JP4184757B2 - Compression coil spring - Google Patents

Compression coil spring Download PDF

Info

Publication number
JP4184757B2
JP4184757B2 JP2002320614A JP2002320614A JP4184757B2 JP 4184757 B2 JP4184757 B2 JP 4184757B2 JP 2002320614 A JP2002320614 A JP 2002320614A JP 2002320614 A JP2002320614 A JP 2002320614A JP 4184757 B2 JP4184757 B2 JP 4184757B2
Authority
JP
Japan
Prior art keywords
coil
spring
diameter
small
compression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002320614A
Other languages
Japanese (ja)
Other versions
JP2004156654A (en
Inventor
利和 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002320614A priority Critical patent/JP4184757B2/en
Publication of JP2004156654A publication Critical patent/JP2004156654A/en
Application granted granted Critical
Publication of JP4184757B2 publication Critical patent/JP4184757B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Springs (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車のストラット(車輪位置決め用の支柱)にショックアブソーバ(緩衝器)を利用したストラット式サスペンション(自動懸架装置)など円弧運動を行う部材に用いられる圧縮コイルばねに関する。
【0002】
【従来の技術】
ストラット式サスペンションは、図5に示すように、レバー53の先端部に取り付けられた車輪54の円弧運動P1を、レバー53と車体55との間に取り付けられたショックアブソーバ50の直線運動P2で受け止めるため、路面荷重線AAと、圧縮コイルばね52のばね反力線RAとが一致せず、ストラット51のシリンダ51aとロッド51bとの間に摺動抵抗が生じやすい。その結果、ショックアブソーバ50に摩擦力が発生し、円滑な摺動作用が阻害され操舵性(ハンドリング)が低下する。
【0003】
このような円弧運動を行う部材に使用できる圧縮コイルばねを実現するためには、ストラットに発生する曲げモーメントを打ち消すことが必要となる。そこで、圧縮コイルばねの作用線を湾曲させ移動量の大きい側と小さい側とで伸縮量(伸縮荷重)が異なるようにして、ストラットに作用する横力を相殺するようにしたばねが提案されている。
【0004】
従来の圧縮コイルばねの一例として、コイル軸が湾曲するように形成すると共に、ピッグテール巻された下側座面及び上側座面が所定角度ずつ傾斜するように、上下座巻のピッチがそれぞれ設定された構造が開示されている(例えば、特許文献1参照。)。
【0005】
また、ピッグテール巻された下側座巻及び上側座巻の座巻中心軸が胴部の直線状コイル軸に対し、所定距離オフセットするように形成すると共に、下側座面及び上側座面が所定角度ずつ傾斜するように、上下座巻のピッチがそれぞれ設定された構造が開示されているものもある(例えば、特許文献2参照。)。
【0006】
【特許文献1】
特開2002−234324号公報(第27段落、第1図)
【特許文献2】
特開2002−178736号公報(第27〜第28段落、第1図)
【0007】
【発明が解決しようとする課題】
しかし、1本のばねの特定箇所のピッチのみを変化させると、変化点近傍に応力集中点が発生し、そこで金属疲労を起こすため、ばねの寿命が短くなるという欠点がある。
【0008】
上述した特許文献1及び特許文献2はいずれも、一巻きの下側座面及び一巻きの上側座面を傾斜させるために部分的にピッチを変えているので、少なくとも2つの応力集中点が存在していた。また、ピッグテール巻された下側及び上側座巻と下側座面及び上側座面との傾斜角がわずかでも狂うと、ばね全体の特性が大きく変わるため、製作時に微妙な調整を必要とするという問題があった。
【0009】
本発明は、このような問題点に鑑みてなされたものであり、ばね撓み(たわみ)と共に反発荷重方向を変化でき、しかも長寿命な圧縮コイルばねを提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、本発明に係る圧縮コイルばねは、円弧運動を行う部材に用いられ、左右の側でばね定数kに差を設けることによりばね作用線が円弧運動に沿うような形で湾曲する圧縮コイルばねであって、コイル巻きされた1本の線材で構成され、少なくとも大径のコイル部分(12、22、32)と小径のコイル部分(14、24、36)とが連続した二巻き以上のコイル部分を単位としてそれらが繰り返し現れることを特徴とする。
【0011】
このように、二巻き以上のコイル部分を単位としたことにより、応力集中が緩和され、ばねの寿命が従来のものよりも飛躍的に長くなる。また、局所的に荷重方向を変更させるのではなく、二巻き以上のコイル部分を単位としてそれらが繰り返し現れることで荷重方向を変更させているため、製作時に微妙な調整が容易できる。
【0012】
上記圧縮コイルばねにおいて、前記小径のコイル部分は、そのコイル中心が大径のコイル部分のコイル中心と相対的に円周方向にずらされているように構成することが好ましい。
【0013】
このようにすると、荷重方向を容易に変化させることができる。なお、コイル中心相対的に円周方向にずらす場合は、同一コイル径の二巻き以上のコイル部分でずらしてもよいが、コイル径が異なっているとよりばね定数を大きく変化させることができ、より強い横力を付加することができる。また、同一ピッチであってもコイル径の小さいところはピッチ角度が大きくなり強くなるため、自由な反発力要求に対応できると共に応力集中点を長い線長に分散させることができるため、長寿命の圧縮コイルばねが得られる。
【0014】
大径のコイル部分及び小径のコイル部分のいずれか一方の中心軸線を直線又は湾曲させ、他方を直線又は湾曲させるように構成してもよい。このようにしても、1本のコイルばねのうち片側は強く他方は弱い、長寿命の圧縮コイルばねが得られる。
【0015】
上述した本発明に係る圧縮コイルばねは、コイル径及びコイル巻数比が異なる複数のコイル部分を単位としてそれらが複数存在するようにしてもよい。このようにしても、圧縮コイルばねの荷重方向を容易に変更することができる。
【0016】
【発明の実施の形態】
(基本的構成)
自動車のサスペンションのように円弧運動を行う部材に取り付けることができる圧縮コイルばねは、1本のコイルばねのうち、片側は弱く(ばね定数kが小)、他方の側は強い(ばね定数kが大)という特性を備えている。このようなばねは、荷重方向がコイル中心軸方向と一致せず、湾曲している。
【0017】
図5を参照すると、円弧運動の中心は左右タイヤの中央部にあるため、圧縮コイルばね53は、車体中心から見てレバー53の外側(すなわちタイヤ側)ほど大きく伸縮する。そこで、ばね定数kの大きい側が外側に、ばね定数kの小さい側が内側になるように圧縮コイルばね52を取付ける。
【0018】
このようにすると、ばね作用線がタイヤの円弧運動に沿うような形で湾曲し、ストラットに作用する横力を相殺する横力を付与することができる。
【0019】
(発明の実施形態)
このようなばねを実現するため、本発明に係る圧縮コイルばねは、従来のように一巻きで強弱部を設けるのではなく、一巻きよりも大きく長い線長部分で自然に応力分散ができる構造、より具体的には、二巻き以上のコイル部分を単位としてこれを繰り返し設けることで、強弱部を設けている。こうすることで、より長い距離で応力を分散することができ、応力集中点が形成されにくくなり長寿命化するほか、後述する種々の効果が得られる。
【0020】
繰り返しの単位となるコイルは、互いにコイル中心をずらしたり、互いにコイル径を異ならせたり、コイルピッチを変化させたり、或はこれらの組み合わせにより、圧縮コイルばね全体のばね作用線を湾曲させることができる。
【0021】
−ばね定数kを変化させる基本原則−
(1)コイル径が小さい部分ほど、ばね定数kが大きい。
(2)ピッチが大きい側ほど、ばね定数kが大きい。
−荷重方向を変化させる基本原則−
(3)2つのコイルの中心が異なると反発荷重方向が中心軸からずれる。
(4)ピッチを変化させると荷重方向が中心軸からずれる。
【0022】
本発明は、これらの基本原則を、少なくとも二巻き以上のコイル部分の単位に、適用する。すなわち、従来の圧縮コイルばねは、荷重方向を湾曲させるために、1本のコイルばねのピッチを局所的に或は一巻周期で異ならせたり、一巻きのコイル径のみに変化を与えていたが、本発明は、少なくとも二巻き以上のコイル部分を単位として、1本のばねに強弱をつけ荷重方向を湾曲させている。以下、実施例を説明する。
【0023】
【実施例】
(実施例1)−コイル径及びコイル中心をずらす−
以下添付図面を参照して本発明の実施例を説明する。図1は本発明の圧縮コイルばねを説明するの図であり、図1(a)は正面図、図1(b)は、図1(a)の線BBから下方に見たコイルの二巻き部分を示す図であり、図1(c)は、ばねの作用線を説明するための図である。
【0024】
図1(a)において、圧縮コイルばね10は、1本の線材で構成されており、大径のコイル部分12と小径のコイル部分14とを組み合わせた二巻きを単位として、それらが複数設けられてなる。なお、大径のコイル部分12から小径のコイル部分14に至る移行部分を考慮すると、1つの大径のコイル部分12と小径のコイル部分14とが厳密に一巻きずつ形成される必要はなく、全体として二巻き(乃至二巻き以上)となるようになっていればよい。
【0025】
複数存在する小径のコイル部分14(14a乃至14e)はそのコイル軸線11が湾曲した線上に位置するように構成され、一方、大径のコイル部分12のコイル軸線13は同一直線上に位置するように構成されている。なお、このコイルは等ピッチコイルとしているが必ずしも等ピッチである必要はない。なお、このような形状のコイルは、コイリングマシンに適切なデータを入力することにより比較的容易に製作することができる。
【0026】
図1(b)に示すように、小径のコイル部分14の各々(14a、14b、14c、14d、14e)は、大径コイルを基準として、円周方向にその中心を90°ずつ回転させるように配置されている。
【0027】
その結果、図1(a)のように最も上側の小径のコイル部分14aは、図面上では左側に寄っており、そのコイル中心が大径のコイル部分の中心よりも左側にずれている。上から2番目の小径のコイル部分14bはほぼ中央部に位置し、そのコイル中心が大径のコイル部分のコイル中心とほぼ同じ位置(軸線上近傍)にある。上から3番目の小径のコイル部分14cは図面上では右側に寄っている。上から4番目の小径のコイル部分14dは中央部に位置し、そのコイル中心が大径のコイル部分の中心とほぼ同じ位置(軸線上)にある。上から5番目の小径のコイル部分14eは、図面上では左側に寄っており、そのコイル中心が大径のコイル部分の中心よりも左側にずれており、コイルの中心軸線方向からみると先に説明した小径のコイル部分14aとほぼ同じ位置にくる。
