発明の効果】
本発明によれば、機能性モノマーやトラクションドライブ用流体の基油製造原料などとして有用なビシクロ[2.2.1]ヘプテン類の製造に際し、原料のシクロペンタジエンの転化率及び目的化合物の選択率を向上させ得ると共に、反応系内での重質成分の析出及びさらなる重質化を抑え、反応装置の長期連続運転を可能とすることができる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an improvement in a method for producing bicyclo [2.2.1] heptenes. More specifically, the present invention relates to bicyclo [2 .2] useful as a functional monomer or a base oil production raw material for a traction drive fluid. 2.1] A method for efficiently producing heptenes.
[0002]
[Prior art]
The traction CVT (continuously variable transmission) for automobiles can be mounted from large vehicles to small vehicles, and it will be the mainstream of future automatic transmissions as a comfortable transmission with good fuel efficiency, sharp acceleration, and no shift shock. It is predicted. This CVT has a high traction coefficient at high temperature (about 140 ° C) for power transmission, and has excellent performance with low viscosity at low temperature (about -40 ° C) for low temperature startability. Oil is needed.
[0003]
The high temperature traction coefficient and the low temperature viscosity are contradictory performances, and excellent traction oil base oils in which the contradictory performances are compatible at a high level are disclosed (for example, Patent Document 1 and Patent Documents). 2). Moreover, these patent documents include 2-methylene-3-methylbicyclo [2.2.1] heptane and 2,3-dimethylbicyclo [2.2.1] hept-2 as intermediates of the above base oil. -En and others are disclosed. As one of the precursors of the above intermediate, bicyclo [2.2.1] heptenes such as 5,6-dimethylbicyclo [2.2.1] hept-2-ene can be considered, and the bicyclo [2. 2.1] A method for obtaining heptenes with high efficiency is desired.
On the other hand, cyclopentadiene and 2-butene are subjected to Diels-Alder reaction to obtain 5,6-dimethylbicyclo [2.2.1] hept-2-ene, which is isomerized to give 2-methylene-3. -A method for producing methylbicyclo [2.2.1] heptane and 2,3-dimethylbicyclo [2.2.1] hept-2-ene is disclosed (for example, see Patent Document 3). Furthermore, in the first half of the Diels-Alder reaction, the acyclic olefin having 3 or 4 carbon atoms or cyclopentadiene is reacted in the gas phase or supercritical conditions, thereby increasing the bicyclo [2.2.1] heptenes. A manufacturing method that can be obtained with a selectivity is also disclosed (for example, see Patent Document 4).
[0004]
However, in these methods, a heavy product produced as a by-product is precipitated in the reactor, and further, polymerization proceeds (heavy), causing the reactor to become dirty and clogged. In some cases, continuous operation may be hindered, and the conversion rate of cyclopentadiene is not high enough to be sufficiently satisfied, and there is room for improvement.
[0005]
[Patent Document 1]
Japanese Patent Publication No. 7-103387 [Patent Document 2]
JP 2000-17280 A [Patent Document 3]
JP 2001-226296 A [Patent Document 4]
JP-A-2002-114714 gazette
[Problems to be solved by the invention]
Under such circumstances, the present invention provides a conversion rate of the raw material cyclopentadiene in the production of bicyclo [2.2.1] heptenes useful as a base oil production raw material for functional monomers and traction drive fluids. An object of the present invention is to provide a method capable of improving the selectivity of the target compound, suppressing precipitation of heavy components in the reaction system, and further increasing the weight of the reaction apparatus, and enabling a long-term continuous operation of the reaction apparatus. is there.
[0007]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above object, the present inventors have achieved the object by adding a solvent and carrying out the reaction under the condition that the reaction field density becomes a liquid phase of a certain value or more. I found out that I could do it. The present invention has been completed based on such findings.
That is, the present invention
(1) 2-butene and cyclopentadiene by Diels-Alder reaction of 5,6-dimethyl-bicyclo [2.2. 1] Upon producing hept-2-ene, was added the solvent, temperature 200 ° C. or higher, the pressure 5,6-dimethylbicyclo is characterized in that the reaction is carried out under the conditions of a liquid phase of 4 MPa · G or more , a molar ratio of 2-butene / cyclopentadiene of 5 to 15 and a reaction field density of 100 kg / m 3 or more. [2.2. 1] hept-2-ene the method of manufacturing,
