JP3938766B2 - Compression coil spring - Google Patents

Compression coil spring Download PDF

Info

Publication number
JP3938766B2
JP3938766B2 JP2003399771A JP2003399771A JP3938766B2 JP 3938766 B2 JP3938766 B2 JP 3938766B2 JP 2003399771 A JP2003399771 A JP 2003399771A JP 2003399771 A JP2003399771 A JP 2003399771A JP 3938766 B2 JP3938766 B2 JP 3938766B2
Authority
JP
Japan
Prior art keywords
coil spring
spring
axis
shock absorber
compression coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003399771A
Other languages
Japanese (ja)
Other versions
JP2004150637A (en
Inventor
俊雄 浜野
博武 加藤
巌 重岡
崇宏 仲村
敏行 鎌倉
雅也 駒崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NHK Spring Co Ltd
Original Assignee
NHK Spring Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NHK Spring Co Ltd filed Critical NHK Spring Co Ltd
Priority to JP2003399771A priority Critical patent/JP3938766B2/en
Publication of JP2004150637A publication Critical patent/JP2004150637A/en
Application granted granted Critical
Publication of JP3938766B2 publication Critical patent/JP3938766B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Vehicle Body Suspensions (AREA)
  • Springs (AREA)
  • Fluid-Damping Devices (AREA)

Description

本発明は、ばねの構造及びばねの取付け構造に特徴を有するばねに関する。   The present invention relates to a spring characterized by a spring structure and a spring mounting structure.

従来から、自動車等に用いられる例えばストラット型懸架装置に於いて、内部にオイルが充填されたシリンダと、それに受容されたピストンとを有する筒型ショックアブソーバとこれを囲繞するように設けられた圧縮コイルばねとからなるアセンブリを、車体と懸架装置のリンク部材とを連結するように組み付けるものがある。ところが、タイヤからの入力が必ずしもショックアブソーバの軸線と一致せず、横荷重を伴うことから、ショックアブソーバのシリンダとピストンとの摺動部に横荷重及びモーメントが作用し、摺動抵抗が発生して車の乗り心地を損ねると共にショックアブソーバの寿命をも短くするという問題があった。   2. Description of the Related Art Conventionally, for example, in a strut type suspension device used in an automobile or the like, a cylindrical shock absorber having a cylinder filled with oil and a piston received therein, and a compression provided to surround the cylinder type shock absorber There is an assembly in which an assembly including a coil spring is assembled so as to connect a vehicle body and a link member of a suspension device. However, since the input from the tire does not necessarily coincide with the axis of the shock absorber and is accompanied by a lateral load, a lateral load and a moment act on the sliding portion between the cylinder and piston of the shock absorber, resulting in a sliding resistance. As a result, the ride comfort of the car is impaired and the life of the shock absorber is shortened.

そこで、従来から、ショックアブソーバの軸線に対して、オフセットしてコイルばねを装着して、コイルばねが発生する横荷重及びモーメントによって、ショックアブソーバのシリンダとピストンとの摺動部に生じる横荷重及びモーメントを低減する方法が知られている。しかしながら、オフセット量が、コイルばねの径、取付けスペースなどの制約を受け、タイヤからの入力により受ける横荷重及びモーメントを完全に打ち消すのに十分な横荷重及びモーメントを発生することができなかった。   In view of this, conventionally, the coil spring is offset to the axis of the shock absorber, and the lateral load and moment generated in the sliding portion between the shock absorber cylinder and the piston due to the lateral load and moment generated by the coil spring are reduced. Methods for reducing the moment are known. However, the offset amount is limited by the diameter of the coil spring, the installation space, and the like, and the lateral load and moment sufficient to completely cancel the lateral load and moment received by the input from the tire cannot be generated.

特開平1−156119号公報には、自由状態では軸線が湾曲しているようなコイルばねを用いて、ショックアブソーバのシリンダとピストンとの摺動部に生じる横荷重及びモーメントを低減することが提案されている。しかしながら、湾曲するコイルばねをどのようにして伸直状態で保持し得るのか明らかでなく、また、車輪懸架装置に適するような湾曲するコイルばねは、低コストで製造することができない。   Japanese Laid-Open Patent Publication No. 1-156119 proposes to reduce a lateral load and a moment generated in a sliding portion between a cylinder and a piston of a shock absorber by using a coil spring whose axis is curved in a free state. Has been. However, it is not clear how a bending coil spring can be held in the straightened state, and a bending coil spring suitable for a wheel suspension cannot be manufactured at low cost.