【0028】
従って、小径のコイル部分14の各々の中心点を結ぶと、図1(a)の一点鎖線11で示したようにコイル中心軸が右側に凸の弓なりとなっている。
【0029】
この圧縮コイルばね10は、コイル径の異なる部分を含んでいるので、上述した原則(1)より、小径のコイル部分は大径のコイル部分と比較してばね定数kが大きい。また、圧縮コイルばね10を全体としてみると、小径のコイル部分の軸線が大径のコイル部分よりも相対的に左側にずれているので、上述した原則(3)より、図1(a)の図面上、左側の方が右側よりも、ばね定数kが大きい。
【0030】
その結果、この構造のコイルばねに下方から圧縮荷重を加えると、図1(c)に示すように、このばね10の作用線15は、全体として左に凸の円弧状に湾曲する。
【0031】
従って、このばねを左側のサスペンションに用いる(すなわち、タイヤがばね10の左側にくるように設置する)と、ばね作用線がタイヤの円弧運動に沿うような形で湾曲し、ストラットに作用する横力を相殺する横力を付与することができる。
【0032】
なお、コイルのピッチLはコイル径の大小によらず一定としたものを例示したが、上述の原則(2)を適用し、ばね定数kを大きくしたい側、図1(a)の例では左側のピッチを大きくすれば、付加される横力が一層増大する。ただし、その場合、コイルピッチを局所的に大きくするとそこに荷重が集中するため、少なくとも二巻き以上のコイル部分を単位としてそれらが繰り返し現れるようにするとよい。このようして、応力集中点がなくなるようにすることが本発明の本質だからである。
【0033】
また、図2(a)及び図2(b)に示すように、小径のコイル部分24の軸線21を湾曲させず、大径のコイル部分の軸線23と同様に、直線状にしてもよい。つまり、小径のコイル部分24を90°ずつ回転させるのではなく、1周期(すなわち360°)毎に、同じ位置に来るように配置してもよい。このようにしても、図2(c)のようにばねの作用線25が円弧状となり、ばねに圧縮荷重を加えたときにA方向の横力(A方向に曲がろうとする力)が付与される。
【0034】
この場合、上述の図1に示す場合よりは、ばね定数kの差が小さくなり付加される横力がやや減少する。つまり、ばね定数の左右のバランスはこのようにして調整が可能となる。このように、繰り返し単位で強弱が設けられていると、応力集中点が無くなり、従来のばねよりも長寿命化する。なお、これらは上述の原則を適宜適用することで容易に設計変更等することができる。
【0035】
(第1の実施例の変形例)
大径のコイル部分12と小径のコイル部分14とが一本の線材の中で1つずつ交互に配置されるのではなく、複数(又は1つ)の大径のコイル部分12と、複数(又は1つ)の小径のコイル部分14とが交互に配置されていてもよい。これらも広い意味で、「少なくとも二巻き以上のコイル部分(=大径のコイル部分と小径のコイル部分)を単位として、強弱部を設けること」に含まれるものとする。
【0036】
また、大径のコイル部分12の軸心を湾曲させ小径のコイル部分14の軸心を同一直線上に配置するように構成したり、あるいは、大小両方のコイル部分の軸心を湾曲させるようにしてもよい。このようにしても、左右のばね定数kに差を設けることができる。これらは上述の原則を適宜適用することで容易に設計変更等することができる。
【0037】
(実施例2)−コイル径及びコイル巻き数を変化させる−
図3は本発明の圧縮コイルばねを説明するの図であり、図3(a)は正面図、図3(b)は、図3(a)の線BB’から下方に見たコイルの二巻き部分を示す図であり、図3(c)は、ばねの作用線を説明するための図である。
【0038】
図3において、コイルばね30は、一巻きの部分が大径のコイル部分32と小径のコイル部分36とを組み合わせてなる。この例では、大径のコイル部分32と小径のコイル部分36とが交互に繰り返し現れている。また、このコイルばね30の大径のコイル部分32は巻き数が例えば0.8巻、小径のコイル部分16の巻き数が例えば1.2巻というように、巻数比が異ならせてある。
【0039】
図3(b)に示すように、複数存在する大径のコイル部分32及び小径のコイル部分36の中心軸31及び33は、同一直線上にのっている。
【0040】
しかし、巻数比が相対的に多い小径のコイル部分が繰り返しコイルばね30の中心軸31(33)よりも左側に多く現れるため、原則(1)により、図3(a)の図面上、全体として左側のばね定数kが大きくなり、右側のばね定数kが小さくなる。
【0041】
その結果、この構造のコイルばねに下方から荷重を加えると、図3(c)に示すように、一点鎖線で示したこのばね30の作用線35は、全体として左に凸の円弧状に湾曲する。
【0042】
従って、このばねを左側のサスペンションに用いる(すなわち、タイヤがばね30の左側にくるように設置する)と、ばね作用線がタイヤの円弧運動に沿うような形で湾曲し、ストラットに作用する横力を相殺する横力を付与することができる。
【0043】
なお、大小コイル部分の巻数比が0.8巻と1.2巻(合計2巻き)の例を示したが、これに限られず、巻数比を異ならせるとともに、全体として二巻き以上を単位として、これらが1本の線材からなるコイルばねの中で繰り返し現れるようにしてもよい。
【0044】
なお、コイルのピッチLはコイル径の大小によらず一定としたものを例示したが、上述の原則(2)を適用し、ばね定数kを大きくしたい側(図3の例では左側)のピッチを大きくすれば、付加される横力が一層増大する。また、小径のコイル部分14の軸線を湾曲させず、小径のコイル部分14の軸線も直線上に一致するようにしてもよい。こうすれば、ばね定数kの差が小さくなり付加される横力が減少する。これらは上述の原則を適宜適用することで容易に設計変更等することができる。
【0045】
(その他の実施例)
本発明は以上の実施例に限られず、二巻き以上を単位として上述した原則(1)乃至原則(4)に則り、これらを適宜組み合わせた実施例も可能である。例えば、図4(a)のように、順次コイル径を中心側ほど小さくしていくと共に順次変心させていくと、応力が分散され、ばねが長寿命化する。
【0046】
同様に、図4(b)のように順次コイル径を中心側ほど大きくしていくと共に順次変心させていってもよい。すなわち、図4(a)や図4(b)のように、コイル径及びコイル巻数が異なる複数のコイル部分を単位としてそれらが複数存在するようにしてもよい。
【0047】
或いは、ピッチ角を変化させて、二巻き以上を単位として1本のコイルばねに強弱をつけてもよい。ただし、ピッチ角を変化させるときは局所的に変化させるのではなく、少なくとも二巻き以上のコイル部分を単位としてそれらが複数存在するようにすることが重要である。
【0048】
【発明の効果】
本発明に係る圧縮コイルばねは、応力集中点が二巻き以上を単位としてばね全体として分散するように構成されているため、従来のものよりも長寿命でかつ、微調整も容易である。
【図面の簡単な説明】
【図1】 図1は第1の実施例において説明する本発明の圧縮コイルばねを説明するための図であり、図1(a)は正面図、図1(b)は、図1(a)の線BB’から下方に見たコイルの二巻き部分を示す図であり、図1(c)は、ばねの作用線(反発軸線)を説明するための図である。
【図2】 図2は第1の実施例において本発明の圧縮コイルばねを説明するための図であり、図2(a)は正面図、図2(b)は、図2(a)の線BB’から下方に見たコイルの二巻き部分を示す図であり、図2(c)は、ばねの作用(反発軸線)を説明するための図である。
【図3】 図3は第2の実施例において本発明の圧縮コイルばねを説明するための図であり、図3(a)は正面図、図3(b)は、図3(a)の線BB’から下方に見たコイルの二巻き部分を示す図であり、図3(c)は、ばねの作用線を説明するための図である。
【図4】 図4(a)及び(b)はその他の実施例において本発明の圧縮コイルばねを説明するための図である。
【図5】 図5はストラット式サスペンションを示す図である。
【符号の説明】
10 圧縮コイルばね
11 小径のコイル部分の軸線
13 大径のコイル部分の軸線
14 小径のコイル部分
15 作用線
50 ショックアブソーバ
51a シリンダ
51b ロッド
52 圧縮コイルばね
53 ロアアーム
54 車輪
55 車体
AA 路面荷重線
RA ばね反力線
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a compression coil spring used for a member that performs an arc motion such as a strut suspension (automatic suspension device) using a shock absorber (buffer) for a strut (wheel positioning support) of an automobile.
[0002]
[Prior art]
As shown in FIG. 5, the strut suspension receives the arc motion P1 of the wheel 54 attached to the tip of the lever 53 by the linear motion P2 of the shock absorber 50 attached between the lever 53 and the vehicle body 55. For this reason, the road load line AA and the spring reaction force line RA of the compression coil spring 52 do not coincide with each other, and a sliding resistance is likely to occur between the cylinder 51a and the rod 51b of the strut 51. As a result, a frictional force is generated in the shock absorber 50, the smooth sliding action is hindered, and the steering performance (handling) is lowered.
[0003]
In order to realize a compression coil spring that can be used for a member that performs such an arc motion , it is necessary to cancel the bending moment generated in the strut. Therefore, a spring has been proposed in which the line of action of the compression coil spring is curved so that the amount of expansion / contraction (extension / contraction load) differs between the side with a large amount of movement and the side with a small amount of movement, thereby canceling the lateral force acting on the strut. Yes.