(2) reaction field, the reaction is carried out at above the critical temperature and critical pressure on the supercritical state to become the conditions of mixture above (1), wherein the 5,6-dimethyl-bicyclo [2.2. 1] hept -2 A process for producing en ,
(3) The 5,6-description described in (1) or (2) above, wherein the solvent is at least one selected from an aliphatic hydrocarbon solvent, an alicyclic hydrocarbon solvent, and an aromatic hydrocarbon solvent. dimethyl bicyclo [2.2. 1] hept-2-ene the method of manufacturing,
(4) Temperature 200 to 350 ° C., above (1) to carry out the reaction under a pressure 4 ~20 MPa · G, (2 ) or (3) wherein the 5,6-dimethyl-bicyclo [2.2. 1] hept -2-ene production method,
Is to provide.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
In the method for producing bicyclo [2.2.1] heptenes according to the present invention, a dicycloalder reaction of a cycloolefin having 3 or 4 carbon atoms with cyclopentadiene is performed to produce bicyclo [2.2.1] heptenes. To manufacture. In this reaction, examples of the acyclic olefin having 3 or 4 carbon atoms used as one of the raw materials include propylene, 1-butene and 2-butene. Among these, 2-butene is particularly preferable. As this 2-butene, either a cis isomer or a trans isomer may be used, or a mixture thereof may be used. Hereinafter, a case where the acyclic olefin is 2-butene will be described as an example.
For cyclopentadiene, which is the other raw material, cyclopentadiene itself may be used, but Diels-Alder reaction is performed while dicyclopentadiene or tricyclopentadiene is charged into the reactor and cyclopentadiene is generated by thermal decomposition. May be.
[0009]
Although there is no restriction | limiting in particular about the usage-amount of the said 2-butene and cyclopentadiene, It is preferable that 2-butene is excess from a theoretical value, ie, 2-butene / cyclopentadiene molar ratio exceeds 1. When the molar ratio is 1 or less, many heavy by-products are easily generated. A preferable value of the molar ratio is in the range of 2 to 30, and a range of 5 to 15 is particularly preferable. If this molar ratio is less than 2, the selectivity of the target substance tends to be low, while if it exceeds 30, the volume of the reactor becomes too large, which is not preferable in terms of economy.
In the present invention, a solvent is used. As the solvent, a hydrocarbon solvent or an aprotic organic solvent can be used, but an aliphatic hydrocarbon solvent, an alicyclic hydrocarbon solvent, and an aromatic hydrocarbon solvent are preferable.
[0010]
Here, as an aliphatic hydrocarbon solvent, a C6-C30 linear or branched hydrocarbon compound is mentioned, for example. Examples of the alicyclic hydrocarbon solvent include cyclohexane, decalin, and hydrocarbon compounds having 6 to 15 carbon atoms in which an alkyl group is introduced. Furthermore, examples of the aromatic hydrocarbon solvent include hydrocarbon compounds having an aromatic ring having 6 to 15 carbon atoms such as benzene, toluene, xylene, ethylbenzene, diethylbenzene, and tetralin.
These solvents may be used singly or in combination of two or more. The addition amount is not particularly limited as long as it is an amount capable of maintaining a liquid phase or a supercritical state under the temperature and pressure conditions during the reaction, but the mass ratio of solvent / 2-butene is 0.2. Is preferably in the range of 10 to 10, particularly preferably in the range of 0.5 to 5. If the mass ratio is less than 0.2, the conversion rate of cyclopentadiene may be low. On the other hand, if the mass ratio exceeds 10, the volume of the reactor becomes too large, which is not preferable in terms of economy.
[0011]
In the present invention, it is necessary to carry out the reaction under the condition that the solvent is added and the density of the reaction field becomes a liquid phase of 100 kg / m 3 or more. If the density is less than 100 kg / m 3 , precipitation and polymerization in the heavy reactor proceed, and continuous operation cannot be performed due to blockage or the like, and the object of the present invention cannot be achieved. The preferable density of the reaction field is in the range of 100 to 600 kg / m 3 , and particularly preferably in the range of 200 to 600 kg / m 3 . Therefore, the reaction temperature and the reaction pressure are selected under the conditions for maintaining the liquid phase, but the conditions in the supercritical state above the critical temperature of the mixture and above the critical pressure can be selected.