このような従来技術の問題点に鑑み、本発明の主な目的は、筒型ショックアブソーバ及びそれを囲繞する圧縮コイルばねを備える車両用懸架装置に於いて、大型化することなく、ショックアブソーバのシリンダとピストンとの間に生じる摺動抵抗を好適に低減し得るようにすることにある。   In view of such problems of the prior art, a main object of the present invention is to provide a shock absorber for a shock absorber without increasing its size in a suspension device for a vehicle including a cylindrical shock absorber and a compression coil spring surrounding the shock absorber. An object of the present invention is to suitably reduce the sliding resistance generated between the cylinder and the piston.

本発明の第2の目的は、上記形式の車両用懸架装置に於いて、ショックアブソーバのシリンダとピストンとの間に生じる摺動抵抗を好適に低減し、車の乗り心地を改善し、ショックアブソーバの耐久性を向上することにある。   The second object of the present invention is to improve the ride comfort of the vehicle by suitably reducing the sliding resistance generated between the cylinder and the piston of the shock absorber in the above-described vehicle suspension system. It is to improve the durability.

本発明の第3の目的は、上記形式の車両用懸架装置に於いて、装置を大型化することなく、しかも組み付け作業性も阻害せずに、ショックアブソーバのシリンダとピストンとの間に生じる摺動抵抗を好適に低減することにある。   A third object of the present invention is a vehicle suspension system of the type described above, which does not increase the size of the apparatus and does not hinder the assembly workability, and does not interfere with the assembly of the shock absorber cylinder and piston. The purpose is to suitably reduce the dynamic resistance.

本発明の第4の目的は、上記したような車両用懸架装置に用いるのに適するコイルばねを提供することにある。   A fourth object of the present invention is to provide a coil spring suitable for use in the vehicle suspension system as described above.

このような目的は、本発明によれば、垂直な軸線に沿って各巻きごとに一定の巻き方向角度位置にて、ばねの素線に沿う長さの変分に対する素線上の対応する点の高さの変化量として与えられるピッチ角が、コイルの略全長に渡って、唯1回ずつ極大及び極小となるように、かつ各端末が前記軸線に対して垂直な基準座面をなすように巻かれたコイルばねからなり前記コイルばねを前記軸線方向に伸縮させて用い、前記軸線方向に圧縮された時に両端間に前記軸線に対して直交する横方向力が発生するように適合されていることを特徴とする圧縮コイルばねを提供することにより達成される。 Such an object is, according to the invention, to provide a corresponding point on the strand for variations in length along the strand of the spring at a constant winding direction angular position for each turn along the vertical axis. The pitch angle given as the amount of change in height is maximized and minimized only once over almost the entire length of the coil, and each terminal forms a reference seat perpendicular to the axis. It is composed of a coiled coil spring, and is adapted to generate a lateral force perpendicular to the axis between both ends when the coil spring is expanded and contracted in the axial direction and compressed in the axial direction. This is achieved by providing a compression coil spring characterized in that:

特に、前記コイルばねに発生する前記横方向力が、前記車輪からの負荷の作用方向と前記ショックアブソーバの軸線との間の偏差に起因して、前記ショックアブソーバのピストンとシリンダとの間に作用する横力を極小化するように定められれば、ショックアブソーバのシリンダとピストンとの間に生じる横力に起因する摺動抵抗を好適に低減することができ、車の乗り心地を改善し、ショックアブソーバの耐久性を向上することができる。   In particular, the lateral force generated in the coil spring acts between the piston and cylinder of the shock absorber due to a deviation between the acting direction of the load from the wheel and the axis of the shock absorber. If the lateral force is determined to be minimized, the sliding resistance caused by the lateral force generated between the shock absorber cylinder and the piston can be suitably reduced, improving the ride comfort of the vehicle, The durability of the absorber can be improved.

傾斜軸線に沿って巻かれたコイルばねを、その両端に、横方向の初期荷重を加えて垂直な軸線を有する状態に保ち、かつ該垂直軸線方向に伸縮するように保持すれば、圧縮コイルばねが、その伸縮に伴い、両端間に横方向力が発生するようなものとすることができ、しかも装置を大型化することなく、また幾何学的制約を受けることなく、所望の横力を発生することができる。また、組み付け作業性も好適であり、製造コストも低廉である。   If the coil spring wound along the inclined axis is maintained at a state having a vertical axis by applying a lateral initial load at both ends, and the coil spring is held so as to expand and contract in the vertical axis direction, the compression coil spring However, with the expansion and contraction, a lateral force can be generated between both ends, and a desired lateral force can be generated without increasing the size of the apparatus and without being subjected to geometric restrictions. can do. Also, the assembly workability is suitable, and the manufacturing cost is low.