[0004]
As an example of a conventional compression coil spring, the coil shaft is formed to be curved, and the pitch of the upper and lower seat windings is set so that the lower and upper seat surfaces wound with pigtails are inclined by a predetermined angle. (For example, refer to Patent Document 1).
[0005]
Further, the center winding axis of the lower end coil and the upper end coil wound with the pigtail is formed so as to be offset by a predetermined distance with respect to the linear coil axis of the body portion, and the lower seat surface and the upper seat surface are predetermined. Some have disclosed a structure in which the pitch of the upper and lower cigarettes is set so as to be inclined at an angle (see, for example, Patent Document 2).
[0006]
[Patent Document 1]
JP 2002-234324 A (27th paragraph, FIG. 1)
[Patent Document 2]
Japanese Patent Laid-Open No. 2002-1778736 (27th to 28th paragraphs, FIG. 1)
[0007]
[Problems to be solved by the invention]
However, if only the pitch of a specific portion of one spring is changed, a stress concentration point is generated in the vicinity of the change point, and metal fatigue occurs there, so that there is a disadvantage that the life of the spring is shortened.
[0008]
In both Patent Document 1 and Patent Document 2 described above, since the pitch is partially changed in order to incline the lower seat surface of one roll and the upper seat surface of one roll, there are at least two stress concentration points. Was. In addition, if the tilt angle between the lower and upper cigars wound with the pigtail and the lower and upper bearing surfaces is slightly out of order, the characteristics of the entire spring will change significantly, requiring fine adjustment during production. There was a problem.
[0009]
The present invention has been made in view of such problems, and an object of the present invention is to provide a compression coil spring that can change the direction of repulsive load as well as spring deflection (deflection) and has a long life.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the compression coil spring according to the present invention is used for a member that performs an arc motion, and the spring action line follows the arc motion by providing a difference in the spring constant k on the left and right sides. A compression coil spring that is curved , and is composed of one coiled wire, and at least a large-diameter coil portion (12, 22, 32) and a small-diameter coil portion (14, 24, 36) are continuous. They are characterized in that they appear repeatedly in units of two or more coil portions.
[0011]
Thus, by using a coil portion of two or more turns as a unit, stress concentration is relaxed, and the life of the spring is dramatically increased as compared with the conventional one. In addition, the load direction is not changed locally, but the load direction is changed by repeatedly appearing in units of two or more coil portions, so that delicate adjustments can be easily made during production.
[0012]
In the compression coil spring, the small-diameter coil portion is preferably configured such that its coil center is shifted in the circumferential direction relative to the coil center of the large-diameter coil portion .
[0013]
If it does in this way, a load direction can be changed easily. When the coil center is relatively shifted in the circumferential direction, it may be shifted by two or more coil portions having the same coil diameter. However, if the coil diameters are different, the spring constant can be changed more greatly. A stronger lateral force can be added. Also, even if the pitch is the same, the pitch angle becomes larger and stronger when the coil diameter is small, so that it is possible to meet the demand for free repulsive force and to disperse the stress concentration points over a long line length. A compression coil spring is obtained.
[0014]
You may comprise so that the center axis line of either one of a large diameter coil part and a small diameter coil part may be made straight or curved, and the other may be made straight or curved. In this way, a long-life compression coil spring is obtained in which one side of one coil spring is strong and the other is weak.
[0015]
The above-described compression coil spring according to the present invention may include a plurality of coil portions each having a plurality of coil portions having different coil diameters and coil turn ratios . Even in this case, the load direction of the compression coil spring can be easily changed.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
(Basic configuration)
A compression coil spring that can be attached to a member that performs an arc motion, such as a suspension of an automobile, is weak on one side (small spring constant k) and strong on the other side (spring constant k is small). Large). In such a spring, the load direction does not coincide with the coil central axis direction and is curved.