A preferable reaction temperature in the Diels-Alder reaction of 2-butene and cyclopentadiene is selected in the range of 180 to 450 ° C. If the reaction temperature is less than 180 ° C., a large amount of dicyclopentadiene will be present, and the yield of the target substance may be reduced. On the other hand, if the reaction temperature exceeds 450 ° C., the amount of heavy by-products will increase. This will cause a decrease in yield. A more preferable reaction temperature is selected in the range of 200 to 350 ° C.
[0012]
The reaction pressure is not particularly limited as long as it is a pressure capable of maintaining a liquid phase with a reaction field density of 100 kg / m 3 or more at the above reaction temperature, or a pressure higher than the critical pressure of the mixture. -The range of G is suitable. The critical pressure of 2-butene is 4 MPa · G. If it is less than 4 MPa · G, a gas phase is generated. On the other hand, if it exceeds 20 MPa · G, the pressure resistance of the reactor becomes too high, which is not preferable in terms of economy.
The reaction method may be any method such as a continuous flow method or a batch method, but the continuous flow method is preferable from the viewpoint of productivity. When this continuous flow type is adopted, it may be a tube type (single tube, multi-tube, empty column, packed column can be used) or a stirring tank type. In the case of a tube-type continuous flow reaction, LHSV (liquid hourly space velocity) is usually in the range of 0.1 to 20 h −1 , preferably 0.5 to 10 h −1 . If this LHSV is less than 0.5 h −1 , the residence time becomes too long and heavy by-products increase and the selectivity of the target product decreases, while if it exceeds 10 h −1 , the residence time becomes too short. , The conversion rate of cyclopentadiene is lowered, which is not preferable in terms of economy.
[0013]
Japanese Patent Laid-Open No. 2002-114714 discloses that the Diels-Alder reaction is carried out at a high temperature (220 to 350 ° C.) and a low pressure (1 to 4 MPa · G). The component has a low solubility in the gas phase and precipitates in the reactor, and easily causes contamination in the reactor. When the deposited heavy material is exposed to a high temperature in the reactor, it causes further heaviness (polymerization) and eventually causes the reactor to be clogged. In addition, the critical pressure of 2-butene is 4 MPa · G as described above, and a pressure of 4 MPa · G or more is required to bring the reactor into a supercritical state. Further, in the system without addition of solvent, the reaction temperature is considerably higher than the critical temperature of 2-butene (160 ° C.), so that the density in the reactor is the gas phase even when the pressure is higher than the critical pressure (supercritical state). In the same manner as in the gas phase, precipitation of heavy by-products and clogging of the reactor due to polymerization occur.
When a solvent is added and the liquid phase or supercritical state (near the critical point) is maintained under reaction temperature conditions, the by-product heavy components are discharged from the reactor in a state dissolved in the liquid phase or supercritical phase. Therefore, precipitation and polymerization in the reactor are unlikely to occur, and contamination and blockage of the reactor can be avoided. Furthermore, by increasing the pressure of the reaction system, the conversion rate of cyclopentadiene is improved, and by adding a solvent, the concentration of cyclopentadiene in the reactor is decreased, thereby causing a by-product involving cyclopentadiene (tricyclopentadiene). Etc.) and the one-pass yield is improved.
[0014]
When the acyclic olefin is 2-butene, 5,6-dimethylbicyclo [2.2.1] hept-2-ene is obtained as the target compound bicyclo [2.2.1] heptenes. When the acyclic olefin is 1-butene, 5-ethylbicyclo [2.2.1] hept-2-ene is obtained, and when propylene is used, 5-methylbicyclo [2.2.1] is obtained. ] Hept-2-ene is obtained.
[0015]
【Example】
EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.
Example 1
A continuous flow experiment was conducted using a stainless steel flow-type pressurized reaction tube (empty column) having an inner diameter of 12 mm and a length of 40 cm.