或いは、垂直な軸線に沿って巻かれたコイルばねを、その両端に、横方向の初期荷重を加えて傾斜軸線を有する状態を保ち、かつ該傾斜軸線方向に伸縮するように保持したり、垂直な軸線に沿って各巻きごとに周期的にピッチ角が極大及び極小となるように巻かれたコイルばねを、その垂直軸線方向に伸縮するように保持することによっても同様な目的を達成することができる。   Alternatively, a coil spring wound along a vertical axis is held at both ends so as to maintain a state having an inclined axis by applying an initial load in the lateral direction and extending and contracting in the direction of the inclined axis, The same purpose can be achieved by holding a coil spring wound so that the pitch angle is periodically maximized and minimized along each axis so as to expand and contract in the vertical axis direction. Can do.

以下、本発明の好適実施例について図面を参照しながらより詳しく説明する。   Hereinafter, preferred embodiments of the present invention will be described in more detail with reference to the drawings.

図1は、本発明が適用された車両用懸架装置の要部を模式的に示す一部破断部分正面図である。上端が車体1に、下端が車体1とホイールキャリア2とを連結するリンク部材3に揺動可能に取り付けられたストラットアセンブリ4は、筒型オイルダンパからなるショックアブソーバ5と、このショックアブソーバ5のシリンダとピストンとの間にばね座7、8をもって保持された圧縮コイルばね6とからなる。上側のばね座7は、ショックアブソーバ5のピストンロッドの上端と共に、車体1にゴムブッシング等を介して枢着され、下側のばね座8は、ショックアブソーバ5のシリンダの外周に固着されている。   FIG. 1 is a partially cutaway front view schematically showing a main part of a vehicle suspension device to which the present invention is applied. A strut assembly 4 having an upper end attached to the vehicle body 1 and a lower end attached to a link member 3 connecting the vehicle body 1 and the wheel carrier 2 is provided with a shock absorber 5 formed of a cylindrical oil damper, and the shock absorber 5 The compression coil spring 6 is held between the cylinder and the piston with spring seats 7 and 8. The upper spring seat 7 is pivotally attached to the vehicle body 1 via a rubber bushing or the like together with the upper end of the piston rod of the shock absorber 5, and the lower spring seat 8 is fixed to the outer periphery of the cylinder of the shock absorber 5. .

ここで、圧縮コイルばね6は、無負荷の状態では、図2に於いて想像線により示されるように、角度θをもって傾斜した中心軸線Bを有する。この圧縮コイルばね6の両端を強固に保持した状態で、両端に横方向に互いに対向する方向に、所定の荷重を加えて弾性的に変形させることにより通常の円筒コイルばねと同様な、垂直な中心軸線Aを有する形状を得ることができる。   Here, the compression coil spring 6 has a central axis B inclined at an angle θ as shown by an imaginary line in FIG. 2 in an unloaded state. In a state where both ends of the compression coil spring 6 are firmly held, a vertical load similar to that of a normal cylindrical coil spring is applied by applying a predetermined load in a direction opposite to each other in the lateral direction to elastically deform both ends. A shape having a central axis A can be obtained.

図3に示すように、この圧縮コイルばね6は、上記横荷重を加えて変形させたときに得られる通常の円筒コイルばねを基準形状として、その垂直軸線Aから傾斜軸線Bまで角度θだけ傾けたものと考えることができる。即ち、垂直軸線AをY軸、垂直軸線Aと直交し傾斜軸線Bの傾斜方向に延在するようにX軸を、それぞれ定めた直交座標系に於いて、垂直軸線Aを有する圧縮コイルばねの任意の点が、座標(Sny,Snx)で与えられるとすると、傾斜軸線Bを有する圧縮コイルばねの対応する点は、Y方向の位置については、元の座標Snyを維持し、X方向の位置については、元のX方向の座標Snxに対して、Y方向の座標Snyにtanθを乗じた分だけをシフトさせることにより、即ち座標(Snx+Sny・tanθ,Sny)として与えられる。この、圧縮コイルばね6の中心軸線Bの傾きθは、当該車両に於けるショックアブソーバ5のシリンダとピストンとの間に加わる横荷重に応じて決定される。また、コイルばね6の両端を、初期横力及びモーメントが加わった状態で保持する必要があり、ばね座をそれに適したものとする必要がある。   As shown in FIG. 3, this compression coil spring 6 is inclined by an angle θ from its vertical axis A to the tilt axis B with a normal cylindrical coil spring obtained when deformed by applying a lateral load as a reference shape. Can be considered. That is, the compression coil spring having the vertical axis A in the orthogonal coordinate system defined by the X axis so that the vertical axis A is perpendicular to the Y axis and extends in the inclination direction of the inclination axis B. If an arbitrary point is given by coordinates (Sny, Snx), the corresponding point of the compression coil spring having the inclined axis B maintains the original coordinate Sny for the position in the Y direction, and the position in the X direction. Is given by shifting the original coordinate Snx in the X direction by an amount obtained by multiplying the coordinate Sny in the Y direction by tan θ, that is, as the coordinate (Snx + Sny · tan θ, Sny). The inclination θ of the central axis B of the compression coil spring 6 is determined according to the lateral load applied between the cylinder and the piston of the shock absorber 5 in the vehicle. Further, it is necessary to hold both ends of the coil spring 6 in a state where an initial lateral force and moment are applied, and it is necessary to make the spring seat suitable for it.