[0017]
Referring to FIG. 5, since the center of the arc motion is at the center of the left and right tires, the compression coil spring 53 expands and contracts greatly toward the outer side of the lever 53 (that is, the tire side) when viewed from the vehicle body center. Therefore, the compression coil spring 52 is attached so that the side with the larger spring constant k is on the outside and the side with the smaller spring constant k is on the inside.
[0018]
If it does in this way, a spring action line will curve in the shape which follows the circular motion of a tire, and lateral force which counteracts lateral force which acts on a strut can be given.
[0019]
(Embodiment of the Invention)
In order to realize such a spring, the compression coil spring according to the present invention is not provided with a strong and weak portion by one turn as in the prior art, but has a structure in which stress can be naturally distributed at a long line length larger than one turn. More specifically, the strength portion is provided by repeatedly providing a coil portion having two or more turns as a unit. In this way, stress can be dispersed over a longer distance, stress concentration points are less likely to be formed and the life is extended, and various effects described later are obtained.
[0020]
The coil which becomes a repeating unit can bend the spring action line of the entire compression coil spring by shifting the coil center from each other, making the coil diameters different from each other, changing the coil pitch, or a combination thereof. it can.
[0021]
-Basic principle of changing spring constant k-
(1) The smaller the coil diameter, the larger the spring constant k.
(2) The larger the pitch, the larger the spring constant k.
-Basic principles for changing the load direction-
(3) When the centers of the two coils are different, the repulsive load direction deviates from the central axis.
(4) When the pitch is changed, the load direction deviates from the central axis.
[0022]
The present invention applies these basic principles to a unit of a coil portion having at least two turns. That is, in the conventional compression coil spring , in order to curve the load direction, the pitch of one coil spring is varied locally or in one turn cycle, or only the coil diameter of one turn is changed. However, in the present invention, the load direction is curved by applying a strength to one spring with a coil portion of at least two turns or more as a unit. Examples will be described below.
[0023]
【Example】
(Example 1)-Shifting the coil diameter and coil center-
Embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 is a diagram for explaining a compression coil spring according to the present invention, FIG. 1 (a) is a front view, and FIG. 1 (b) is a view of two windings of a coil viewed downward from line BB in FIG. 1 (a). It is a figure which shows a part, FIG.1 (c) is a figure for demonstrating the action line of a spring.
[0024]
In FIG. 1A, the compression coil spring 10 is composed of a single wire, and a plurality of them are provided in units of two turns in which a large-diameter coil portion 12 and a small-diameter coil portion 14 are combined. It becomes. In consideration of the transition portion from the large diameter coil portion 12 to the small diameter coil portion 14, one large diameter coil portion 12 and the small diameter coil portion 14 do not need to be formed exactly one by one, It is sufficient that the total number of windings is 2 (or more than 2).
[0025]
The plurality of small-diameter coil portions 14 (14a to 14e) are configured such that the coil axis 11 is positioned on a curved line, while the coil axis 13 of the large-diameter coil portion 12 is positioned on the same straight line. It is configured. In addition, although this coil is made into the equal pitch coil, it does not necessarily need to be an equal pitch. The coil having such a shape can be manufactured relatively easily by inputting appropriate data to the coiling machine.
[0026]
As shown in FIG. 1B, each of the small-diameter coil portions 14 (14a, 14b, 14c, 14d, 14e) is rotated by 90 ° in the circumferential direction with respect to the large-diameter coil. Is arranged.
[0027]
As a result, as shown in FIG. 1 (a), the uppermost small-diameter coil portion 14a is shifted to the left side in the drawing, and the coil center is shifted to the left side from the center of the large-diameter coil portion. The second small-diameter coil portion 14b from the top is located substantially at the center, and its coil center is substantially the same position (near the axis) as the coil center of the large-diameter coil portion. The third small-diameter coil portion 14c from the top is on the right side in the drawing. The fourth small-diameter coil portion 14d from the top is located at the center, and the center of the coil is substantially at the same position (on the axis) as the center of the large-diameter coil portion. The fifth small-diameter coil portion 14e from the top is shifted to the left side in the drawing, and the center of the coil is shifted to the left side from the center of the large-diameter coil portion. It comes to substantially the same position as the small-diameter coil portion 14a described.