Dicyclopentadiene 57.8 g (cyclopentadiene conversion 0.87 mol), mixed 2-butene (trans isomer / cis isomer = 62/38) 489.6 g (8.73 mol) and p-diethylbenzene 491 as a solvent in a raw material tank .6 g was charged to prepare a raw material mixture (2-blanc / cyclopentadiene molar ratio = 5, solvent / 2-butene mass ratio = 1).
The raw material mixture was continuously supplied to a tubular reactor adjusted to 290 ° C. and 9 MPa · G through a 200 ° C. preheating tube at 160 mL / h using a metering pump. At this time, 1 / LHSV was 0.23 h.
The reaction solution was returned to normal pressure via a pressure regulating valve, and then gas-liquid separation was performed in a receiver kept at 50 ° C. After reaching the steady state, the liquid phase was sampled as it was, while the gas phase was sampled after the entire amount was liquefied at -10 ° C. Both phases were analyzed using gas chromatography. As a result, the conversion was 44.0% based on cyclopentadiene, and the selectivity for 5,6-dimethylbicyclo [2.2.1] hept-2-ene was 83.4. %, And the yield was 36.7%.
[0016]
Example 2
In Example 1, it implemented like Example 1 except having changed the supply speed | rate of the raw material mixture into 50 mL / h (1 / LHSV = 0.74h). As a result, the cyclopentadiene conversion rate was 60.1%, 5,6-dimethylbicyclo [2.2.1] hept-2-ene selectivity was 77.3%, and the yield was 46.4%.
Example 3
In Example 1, it implemented like Example 1 except having used tetralin instead of p-diethylbenzene as a solvent. As a result, the cyclopentadiene conversion rate was 45.0%, the 5,6-dimethylbicyclo [2.2.1] hept-2-ene yield was 79.3%, and the yield was 35.7%.
Under this condition, continuous operation for about 100 hours was performed. After completion of the experiment, the reactor was opened, and no precipitate or polymer was found in the reactor.
[0017]
Comparative Example 1
Using a stainless steel flow-type pressurized reaction tube with an inner diameter of 20 mm and a length of 1000 mm, 1 / GHSV (1 / gas hourly space velocity) is 0.1 h under the conditions of 300 ° C. and 3 MPa · G. The same mixed 2-butene and dicyclopentadiene as in Example 1 were fed so that the 2-butene / cyclopentadiene molar ratio was 10. As a result, the conversion was 23.5% based on cyclopentadiene, the selectivity of 5,6-dimethylbicyclo [2.2.1] hept-2-ene was 67.6%, and the yield was 15.9%. It was.
Immediately after the start of operation, ΔP began to attach to the reactor, and continuous operation became impossible in about 24 hours. As a result of opening the reactor, a large amount of black polymer was produced in the reactor, and it was confirmed that the increase in ΔP was caused by the production of a polymer.
Comparative Example 2
Using a multi-tube continuous flow apparatus equipped with 10 tubes with an inner diameter of 24.9 mm and a length of 2000 mm, the same as in Example 1 was performed so that 1 / LHSV was 2 h under the conditions of 270 ° C. and 3 MPa · G. Mixed 2-butene and dicyclopentadiene were fed so that the 2-butene / cyclopentadiene molar ratio was 10. As a result, the 1-pass yield was as low as about 5%.
Several hours after the start of continuous operation, ΔP of the reactor increased, and continuous operation became impossible in one day. As a result of opening the reactor, a large amount of polymer was produced in the reactor.
[0018]
Example 4
Using a multi-tube continuous flow apparatus equipped with 10 tubes having an inner diameter of 24.9 mm and a length of 2000 mm, 1 / LHSV is 1 h under the conditions of 230 ° C. and 5.5 MPa · G. A similar mixture of 2-butene and dicyclopentadiene has a 2-butene / cyclopentadiene molar ratio of 10 and diethylbenzene (o, m, p-form mixture) as a solvent has a mass ratio of 1 to 2-butene. Supplied to. As a result, the yield of 1 pass was about 21.0%.
After 8 days of continuous operation, the reactor was inspected for opening. As a result, no precipitate or polymer was formed in the reactor.
[0019]
【The invention's effect】
According to the present invention, in the production of bicyclo [2.2.1] heptenes useful as a base oil production raw material for functional monomers and traction drive fluids, the conversion rate of the raw material cyclopentadiene and the selectivity of the target compound In addition, the precipitation of heavy components in the reaction system and further increase in the weight can be suppressed, and the reactor can be operated continuously for a long time.