このようなばねを作成するには、例えば、斜円柱状の芯金の周りに、素線を、基準垂直軸に沿って等ピッチとなるように巻き付ければ上記したようなコイルばね6が得られる。芯金の外周は平滑であっても、素線をガイドするための螺旋溝が設けられているものであっても良い。このようなコイリングは、通常熱間で行い、その後、焼き戻し等の処理を行う。   In order to create such a spring, for example, a coil spring 6 as described above can be obtained by winding a strand of wire around a slanted cylindrical core bar at an equal pitch along the reference vertical axis. It is done. The outer periphery of the metal core may be smooth or may be provided with a spiral groove for guiding the strand. Such coiling is usually performed hot, and then a process such as tempering is performed.

ここで、ショックアブソーバ5のシリンダとピストンとの間の摺動抵抗Fは、摩擦係数μと、抗力Nとにより、
F=μ・N
と表される。そして、この抗力Nは、ショックアブソーバ5のシリンダとピストンとの間に加わる横荷重ベクトルRsusの関数である。
Here, the sliding resistance F between the cylinder and the piston of the shock absorber 5 depends on the friction coefficient μ and the drag N,
F = μ · N
It is expressed. The drag N is a function of the lateral load vector Rsus applied between the cylinder and the piston of the shock absorber 5.

そして、横荷重ベクトルRsusは、
Rsus=Rgeo+Rcoil
と表される。ここで、Rgeoはこのサスペンションの構造、即ち車輪の支持方式による車軸とショックアブソーバ5との運動方向の違いにより生じる幾何学的な横荷重ベクトルであり、Rcoilはコイルばねの傾きによる横荷重ベクトルである。このRsusを低減すれば、摺動抵抗Fが低減するのであるから、Rgeoを打ち消すような大きさ及び方向にRcoilを設定すれば良い。即ち、他の条件が同じであれば、上記ばね6の中心軸線Bの傾きが大きければ大きい程、Rcoilは大きくなる。このような関係は、解析的に解くことも可能であるが、実用的には、有限要素法(FEM)により解き、用途に応じた最適な設計を行い、それに基づいてコイルを巻くと良い。
And the lateral load vector Rsus is
Rsus = Rgeo + Rcoil
It is expressed. Here, Rgeo is a geometric lateral load vector generated by the difference in the movement direction of the axle and the shock absorber 5 depending on the suspension structure, that is, the wheel support system, and Rcoil is a lateral load vector due to the inclination of the coil spring. is there. If this Rsus is reduced, the sliding resistance F is reduced. Therefore, Rcoil may be set to a size and direction so as to cancel Rgeo. That is, if other conditions are the same, Rcoil increases as the inclination of the central axis B of the spring 6 increases. Such a relationship can be solved analytically, but practically, it is better to solve by the finite element method (FEM), to perform an optimum design according to the application, and to wind the coil based on that.

ここで、上記構成ではばね6を2次元的に傾斜させたが、Rgeoに応じて3次元的に傾斜させても良く、更に無負荷の状態で湾曲した軸線を有するようにしても良い。また、伸縮量によりばね定数が変化するような非線型ばねとしても良い。   Here, in the above configuration, the spring 6 is tilted two-dimensionally. However, the spring 6 may be tilted three-dimensionally according to Rgeo, and may have a curved axis line in an unloaded state. Moreover, it is good also as a nonlinear spring from which a spring constant changes with expansion / contraction amounts.

一方、上記したような自由状態で傾斜した軸線Bを有する圧縮コイルばね6に代えて、本発明の第2の実施形態として、図4に想像線で示すように、自由状態で垂直な軸線Cを有する通常の円筒コイルばね16を用いることもできる。この場合、使用状態に於いては、コイルばね16の両端を強固に保持し、かつ横方向に荷重を加えて、傾斜軸線Dにより示されるように、コイルばね16の軸線を角度θだけ傾斜させる。更に、コイルばね16が軸線D方向に伸縮するように使用する。この場合も、コイルばね16の両端を、初期横力及びモーメントが加わった状態で保持する必要があり、それに適したばね座を用いる必要がある。   On the other hand, in place of the compression coil spring 6 having the axis B inclined in the free state as described above, as shown in an imaginary line in FIG. 4, as the second embodiment of the present invention, the vertical axis C in the free state is shown. It is also possible to use a normal cylindrical coil spring 16 having In this case, in use, both ends of the coil spring 16 are firmly held and a load is applied in the lateral direction so that the axis of the coil spring 16 is tilted by an angle θ as indicated by the tilt axis D. . Further, the coil spring 16 is used so as to expand and contract in the direction of the axis D. Also in this case, it is necessary to hold both ends of the coil spring 16 in a state where an initial lateral force and a moment are applied, and it is necessary to use a spring seat suitable for it.

このようなばねを作成するには、通常の円筒コイルばねの場合と同様にコイリングマシンを用い、円柱状の芯金を回転させつつ、そのまわりに送り出し装置により素線を等ピッチで巻いていけば上記したようなコイルばね16になる。このようなコイリングは、通常熱間で行い、その後、焼き戻し等の処理を行う。前記と同様に、芯金の外周は平滑であっても、素線をガイドするための螺旋溝が設けられているものであっても良い。   In order to create such a spring, a coiling machine is used as in the case of a normal cylindrical coil spring, and a cylindrical cored bar is rotated and a wire is wound around it at a constant pitch by a feeding device. Thus, the coil spring 16 as described above is obtained. Such coiling is usually performed hot, and then a process such as tempering is performed. Similarly to the above, the outer periphery of the metal core may be smooth or may be provided with a spiral groove for guiding the strand.

図5〜図7に、本発明の第3の実施形態を示す。本構成の圧縮コイルばね26は、無負荷の状態で図5のような形状をなす。即ち、無負荷の状態で、その中心軸線Oが直線をなし、半径rが一定、ピッチPも一定の等ピッチ円筒コイルばねであるが、ピッチ角(α)が各巻きごとに周期的に変化するように定められている。ピッチ角(α)は、ばねの素線に沿う長さ(r・β)の変分(r・Δβ)に対する、素線上の対応する点の高さ(H)の変化量(ΔH)として与えられる。ここで、βは、中心軸線に対する、ばねの素線上の点の巻き方向の回転角度を表す。   5 to 7 show a third embodiment of the present invention. The compression coil spring 26 of this configuration has a shape as shown in FIG. 5 in an unloaded state. That is, in the no-load state, the center axis O is a straight line, the radius r is constant, and the pitch P is also constant pitch cylindrical coil spring, but the pitch angle (α) changes periodically with each winding. It is stipulated to do. The pitch angle (α) is given as the amount of change (ΔH) of the height (H) of the corresponding point on the strand relative to the variation (r · Δβ) of the length (r · β) along the strand of the spring. It is done. Here, β represents the rotation angle of the winding direction of the point on the element wire of the spring with respect to the central axis.

このようなばねを作成するには、通常の円筒コイルばねの場合と同様 このようなばねを作成するには、通常の円筒コイルばねの場合と同様にコイリングマシンを用い、円柱状の芯金を回転させつつ、そのまわりに送り出し装置により素線を、1巻き毎にピッチ角が周期的に変化するように垂直軸線方向に送りながら巻いていけば上記したようなコイルばね26になる。このようなコイリングは、通常熱間で行い、その後、焼き戻し等の処理を行う。前記と同様に、芯金の外周は平滑であっても、素線をガイドするための螺旋溝が設けられているものであっても良い。   In order to create such a spring, it is the same as in the case of a normal cylindrical coil spring. To create such a spring, a coiling machine is used as in the case of a normal cylindrical coil spring. If the wire is wound while being rotated while being fed in the vertical axis direction so that the pitch angle is periodically changed for each turn, the coil spring 26 is formed as described above. Such coiling is usually performed hot, and then a process such as tempering is performed. Similarly to the above, the outer periphery of the metal core may be smooth or may be provided with a spiral groove for guiding the strand.

図6に於いては、コイルばねの素線に沿って、節点を1回転(360゜)当たり20点設けた場合について、横軸を節点の数、縦軸をばね高さ(H)としたグラフが示されている。通常のコイルばねの場合には、破線Bで示されるように、節点の数、即ちばねの素線上の点の巻き方向の回転角度(β)に対して、対応する素線上の点の高さ(H)が比例的に増大する。それに対して、図5に示されたコイルばねの場合は、実線Aで示されるように、節点の数、即ちばねの素線上の点の回転角度(β)に対して、対応する素線上の点の高さ(H)が、破線Bのレベルに対して、180゜毎に周期的に増減する。   In FIG. 6, the horizontal axis is the number of nodes and the vertical axis is the spring height (H) when 20 nodes are provided per revolution (360 °) along the wire of the coil spring. A graph is shown. In the case of a normal coil spring, as indicated by a broken line B, the height of the corresponding point on the strand with respect to the number of nodes, that is, the rotation angle (β) in the winding direction of the point on the spring strand. (H) increases proportionally. On the other hand, in the case of the coil spring shown in FIG. 5, as indicated by the solid line A, the number of nodes, that is, the rotation angle (β) of the point on the spring strand is on the corresponding strand. The height (H) of the point periodically increases or decreases with respect to the level of the broken line B every 180 °.

図7に於いては、同様に節点を定義し、横軸を節点の数、縦軸をピッチ角(α)としたグラフが示されている。このグラフにより示されるように、節点の数、即ちコイルばねの素線上の点の巻き方向の回転角度(β)に対して、コイルばねのピッチ角(α)が実線Aで示すように、180゜毎に極大と極小とを順番に繰り返す。 即ち、1巻(図では20節点)の間にピッチ角(α)の山と谷が1つずつ現れる。このコイルばね26を圧縮すると、両端間に特定の方向に横力が生ずる。この横力が、ショックアブソーバ5に生じる横荷重に抗する方向に作用するようにコイルばね26が取り付けられる。   FIG. 7 shows a graph in which nodes are defined similarly, the horizontal axis is the number of nodes, and the vertical axis is the pitch angle (α). As shown by this graph, the pitch angle (α) of the coil spring is 180 as indicated by the solid line A with respect to the number of nodes, that is, the rotation angle (β) of the winding direction of the point on the wire of the coil spring. The maximum and minimum are repeated in order for each degree. That is, one peak and one valley of the pitch angle (α) appear between one volume (20 nodes in the figure). When the coil spring 26 is compressed, a lateral force is generated in a specific direction between both ends. The coil spring 26 is attached so that the lateral force acts in a direction against a lateral load generated in the shock absorber 5.

上記したコイルばね26の各端に発生する横力は、ピッチ角αの振幅(図7のW)が大きいほど大きくなる。その量は当該車両に於けるショックアブソーバ5のシリンダとピストンとの間に加わる横荷重に応じて決定される。また、このコイルばね26の構造は、図4に示されたコイルばね6と同様の幾何学的構造を有するが、コイルばね26では、ばねの圧縮方向に対して、ばねの端末の基準座面が垂直であるのに対し、コイルばね6では、素線の螺旋の等ピッチ方向(A)に対して垂直をなし、ばねの中心軸線(B)に対して角度θをもって傾斜している。   The lateral force generated at each end of the coil spring 26 increases as the amplitude of the pitch angle α (W in FIG. 7) increases. The amount is determined according to the lateral load applied between the cylinder and the piston of the shock absorber 5 in the vehicle. The structure of the coil spring 26 has the same geometric structure as that of the coil spring 6 shown in FIG. 4, but the coil spring 26 has a reference seating surface at the end of the spring with respect to the compression direction of the spring. Is perpendicular to the equi-pitch direction (A) of the spiral of the wire, and is inclined at an angle θ with respect to the central axis (B) of the spring.

また、上記構成では、ばね26が、ピッチ角(α)が180゜毎に、即ち直径方向で極大と極小を周期的に繰り返すものとしたが、極大同士、極小同士の角度が互いに一致していれば、例えば互いに160゜をなすような、直径方向に対してオフセットされた巻き方向角度(β)位置で極大と極小とを繰り返すなど、任意に設定できる。   Further, in the above configuration, the spring 26 is configured such that the pitch angle (α) periodically repeats the maximum and the minimum in the diameter direction, that is, the angle between the maximum and the minimum is the same. In this case, for example, the maximum and minimum values can be arbitrarily set at a winding direction angle (β) position that is offset with respect to the diameter direction so as to form 160 ° with each other.