[0028]
Therefore, when the center points of the small-diameter coil portions 14 are connected, the coil center axis is a convex bow on the right side, as shown by the alternate long and short dash line 11 in FIG.
[0029]
Since this compression coil spring 10 includes portions with different coil diameters, the small-diameter coil portion has a larger spring constant k than the large-diameter coil portion based on the principle (1) described above. Further, when the compression coil spring 10 is viewed as a whole, the axis of the small-diameter coil portion is shifted to the left relative to the large-diameter coil portion. Therefore, from the above principle (3), FIG. In the drawing, the spring constant k is larger on the left side than on the right side.
[0030]
As a result, when a compressive load is applied to the coil spring of this structure from below, the action line 15 of the spring 10 is curved in a convex arc shape to the left as shown in FIG.
[0031]
Therefore, when this spring is used for the left suspension (that is, the tire is installed so as to be on the left side of the spring 10), the spring acting line is curved in such a manner as to follow the arc motion of the tire, and the lateral acting on the strut is applied. A lateral force that cancels the force can be applied.
[0032]
Although the coil pitch L is illustrated as being constant regardless of the coil diameter, the above-described principle (2) is applied, and the left side in the example of FIG. If the pitch of is increased, the applied lateral force is further increased. However, in that case, if the coil pitch is locally increased, the load is concentrated there, so that it is preferable that they appear repeatedly in units of at least two or more coil portions. It is because the essence of the present invention is to eliminate the stress concentration point in this way.
[0033]
Further, as shown in FIGS. 2A and 2B, the axis 21 of the small-diameter coil portion 24 may not be curved, but may be linear like the axis 23 of the large-diameter coil portion. That is, instead of rotating the small-diameter coil portion 24 by 90 °, the small-diameter coil portion 24 may be arranged at the same position every one cycle (that is, 360 °). Even in this case, as shown in FIG. 2C, the action line 25 of the spring has an arc shape, and when a compression load is applied to the spring, a lateral force in the A direction (a force to bend in the A direction) is applied. Is done.
[0034]
In this case, as compared with the case shown in FIG. 1 described above, the difference in the spring constant k is reduced, and the applied lateral force is slightly reduced. That is, the left and right balance of the spring constant can be adjusted in this way. Thus, when strength is provided in the repeating unit, the stress concentration point is eliminated and the life is longer than that of the conventional spring. Note that these can be easily changed in design by appropriately applying the above-described principle.
[0035]
(Modification of the first embodiment)
The large-diameter coil portions 12 and the small-diameter coil portions 14 are not alternately arranged one by one in one wire, but a plurality (or one) of large-diameter coil portions 12 and a plurality ( Alternatively, the small-diameter coil portions 14 may be alternately arranged. In a broad sense, these are included in “providing a strong and weak portion in units of at least two or more coil portions (= large diameter coil portion and small diameter coil portion)”.
[0036]
Also, the axis of the large-diameter coil portion 12 is bent and the axis of the small-diameter coil portion 14 is arranged on the same straight line, or the axes of both the large and small coil portions are bent. May be. Even in this case, a difference can be provided between the left and right spring constants k. These can be easily changed in design by appropriately applying the above-mentioned principle.
[0037]
(Example 2)-Changing the coil diameter and the number of coil turns-
FIGS. 3A and 3B are diagrams for explaining the compression coil spring of the present invention. FIG. 3A is a front view, and FIG. 3B is a view of two coils viewed downward from the line BB ′ in FIG. It is a figure which shows a winding part, FIG.3 (c) is a figure for demonstrating the action line of a spring.
[0038]
In FIG. 3, the coil spring 30 is formed by combining a coil portion 32 having a large diameter and a coil portion 36 having a small diameter. In this example, large-diameter coil portions 32 and small-diameter coil portions 36 appear alternately and repeatedly. Also, the large-diameter coil portion 32 of the coil spring 30 has a different winding ratio such that the number of turns is, for example, 0.8, and the number of turns of the small-diameter coil portion 16 is, for example, 1.2.
[0039]
As shown in FIG. 3B, center axes 31 and 33 of a plurality of large-diameter coil portions 32 and small-diameter coil portions 36 are on the same straight line.
[0040]
However, since a small-diameter coil portion having a relatively large turn ratio repeatedly appears on the left side of the central axis 31 (33) of the coil spring 30 repeatedly, the principle (1) as a whole on the drawing of FIG. The left spring constant k increases and the right spring constant k decreases.
[0041]
As a result, when a load is applied to the coil spring having this structure from below, as shown in FIG. 3C, the action line 35 of the spring 30 indicated by the alternate long and short dash line is curved in a circular arc convex to the left as a whole. To do.
[0042]
Therefore, when this spring is used for the left suspension (that is, the tire is placed so as to be on the left side of the spring 30), the spring acting line is curved in such a manner as to follow the arc motion of the tire, and the lateral acting on the strut is applied. A lateral force that cancels the force can be applied.
[0043]
In addition, although the winding ratio of the large and small coil portions is 0.8 and 1.2 (2 windings in total), the present invention is not limited to this. These may repeatedly appear in a coil spring made of a single wire.
[0044]
Although the coil pitch L is illustrated as being constant regardless of the size of the coil diameter, the above-described principle (2) is applied, and the pitch on the side where the spring constant k is desired to be increased (the left side in the example of FIG. 3). If the is increased, the lateral force applied is further increased. Further, the axis of the small-diameter coil portion 14 may not be curved, and the axis of the small-diameter coil portion 14 may coincide with the straight line. In this way, the difference in spring constant k is reduced and the applied lateral force is reduced. These can be easily changed in design by appropriately applying the above-mentioned principle.
[0045]
(Other examples)
The present invention is not limited to the above-described embodiment, and an embodiment in which these are appropriately combined according to the above-described principle (1) to principle (4) in units of two or more turns is also possible. For example, as shown in FIG. 4A, when the coil diameter is gradually reduced toward the center side and is gradually changed, the stress is dispersed and the life of the spring is extended.
[0046]
Similarly, as shown in FIG. 4B, the coil diameter may be gradually increased toward the center side and may be sequentially changed. That is, as shown in FIGS. 4A and 4B, a plurality of coil portions having different coil diameters and coil turns may be provided as a unit.
[0047]
Alternatively, the pitch angle may be changed, and the strength of one coil spring may be increased in units of two or more turns. However, when changing the pitch angle, it is important not to change the pitch angle locally, but to have a plurality of coils in units of at least two or more turns.
[0048]
【The invention's effect】
Since the compression coil spring according to the present invention is configured so that the stress concentration point is dispersed as a whole in units of two or more turns, it has a longer life than the conventional one and is easy to fine-tune.
[Brief description of the drawings]
FIG. 1 is a view for explaining a compression coil spring of the present invention described in the first embodiment, FIG. 1 (a) is a front view, and FIG. 1 (b) is a view in FIG. ) Of the coil viewed downward from the line BB ′, and FIG. 1C is a diagram for explaining the action line (repulsion axis) of the spring.
2 is a view for explaining a compression coil spring of the present invention in the first embodiment, FIG. 2 (a) is a front view, and FIG. 2 (b) is a view of FIG. 2 (a). FIG. 2C is a diagram showing two winding portions of the coil as viewed downward from the line BB ′, and FIG. 2C is a diagram for explaining the action (repulsion axis) of the spring.
3 is a view for explaining a compression coil spring according to the present invention in a second embodiment, FIG. 3 (a) is a front view, and FIG. 3 (b) is a view of FIG. 3 (a). It is a figure which shows the two winding parts of the coil seen below from line BB ', and FIG.3 (c) is a figure for demonstrating the action line of a spring.
4 (a) and 4 (b) are diagrams for explaining a compression coil spring of the present invention in another embodiment.
FIG. 5 is a view showing a strut suspension.
[Explanation of symbols]
10 compression coil spring 11 axis of small diameter coil portion 13 axis of large diameter coil portion 14 small diameter coil portion 15 action line 50 shock absorber 51a cylinder 51b rod 52 compression coil spring 53 lower arm 54 wheel 55 vehicle body AA road load line RA spring Reaction line

Claims (4)

円弧運動を行う部材に用いられ、左右の側でばね定数kに差を設けることによりばね作用線が円弧運動に沿うような形で湾曲する圧縮コイルばねであって、コイル巻きされた1本の線材で構成され、少なくとも大径のコイル部分(12、22、32)と小径のコイル部分(14、24、36)とが連続した二巻き以上のコイル部分を単位としてそれらが繰り返し現れることを特徴とする圧縮コイルばね。  A compression coil spring that is used for a member that performs an arc motion and is curved in such a manner that a spring action line is curved along the arc motion by providing a difference in the spring constant k on the left and right sides. It is composed of a wire rod, and at least two coil portions of at least a large-diameter coil portion (12, 22, 32) and a small-diameter coil portion (14, 24, 36) are continuous and appear repeatedly as a unit. A compression coil spring. 前記小径のコイル部分は、そのコイル中心が大径のコイル部分のコイル中心と相対的に円周方向にずらされていることを特徴とする請求項1記載の圧縮コイルばね。  2. The compression coil spring according to claim 1, wherein the coil portion of the small diameter is shifted in the circumferential direction relative to the coil center of the coil portion of the large diameter. 前記大径のコイル(12、22、32)及び小径のコイル部分(14、24、36)のいずれか一方の中心軸線を直線または湾曲させ、他方を湾曲又は直線状にさせるように構成したことを特徴とする請求項1又は請求項2に記載の圧縮コイルばね。  The central axis of one of the large-diameter coil (12, 22, 32) and the small-diameter coil portion (14, 24, 36) is linear or curved, and the other is curved or linear. The compression coil spring according to claim 1 or 2, characterized in that. 前記二巻き以上のコイル部分は、コイル径及びコイル巻数比が異なる複数のコイル部分を単位としてそれらが複数存在することを特徴とする請求項1から請求項3のいずれか1項に記載の圧縮コイルばね。The compression according to any one of claims 1 to 3, wherein a plurality of the coil portions having two or more turns are present in units of a plurality of coil portions having different coil diameters and coil turns ratios. Coil spring.
JP2002320614A 2002-11-05 2002-11-05 Compression coil spring Expired - Lifetime JP4184757B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002320614A JP4184757B2 (en) 2002-11-05 2002-11-05 Compression coil spring

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002320614A JP4184757B2 (en) 2002-11-05 2002-11-05 Compression coil spring

Publications (2)

Publication Number Publication Date
JP2004156654A JP2004156654A (en) 2004-06-03
JP4184757B2 true JP4184757B2 (en) 2008-11-19

Family

ID=32801408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002320614A Expired - Lifetime JP4184757B2 (en) 2002-11-05 2002-11-05 Compression coil spring

Country Status (1)

Country Link
JP (1) JP4184757B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107420470A (en) * 2017-07-31 2017-12-01 重庆晟初科技有限公司 Flexible diameter springs

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180853A (en) * 2011-02-28 2012-09-20 Hitachi Automotive Systems Ltd Compression coil spring
JP7228972B2 (en) * 2018-07-27 2023-02-27 ナブテスコ株式会社 Valve structure and working machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107420470A (en) * 2017-07-31 2017-12-01 重庆晟初科技有限公司 Flexible diameter springs

Also Published As

Publication number Publication date
JP2004156654A (en) 2004-06-03

Similar Documents

Publication Publication Date Title
JP3960710B2 (en) Suspension coil spring for automobile
JP4601108B2 (en) Bent coil spring and method of manufacturing the same
ES2733755T3 (en) Suspension device and helical compression spring for suspension device
KR101783329B1 (en) Suspension coil spring and strut-type suspension device
JP2015036565A (en) Coil spring for suspension device
CN100365315C (en) Helical spring and suspension gear
US20200189343A1 (en) Coil spring for suspension
JP2019026012A (en) Torsion beam structure of vehicle
JP4184757B2 (en) Compression coil spring
US10300756B2 (en) Suspension coil spring
JPWO2003046406A1 (en) Compression coil spring device having discontinuous support structure
JP2012057777A (en) Suspension device and coil spring for suspension device
JP2016047722A (en) Suspension coil spring and strut type suspension device
JP4391080B2 (en) Suspension coil spring
JP3938766B2 (en) Compression coil spring
US20230001758A1 (en) Coil spring for vehicle suspension system
JP6938393B2 (en) Vehicle suspension system
JPH0635704Y2 (en) Suspension for cars
JP2002067647A (en) Strut type hydraulic shock absorber
JP2005343287A (en) Stabilizer for vehicle
JPH07108807A (en) Suspension for vehicle
JPH1163066A (en) Shock absorber externally inserted on compression coil spring
JP2005083477A (en) Suspension device
KR20080006198A (en) Front suspension system of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080904

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4184757

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term