Claims (4)

2−ブテンとシクロペンタジエンをディールス・アルダー反応させて5,6−ジメチルビシクロ [ . . ] ヘプト−2−エンを製造するに際し、溶剤を添加し、温度200℃以上、圧力4MPa・G以上2−ブテン/シクロペンタジエンのモル比が5〜15、反応場の密度が100g/m3以上の液相になる条件で反応を行うことを特徴とする5,6−ジメチルビシクロ [ . . ] ヘプト−2−エンの製造方法。 2-butene and cyclopentadiene by Diels-Alder reaction of 5,6-dimethyl-bicyclo [2.2. 1] Upon producing hept-2-ene, it was added the solvent, temperature 200 ° C. or higher, pressure 4 MPa-G As described above , the reaction is carried out under the condition that the liquid phase is such that the molar ratio of 2-butene / cyclopentadiene is 5 to 15 and the density of the reaction field is 100 g / m 3 or more, 5,6-dimethylbicyclo [ 2 . 2.1] hept-2-ene manufacturing method. 反応場が、混合物の臨界温度以上及び臨界圧以上の超臨界状態になる条件にて反応を行う請求項1記載の5,6−ジメチルビシクロ [ . . ] ヘプト−2−エンの製造方法。Reaction field, the reaction is carried out at above the critical temperature and critical pressure on the supercritical state condition: mixture according to claim 1 5,6-dimethyl bicyclo according [2.2. 1] hept-2-ene manufacturing Method. 溶剤が、脂肪族系炭化水素溶剤、脂環式系炭化水素溶剤及び芳香族系炭化水素溶剤の中から選ばれる少なくとも一種である請求項1又は2記載の5,6−ジメチルビシクロ [ . . ] ヘプト−2−エンの製造方法。Solvent, aliphatic hydrocarbon solvent is at least one selected from alicyclic hydrocarbon solvents and aromatic hydrocarbon solvents according to claim 1 or 2, wherein the 5,6-dimethyl-bicyclo [2.2 [ 1 ] A method for producing hept-2-ene . 温度200〜350℃、圧力4〜20MPa・Gの条件で反応を行う請求項1、2又は3記載の5,6−ジメチルビシクロ [ . . ] ヘプト−2−エンの製造方法。Temperature 200 to 350 ° C., 5,6-dimethyl bicyclo according to claim 1, wherein the reaction is carried out under a pressure 4 ~20 MPa · G [2. 2. 1] hept-2-ene manufacturing method.
JP2002336487A 2002-11-20 2002-11-20 Process for producing bicyclo [2.2.1] heptenes Expired - Fee Related JP4184767B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002336487A JP4184767B2 (en) 2002-11-20 2002-11-20 Process for producing bicyclo [2.2.1] heptenes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002336487A JP4184767B2 (en) 2002-11-20 2002-11-20 Process for producing bicyclo [2.2.1] heptenes