本発明は円筒形をなすようなコイルばねばかりでなく、円錐コイルばね、鼓形コイルばね、たる形コイルばね、テーパコイルばね等にも適用可能である。図7には、図5に示されるように、ピッチ角が周期的に増減する円筒コイルばね(破線A)及び通常のピッチ角一定の円筒コイルばね(破線B)に加えて、円錐ばねに於ける節点、即ち巻き方向角度(β)とピッチ角(α)との関係も示されている。例えば、等ピッチの円錐コイルばねとした場合、一巻き毎の軸線方向の距離の増分が一定であることから、破線Cにより示されるように、ばねの節点数、即ち巻き数の増大ととも、ピッチ角(α)が徐々が増大する。ピッチ角が周期的に増減する円錐コイルばねの場合は、破線Aと破線Cとの合成として与えられるような、2点鎖線Dにより示されるように、ばねの節点数、即ち巻き方向角度(β)が増大するにつれてピッチ角が周期的に増減し、かつその振幅が大きくなるような特性にすると良い。   The present invention can be applied not only to a cylindrical coil spring, but also to a conical coil spring, a drum coil spring, a barrel coil spring, a taper coil spring, and the like. In FIG. 7, in addition to a cylindrical coil spring (dashed line A) whose pitch angle is periodically increased and decreased and a cylindrical coil spring having a constant pitch angle (dashed line B), as shown in FIG. Also shown is the relationship between the nodes, i.e., the winding direction angle (β) and the pitch angle (α). For example, in the case of a conical coil spring having an equal pitch, since the increment of the axial distance for each turn is constant, as indicated by the broken line C, the number of spring nodes, that is, the number of turns increases. The pitch angle (α) gradually increases. In the case of a conical coil spring in which the pitch angle increases and decreases periodically, the number of nodes of the spring, that is, the winding direction angle (β, as shown by a two-dot chain line D, which is given as a combination of the broken line A and the broken line C, ) Increases, the pitch angle periodically increases and decreases, and the amplitude increases.

上記した説明により明らかなように、本発明による車両用懸架装置によれば、車体と車輪との間に、筒型ショックアブソーバと、該ショックアブソーバを囲繞する圧縮コイルばねとを有する車両用懸架装置に於いて、圧縮コイルばねが、その圧縮に伴いショックアブソーバに生じる横荷重に抗する方向の荷重を生じるばねとすることにより、ショックアブソーバに生じる横荷重によるシリンダとピストンとの間の摺動抵抗を低減または完全に相殺することができ、しかも装置が大型化することもない。   As is apparent from the above description, according to the vehicle suspension device of the present invention, the vehicle suspension device having the cylindrical shock absorber and the compression coil spring surrounding the shock absorber between the vehicle body and the wheel. In this case, the compression coil spring is a spring that generates a load in a direction against the lateral load generated in the shock absorber due to the compression, so that the sliding resistance between the cylinder and the piston due to the lateral load generated in the shock absorber is reduced. Can be reduced or completely offset, and the apparatus is not increased in size.

以上、本発明の好適な実施の形態について説明したが、当業者であれば、本発明の請求範囲を逸脱することなく、種々の改変をなし得るであろうWhile there has been described about the shape condition of a preferred embodiment of the present invention, those skilled in the art without departing from the claims of the present invention will be made with various modifications.

本発明が適用された車両用懸架装置の要部を模式的に示す一部破断部分正面図である。It is a partially broken partial front view showing typically the principal part of the suspension system for vehicles to which the present invention was applied. 本発明が適用された車両用懸架装置のばねのみを示す図である。It is a figure which shows only the spring of the suspension system for vehicles to which this invention was applied. 図2のばねを説明する模式図である。It is a schematic diagram explaining the spring of FIG. 本発明が適用された別の実施形態に於ける車両用懸架装置のばねのみを示す図である。It is a figure which shows only the spring of the suspension system for vehicles in another embodiment to which this invention was applied. 本発明が適用された更に別の実施形態に於ける車両用懸架装置のばねのみを示す図である。It is a figure which shows only the spring of the suspension apparatus for vehicles in another embodiment with which this invention was applied. コイルばねの節点(角度)とばね高さ(H)との関係を示すグラフである。It is a graph which shows the relationship between the node (angle) of a coil spring, and spring height (H). ばねの節点(角度)とピッチ角(α)との関係を示すグラフである。It is a graph which shows the relationship between the node (angle) of a spring, and a pitch angle ((alpha)).

Claims (2)

垂直な軸線に沿って各巻きごとに一定の巻き方向角度位置にて、ばねの素線に沿う長さの変分に対する素線上の対応する点の高さの変化量として与えられるピッチ角が、コイルの略全長に渡って、唯1回ずつ極大及び極小となるように、かつ各端末が前記軸線に対して垂直な基準座面をなすように巻かれたコイルばねからなり
前記コイルばねを前記軸線方向に伸縮させて用い、前記軸線方向に圧縮された時に両端間に前記軸線に対して直交する横方向力が発生するように適合されていることを特徴とする圧縮コイルばね。
The pitch angle given as the change in the height of the corresponding point on the strand relative to the variation in length along the strand of the spring, at a constant winding direction angular position for each turn along the vertical axis, It consists of a coil spring wound so as to become a maximum and a minimum only once over substantially the entire length of the coil and so that each end forms a reference seat surface perpendicular to the axis,
A compression coil, wherein the coil spring is expanded and contracted in the axial direction, and is adapted to generate a lateral force perpendicular to the axis between both ends when compressed in the axial direction. Spring.
前記コイルばねが、実質的に無負荷の状態で真円筒形状を有することを特徴とする請求項1に記載の圧縮コイルばね。 The compression coil spring according to claim 1, wherein the coil spring has a true cylindrical shape in a substantially unloaded state.
JP2003399771A 1998-07-27 2003-11-28 Compression coil spring Expired - Lifetime JP3938766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003399771A JP3938766B2 (en) 1998-07-27 2003-11-28 Compression coil spring

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP21047898 1998-07-27
JP1167899 1999-01-20
JP2003399771A JP3938766B2 (en) 1998-07-27 2003-11-28 Compression coil spring

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2000562229A Division JP3515957B2 (en) 1998-07-27 1999-07-27 Vehicle suspension system

Publications (2)

Publication Number Publication Date
JP2004150637A JP2004150637A (en) 2004-05-27
JP3938766B2 true JP3938766B2 (en) 2007-06-27

Family

ID=32475049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003399771A Expired - Lifetime JP3938766B2 (en) 1998-07-27 2003-11-28 Compression coil spring

Country Status (1)

Country Link
JP (1) JP3938766B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5970349B2 (en) 2012-11-16 2016-08-17 日本発條株式会社 Strut suspension and compression coil spring for suspension
JP6653124B2 (en) 2014-04-01 2020-02-26 インディアン ヘッド インダストリーズ インコーポレイテッドIndian Head Industries, Inc. Method for specifying and reducing lateral force of helix spring

Also Published As

Publication number Publication date
JP2004150637A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
JP3515957B2 (en) Vehicle suspension system
US6328290B1 (en) Helical compression spring for a vehicle suspension
JP4601108B2 (en) Bent coil spring and method of manufacturing the same
JP3737757B2 (en) Equipment with coil springs and support bearings for suspension struts
JP6063839B2 (en) Coil spring for suspension system
KR20060041740A (en) Coil spring and suspension system
JP5970349B2 (en) Strut suspension and compression coil spring for suspension
JP3938766B2 (en) Compression coil spring
JP6613095B2 (en) Coil spring for suspension
CN106956557B (en) Improved spring cushion for a wheel suspension having a helical spring
JPWO2003046406A1 (en) Compression coil spring device having discontinuous support structure
US10300756B2 (en) Suspension coil spring
RU2747143C1 (en) Vehicle spring device
JPH03121915A (en) Suspension device for vehicle
JP4184757B2 (en) Compression coil spring
US20230001758A1 (en) Coil spring for vehicle suspension system
JP3042371B2 (en) Compression coil spring
JPH074964Y2 (en) Strut type wheel suspension system for automobiles
JP6938393B2 (en) Vehicle suspension system
KR100456867B1 (en) The spring design method of an automotive suspension
JP4098898B2 (en) Strut type suspension system
JP2000103214A (en) Spring device of automobile suspension system
JPH0536146U (en) Bump cushion for vehicle absorber
KR20060022829A (en) Lower spring seat of a shock absorber
JPH1163066A (en) Shock absorber externally inserted on compression coil spring

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070320

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070323

R150 Certificate of patent or registration of utility model

Ref document number: 3938766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100406

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110406

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120406

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130406

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140406

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term