Publications (2)

Publication Number Publication Date
JP2004168708A JP2004168708A (en) 2004-06-17
JP4184767B2 true JP4184767B2 (en) 2008-11-19

Family

ID=32700318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002336487A Expired - Fee Related JP4184767B2 (en) 2002-11-20 2002-11-20 Process for producing bicyclo [2.2.1] heptenes

Country Status (1)

Country Link
JP (1) JP4184767B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10696610B2 (en) 2017-12-11 2020-06-30 Valvoline Licensing And Intellectual Property Llc Scalable synthesis of hydrogenated alpha styrene dimer
US10927321B2 (en) 2019-03-13 2021-02-23 Valvoline Licensing And Intellectual Property Llc Traction fluid with improved low temperature properties

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI491596B (en) * 2008-10-10 2015-07-11 Sumitomo Bakelite Co Preparation of alicyclic diepoxides

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10696610B2 (en) 2017-12-11 2020-06-30 Valvoline Licensing And Intellectual Property Llc Scalable synthesis of hydrogenated alpha styrene dimer
US10927321B2 (en) 2019-03-13 2021-02-23 Valvoline Licensing And Intellectual Property Llc Traction fluid with improved low temperature properties

Also Published As

Publication number Publication date
JP2004168708A (en) 2004-06-17

Similar Documents

Publication Publication Date Title
KR101205835B1 (en) Generation of endo- and/or exo- norbornenecarboxaldehyde as an intermediate to functionalized norbornenes
JP2002544180A (en) Method for separating olefins from saturated hydrocarbons
GB2046251A (en) Process for producing polycylinic diols
JP4184767B2 (en) Process for producing bicyclo [2.2.1] heptenes
CN111548246A (en) Method for preparing high-purity dicyclopentadiene from cracking carbon nine fraction
JP4448709B2 (en) Process for producing bicyclo [2.2.1] heptenes
RU2494084C2 (en) Method of producing adamantane
US6512152B1 (en) Tetracyclododecene compositions and process for producing the same
JPH10287592A (en) Crude tetracyclododecene mixture and its production, production of purified tetracyclododecene and apparatus for producing the same
JP4471322B2 (en) Continuous process for the production of tetracyclododecenes
KR100691411B1 (en) A process for the continuous preparation of tetracyclododecens
US6441259B1 (en) Process for the continuous preparation of tetracyclododecens
JP2019089714A (en) Manufacturing method of fluorine-containing cyclic olefin monomer
JPH07173085A (en) Tetracyclododecene derivative composition
JP4422938B2 (en) Continuous process for the production of tetracyclododecenes
KR100691414B1 (en) A process for the continuous preparation of tetracyclododecens
JPH05112474A (en) Production of compound having norbornene ring
JP2001139500A (en) Simultaneous production of both norbornene and high- purity tetracyclododecene
KR20230110942A (en) Continuous pyrolysis method of dicyclopentadiene
CN117164422A (en) Recovery method of norbornene process byproducts and production method of norbornene
JP6528947B2 (en) Process for producing dicarboxylic acid ester having norbornane skeleton
JP2001278817A (en) Continuous method for producing tetracyclododecenes
JPH07252169A (en) Production of tetracyclododecene derivative
JP2003081889A (en) METHOD FOR PRODUCING 1,4-METHANO-1,4,4a,9a- TETRAHYDROFLUORENE
JP2002114714A (en) Method for producing bicyclo[2.2.1] heptenes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080826

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees