JP4184265B2 - 2つの遅延コイルからの光信号を処理してサニャックベース光ファイバセンサアレイのダイナミックレンジを増大させる装置および方法 - Google Patents

2つの遅延コイルからの光信号を処理してサニャックベース光ファイバセンサアレイのダイナミックレンジを増大させる装置および方法 Download PDF

Info

Publication number
JP4184265B2
JP4184265B2 JP2003519358A JP2003519358A JP4184265B2 JP 4184265 B2 JP4184265 B2 JP 4184265B2 JP 2003519358 A JP2003519358 A JP 2003519358A JP 2003519358 A JP2003519358 A JP 2003519358A JP 4184265 B2 JP4184265 B2 JP 4184265B2
Authority
JP
Japan
Prior art keywords
light
array
fiber
polarization
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003519358A
Other languages
English (en)
Other versions
JP2004537734A (ja
Inventor
バコック,ベンジャミン・ジェイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leland Stanford Junior University
Original Assignee
Leland Stanford Junior University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leland Stanford Junior University filed Critical Leland Stanford Junior University
Publication of JP2004537734A publication Critical patent/JP2004537734A/ja
Application granted granted Critical
Publication of JP4184265B2 publication Critical patent/JP4184265B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H9/00Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means
    • G01H9/004Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves by using radiation-sensitive means, e.g. optical means using fibre optic sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • G01D5/35306Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement
    • G01D5/35322Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre using an interferometer arrangement using interferometer with one loop with several directions of circulation of the light, e.g. Sagnac interferometer

Description

発明の分野
この発明は、光がアレイ内を伝播し、アレイから戻ってくる光に対する音響信号の効果を分析して音響信号の特性を判定する、光ファイバ音響センサアレイの分野における。
関連技術の説明
光ファイバベースの音響センサは、従来の電子センサの代替物として有望である。それらの利点の中には、高感度、大ダイナミックレンジ、軽量性およびコンパクトなサイズがある。多数の光ファイバセンサを共通バスに容易に多重化する能力も、光ファイバセンサを大規模アレイにとって魅力的なものとしている。近年、複数の、利得の小さいエルビウムドープトファイバ増幅器(EDFA)を光ファイバセンサアレイにうまく組込んで、単一のファイバ対によってサポートできるセンサの数を増大させることで、大規模光ファイバセンサアレイはさらにより競争力がつくようになった。
音検出のために、選択された光ファイバセンサはマッハ・ツェンダー干渉センサであった。いずれの干渉センサにおいても、累乗された余弦関数により位相変調が強度変調に対応付けられる。この非線形伝達関数のために、正弦波位相変調はより高次の高調波を生成する。直角位相でバイアスされる(π/2位相をずらしてビームを干渉する)干渉計は、1次高調波で最大の応答を有しかつ2次高調波で最小の応答を有する。この理由のために、直角位相が好ましいバイアス点である。バイアス点が直角位相からドリフトすると(たとえば、外部温度変化による)、1次高調波での応答は減少し2次高調波での応答が増大する。干渉計が0でまたはπ位相をずらしてバイアスされると、1次高調波は完全に消滅する。1次高調波でのこの応答の減少(バイアス点が直角位相から離れた結果として生じる)は信号フェージングと呼ばれる。
マッハ・ツェンダー干渉センサは不安定なバイアス点を有するので、それらは前述の信号フェージングの問題を特に受けやすい。信号フェージングを克服するために、戻り信号の復調が必要とされる。典型的な復調技術は、経路不整合マッハ・ツェンダー干渉センサを必要とする位相生成搬送波(Phase-Generated Carrier)(PGC)方式である。(たとえば、アンソニー・ダンドリッジ(Anthony Dandridge)らによる位相搬送波技術を用いる干渉センサの多重化(Multiplexing of Interferometric Sensors Using Phase Carrier Techniques、Journal of Lightwave Technology)第LT−5巻、第7号、1987年7月、第947〜952頁を参照)この経路不均衡はまた、レーザ位相ノイズの強度ノイズへの変換をもたらすが、これは、低周波でのマッハ・ツェンダー干渉センサアレイの性能を制限し、かつソースの線幅に厳しい要求を課す。この狭い線幅要求は、1.55μmの増幅されたマッハ・ツェンダー干渉センサの開発を遅らせている。
サニャック干渉計が光ファイバジャイロスコープにおいて広範に使用されていることがわかっている。(たとえば、B.カルショー(B. Culshaw)らによる、光ファイバジャイロスコープ(Fibre optic gyroscopes)、Journal of Physics E(Scientific Instruments)第16巻、第1号、1983年、第5−15頁を参照。)サニャック干渉計を用いて音波を検出し得ることが提案されている。(たとえば、E.ウド(E. Udd)によるサニャック干渉計に基づく光ファイバ音響センサ(Fiber-optic acoustic sensor based on the
Sagnac interferometer)、Proceedings of the SPIE-The International Society for Optical Engineering、第425巻、1983年、第90〜91頁;キエール・クロカン
ス(Kiell Krakenes)らによる、水中音検出のためのサニャック干渉計;ノイズ特性(Sagnac interferometer for underwater sound detection: noise properties)、OPTICS LETTERS、第14巻、第20号、1989年10月15日、第1152〜1145頁;およびスベール・クナドセン(Sverre Knudsen)らによる、サニャック干渉計にプッシュプルトランスデューサを組込む超音波光ファイバハイドロホン(An Ultrasonic Fiber-Optic Hydrophone Incorporating a Push-Pull Transducer in a Sagnac Interferometer)、JOURNAL OF LIGHTWAVE TECHNOLOGY、第12巻、第9号、1994年9月、第1696〜1700頁を参照。)そのコモンパス設計のために、サニャック干渉計は相反しておりそのため安定したバイアス点を有するが、このことは信号フェージングをなくしソース位相ノイズの強度ノイズへの変換を防ぐ。したがって、サニャック干渉計は、低い周波数でマッハ・ツェンダー干渉センサを制限する位相ノイズの影響を受けない。
発明の概要
この発明の1つの局面は、光源と、光源から光を受ける第1のカプラとを含むセンサアレイである。第1のカプラは、光の第1の部分を第1のカプラポートに結合し、光の第2の部分を第2のカプラポートに結合する。干渉計ループの第1の端は、第1のカプラポートに結合されて光の第1の部分を受け、その第2の端は第2のカプラポートに結合されて光の第2の部分を受ける。干渉計ループは、第1の方向の光の第1の部分を第2のカプラポートに伝播し、第1の方向と反対の第2の方向の光の第2の部分を第1のカプラポートに伝播する。干渉計ループは、干渉計ループの第1の端と干渉計ループの第2の端との間に並列に結合される複数のセンサを含む。センサは、感知されたパラメータ(たとえば音響信号)に応答して、センサを通過する光を摂動させる。第1の複数のカプラは、光の第1の部分をセンサの各々にほぼ等しく分配し、センサの各々から光の第2の部分を集め、集めた光を干渉計ループの第1の端に伝播する。第2の複数のカプラは、光の第2の部分をセンサの各々にほぼ等しく分配し、センサの各々から光の第1の部分を集め、集めた光を干渉計ループの第2の端に伝播する。少なくとも1つの第1の増幅器は、干渉計ループの第1の端と第1の複数のカプラとの間に結合される。少なくとも1つの第2の増幅器は、干渉計ループの第2の端と第2の複数のカプラとの間に結合される。複数の遅延部は、干渉計ループの第1および第2の端とセンサとの間に接続される。遅延部は、各々のセンサを通過する光が他のセンサを通過する光とは異なる量だけ遅延されるように選択される遅延を有する。好ましくは、第1の複数のカプラは、第1の増幅器から光の第1の部分を受け、光の第1の部分を、第1の分配カプラと第1の複数の内部カプラとの間に結合される第1の複数の内部増幅器に分配する第1の分配カプラをさらに含む。第1の分配カプラは、第1の複数の内部増幅器から光の第2の部分を集め、光の第2の部分を第1の増幅器に伝播する。また好ましくは、第2の複数のカプラは、第2の増幅器から光の第2の部分を受け、光の第2の部分を、第2の分配カプラと第2の複数の内部カプラとの間に結合される第2の複数の内部増幅器に分配する第2の分配カプラをさらに含む。第2の分配カプラは、第2の複数の内部増幅器から光の第1の部分を集め、光の第1の部分を第2の増幅器に伝播する。第1の複数の内部カプラは、光の第1の部分を複数のセンサに分配し、複数のセンサから光の第2の部分を集める。第2の複数の内部カプラは、光の第2の部分を複数のセンサに分配し、複数のセンサから光の第1の部分を集める。有利には、光源は、たとえば超蛍光ファイバ源などの広帯域源である。また有利には、第1および第2の増幅器ならびに第1および第2の複数の内部増幅器はエルビウムドープトファイバ増幅器であり、第1および第2の分配カプラならびに第1および第2の複数の内部カプラは4×4カプラを含む。
この発明の別の局面は、パラメータを感知する方法であって、光のほぼ等しい部分がループの中で第1および第2の方向に逆に伝播するように光源からの光を干渉計ループを通
って伝播させるステップを含む方法である。干渉計ループの第1の方向に伝播する光は、第1の方向に伝播する光のほぼ等しい部分がセンサの各々を通過するように増幅されかつ複数のセンサに結合される。干渉計ループの第2の方向に伝播する光は、第2の方向に伝播する光のほぼ等しい部分がセンサの各々を通過するように増幅されかつ複数のセンサに結合される。第1の方向に伝播する光は第2の方向に伝播する光と干渉するようにされ、第1および第2の方向に各々のセンサを通過する光に応答して複数の出力信号を生成する。センサの各々は、感知されたパラメータ(たとえば音響信号)に応答して、それを通過する光を摂動させ、センサの各々は、第1の方向に伝播する光が第2の方向に伝播する光と同時に干渉するように、唯一の光路長を有する。
この発明の別の局面は、第1および第2のダイナミックレンジにわたって摂動を感知するセンサシステムである。センサシステムは、第1の波長の入力光パルス源と、第2の波長の入力光パルス源とを含む。システムは、センサのアレイ、第1の波長の第1の光遅延経路、および第2の波長の第2の光遅延経路を含む。第1の検出システムは第1の波長の光に応答し、第2の検出システムは第2の波長の光に応答する。入力/出力システムは、第1の波長および第2の波長の入力光パルスを受ける。入力/出力システムは、第1の偏光を有する第1の波長の各光パルスの第1の部分を方向付けて、第1の方向のセンサのアレイを通り、次に第1の光遅延経路を通り、次に第1の検出システムに達するようにする。入力/出力システムは、第1の偏光に直交する第2の偏光の第1の波長の各光パルスの第2の部分を方向付けて、第1の光遅延経路を通り、次に第2の方向のセンサのアレイを通り、次に第1の検出システムに達するようにする。第1の検出システムは、第1のダイナミックレンジにわたって変化する摂動が引起こす受光の変化を検出する。入力/出力システムは、第1の偏光を有する第2の波長の各光パルスの第1の部分を方向付けて、第1の方向のセンサのアレイを通り、次に第2の光遅延経路を通り、次に第2の検出システムに達するようにする。入力/出力システムは、第1の偏光に直交する第2の偏光の第2の波長の各光パルスの第2の部分を方向付けて、第2の光遅延経路を通り、次に第2の方向のセンサのアレイを通り、次に第2の検出システムに達するようにする。第2の検出システムは、第2のダイナミックレンジにわたって変化する摂動が引起こす受光の変化を検出する。
この発明の別の局面は、第1および第2のダイナミックレンジにわたって音響信号を感知する音響センサシステムである。音響センサシステムは、第1の波長の入力光パルス源と、第2の波長の入力光パルス源とを含む。音響センサシステムは、音響センサのアレイ、第1の波長の第1の光遅延経路、および第2の波長の第2の光遅延経路をさらに含む。第1の検出システムは第1の波長の光に応答する。第2の検出システムは第2の波長の光に応答する。入力/出力システムは、第1の波長および第2の波長の入力光パルスを受ける。入力/出力システムは、第1の偏光を有する第1の波長の各光パルスの第1の部分を方向付けて、第1の方向の音響センサのアレイを通り、次に第1の光遅延経路を通り、次に第1の検出システムに達するようにする。入力/出力システムは、第1の偏光と直交する第2の偏光の第1の波長の各光パルスの第2の部分を方向付けて、第1の光遅延経路を通り、次に第2の方向の音響センサのアレイを通り、次に第1の検出システムに達するようにする。第1の検出システムは、第1のダイナミックレンジにわたって変化する音響信号が引起こす受光の変化を検出する。入力/出力システムは、第1の偏光を有する第2の波長の各光パルスの第1の部分を方向付けて、第1の方向の音響センサのアレイを通り、次に第2の光遅延経路を通り、次に第2の検出システムに達するようにする。入力/出力システムは、第1の偏光と直交する第2の偏光の第2の波長の各光パルスの第2の部分を方向付けて、第2の光遅延経路を通り、次に第2の方向の音響センサのアレイを通り、次に第2の検出システムに達するようにする。第2の検出システムは、第2のダイナミックレンジにわたって変化する音響信号が引起こす受光の変化を検出する。
この発明の別の局面は、摂動を感知する方法である。この方法は、第1の波長の光パルスを、第1の波長の第1の光遅延経路を含むセンサのアレイに入力するステップを含む。第2の波長の光パルスもセンサのアレイに入力される。センサのアレイは、第2の波長の第2の光遅延経路を含む。第2の光遅延経路は第1の光遅延経路とは異なる光路長を有する。第1の偏光を有する第1の波長の各光パルスの第1の部分は、第1の方向のセンサのアレイを通り、次に第1の光遅延経路を通るように方向付けられる。第1の偏光と直交する第2の偏光の第1の波長の各光パルスの第2の部分は、第1の光遅延経路を通り、次に第2の方向のセンサのアレイを通るように方向付けられる。第1のダイナミックレンジにわたって変化する摂動が引起こす、第1の波長の各光パルスの第1および第2の部分の変化が検出される。第1の偏光を有する第2の波長の各光パルスの第1の部分は、第1の方向のセンサのアレイを通り、次に第2の光遅延経路を通るように方向付けられる。第1の偏光に直交する第2の偏光の第2の波長の各光パルスの第2の部分は、第2の光遅延経路を通り、次に第2の方向のセンサのアレイを通るように方向付けられる。第2のダイナミックレンジにわたって変化する摂動が引起こす、第2の波長の各光パルスの第1および第2の部分の変化が検出される。この方法の特定の実施例では、摂動は音響信号である。
好ましい実施例の詳細な説明
この発明は、サニャックループにおける音響センサ(たとえばハイドロホン)のアレイと関連付けて以下に記載される。好ましい実施例を記載する前に、単一ループサニャック音響センサの動作を簡単に概観する。
単一ループサニャック音響センサ
簡素なサニャックベースの音響センサ100が図1に示される。サニャックループは、遅延ループ102とハイドロホン104との2つの部分に分割される。遅延ループ102は単に、典型的には1kmを超える長いファイバである。ハイドロホン104は、音波が、ファイバを伝播する光信号の位相変調に変換されるファイバの部分である。音波に対する高い応答性は典型的には、ハイドロホン104のファイバの区域に対して最適化された被覆を選択し、かつ好適な組成からなるマンドレルのまわりにファイバを巻付けることにより達成される。(たとえば、J.A.ブカーロ(J.A. Bucaro)らによる、光ファイバセンサ被覆(Optical fibre sensor coatings)、 Optical Fiber Sensors, Proceedings
of the NATO Advanced Study Institute、1986年、第321〜338頁を参照。)ハイドロホン104のまわりに巻かれるファイバの長さは、典型的には、10メートルから100メートルである。たとえば超蛍光ファイバ源(SFS)などのソース110からの光は、3×3カプラ112によって時計回り(CW)のビームと反時計回り(CCW)のビームとに分けられる。3×3カプラ112の動作は周知であり、たとえばサン・K.シーム(Sang K. Sheem)による、[3×3]指向性カプラを有する光ファイバジャイロスコープ(Fiber-Optic gyroscope with[3x3]directional coupler)、Applied Physics Letters、第37巻、第10号、1980年11月15日、第869〜871頁に記載される。
ここでは3×3カプラ112を用いるものとして記載されるが、他のカプラ(たとえば、2×2カプラ、4×4カプラなど)を、この発明の代替の実施例で使用することができる。たとえば、2×2カプラを用いるために、一方側に両ポートを用いてサニャック干渉計を作製する。他方側の1つのポートが検出ポートである。残りのポートは、光をアレイに発射するために用いられ、カプラまたはサーキュレータが(光ファイバジャイロスコープでなされるのと同様の態様で)採用されるならば、検出ポートとしても使用可能である。一般的に、カプラの一方側に2つのポートを用いてサニャック干渉計を作製しかつカプラの他方側のポートを検出ポート、発射ポート、またはその両方として用いることにより任意のn×mカプラを採用することができる。
分かれた後、CWビームはまず遅延ループ102を進み次にハイドロホン104を進み、CCWビームは、まずハイドロホン104を進み次に遅延ループ102を進む。CWビームがハイドロホン104を進む時間とCCWビームがハイドロホン104を進む時間との時間遅延Tdelayの間、ハイドロホン104における音響信号および同様に音響的に誘導される位相変調が変化する。位相変調におけるこの変化は、逆に伝播するビーム間の位相差に対応付けられ、これはビームが3×3カプラで再合成されるとき強度変調に変換される。この強度変調は次に、第1の検出器120および第2の検出器122またはこれら2つの検出器の一方のみによって検出される。
より明白には、音響信号がハイドロホン104のファイバにおいて位相変調φhcos(Ωt)を誘導するならば、ハイドロホン104での干渉ビーム間の、得られた位相変調φint(t)は以下によって与えられる。
Figure 0004184265
ただし、Tdelayは遅延ループでの進行時間である。したがって、φint(t)は、ハイドロホン変調φhと、ループ遅延Tdelayと音響変調周波数Ωの積との関数である。これは、φint(t)がハイドロホン変調φhのみの関数であるマッハ・ツェンダー干渉センサと異なっている。最大感度は、音響周波数Ωと時間遅延Tdelayとの積がπの奇数倍(方程式1の第1の正弦項の最大値)であるときサニャックループ音響センサにおいて達成される。この積πを作る音響周波数は、最大感度が達成される最低周波数である、ループの適切周波数と呼ばれる。大抵の水中センシングの応用は、10kHzより低い音響周波数の検出に関する。適切ループ周波数が10kHzより小さいものであるためには、少なくとも50マイクロ秒の遅延時間および従って少なくとも10kmの遅延ループ長が必要とされる。したがって、サニャック音響センサ100は、低い音響周波数(<10kHz)の検出のために大量のファイバを必要とする。
サニャック干渉計に固有のコモンパス設計は、既に述べた安定したバイアス点と位相ノイズの除去とに加えてマッハ・ツェンダー干渉計よりも多くの利点を有する。サニャック干渉計は、拡大自然放出(ASE)源の一例である超蛍光ファイバ源(SFS)などのコヒーレンス長の短い広帯域源の使用を可能にする。そのような源は安価であり容易にハイパワーを提供することができる。3×3カプラの使用はサニャック音響センサを受動的に直角位相近傍でバイアスすることが示されている。(サン・K.シーム(Sang K. Sheem)による、[3×3]指向性カプラを有する光ファイバジャイロスコープ(Fiber-Optic gyroscope with[3x3]directional coupler)、Applied Physics Letters、第37巻、第10号、1980年11月15日、第868〜871頁;およびH.ポアゼル(H. Poisel)らによる、低コスト光ファイバジャイロスコープ(Low-cost fibre-optic gyroscope)、Electronics Letters、第26巻、第1号、1990年1月4日、第69〜70頁を参照。)3×3カプラの2つの検出ポートからの信号を減じることにより、SFS源の限定的なノイズ源であるソース過剰ノイズを減じることができ、ハイドロホンによる位相変調誘導の強度変動が加わる。これは、サニャック干渉計が、ショットノイズの限られた性能に近づくことを可能にする。(キエール・クロカンス(Kjell Krakenes)らによる、水中音検出のためのサニャック干渉計:ノイズ特性(Sagnac interferometer for underwat
er sound detection: noise properties)、OPTICS LETTERS、第14巻、第20号、1989年10月15日、第1152〜1145頁を参照。)
サニャックベースの音響センサに対する先の研究は、単一センサ構成に限られてきた。サニャック干渉計の固有の利点のために、出願人は、大規模アレイのマッハ・ツェンダー干渉センサをサニャックベースのセンサと置換することが望ましいと判断した。上に論じたサニャックセンサ100の各々は、何キロメーターものファイバを必要とし、多くのそのようなセンサを大規模アレイに挿入することを非実際的でないものとしている。再循環遅延ループを用いてファイバ長の要求を低減する研究は、再循環ループ内にEDFAを組込むために使うファイバがかなり少なくてすむが高ノイズを被るセンサを生み出した。(たとえば、J.T.クリングルボット(J.T. Kringlebotn)らによる、エルビウムドープトファイバ増幅器を有する再循環リングを含むサニャック干渉計(Sagnac Interferometer Including A Recirculating Ring With An Erbium-doped Fibre Amplifier、OFS '92 Conference Proceedings、第6〜9頁を参照。)必要とされるファイバを減らすための新規なアプローチを以下に記載する。
サニャック干渉計に基づく新規なセンサアレイ
以下に述べるように、出願人は、複数のセンサを同じ遅延ループに多重化することによりサニャックベースの大規模アレイに必要とされるファイバの量を低減する新規なシステムを発見し、実際的なサニャックセンサアレイ(SSA)をもたらした。図2に示すように、この発明に従うサニャックセンサアレイ200は、単一の遅延ループ214につながれる、はしご構成のハイドロホン212(i)のアレイ210を含む。たとえば、図2は、それぞれのラング216(1)、216(2)…216(N)にN個のハイドロホン212(1)、212(2)…212(N)を有するサニャックセンサアレイ210を示す。サニャックセンサアレイ210における各ラング216(i)は、それぞれのハイドロホン212(i)のまわりに巻かれた単一のファイバを含む。3×3カプラ220から遅延ループ214およびアレイ210を通ってカプラ220に戻るすべての経路が別個のサニャック干渉計を含む。したがって、N個のセンサ212のアレイについて、N個の別個のサニャック干渉計があり、その各々が図1に示す単一ループサニャックセンサ100と同様に挙動する。各サニャック干渉計は、空間中の別個の点、すなわちハイドロホン212(i)の場所で音響信号を測定する。たとえば、遅延ループ214およびラング216(1)を含むサニャック干渉計は、ハイドロン212(1)において音響信号を測定する。さらに、各サニャック干渉計は、ループの他のところでも音響信号(たとえばノイズ)をピックアップするが、このノイズは以下に論じられるように有利には低減される。
サニャックセンサアレイ200は、時分割多重化(TDM)構成において最も簡単に理解される(非TDM方式は後に論じられる)。ソース222(これは有利には従来のパルス源を含んでもよく、または外部変調器とともにcw源を含んでもよい)は、光パルスを生成し、光パルスは、図2に示すように、カプラ220の第3のポートを介してサニャックループに入りCW方向とCCW方向との両方に伝播する。アレイ210に達すると、CCWパルスは一列のN個の別個のパルスに分けられる。この時点で、CW入力パルスはアレイ210にまだ達しておらず依然として単一パルスである。CWパルスがアレイ210に達すると、それはまた一列のN個のパルスに分けられる。CW列における各パルスはそれぞれのラング216(i)を進んだ後3×3カプラ220に戻り、反対方向に同じラング216(i)を進んできたCCW列のパルスと干渉する。したがって、N個のパルスが第1の検出器230および第2の検出器232によって検出され、各パルスは、N個のサニャックループのうちの1つのCWパルスおよびCCWパルス(すなわち、同じそれぞれのラング216(i)を通って反対方向に進んできた2つのパルス)を含む。ラングの異なった組合せを通って進むパルスは同一の光路を進まないので、そのようなパルスは、カプラ220に同時に存在せず、そのためカプラ222において互いに干渉し合うことはない。パルス幅は、隣接したセンサからのパルスが重ならないように、隣接したセンサ間の
遅延差よりも小さいものであるべきである。
図3に示すように、利得の小さいエルビウムドープトファイバ増幅器(EDFA)240が有利には、EDFAがマッハ・ツェンダー干渉センサアレイに追加されるのと丁度同じようにアレイ部210に追加される。(たとえば、クレイグ・W.ホッジソン(Craig W. Hodgson)らによる複数の光増幅器を組込む大規模ファイバセンサアレイの最適化−第1部:信号ノイズ比(Optimization of Large-Scale Fiber Sensor Arrays Incorporating Multiple Optical Amplifiers-Part I: Signal-to-Noise Ratio)、JOURNAL OF LIGHTWAVE TECHNOLOGY、第16巻、第2号、1998年2月、第218〜223頁;クレイグ・W.ホッジソンらによる、複数の光増幅器を組込む大規模ファイバセンサアレイの最適化−第2部:ポンプパワー(Optimization of Large-Scale Fiber Sensor Arrays Incorporating Multiple Optical Amplifiers-Part II: Pump Power)、JOURNAL OF LIGHTWAVE TECHNOLOGY、第16巻、第2号、1998年2月、第224〜231頁;ジェファーソン・L.ワグナー(Jefferson L. Wagener)らによる、エルビウムドープトファイバ増幅器を用いる新規なファイバセンサアレイ(Novel Fiber Sensor Arrays Using Erbium-Doped Fiber Amplifiers)、JOURNAL OF LIGHTWAVE TECHNOLOGY、第15巻、第9号、1997年7月、第1681〜1688頁;およびC.W.ホッジソンらによる、複数の光増幅器を有する大規模干渉ファイバセンサアレイ(Large-Scale interferometric fiber sensor arrays with multiple optical amplifiers)、OPTICS LETTERS、第22巻、第21号、1997年11月21日、第1651〜1653頁を参照。)EDFA240は、結合損および散逸損に失われた信号出力を再生することにより単一のアレイ210によって支持可能であるセンサの数を増やす。EDFAは、有利には、スプリッティングカプラ244を介してかつ第1の波長分割多重化(WDM)カプラ246および第2のWDMカプラ248を介して1つ以上のポンプレーザ源242によりポンピングされる。
それはサニャック構成を用いるので、サニャックセンサアレイ200は、上に論じた単一ループサニャックベースのセンサ100の利点のすべてを有する。コモンパス設計により、干渉カプラ220においてソース位相ノイズが強度ノイズに変換することがなくなる。ソース222は、1.55μmで安価にハイパワーを与えるファイバASE(拡大自然放出)源(すなわち上に論じたSFS)であり得る。直角位相近傍の受動的バイアスが、3×3カプラ220を用いることによりすべてのセンサについて達成可能である。また、3×3カプラ220は、検出器230、232で2つの干渉出力を検出しかつ2つの検出器の出力を用いてソース過剰ノイズを減じるための便利な手段を提供する。(たとえばK.クロカンス(K. Krakenes)らによる、単一サニャック干渉計と組合される2つの検出器の使用を示す、水中音検出のためのサニャック干渉計:ノイズ特性(Sagnac interferometer for underwater sound detection: noise properties)、OPTICS LETTERS、第14巻、1989年、第1152〜1154頁を参照。)
この新規なサニャックセンサアレイ200の特性を以下により具体的に論じ、その後に、サニャック干渉計を使用することから得られる周波数応答およびダイナミックレンジをより詳細に論じる。その後に、非ハイドロホンファイバループセグメントからの分散ピックアップの大きさの計算を、このピックアップの大きさを減じるための技術とともに記載する。偏光も以下に扱われる。サニャック設計によって導入されるノイズの新しいソースを次に論じる。最後に、サニャックセンサアレイのためのTDM以外の多重化方式を提示する。
この発明は、アレイ210の各ラング216(i)における単一センサに関して以上に記載されたが、各ラング216(i)は、有利には、たとえばここに引用により援用される、1997年3月11日に出願され特許付与された米国特許出願番号第08/814,548号に記載されるものなどの、複数のセンサを有するサブアレイを含んでもよいことが理解される。(C.W.ホッジソンらによる、複数の光増幅器を有する大規模干渉ファ
イバセンサアレイ、Optics Letters、第22巻、1997年、第1651〜1653頁;J.W.ワグナーらによる、エルビウムドープトファイバ増幅器を用いる新規なファイバセンサアレイ、Journal of Lightwave Technology、第15巻、1997年、第1681〜1688頁;C.W.ホッジソンらによる、複数の光増幅器を組込む大規模ファイバセンサアレイの最適化、第1部:信号ノイズ比、Journal of Lightwave Technology、第16巻、1998年、第218〜223頁;およびC.W.ホッジソンらによる、複数の光増幅器を組込む大規模ファイバセンサアレイの最適化、第2部:ポンプパワー、Journal of Lightwave Technology、第16巻、1998年、第224〜231頁も参照されたい。)
周波数応答
以上に述べたように、サニャックセンサは、方程式1によって与えられる周波数依存応答を有する。1/(2・Tdelay)として定義される、ループの適切周波数をかなり下回る周波数では、最小検出可能音響信号は音響周波数の逆数に比例する。低周波数でのこの音響感度の低減は、サニャック音響センサについて主要な関心となっている。しかしながら、低周波数でのこの感度の低減は、幸運なことに海洋ノイズフロア関数(floor)の増大と一致していることが指摘されている。(たとえば、スベール・クナドセンによる、光ファイバ干渉音響センサにおける大気および光ノイズ(Ambient and Optical Noise in Fiber-Optic Interferometric Acoustic Sensors)、ノルウェー科学技術大学論文第3章、マイケルソン干渉計およびサニャック干渉計に基づく光ファイバセンサ:応答性およびノイズ特性(Fiber-Optic Sensors Based on the Michelson and Sagnac Interferometers: Responsivity and Noise Properties)、1996年、第37〜40頁を参照。)理想的には、所与の周波数でのアレイの最小検出可能音響信号がその周波数での海洋ノイズフロア関数を下回る一定の量であるとすれば望ましいであろう。したがって、最小検出可能音響信号も、海洋ノイズフロア関数の増大と一致するように、より低い周波数では増大するであろう。この発明のサニャックセンサアレイ200の周波数応答は実際に、海洋ノイズフロア関数と音響感度との良好な整合をもたらす。これは、10μrad/√Hzの光ノイズフロア関数、3.2×10-7rad/μPaのハイドロホン位相応答性、および20kmの遅延ループ長とすると、サニャックセンサアレイに対する最小検出可能音響信号は曲線250としてプロットされる。(垂直軸は、1μrad/√Hzの基準線に対するdBである。)図4にさらにプロットされるのは、これらの周波数での3つの主な海洋ノイズ源に対する海洋ノイズフロア関数と、この3つの源からのノイズから得られる合計とである。曲線252は、海の荒れ、地震、火山噴火などからのノイズを表わす。曲線253は、光伝送ノイズを表わす。曲線254は、DSS0(遠距離伝送および暴風雨)ノイズを表わす。曲線256は、3つの主な源からのノイズフロア関数の合計(すなわち、曲線252、253および254の合計)を表わす。(たとえば、ロバート・J.ユリック(Robert J. Urick)による、海のノイズ背景:大気ノイズレベル(The noise background of the sea: ambient noise level)、Principles of Underwater Sound、第3版、第7章、マグローヒル(McGraw-Hill)、1983年、第202〜236頁を参照。)サニャックセンサアレイ200の最小検出可能音響信号は、10kHzより下のすべての周波数で海洋ノイズフロア関数を下回るほぼ一定量の検出可能信号を与えるような態様で増大する。したがってサニャックセンサアレイ200の周波数依存応答は、低周波数音響検出を妨げない。マッハ・ツェンダーアレイは、サニャックセンサアレイと同じ傾向、すなわち周波数が低くなるにつれ低減してゆく感度を示すが、マッハ・ツェンダーアレイにおいては、低減してゆく感度はサニャックベースのセンサにおいてよりも小さい。
マッハ・ツェンダー干渉計もサニャックセンサアレイ200も同様の周波数依存応答を有するが、それらの周波数応答のソースは基本的に異なっている。マッハ・ツェンダー干渉計センサアレイにおける最小検出可能信号の増大は、光ノイズフロア関数の増大によるものである。この光ノイズフロア関数の増大の原因は、経路不均衡なマッハ・ツェンダー干渉計によって導入される位相ノイズである。したがって、ノイズフロア関数は10kH
zでは10μrad/√Hzであるが、それは周波数がより低くなるにつれ増大する。サニャックセンサアレイ200において、最小検出可能音響信号の増大は、方程式1のsin(ΩTdelay/2)項によるものであり、光ノイズフロア関数の増大によるものでない。光ノイズフロア関数は、全周波数範囲にわたって一定の10μrad/√Hzである。
この差の重大さは、図5に示されるマッハ・ツェンダー干渉センサアレイとサニャックセンサアレイ200とのダイナミックレンジを調べることによりわかる。センサのダイナミックレンジは、最小検出可能位相シフトと最大検出可能位相シフトとにより限界を設けられる。干渉センサについて、最大検出可能位相シフトは干渉計の非線形応答によって、最小検出可能位相シフトは光ノイズフロア関数によって限界が設けられる。マッハ・ツェンダー干渉センサアレイもサニャックセンサアレイも、音響周波数範囲にわたって一定である最大検出可能位相シフトを有する。しかしながら、サニャックセンサアレイ200はまた、横ばいの光ノイズフロア関数を有するので、横ばいの最小検出可能位相シフトを有するが、マッハ・ツェンダー干渉センサアレイは、経路不均衡干渉計によって導入される位相ノイズにより生じる光ノイズフロア関数の増大のために最小検出可能位相シフトが増大する。したがって、サニャックセンサアレイ200は全音響周波数において一定のダイナミックレンジを有するが、マッハ・ツェンダー干渉センサアレイは、低音響周波数で減少するダイナミックレンジを有する。これは図5において表わされ、(dB任意単位における)最小および最大検出可能音響信号がサニャックセンサアレイ200およびマッハ・ツェンダー干渉センサアレイについてプロットされている。図5に示すように、どちらのアレイも1kHzより上では約100dBのダイナミックレンジを有し、位相ノイズはマッハ・ツェンダー干渉センサアレイを制限しない。10Hzで、位相ノイズはマッハ・ツェンダー干渉センサアレイに影響し、そのダイナミックレンジが約74dBに減じられる。一方で、サニャックセンサアレイ200のダイナミックレンジは約100dBのままである。
遅延ループ長とハイドロホン応答性との関数としてループ適切周波数をかなり下回る周波数でのサニャックセンサアレイ200の周波数応答を調べると興味深い。これらの周波数では、方程式1のsin(ΩTdelay/2)因数はΩTdelay/2として近似し得、サニャックセンサアレイ200の応答性がφhとTdelayとの積に比例することを示している。φh自体は各ハイドロホン212(i)のファイバの量に比例し、Tdelayは遅延ループ214におけるファイバの量に比例する。したがって、ループ適切周波数をかなり下回る周波数での応答性は、ハイドロホンファイバ長と遅延ファイバ長との積に比例する。図6は、いくつかのサニャックセンサアレイ構成に対する最小検出可能音響信号をプロットしたものであって、各ハイドロホン212(i)におけるファイバの長さと遅延ループ214におけるファイバの長さとの積は一定であるが、遅延ループ214と各ハイドロホン212(i)とのファイバの相対的配分が変化している。たとえば、曲線260は、その遅延ループ214における45kmのファイバと各ハイドロホン212(i)における100メートルのファイバとを有するサニャックセンサアレイ200の周波数応答を表わし、曲線262は、その遅延ループ214における30kmのファイバと各ハイドロホン212(i)における150メートルのファイバとを有するサニャックセンサアレイ200の周波数応答を表わし、曲線264は、その遅延ループ214における15kmのファイバと各ハイドロホン212(i)における300メートルのファイバとを有するサニャックセンサアレイ200の周波数応答を表わす。図示のとおり、各サニャックセンサアレイ200は、低周波数で同じ感度を有するが、それらそれぞれのループ適切周波数によって与えられる異なった周波数で最大の感度に近づく。したがって、低周波数での所与の最小検出可能音響信号について、遅延ループ214およびハイドロホン212(i)のファイバ長さを選択することになおもいくらかの自由がある。必要とされるファイバの総量を最小にしたり遅延ループ長を最小にしたりするなど、サニャックセンサアレイ200が他の基準を満足させるのに役立つようにこの自由を用いることができる。
サニャックセンサアレイのダイナミックレンジの増大
上に論じたように、サニャックセンサアレイ200は、低い音響周波数でマッハ・ツェンダー干渉センサアレイよりも大きいダイナミックレンジを有する、なぜならそれは位相ノイズの影響を受けないからである。理想的には、アレイ200は、発生する可能性の高い最強および最弱の音響信号を検出するのに十分なダイナミックレンジを与える。この要求はしばしば、約150dBの必要とされるダイナミックレンジに至る。マッハ・ツェンダー干渉センサアレイにおいてそのように大きなダイナミックレンジを達成するためには、各々が合計150dBのダイナミックレンジの一部を検出し異なった位相応答性を有する2つの別個のセンサが必要とされる。この方式に対する明らかな不利益は、それが2つのセンサアレイ(すなわち、2倍の多さのハイドロホン、ラング、ソースおよび検出器)を必要とすることである。実際上、N個のハイドロホンを支持できるアレイが音響信号を検出できるのはN/2点においてのみである。
サニャックセンサアレイ200では、さらなるハイドロホン212を使用することなしに大きなダイナミックレンジを達成することができる。サニャックセンサアレイにおける位相応答性は、方程式1に示すように、ハイドロホン応答性と遅延ループ長との関数であるので、ハイドロホンのアレイ全体の位相応答性は、遅延ループ長を修正することにより変更可能である。図7に修正されたセンサアレイ266に示すように、それぞれ長さL1およびL2の2つの別個の遅延ループ214(1)および214(2)を同時に用いることにより、アレイ266の検出範囲を劇的に増大させることができる。アレイ266は今や2N個の別個のサニャックループを有する。各ハイドロホン212(i)は、2つの遅延ループ経路の各々について別個の信号を戻し、各遅延ループ214(1)、214(2)の長さが、その信号の音響検出範囲を決定する。各ハイドロホン212(i)の音響検出範囲合計は、ハイドロホン212(i)を取囲む2つのサニャックループセンサの各々の検出範囲の結合である。L1およびL2の長さが音響検出範囲を設定する。長さL1+L2は、アレイ266が問題の最小音響信号を検出することが可能であるように選択される。そして、遅延ループ214(1)の長さL1は、このより短い遅延ループのみを進む信号の検出範囲を遅延ループ214(1)、214(2)の両方を進む信号の検出範囲の上に位置付けるように選択される。TDMシステムにおいては、第2のループの挿入の結果として、ソースパルスの繰返し周波数は、2N個のパルスが戻るための時間を見込んで半分にされ、遅延ループ214(1)、214(2)の長さは、パルスの重なりがないように選択される。繰返し周波数が半分にされるので、各個々の信号のダイナミックレンジは3dBだけ減少する。この減少は、2つの別個の信号のダイナミックレンジをピギーバックすることにより達成される全体のダイナミックレンジの増大によって十二分に相殺される。図7において、第2の遅延ループ214(2)は、第2の遅延ループ214(2)を通過するすべての光が第1の遅延ループ212(1)を通過するように位置決めされる。代替的に、2つの遅延ループ214(1)、214(2)は、第2の遅延ループ214(2)を通過する光が第1の遅延ループ214(1)を通過しないように光学的に並列であってもよいことが理解される。そのような場合には、第2の遅延ループ214(2)のファイバ長さは、第1の長さおよび第2の長さの合計(すなわちL1+L2)でなければならないだろう。しかし、L1はL2よりもかなり短いので、この調節は必須ではない。図7の実施例は、第1の遅延ループの長さを第2の遅延ループに加えることにより全体のファイバ要求を低減する。
図8は、アレイ266において2つの遅延ループ214(1)、214(2)を用いることにより可能にされる拡大したダイナミックレンジであって、各信号のダイナミックレンジは100dBでありかつL1/L2の比は5000に設定されていることを示す。図示のように、アレイ266は今や、ハイドロホンの数を増やすことなしに、問題のダイナミックレンジ(約160dBのレンジ)全体を検出することができる。
分散センシング
サニャックセンサアレイ266においては、干渉計におけるいずれの位相変調も、干渉する3×3カプラ220で強度変調に転送され得る。サニャックループ全体にわたるこの分散センシングは、音響センサアレイに対しては不利益である。実際的であるためには、音響センサアレイは空間内のいくつかの離散点で(すなわちハイドロホンで)音響信号をサンプリングし、これらの信号を独立して返すべきである。マッハ・ツェンダー干渉センサアレイがこれを達成するのは、干渉計が小さな空間に制限されており、よってそのポイントでしかセンシングしないからである。サニャックセンサアレイ266が実際的であるためには、サニャックループの分散センシングは減じられねばならない。
干渉計のファイバの大部分は遅延ループ214を構成するが、これは2つの位置に配置され得る。第1のものは、図9Aに示すように、乾いた端(すなわち、水の外)におけるソース222および検出電子部品(すなわち、検出器230および検出器232)を備える。ここで遅延ループ214は、どのような外部変調をも最小化するために環境的に遮断され得る。しかしながら、濡れた端をアレイ部分210に接続するダウンリードファイバ270、272は干渉計の一部である。第2の可能性は、図9Bに示すように、遅延ループ214を濡れた端(すなわち、水中)に位置決めすることである。よって、遅延ループ214は乾いた端に位置決めされた場合と同じ程度には分離不可能であるが、ダウンリードファイバ270、272、274は干渉計の外部にあるのでセンシングしない。ダウンリードと遅延ループ分散ピックアップとの相対的な大きさが、特定の用途に対してどの構成が最適であるかを決定する。もし遅延ループ214が乾いた端(図9A)に場所決めされていれば、ダウンリードファイバ270、272は静止したままで、非常に大きな位相変調を誘引するおそれがあるこれらのファイバの曲げや振動などの物理的な動きを防がなければならないことに留意されたい。これらは、音響的に誘導される位相変調に対して、ファイバの動きに誘導される位相変調である。(そのような物理的運動は、曳航アレイにおいては問題であるが、静置アレイにおいては顕著な問題ではない)。こうして、もし遅延ループ214が乾いた端に位置決めされていれば(図9A)、サニャックセンサアレイ210の濡れた端全体が静止していなければならない。しかしながら、遅延ループ214が濡れた端に場所決めされていると(図9B)、図9Bの3×3カプラ220の右部分だけが静止したままでべきであるが、これはダウンリードファイバ270、272、274が干渉計の一部ではないからである。遅延ループが濡れた端に場所決めされている場合(図9B)、遅延ループファイバは感度を抑制されねばならない。遅延ループ214は、遅延ループファイバを感度抑制シリンダ(図示せず)の周りに巻きつけることにより静止させることができ、こうしてファイバの動きをなくして主要な分散ピックアップ信号源の音響ピックアップを行なう。運動誘導位相変調に対するファイバの感度抑制よりも、音響誘導位相変調に対するファイバの感度抑制のほうが容易であるので、遅延ループ214を濡れた端に場所決めする構成(図9B)が曳航アレイ用途に対して好ましく、これを以下に詳述する。
遅延ループにおいて誘導される音響ピックアップノイズの計算
このセクションにおいては、図9(b)のサニャックセンサアレイ210における音響誘導ハイドロホン位相変調と比較した音響誘導分散ピックアップノイズの大きさに対する推定値が導出される。遅延ループおよびバスファイバ(各ハイドロホンを遅延ループおよび3×3カプラに接続するファイバ)における音響信号のピックアップから生じる分散位相変調による強度変調は、ノイズ源と考えられる。以下の説明においては、サニャックセンサアレイの1つのループが、図10に示すように、長さLdの唯一の遅延ファイバ、長さLbのバスファイバ、長さLhのハイドロホンファイバ、および全長Lを含むと考える。また、LdはLbおよびLhよりも長いと仮定する。音響信号に対するファイバの位相応答性は、圧力依存伝搬定数βから生じる。一般的に、位置lおよび時間tでの伝搬定数の圧
力依存成分は、以下のように表し得る:
β(l,t)=β0R(l)P(l,t) (2)
ここでβ0はゼロ圧力伝搬定数であり、R(l)は正規化されたファイバの位相応答性であり、P(l,t)は空間および時間の関数としての圧力である。
Figure 0004184265
ここでP0は定常状態圧力であり、Pmは圧力変調の振幅であり(lからは独立していると仮定する)、θ(l)は音響波の空間位相変動を含む。一般的に、l=l1からl=l2への音響誘導位相変調によるサニャックループにおける干渉ビーム間の誘導位相差は、次の積分から得られる:
Figure 0004184265
ここでvはファイバ内の光の速度であり、Lはループの長さである。方程式3を方程式4に代入すると、以下が得られる:
Figure 0004184265
方程式5は、ハイドロホン、バス、および遅延ファイバの音響変調による干渉ビーム間の位相差を求めるために用い得る。
ハイドロホンファイバに対して、方程式5はl1=ld+lb/2からl2=ld+lb/2+lhまで積分し得る。θ(l)はこの範囲をわたって一定であると仮定する(すなわち、音響波長はハイドロホンのダイメンションよりも大きい)。また、正規化されたファイバの位相応答性R(l)は一定であり、この範囲におけるRhに等しいと仮定する。方程式5により、ハイドロホンファイバ変調による干渉ビーム間の位相差振幅が求められる:
Figure 0004184265
方程式2は方程式1で与えられる数式に適合することに留意されたい。
バスファイバに対しては、上下のバスラインの両方を含むよう、方程式5は第1にl1=ldからl2=ld+lb/2、次いでl1=L−lb/2からl2=Lまで積分する。再び、R(l)は一定でありすべてのバスファイバに対してRbと等しいと仮定され、よってθ(l)は方程式5の積分において一定である。ファイバ変調による干渉ビーム間の位相差振幅は以下のようになる:
Figure 0004184265
遅延ファイバに対しては、方程式5はl1=0からl2=ldに積分され、かつ上と同様に、θ(l)はこの範囲をわたって一定であり(すなわち、遅延ループコイルは音響波長よりも小さい)、R(l)は一定であり、積分をわたってRdと等しい。方程式5により、遅延ファイバ変調による干渉ビーム間の位相差振幅が、以下のように求められる:
Figure 0004184265
方程式6から方程式8により、これらの位相変調振幅の相対的な大きさが計算できる。第1に、たとえばJ・A・ブカーロ(J. A. Bucaro)他の「光ファイバセンサ被覆(Optical fibre sensor coatings)」、Optical Fiber SensorsProceedings of NATO Advanced Study Institute、1986年、pp.321-338に説明されるように、標準のプラスチック被覆ファイバは、−328dB re 1/μPaの、正規化された位相応答性Rを有することに留意されたい。一方、たとえばC・C・ワン(C. C. Wang)他の「商業用途の超高速応答光ファイバハイドロホン(Very high responsivity fiber optic hydrophones for commercial applications)」、Proceedings of the SPIE - The International Society for Optical Engineering、Vol.2360、1994年、pp.360-363に説明されるように、エアバックされた(air-backed)マンドレルから製作される、電流(current)ハイドロホンの周りに巻かれたファイバは、−298dB re 1/μPaの正規化された位相応答性を有し、標準のファイバよりも30dB増大する。遅延ループおよびバスファイバが標準プラスチック被覆ファイバの正規化位相応答性を有しハイドロホンファイバがエアバックされたマンドレルの周りに巻かれると想定すると、Rh対RbまたはRdの比は約30dBである。したがって、方程式6から方程式8に到着するための簡略化された想定のもとで、以下が求められる:
Figure 0004184265
こうして、ハイドロホンファイバがサニャックループ全体の中では比較的少量を占めるという事実にも関わらず、ハイドロホンファイバにおける音響誘導位相変調は、最も遠いハイドロホンに対してさえも、遅延ループファイバおよびバスファイバにおける音響誘導位相変調よりも大きい。以下のセクションは、空のラングを用いてこのレベルの分散ピックアップノイズに対処するための手段を説明する。
遅延ループファイバに対する方程式5における積分を評価するために、R(l)=Rdであって、すべてのlはLdよりも小さいと仮定する。このR(l)が一定であることにより、方程式5のl=(l−Ld)からLdへの積分に対するどのような寄与もなくなる(被積分関数がL/2についての奇関数となるため)。しかしながら、長いファイバをコイル巻きするとR(l)においてlに対するいくらかの依存性が生じる(おそらく、ファイバの内層が外層とは異なったRを有するため)。これらのR(l)におけるばらつきは、遅延ループピックアップをl=L−LdからLdに増大させる。このピックアップを減じるために、R(l)は、方程式5の被積分関数をL/2に対して奇関数にするために、L/2の周辺でのみ偶関数であればよいことを第1に留意されたい。図11に示されるように、ファイバループの対称点を隣どうしに配置する態様で遅延ループを巻くことにより、R(l)をL/2に対してより対照的にすることができる。そのような巻きは、遅延ループの対象点が互いに対して近傍に配置されることを確実にし、よってコイル上のファイバの位置によるR(l)におけるどのようなばらつきもL/2に対して可能な限り対象的であり、よって遅延ピックアップは方程式8の数式に可能な限り近づく。サニャックセンサアレイにおける各サニャックループは、異なったL/2ポイントを有し、1つのループのみが図11に示される通りに巻かれることができ、それによりサニャックループの1つを除くすべてにR(l)において小さな奇数性(oddness)を導入することに留意されたい。
ハイドロホンでのファイバの音響感度を向上させることに加えて、特定の直径の金属被覆を付与することによりファイバの感度を抑制することも可能である。(たとえば、上で引用したJ・A・ブカーロの「光ファイバセンサ被覆」を参照のこと)。−366dB re 1/μPaという低さの測定された正規化位相応答性が報告されている。そのようなファイバが遅延またはバスラインで用いられていれば、Rh対Rbの比またはRh対Rdの比は68dBに近づき(プラスチック被覆遅延およびバスファイバでの30dBを除く)、ハイドロホン誘導信号を、遅延およびバス誘導信号より38dB増大させる。
空のラングを用いた分散ピックアップノイズの減少
さらに分散ピックアップ信号をなくすために、図12に示すようにアレイ210にハイドロホンを含まない空のラング300を配置することにより、ハイドロホン誘導音響変調を分散ピックアップ変調から分離することができる。センシングラングと称するハイドロホン212(i)を含む各ラング216(i)の前には、1つの空のラング300(i)が配置される。各ループの空のラング(i)を閉じ込める非センシングファイバは、ループの対応のセンシングラング212(i)を閉じ込める非センシングファイバとほぼ同一であるという事実は、空のラング300(i)および対応のセンシングラング212(i)がほぼ同じ分散ピックアップ信号を有するであろうことを意味する。この空のラング300(i)をアレイ210内の別のセンサとして扱い、空のラング300(i)およびセンシングラング212(i)からオーバーラップしないよう適切にパルスをタイミング(TDM方式で)することにより、各センシングラング212(i)に現れる分散ピックアップ信号を測定することができる。検出の後に、この信号はセンシングラング信号から除去することができ、ハイドロホンファイバにおける位相変調によって生成された強度変調のみが残される。そのような方策を実現すると、Nセンサアレイ210に対して2Nラングが必要になるので、個々の信号のデューティサイクルが半分に減じられる。
もしアレイ210のバス部分の感度抑制が必要でなければ、単一の空ラング300をアレイ210内に配置して、遅延ループ214に関連する分散ピックアップ信号を測定することができるので、Nセンサに対してN+1ラング(Nセンシングラング212(i)および1つの空ラング300)しか必要にならない。もし1つの空ラング300が十分にセンシングラング212(i)ごとの分散ピックアップ信号を測定しなければ、各センシングラング212(i)に現れる分散ピックアップ信号がこれらの空ラング300のうち最も近いもので十分に測定できるようになるまで、定期的な間隔でアレイに沿ってさらに空ラング300を加えることができる。より少ない空ラングを用いると、個々の信号に対してより高いデューティサイクルをもたらす。図12は、すべてのセンシングラングごとに空ラングが加えられた極端な例を示す。
偏光
いずれの干渉計センサにおける最大コントラストに対しても、干渉ビームの偏光状態(SOP)は、再合成された場合に同一でなければならない。もしこれらが直交するのであれば、干渉は起こらず、よって振幅変調信号も存在しない。これは、偏光誘導信号フェージングと呼ばれる。サニャックセンサアレイ内の各センサはサニャックループなので、サニャックファイバジャイロスコープ内の偏光誘導信号フェージングに対して行なわれた研究は、サニャックセンサアレイにも同様に当てはまる。1つの有望な解決策は、サニャックループ内に減偏光子を配置することである。(たとえば、K・ベーム(K. Boehm)他の「超蛍光ダイオードを用いた低ドリフトファイバジャイロ(LOW-DRIFT FIBRE GYRO USING
A SUPERLUMINESCENT DIODE)」、ELECTRONICS LETTERS、Vol.17、No.10、1981年5月14日、pp.352-353、を参照のこと)。減偏光子は、光強度の少なくとも半分が常に正しいSOPで3×3カプラに戻ってくることを確実にする。この一般的な方策は、ループ複屈折にかかわらず、一定の可視度をもたらす。(たとえば、ウィリアム・K・バーンズ(William K. Burns)他の「減偏光された光での光ファイバジャイロスコープ(Fiber-Optic Gyroscopes with Depolarized Light)」JOURNAL OF LIGHTWAVE TECHNOLOGY、Vol. 10、No.7、1992年7月、pp.992-999、を参照のこと)。最も簡単な構成は、ファイバ超蛍光源のような非偏光源と減偏光子とをループ内に用いる。図13に示されるように、サニャックセンサアレイ200においては、1つの減偏光子310がすべてのサニャックループに共通であるポイントに配置される。減偏光子310は、各センサ212(i)が、ループ複屈折が一定である限り、複屈折から独立したこの一定の可視度を持つことを確実にする。これは、偏光誘導信号フェージングの扱いがマッハ・ツェンダー干渉計センサアレイにおいて用いられる方法よりも、非常に簡略化されていることを示す。
複屈折のゆっくりとした変化は、サニャック干渉計の相反する性質によって十分に打ち消されるであろうが、関連の音響範囲における周波数での複屈折変調は、偏光ノイズをもたらす。これらの周波数でのほとんどの複屈折は、物理的なファイバの運動の結果として生じる。こうして、サニャックループは、偏光ノイズ(および分散ピックアップ信号)を減じるために静置を保つべきである。
サニャック干渉計の使用により導入されるノイズ源
熱的位相ノイズ
ファイバの屈折率は温度によって変化するので、ファイバにおける熱の変動は、その中を移動する光に位相変動をもたらす。これらの率のばらつきはファイバの長さにわたって相関されないので、結果として生じる位相変動は長さの平方根に比例する。マッハ・ツェンダー干渉計は典型的には各アームにおいて100メートル未満のファイバを用いるので、この熱的位相ノイズの大きさは無視できる。サニャック干渉計は、干渉計内に非常により多くのファイバを有し、その結果熱的位相ノイズは制限的なノイズ源となり得る。サニャック干渉計におけるこの熱的位相ノイズの大きさは、理論的に説明され、実験により確認されている。(たとえば、スヴェール・クヌドセン(Sverre Knudsen)他の、「サニャック干渉計のファイバにおける基本的な熱的誘導位相変動の計測(Measurements of Fundamental Thermal Induced Phase Fluctuations in the Fiber of a Sagnac Interferometer)」、IEEE Photonics Technology Letters、Vol. 7、No.1、1995年、pp.90-93;および、キエール・クロケンス他の、「ファイバにおける熱処理に対する光ファイバサニャックおよびマッハ−ツェンダー干渉計の比較(Comparison of Fiber-Optic Sagnac and
Mach-Zehnder Interferometers with Respect to Thermal Processes in Fiber)」、JOURNAL OF LIGHTWAVE TECHNOLOGY、Vol. 13、No. 4、1995年4月、pp.682-686を参照のこと)。2kmより長いループについては熱的位相ノイズは関連の周波数範囲において1μrad√Hzを超える可能性があるが、これは必要なアレイ感度のオーダである。
熱的位相ノイズは、遅延ループに対する外部変調に類似して、分散ピックアップノイズ源として考えられ、よって上述のように空ラングを用いて減じることができる。熱的位相ノイズは、ループ長さを短縮することによっても減じることができる。上述のように、遅延ループが短縮される分だけハイドロホンファイバ長さを延長することにより、低周波数感度を変化させることなくループ長さを短縮させることができる。たとえば、50メートルのハイドロホンファイバを備えた40kmの遅延ループは、100メートルのファイバを備えた20kmの遅延ループと同じ低周波数応答性を有する。しかしながら後者の組合せは、ループ全長がほとんど2分の1と短いので、熱的位相ノイズがより少ない。
カー効果誘導位相ノイズ
サニャック干渉計で生じ得るカー誘導位相シフトは、光ファイバジャイロスコープに対して非常に注目されてきた。(たとえば、R・A・バーグ(R. A. Bergh)他の、「光ファイバジャイロスコープにおけるソース統計とカー効果(Source statistics and the Kerr effect in fiber-optic gyroscopes)、OPTICS LETTERS、Vol7、 No. 11,、1982年11月、pp.563-565;R・A・バーグ他の、「光ファイバジャイロスコープにおける光カー効果の補償(Compensation of the optical Kerr effect in fiber-optic gyroscopes)OPTICS LETTERS、 Vol. 7、No. 6、1982年6月、pp.282-284;およびN・J・フリーゴ(N.J. Frigo)他の「ファイバジャイロスコープにおける光カー効果:非単色ソースの効果(Optical Kerr effect in fiber gyroscopes: effecs of nonmonochromatic sources)」、OPTICS LETTERS、Vol. 8、No. 2、1983年2月、pp.119-121、を参照のこと)。しかしながら、ジャイロスコープはDCレベルを測定するので、ジャイロスコープに対する要求と音響センサに対する要求とは異なる。ファイバジャイロスコープを制限し得るカー誘導位相シフトにより生成される小さなDCオフセットは、音響センサでは問題
にならない。カー誘導DC位相シフトは、これがバイアスポイントを直角位相から離しすぎない限り、問題ではない。光源での強度ノイズは、出力にカー誘導位相ノイズを生成し得る。しかしながら、このカー誘導AC位相ノイズは、カー誘導DC位相シフトが小さいままである限り、小さい。サニャックセンサアレイにおけるカー誘導位相シフトの発生源は、ファイバジャイロスコープにおけるものとは異なる。サニャックセンサアレイの非対称性は、公称対称ジャイロスコープよりも容易にそのようなカー位相シフトを引き起こす。その非対称性は、非対称なアレイ部分およびEDFAの配置から生じ、一方のビームが遅延ループを伝搬する前に利得を得、次いで損失を被るのに対し、反対に伝搬するビームは損失を被り、次いで利得を得る。遅延ループ内でEDFAに適切な位置を選択することにより、これらの非対称性のバランスをとり、カー誘導位相シフトをなくすことが可能である。特定のものは、正確なアレイ構成およびどの多重化方式が用いられるかに依存する。
EDFAから生じる非線形位相変調
EDFAにおいて生じる反転分布は、その中を通過する信号光に位相シフトを誘導する(たとえば、M・J・F・ディゴネ(M. J. F. Digonnet)他の、「低パワー全光スイッチングに対するドープファイバにおける共鳴的に強調された非線形性:概要(Resonantly
Enhanced Nonlinearity in Doped Fibers for Low-Power All-Optical Switching: A Review)、OPTICAL FIBER TECHNOLOGY、 Vol. 3、No. 1、pp.44-64、を参照のこと)。この現象は全光干渉計スイッチを製作するために用いられてきた。サニャックセンサアレイにおいては、干渉計内のEDFAは同じ機構を介して非線形位相シフトを生成する。ポンプまたは信号パワー変動による反転分布におけるばらつきは、強度ノイズに変換される位相変調をもたらす。
このノイズ源の大きさを推定するために、反転分布がポンプおよび信号パワー変動にどのように応答するかを第1に求めなければならない。これは、エルビウムシステムに対する速度方程式によって行なうよりも、比較的直接的である。
Figure 0004184265
ここで、N1およびN2はそれぞれより低い状態および励起状態の集団密度であり、N0は集団密度合計であり、Iは強度であり、σは断面であり、Aeffはファイバ内の実効モード領域であり、τ2はレベル2の寿命である。下付きpおよびsはそれぞれポンプおよび信号を示し、上付きaおよびeはそれぞれ吸収および放出を示す。
1、N2、Ip、Isをそれらの定常状態および時間変動成分に分割し、次いでこれを方程式12に代入して方程式12と方程式11とを組合せると、結果は以下のようになる:
Figure 0004184265
ここで、上付きssは定常状態値を示し、時間変動成分は時間の陽関数として書かれる(N2=N2 ss+N2(t))。N2(t)はN2 ssよりも小さいと仮定すると、方程式13の最後の2つの項は無視できる。Ip(t)=Ip msin(fpt)およびIs(t)=Is msin(fst)(ここでIp mおよびIs mはIp(t)およびIs(t)の変調振幅をそれぞれ示し、fpおよびfsはそれぞれポンプおよび信号変調周波数を表す)を書き、結果として生じる微分方程式を解くことにより、以下が得られる:
Figure 0004184265
λp=1480nm、λs=1550nm、およびIp ss=1Wであって、典型的なエルビウム−シリカ断面を想定するのであれば、方程式14と方程式15とは次のように簡略化される:
Figure 0004184265
ポンプ誘導反転分布変動(方程式17)が第1に解析される。もしIs ss=1mW、Ip ss=1Wであって、Ip m/Ip ss=10-6/√Hz(120dB/√Hz電子的SNR)であると仮定されれば、4.3kHzより十分下の周波数で|N2(fp)|N2 ss=9×10-10√Hz-1である。この数字を位相変調に変換するためには、エルビウムドープファイバに吸収される10mWのポンプパワーが1550nmで約7ラジアンの位相シフトを誘導するという事実を用い得る。(たとえば、M・J・F・ディゴネ他の、「低パワー全光スイッチングに対するドープファイバにおける共鳴的に強調された非線形性:概要」、OPTICAL FIBER TECHNOLOGY、 Vol. 3、No. 1、1997年1月、pp.44-64、を参照のこと)。シミュレーションを用いると、典型的なエルビウムドープファイバに吸収された10mWのポンプパワーは、1550nmで約6dBの小さな信号利得をもたらすが、これは分散EDFAを備えたアレイにおける各増幅器によって要求される利得に近いものである。(たとえば、クレイグ・W・ホッジソン(Craig W. Hodgson)他の「多数の光増幅器を組み入れた大規模ファイバセンサアレイの最適化−第1部:信号対ノイズ比(Optimization of Large-Scale Fiber Sensor Arrays Incorporating Multiple Optical Amplifiers-Part I: Singal-to-Noise Ratio)」;クレイグ・W・ホッジソン他の「多数の光増幅器を組み入れた大規模ファイバセンサアレイの最適化−第2部:ポンプパワー(Part II:
Pump Power)」;ジェファーソン・L・ワグナー(Jefferson L. Wagener)他の「エルビウムドープファイバ増幅器を用いた新規なファイバセンサアレイ(Novel Riber Sensor
Arrays Using Erbium-Doped Fiber Amplifiers)」;および上述のC・W・ホッジソン他の「多数の光増幅器を備えた大規模干渉計ファイバセンサアレイ)」を参照されたい)。したがって、各増幅器は約7ラジアンのDC位相シフトをもたらす。非線形位相シフトがより高い状態の集団N2に比例するので、ΔN2/N2 ss=Δφ/φssと書くことができる。この関係と方程式17とを再びIs ss=1mW、Ip ss=1W、Ip m/Ip ss=10-6/√Hzおよびfs<<4.3kHzに用いると、各EDFAによって誘導される低周波数位相ノイズは(7ラジアン)×(9×10-10)√Hz-1=6.3×10-9rad/√Hzとなる。このような増幅器が合計で500あり、500の増幅器のすべてからの位相変調がコヒーレントに加算されると仮定すると、ポンプノイズ誘導位相シフトの合計は3.2μrad/√Hzであると推定される。目標となる位相ノイズフロア関数は典型的には1μrad/√Hzであると設定され、ポンプパワー変動によってEDFAによって誘導される非線形位相ノイズは要求される位相ノイズフロア関数に近似するが、これよりも顕著に大きくはないことを示す。実際には、増幅器の位相変調はコヒーレントには加算しないので、3.2μrad/√Hzの数値は低くなる。
信号パワー変動によって誘導される位相シフトの計算はより複雑であるが、これは信号パワーは強度ノイズを有するだけでなく、多重化方式によっても変調されるためである。再びTDMの場合を考察すると、一般的に、所与のパルスが特定のEDFAを通って移動する間に、同時にそのEDFAを通って反対方向に伝搬するパルスがある場合も、ない場
合もあり得る。常に反対方向に伝搬するパルスがあるという最悪の場合を考えると、Is mは各パルスの強度ノイズの2倍である。増幅器に対しては、Is mは典型的には各パルスの強度ノイズの1.5から2倍である。信号光が音響周波数で120dB/√Hzの電子SNRを有する(すなわちIs m/Is ss=10-6/√Hz)と仮定し、この数値をIp ss=1WおよびIs m=2mWとともに方程式18に挿入すると、4.3kHzよりも低い周波数で|N2(fs)|/N2 ssは約2.4×10-9√Hz-1であると計算され、よって各EDFAにおける信号強度ノイズによって誘導される位相ノイズは1.68×10-8rad/√Hzである。再び、500の増幅器とすべてのEDFA誘導位相変調のコヒーレントな加算とを想定すると、各パルスにおけるEDFA誘導位相ノイズの合計は8.4μrad/√Hzであり、これはやはりサニャックセンサアレイの性能を制限するおそれのあるレベルである。しかしながら、より正確な計算のためには、多重化方式およびアレイの正確なタイミングを考慮したより詳細な研究が必要となる。
サニャックアレイにおける多重化方式
時分割多重化
ここまで、サニャックセンサアレイはTDM構成において動作されると想定してきた。サニャックセンサアレイにおいては、そのようなTDMシステムに対するソース要件は、TDM構成におけるマッハ−ツェンダー干渉計センサアレイのものほどは厳しくないことに留意されたい。この理由は、サニャックセンサアレイにおいて用いられる広帯域ソースである。マッハ−ツェンダー干渉計センサアレイにおいては、隣接するラングからの光は狭い線幅ソースによってコヒーレントであり、したがってマルチパスコヒーレント干渉を防ぐためには入力パルスにおいて極度に高い消光比が必要となる。この高消光比要件は、多数の変調器を直列に配置することにより達成されるが、その結果、複雑で損失が多く高価であるソースとなる。サニャックセンサアレイにおいては、消光比はそれほど高い必要はないが、これは広帯域ソースがマルチパスコヒーレント干渉の可能性をなくすからである。さらに、マッハ−ツェンダー干渉計センサアレイによって要求される狭い線幅では、外部でニオブ酸リチウム強度変調器によって変調される持続波(cw)レーザソースの代わりにパルスレーザソースを用いることができない。サニャックセンサアレイにおいては、外部で変調される持続波ASEソース、パルス付けASEソース、またはそれらの何らかの組合せのいずれかを用いてソースを構築し得る。再び、この理由は、サニャックセンサアレイが狭い線幅ソースを必要としないためである。この発明は狭い線幅ソースを必要としないが、この発明のサニャックセンサアレイはたとえばレーザのような狭い線幅ソースとも用い得ることを理解されたい。
周波数分割多重化
広帯域ソースを用いることにより、サニャックセンサアレイはまた、設計の変更または付加的なソースを必要とすることなく、非TDM構成において動作することもできる。周波数分割多重化(FDM)は、位相生成キャリア(Phase-Generated Carrier、PGC)方式を用いるマッハ−ツェンダー干渉計センサアレイで一般に用いられているが、サニャックセンサアレイにも適合する。図14は、FDM方式を用いる基本的なサニャックセンサアレイ400を示す。ファイバ超蛍光源(SFS)402(または、たとえばLEDなどの他の広帯域ソース)が入力光を生成する。チャープ周波数生成器406によって制御される強度変調器404を介して、入力光にチャープ強度変調が加えられる。変調された光は3×3カプラ412を介してセンサアレイ410に入る。光は、遅延ループ414と、それぞれのセンサ418(i)を有する複数のセンシングラング416(i)とを通過する。所望であれば空のラング(図示せず)も含んでよい。遅延ループ414およびラング416(i)を通過した後で、光はカプラ412を介してセンサアレイ410から出て、検出器420によって検出されるが、これは検出光に応答して光出力信号を生成する。検出器420からの電気的出力信号は、チャープ周波数を時間Δtだけ遅延させる遅延424によって遅延された、同じチャープ周波数とミキサ422でミキシングされる。図1
4に示されるセットアップにおいては、ミキサ422の出力は、スペクトルアナライザ426に与えられる。動作の実施例においては、ミキサ422の出力は信号処理サブシステム(図示せず)に与えられ、これはミキサ422の出力を解析してアレイ410に入る音響信号を再生成する。
さまざまなラング416(i)におけるセンサ418(i)から戻ってくる信号は、遅延されたチャープ周波数に対してさらに遅延される。これを図15におけるグラフに、元のチャープ周波数450、遅延424からの遅延されたチャープ周波数452、第1のラングからのチャープ戻り信号460、第2のラングからのチャープ戻り信号462、および第3のラングからのチャープ戻り信号464として示す。ミキサ422において、別々のビート周波数fb1470、fb2472、fb3474のそれぞれ(図14に示す)が、ミキシングチャープ周波数452とサニャックセンサアレイ410におけるさまざまなラングから戻ってくる信号の各々との間で形成される。(たとえば、S・F・コリンズ(S. F. Collins)他の「FMCW生成キャリアを用いた光ファイバ干渉センサに対する多重化方式(A Multiplexing Scheme For Optical Fibre Interferometric Sensors Using An FMCW Generated Carrier)」OFS '92 Conference Proceedings, pp.209-211、を参照のこと)。図15には3つのチャープ戻り信号460、462、464しか示されていないが、最大Nまでの戻り信号を提供し得ることが企図され、ここでNはアレイ410におけるラングの数である。N番目のラングからのチャープ戻り信号は、ミキサ422においてビート周波数fbNをもたらす。
図14のスペクトル出力の図形に示されるように、信号の音響変調はビート周波数に対して上側波帯480、481、482および下側波帯484、485、486として現われる。このFDM方式の利点は、アレイタイミングに対する要求が、TDMシステムでの要求よりも大幅に緩和されていることである。TDMシステムは、パルスのオーバーラップを防ぐために隣接するラングの間の特定の遅延を必要とするが、これは厳しい技術上の問題を提示し得る。FDMにおいては、ファイバ長さにおけるばらつきはビート周波数をシフトさせるが、これらのビート周波数が音響検出範囲の2倍だけ分離されている限り、信号の間のオーバーラップを引き起こさない。これは、適切なチャープレートを選択することにより達成される。TDMシステムとは異なって、すべての経路は常に光を返すが、これは異なった非コヒーレント信号間の位相ノイズをもたらし得る。広帯域ASE光源は、この位相ノイズの大きさを最小化する。(たとえば、モスレー(Moslehi)の、「任意のコヒーレンス時間でレーザソースを用いた光ファイバシステムにおける光位相ノイズの解析(Analysis of Optical Phase Noise in Fiber-Optic Systems Employing a Laser Source with Arbitrary Coherence Time)」Journal of Lightwave Technology, Vol.LT-4, No.9, September 1986, pp.1334-1351、を参照のこと)。
符号分割多重化
符号分割多重化(CDM)は、センサアレイでの使用について最近注目を集めている。(たとえば、A・D・カーシー(A.D. Kersey)他の、「低減位相ノイズおよび低クロストークによる符号分割多重化干渉計アレイ(Code-division Multiplexed interferometric Array With Phase Noise Reduction And Low Crosstalk)」OFS '92 Conference Proceedings, pp. 266-269;およびH・S・アルラウェシディ(and H.S. Al-Raweshidy)他の「干渉計光ファイバセンサの受動的多重化に対する拡散スペクトル技術(Spread spectrum technique for passive multiplexing of interferometric optical fibre sensors)」SPIE, Vol. 1341 Fibre Optics '90, pp.342-347、を参照のこと)。図16のサニャックセンサアレイ600に示されるように、CDMにおいては、ファイバ超蛍光源602(またはたとえば、LEDのような他の広帯域ソース)からの入力光は、コードジェネレータ606によって生成される擬似ランダムコードに従って強度変調器604において変調される。変調された光は、3×3カプラ610を介して干渉計ループ608に与えられ、
アレイ612内の遅延ループ614および複数のラング616(i)を通って伝搬する。示される実施例においては、各ラング616(i)はそれぞれのセンサ618(i)を含む。所望であれば空のラング(図示せず)をも含み得る。光は3×3カプラ610から戻り、検出器620によって検出される。検出器620の電気的出力はコードジェネレータ606の出力とともに相関器622に与えられ、この出力は遅延624によってτcor期間だけ遅延される。擬似ランダムコードに対するビット持続時間はアレイ612における隣接するラングの間の伝搬遅延よりも短い。τcorがそれぞれのラング616(i)を通るループ移動時間τiの1つに等しい場合、ラング616(i)におけるこのセンサから戻ってくる信号は遅延された擬似ランダムコードに相関される。
Figure 0004184265
相関プロセスは、たとえば相関コードがオンであるかオフであるかに依存して、検出された信号を1または−1で乗算する(または電子ゲート630における信号を、差動増幅器632の非反転および反転入力にゲート制御する)ことに関わる。ライン634における差動増幅器の出力は、相関された出力である。信号は次いで、コードの持続時間と等しい期間tavgをわたって時間平均される。非相関信号はゼロに時間平均され、それにより信号をセンサ618(i)から分離する。τcorはスキャンされて、すべてのセンサから信号をシーケンシャルに検索する。
TDMに対するCDMの利点は、センサ間の遅延を正確に制御する必要がないことである。|τj−τj±1|>τbitであるどのようなループ遅延τjも受入れることができる(ここでτbitはコードにおけるパルスの持続時間である)。相関は、τjがわかっていることが必要であるが、これは容易に測定される。FDMにおいては、広帯域ソースの利用は、すべての信号を加算することにより生ずる位相ノイズを減じるという利点を有する。
上で、サニャック干渉計に基づく音響センサアレイに対する新規な設計を説明した。この設計の主要な利点は、コモンパス干渉計の使用である。これは、マッハ−ツェンダー干渉計センサにおいては一般的である、ソース位相ノイズの強度ノイズへの変換を防ぎ、安価で高パワーのASEソースまたは他の広帯域ソースを用いることを可能にする。音響周波数の関数としてのサニャックセンサアレイの応答は、海洋ノイズフロア関数(ocean noise floor)に整合するよう示される。この設計はまた、1つの付加的な非常に短い遅延ループを用いることにより、ハイドロホンを追加することなくダイナミックレンジを劇的に増大させることを可能にする。偏光誘導信号フェージングをなくすための技術は、上で説明した。サニャックセンサアレイはまた、標準のマッハ−ツェンダーアレイよりも簡単な形式で、いくつかの多重化方式を用いることをも可能にする。これらの特徴により、サニャックセンサアレイ設計は、マッハ−ツェンダー干渉計ベースのセンサアレイに対する非常に有望な代替物を提供する。
折り畳みサニャックセンサアレイ
図17から図20は、サニャック効果に基づく分散音響センサアレイの代替的な実施例を示すが、これはダウンリードファイバからの分散ピックアップを減じるよう変更されたアーキテクチャを有する。特に、図17は、ソース702、第1の検出器704、および第2の検出器706を含む基本的な折り畳みサニャック音響ファイバセンサアレイ700を示す。好ましくは、ソース702、第1の検出器704および第2の検出器706は、センサアレイ700の乾いた端に位置決めされる(たとえば、海岸または船上)。
ソース702は光パルスを生成し、これはダウンリードファイバ708を介して3×3カプラ710と結合される。示されるように、3×3カプラは濡れた端(たとえば、海底の近傍)に位置決めされる。3×3カプラ710は第1の出力ポートを共通ファイバラング(ラング0)712の一方端に結合され、第2の出力ポートをアレイ716の第1のアレイ入力/出力ファイバ714に結合され、第3の出力ポートは非反射的に終結される。ソース702からの光の約33%が3×3カプラの第1および第2のポートの各々に結合され、こうして光の約33%が共通ファイバラング712に伝搬し、光の約33%がアレイ716に伝搬する。上述のように、ここでは3×3カプラ710として記されているが、他のn×mカプラ(たとえば、2×2カプラ、4×4カプラなど)を図17の実施例および下に説明するこの発明の代替的な実施例に用いることができる。
アレイ716は、複数のラング718(i)(すなわち、718(1)、718(2)…718(N))を含み、これは第1のアレイ入力/出力ファイバ714と第2のアレイ入力/出力ファイバ720との間に結合される。各ラング718(i)は、それぞれの音響センサ(すなわちハイドロホン)722(i)を含む。アレイ716は有利に、図3に関連して説明したような、分散エルビウムドープファイバ増幅器(EDFA)724を含む。(EDFA724に対するポンプソースは図17には示さない)。ここではアレイ716に関して説明するが、この発明に他のアレイ構成をも有利に用いることができる。
第2のアレイ入力/出力ファイバ720は、アレイ716を2×2カプラ730の第1のポートに結合する。共通ラング(ラング0)712の第2の端部は、2×2カプラ730の第2のポートに結合される。ここでアレイ716は複数のセンサ722(i)を含むように説明されるが、この発明は単一のセンサ722のみを有するセンサシステムに対しても適用可能である。
2×2カプラ730の第3のポートは、終端部732で非反射的に終結される。2×2カプラ730の第4のポートは、遅延ループダウンリードファイバ740に結合される。遅延ループダウンリードファイバ740は、2×2カプラの第4のポートを遅延ループ750の第1の端部に結合する。遅延ループ750は、示されるように乾いた端に、または濡れた端のいずれかに位置決めされる。遅延ループ750の第2の端部はリフレクタ752に結合され、それにより遅延ループ750の第2の端部を出る光は遅延ループ750に反射され、遅延ループ750を伝搬し、遅延ループダウンリードファイバ740を伝搬して、2×2カプラ730の第4のポートに戻る。ループダウンリードファイバ740から戻った光は、2×2カプラ730によって分割され、実質的に等しい部分が共通ラング712およびアレイ716を通って伝搬し、両方の部分が3×3カプラ710に向かって伝搬する。2つの部分は3×3カプラ710において合成され、ここでアレイ716と共通ラング712とを同じ距離だけ移動した光パルスは干渉するが、異なった距離を移動した光パルスは干渉しない。干渉により生じた信号は3×3カプラ710から第1および第2の出力信号として出力され、それぞれ第1の検出器ダウンリードファイバ770を介して第1の検出器704に、第2の検出器ダウンリードファイバ772を介して第2の検出器706に向かって伝搬する。検出器704、706は電気的出力信号を生成し、これらは電子装置(図示せず)によって従来の態様で解析されて、センサ722(i)に入る音響信号を再生成する。以下に説明するように、3×3カプラ710内で干渉する信号は各センサ722(i)に異なった時間で戻るので、上述のように時分割多重化、周波数多重化、符号分割多重化などによって分けることができる。非干渉信号は検出できる出力信号を生成しないので無視される。
図17の実施例は、減偏光子(図示せず)を、サニャック干渉計について上で説明したように、非偏光源とともに第1のセグメント712、714または720の1つに挿入す
ることにより、さらに変形することができる。そのような実施例は、図23A、図23Bおよび図23Cに関連して以下に説明する。
ここで、ソース702からの単一パルスにおける光をセンサアレイ700を通って追跡する。ソース702からのソースパルスは、出力されてソースダウンリード708に向かって移動し、3×3カプラ710から共通ラング712とアレイ716とに移動する。共通ラング712およびアレイ716におけるNラング718(i)は合せて、ソースパルスが2×2カプラ730に移動するためのN+1の別々の経路を提供する。ソースパルスが移動するためのN+1の別々の経路があるので、ソースパルスはN+1の別々のパルスに分割され、これらは2×2カプラ730を通り遅延ループダウンリード740を通って遅延ループ750に移動する。遅延ループ750を通過した後で、N+1パルスはリフレクタ752によって反射され、次いで遅延ループ750を通って遅延ループダウンリード740を戻り、濡れた端の2×2カプラ730に、まだ別々のN+1パルスとして到着する。再びN+1パルスの各々は、共通ラング712およびNラング718(i)においてN+1パルスに分割される。共通ラング712およびラング718(i)を通過して戻った後で、(N+1)2パルスは3×3カプラ710内で合成され、次いで検出器ダウンリード770、772を引き返して乾いた端に戻り、ここで第1および第2の検出器704、706によってパルスが検出されて解析される。
ソース702からリフレクタ752に向かい検出器704、706に戻る経路には可能な別々の組合せが(N+1)2通りあるので、(N+1)2の戻りパルスが存在する。使用可能な態様で干渉するパルスは、正確に同じ経路長さを反対の順序で移動するパルスの対のみである。以下の説明のために、パルスは2つの数字によって識別され、第1の数字はパルスがソース702からリフレクタ752に向かう経路を識別し、第2の数字はパルスがリフレクタ752から検出器704、706に戻る経路を識別する。たとえば、パルス0,1は共通ラング(ラング0)712を通って移動し、次いで遅延ループ750を通ってリフレクタ752に向かい、遅延ループ750を通って戻り、次いでラング718(1)を通過する。パルス1,0は、第1にラング718(1)を通り、次いで遅延ループ750を通ってリフレクタ752に向かい、遅延ループ750を通って戻り、次いで共通ラング(ラング0)712を通過する。パルス0,1が移動した距離はパルス1,0が移動した距離と同一であるので、パルス0,1とパルス1,0とは3×3カプラ710で合成されたときに干渉し、したがって上述のサニャック干渉計と同様の態様でコモンパス干渉計を規定する(すなわち、折り畳みサニャック干渉計)。音響センシングは、音響変調に応答するラング1に配置されるハイドロホン722(1)によって生じる。干渉パルス0,1および1,0は、異なった時間でハイドロホン722(1)を通り、こうしてハイドロホン722(1)の時間変動音響変調による位相差をピックアップする。3×3カプラ710において、この位相差は強度変調に変換されて、検出器ダウンリード770、772を通って検出器704、706に送られる。同じ効果が、パルス0,2および2,0、パルス0,3および3,0などに対しても生じる。
折り畳みサニャック干渉計がコモンパスであるので、ソース702は短いコヒーレント長さを有し得るが、これは干渉が、ほぼ同じ経路を通過したパルス間でのみ生じることを意味する。したがって、パルスi,jはパルスj,iとのみ干渉する。上述のように、関連のN個の干渉計がある(パルスi,0と干渉するパルス0,i、ここでi=1〜N)。共通ラング(ラング0)712を含まない他の多くの干渉計も存在する(たとえばパルス2,1と干渉するパルス1,2、パルス3,1と干渉するパルス1,3など)。そのような干渉パルスは有用なパルスにノイズを与え、ここではノイズパルスと称する。これらのノイズパルスは2種類のノイズを運ぶ。すべてのパルスと同様に、これらは付加的なショットノイズ、ASE信号ビートノイズ(増幅されたアレイにおいて)、位相ノイズなどを運び得るが、これらは検出されるノイズを増大させる。不所望な干渉計を形成するノイズ
パルス(パルス2,1と干渉するパルス1,2など)もまた音響波の干渉計センシングによりやはり強度変調を運び得る。この強度変調は、不所望の信号であってノイズ源とみなし得る。これらの不所望の干渉計は、ラング718(1)〜718(N)がアレイ716の第1の入力/出力ファイバ714に結合される、カプラ780(1)〜780(N)を干渉ポイントとして有する一方、信号パルスは3×3カプラ710で干渉することに留意することは重要である。ノイズパルスは3×3カプラ710に到着する前に干渉するので、ノイズパルスの強度変調は検出器704および706の両方に対称的に提供される。しかしながら3×3カプラ710で干渉する信号パルスは、非対称強度変調をもたらす。したがって、検出器704、706からの電流を差分増幅することにより、信号パルスの強度変調は増大しノイズパルスの強度変調は減少するので、不所望の干渉計のノイズ寄与を減じることができる。
これらのノイズパルスによって加えられるすべてのノイズを完全に除去するために、時分割多重化方式を用い、かつ適切に遅延長さを選択することにより、ノイズパルスから関連のパルスを分離することができる。特に、3×3カプラ710から共通ラング712を通る2×2カプラ730への光路長は、伝搬時間τに対応するよう選択される。3×3カプラからカプラ710(1)と、第1のラング718(1)と、対応のカプラ790(1)とを通る2×2カプラ730へのファイバ部分の光路長は、(N+1)τになるよう選択される。光路長の一部は、3×3カプラ710からカプラ780(1)への、およびカプラ790(1)から2×2カプラ730へのコモンパスであり、光路長の一部はラング718(1)を通過する。ラング718(i)の各々を通過する光路長は、好ましくはほぼ等しくなるよう選択される。3×3カプラ710から第2のラング718(2)を通る2×2カプラ730への合計の光路長は、τ分だけ3×3カプラ710から第1のラング718(1)を通る2×2カプラ730への光路の全長よりも長くなるよう、カプラ780(1)からカプラ780(2)への光路長およびカプラ790(2)からカプラ790(1)までの光路の全長はτになるよう選択される。(すなわち、第2のラング718(2)を通る2つのカプラ710、730間の光路の全長は(N+2)τである)。後続の各々の付加的な光路全長はτであるよう選択される。こうして、3×3カプラ710からラング718(i)を通って2×2カプラ730への光の移動時間は、ラング718(i)の遅延時間Tiとして規定される。
以上の説明に従って、Tiはラングを通る光路長によって次のように求められる:
i=τ i=0(共通ラング712に対して)
i=(N+i)τ 1≦i≦N(各センシングラング718(1)、718(2)などに対して)
以上から、最も遠いラングNを通る光路長は(N+N)τまたは2Nτであることがわかる。
各パルスの持続時間は、τ以下であるよう選択される。こうして、図18に示されるように、3×3カプラ710に戻ってくる第1のパルス800は、ソース702から共通ラング712(すなわちラング0)を通ってリフレクタ752に向かい、検出器704、760に戻るパルスである。このパルスは、2τの合計伝搬時間を有する。(伝搬時間の比較において、遅延ループ750を通りリフレクタ752に向かい、戻ってくる各パルスの伝搬時間は無視されるが、これは伝搬時間がすべてのパルスについて共通であり、図18のタイミング図に対するオフセット(図示せず)としてのみ動作するからである)。検出器702、706に戻ってくる次のパルスの組810は、一方向で共通ラング712を通り、反対方向でセンシングラング718(i)を通るパルスである(すなわち、パルス0,1および1,0;0,2および2,0;0,3および3,0から0,NおよびN,0)。これらはそれぞれの伝搬時間である2τ+Nτ、3τ+Nτ、4τ+N+τ、から(N+1)τ+Nτを有する。こうして、有用なパルスのすべては時間(N+2)τと時間(
2N+2)τとの間で受けられる(受信される最後のパルスの持続時間τを含む)。対照的に、センシングラング718(i)を両方向で移動する干渉パルス(すなわちパルス1,1、1,2および2,1、1,3および3,1…2,2、2,3、および3,2…など)は、時間2(N+2)τと時間(4N+1)τとの間で1組のパルス820として受取られる。こうして、信号パルスはノイズパルスから分離される。
たとえば、図18において、N=50に対して、時間の関数としての戻りパルスの数がプロットされている。示されるように、単一のパルスは時間2τで受けられる。その後、間隔3τから52τの間に受けられるパルスは存在しない。次いで、52τから102τの間に、2つのパルスが各時間間隔の間に受けられる。ノイズパルスが次いで時間102τから時間201τに戻る。この態様で、信号パルスは正しいタイミングでノイズパルスから分離され、こうしてノイズパルスが信号パルスにノイズを加えることを防ぐ。電子装置(図示せず)は時間52τから時間102τの間で受けられるパルスのみを監視するよう容易に同期化される。
ソース702は、先行のパルスに対して150τの時間間隔で次のパルスを送るよう起動され得ることに留意されたいが、これは次のパルスに応答した0τから50τの間隔は、先行のソースパルスに応答して戻ってくるノイズパルスの150τから200τ間隔にオーバーラップする可能性があるためである。こうして、有用なパルスの次の組830が、時間201において到着し始めることができる。したがって、図17および図18の実施例は使用可能な信号情報の約3分の1の全体的なデューティサイクルを有する。
先行する図面に示されたサニャックループに対する折り畳みサニャック音響ファイバセンサ700の利点は、遅延ファイバ750が変調を感知しないことである。ダウンリードはしばしば極めて長く、大きな運動と振動とを被るので、分散ダウンリードピックアップはサニャック音響ファイバセンサに対して潜在的に深刻な制限である。折り畳みサニャック音響ファイバセンサ700においては、ソース708および検出器ダウンリード770、772は、干渉計の外に生じるので感知しない。遅延ループダウンリード740が感知しないのは、すべての干渉パルスが、小さな時間遅延(約1マイクロ秒)で分割されて同じファイバを移動するからであり、こうして同じ摂動を受けるからである。遅延ループダウンリードおよび遅延ループそれ自体に対するどのような低周波数(約1MHzよりも低い)変調も、両方の干渉パルスによって実質的に等しく見なされ、こうして位相差に寄与しない。アレイ部分716および共通ラング712が、干渉計700における唯一の感知ファイバを構成する。
図17に示されるように、遠隔ポンピング分散エルビウムドープファイバ増幅器(ETFA)724は上述のようにパワーを再生成するようアレイ716をわたって場所決めし得る。
3×3カプラ710を用いて、各センサ722(i)を直角位相の近傍で受動的にバイアスさせ、かつソースノイズ除去を可能にする。ノイズ除去が生じるのは、各検出器704、706が(3×3カプラ710から出力される信号の態様が互いに対して段階的である(phased)ので)反対のスロープでバイアスされ、よって各検出器において位相変調が強度に非対称的に影響を与える一方で、ソース過剰ノイズは各検出器において強度に対称的に影響を与えるからである。したがって、検出器出力を差動増幅することにより、位相変調によって誘導される強度のばらつきが加えられ、ソースの強度ノイズは、不所望の干渉計から信号が除去されるのと同じ態様で除去される。
図17および図18に関して、共通ラング712を通るより長い光路長と、センシングラング718(i)を通るより短い光路長とを設けることにより、同様の時分割多重化効
果が達成されることを理解されたい。たとえば、共通ラング712は、有利に光路長2Nτ(すなわち、T0=2N)を有するよう選択することができ、ラングを通る光路長は有利にτ,2τ,3τ,…Nτであるよう選択し得る。これは次のように要約できる:
i=2Nτ i=0(共通ラング712に対して)
i=iτ 1≦i≦N(各センシングラング718(1)、718(2)などに対して)
こうして、戻るべき第1の信号は2τの光伝搬時間(ここでもすべての信号に共通である、遅延ループ750を通る伝搬時間を除く)を有するが、これは両方向で第1のラング718(1)を通過するために要求される時間である。両方向でセンシングラング718(i)の1つを通過するいずれかの信号の最も長い遅延は、最も遠いセンシングラング718(N)を通って両方向に移動する信号パルスに対して2Nである。戻るべき第1の利用可能な信号は、共通ラング712からリフレクタ752を通り、第1のセンシングラング718(1)に戻る信号と、第1のセンシングラング718(1)からリフレクタ752を通り共通ラング712に戻る信号との干渉から生じる信号である。干渉信号は最後の不所望の信号よりも遅い時間(2N+1)τで到着する。最後の利用可能な信号は時間(2N+N)τ(すなわち、3Nτ)に到着する。最後に、共通ラング712においてリフレクタ752へ往復するパルスによって生成される信号は時間4Nτに到着するが、これは利用可能な干渉信号から十分に分離される。
音響センサが可能な限り大きなダイナミックレンジ(検出可能な音響変調振幅の範囲)を有することは望ましい。位相生成キャリア方式などの復調技術を用いることなく、アレイのノイズ性能によって最小限の検出可能な位相変調が設定され、干渉計の非線形応答関数によって最大の検出可能位相変調(約1rad)が設定される。マッハ−ツェンダーセンサにおいては、音響変調からの位相変調へのマッピングは、ハイドロホンの応答性のみの関数である。こうして、検出可能位相変調および、この音響変調の位相変調へのマッピングに対する制限は、センサが検出可能である音響変調の範囲を決定する。
折り畳みサニャック音響ファイバセンサアレイにおいては、音響変調からの位相変調へのマッピングは、各ハイドロホン(センサ)722(i)の応答性および遅延ループ750の長さの両方の関数である。こうして、遅延ループ750の長さを変えることにより、センサ722(i)のダイナミックレンジは、ハイドロホン722(i)自体を変更することなく調節可能である。さらに、もし2つのリフレクタ752(1)および752(2)が用いられると、各センサ718(i)は、図19のセンサ850に示されるように2つの異なった遅延ループ750(1)および752(2)を有し得る。これにより、各センサ722(i)が異なったダイナミックレンジを有する2つの信号を、図7および図8を参照して上で説明したように返すことができ、これにより各センサ722(i)の合計ダイナミックレンジを大きく増大させる。ペナルティは、各信号に対するデューティサイクルの、1/(遅延ループの数)のファクタでの減少である。
図20は、ファイバジャイロスコープにおいて用いられてきた技術と同様の位相ヌル化技術を実現するセンサ900を示す。図17の遅延ループリフレクタ752は、図20のセンサ900においては用いられていない。そうではなく、パルスはダウンリード910を介して2×2カプラ730の以前に用いられていないポートに戻る。戻りダウンリード910に光アイソレータ912が挿入されて、光が両方向で遅延ループ750を移動することを防ぐ。図20のセンサ900は、リフレクタ752を備えた図17のセンサ700と同様に挙動する。しかしながら、センサ900は、位相変調器920を加えて戻りダウンリード910に挿入することを可能にする。位相変調器920は、起動されると各パルスに位相シフトを個々に与える。検出されたパルスシフトを差動増幅器922を介して位相変調器920に与えることにより、位相変化はヌル化され、位相変調器920における必要な与えられた位相シフトは信号となる。この位相ヌル化方法において、アレイ900
のダイナミックレンジは、位相変調器920が提供できる最大の位相シフトのみに制限される。
図21は、図19の実施例のさらなる代替例を示し、ここで2つの遅延ループ750(1)および750(2)は同じ遅延ループダウンリードには接続されていない。そうではなく、第1の遅延ループ750(1)の第1の端部は、第1の遅延ループダウンリード740(1)に接続され、これは図19と同様に2×2カプラ730の第4のポートに接続される。第1の遅延ループ750(1)の第2の端部は、上述のように第1のリフレクタ752(1)に結合される。第2の遅延ループ750(2)の第1の端部は、第2の遅延ループダウンリード740(2)を介して2×2カプラ730の第3のポートに結合され、第2の遅延ループ750(2)の第2の端部は、第2のリフレクタ752(2)に結合される。2×2カプラ730からの光の約半分が、ダウンリード740(1)、740(2)の各々に結合される。各ダウンリード740(1)、740(2)の光は、それぞれの遅延ループ750(1)、750(2)において遅延され、反射されて上述のように2×2カプラ730に戻される。反射された光は共通ラング712およびアレイ716に結合される。遅延ループ750(1)、750(2)の遅延は、2×2カプラ730の第4のポートから第1の遅延ループ750(1)に伝搬するN+1パルスのいずれも、2×2カプラ730の第3のポートから第2の遅延ループ750(2)に伝搬するN+1のパルスのいずれとも同時にオーバーラップしないように選択される。こうして、図21の実施例は、図19の実施例と同様の機能を提供する;しかしながら、図21の実施例は、図19の2×2カプラ730の第3のポートで結合されて捨てられた光を利用する。
図22は、折り畳みサニャックセンサアレイを用いる光ファイバ音響センサシステム1000の代替的な実施例を示す。システム1000においては、ソース1004が、X偏光子1008によって2×2偏光維持カプラ1006の第1のポートに結合される。検出器1002は、X偏光子1010によって2×2カプラ1006の第2のポートに接続される。ソース1004に向かうファイバからの光を結合することにより、図22の実施例内に第2の検出器(図示せず)を有利に含んでもよい。X偏光子1008は、第1の偏光(たとえば、X偏光)を有するソース1004からの光のみを通過させる。こうして、偏光維持カプラ1006は、ソース1004からのX偏光を有する光を受け、光を第3のポートを介して共通ラング1020に、かつ第4のポートを介してセンサアレイ1022に結合する。センサアレイ1022は、図17のセンサアレイ716と同様の構造を有し、同様の要素にはそれに従って符号が付与される。
2つのX偏光子1008、1010は、システム1000において代替的な位置に1つ以上のX偏光子によって置換されてもよいことに留意されたい。
共通ラング1020は、X偏光子1030を介して第2の偏光維持2×2カプラ1032の第1のポートに結合される。アレイ1022を伝搬する光は、第1に減偏光子1034を通過し、次いで第1の入力/出力ファイバ714を通過する。減偏光子1034は、実質的に等しい量のX偏光光をX偏光光とY偏光光とに結合する。こうして、アレイ1022を光の約50%がX偏光光として伝搬し、アレイ1022を約50%がY偏光光として伝搬する。
アレイ1022のラングを通過した後で、光は第2の入力/出力ファイバ720とY偏光子1040とを介して、第2のカプラ1032の第2のポートに向かう。Y偏光子1040は、Y偏光光のみを第2のカプラ1032に入れる。カプラ1032は、アレイ1022からの光と共通ラング1020からの光とを合成する。カプラ1032に入る光のほぼ半分が、カプラ1032の第3のポートを介して光吸収終結部1042に結合され、光の約半分がダウンリードファイバ1050に結合されて、遅延ループ1052の第1の端
部に光を伝搬する。
光は遅延ループ1052を通過してファラデー回転ミラー(FRM)1054に向かう。ファラデー回転ミラー1054の動作は周知であり、ここでは詳述しない。基本的に、光が1つの偏光でファラデー回転ミラー1054に入射すると、これは直交偏光に反射される。こうして、共通ラング1020を通過するX偏光光はY偏光光として反射され、アレイを通って通過したY偏光光はX偏光光として反射される。
反射された光は遅延1052に戻り、カプラ1032の第4のポートに入る。光は、共通ラング1020およびアレイ1022に結合される。共通ラングにおけるX偏光子1030は、元はアレイ1022を伝搬したX偏光を有する光のみを通過させる。同様に、Y偏光子1040は、元は共通ラング1020を伝搬したY偏光光のみを通過させる。
アレイ1022を通って伝播した後、Y偏光された戻り光は、減偏光子1034で減偏光されて、X偏光された光とY偏光された光の両者を発生する。共通ラング1020からの光はカプラ1006の第3のポートに入り、減偏光子1034からの光はカプラ1006の第4のポートに入る。光はカプラの中で合成し、同じ光路長を進んだ、2つのポートからのX偏光された光は干渉しかつ第1および第2のポートに結合される。第2のポートに結合された部分はX偏光子1010を通って検出器1002に伝播し、ここで干渉信号が検出される。
理解すべきなのは、元々ファラデー回転ミラー1054へおよびそこから異なる経路を進んだ光のみがカプラ1006で干渉することである。反射された方向に共通ラング1020を通って伝播するのを許される光のみが、Y偏光された光としてアレイ1022を元々伝播したX偏光された光である。同様に、反射された方向にアレイ1022のラングのいずれかを通って伝播することを許された光のみが、X偏光された光として共通ラング1020を元々伝播したY偏光された光である。潜在的に干渉する光はラングを通って両方向に進み、上述の実施例と関連して上述されたノイズ信号を発生することができない。したがって、元々共通ラング1020を進んだ反射パルスからアレイ1022において生成されたパルスの各々は、元々アレイ1022で生成されかつ、それが反射された後に共通ラング1020を伝播したパルスのうち単一のものとしか干渉することができない。したがって、図22の実施例では、使用可能な信号パルスをノイズパルスから分離するためにさらなる遅延を含む必要はない。
図23A、図23Bおよび図23Cはこの発明のさらなる代替的な実施例を図示する。図23A、図23Bおよび図23Cの実施例のセンサアレイ1100は図17の実施例のセンサアレイ700と同様であり、同じ要素にはこれに従って番号が与えられている。図23A、図23Bおよび図23Cの実施例は非偏光源1102を含む。図17の2×2カプラ730は、図23A、図23Bおよび図23Cでは偏光ビームスプリッタ(PBS)1104で置換えられる。偏光ビームスプリッタ1104を用いることにより、図17のカプラ730および図22のカプラ1130と比較して、約6dBの電力が節約される。図17のリフレクタ752は、図22のファラデー回転ミラー1054と同様のファラデー回転ミラー(FRM)1106と置換えられる。図23A、図23Bおよび図23Cの3×3カプラ710は偏光維持カプラである必要はない。
図23A、図23Bおよび図23Cの各々は減偏光子1110を含む。図23Aでは、減偏光子1110は第1のアレイ入力/出力ファイバ714上に位置する。図23Bでは、減偏光子1110は共通ラング712上に位置する。図23Cでは、減偏光子1110は第2のアレイ入力/出力ファイバ720上に位置する。
図23Aの実施例では、非偏光源1102からの光は3×3カプラ710に入り、ほぼ等しい部分が共通ラング712および第1のアレイ入力/出力ファイバ714に結合される。図3および図17と関連して上述されたように、3×3カプラを用いることにより、直角位相に近い受動バイアスが与えられる。第1のアレイ入力/出力ファイバ714を伝播する光は減偏光子1110を通るが、これは、1つの偏光(たとえばX偏光)でアレイに入る光の実質的に半分が直交偏光(たとえばY偏光)に結合されかつ同様に、Y偏光でアレイに入る光の半分がX偏光に結合されるようにする効果を有する。したがって、減偏光子1110の後では、X偏光の光の半分はX偏光で発生し、X偏光の光の他方の半分はY偏光で発生した。同様に、減偏光子1110の後では、Y偏光の光の半分はY偏光で発生し、Y偏光の光の他方の半分はX偏光で発生した。効果的には、減偏光子1110は非偏光の光にスクランブルをかける。
光は、他の実施例と関連して上述された態様でアレイ716を通る。アレイ716を出る光は、第2のアレイ入力/出力ファイバ720を通って偏光ビームスプリッタ1104の第1のポート1121へ伝播する。偏光ビームスプリッタ1104は、入射光を2つの直交偏光(すなわち、X偏光およびY偏光)に分ける。この説明の目的のため、偏光ビームスプリッタ1104は45°に向けられた偏光依存ミラーのように動作し、一方の偏光(たとえばX偏光)で第1のポート1121に入る光は第2のポート1122へ反射され、他方の偏光(たとえばY偏光)で第1のポート1121に入る光は第3のポート1123に伝送されると仮定する。示された実施例では、第2のポート1122を出る光は終端装置732によって無反射に吸収される。第3の端子1123を出るY偏光された光は、遅延ループダウンリードファイバ740を通り、遅延ループ750を通ってファラデー回転ミラー1106へ伝播する。アレイ部分716からのこのY偏光された光は減偏光子1110を通って進み、その半分は元はX偏光された光であり、その半分は元はY偏光された光であったことに留意されたい。上述のように、ファラデー回転ミラー1106は入射光を直交偏光に結合する。したがって、Y偏光された光はX偏光に結合される。
ファラデー回転ミラー1106が反射したX偏光された光は遅延ループ750および遅延ループダウンリードファイバ740を通って偏光ビームスプリッタの第3のポート1123に戻る。光は現在X偏光にあるため、光は第1のポート1121に伝送されるのではなく、第4のポート1124に反射される。したがって、元々はアレイ716から偏光ビームスプリッタに入射したY偏光された光は共通ラング712に結合されて、X偏光で3×3カプラ710に戻る。
共通ラング712を介して3×3カプラ710から偏光ビームスプリッタ1104に伝播する非偏光の光は、第4のポート1124を介して偏光ビームスプリッタ1104に入る。Y偏光の光の成分は第2のポート1122に伝送され、終端装置732によって無反射に終端される。X偏光の光の成分は第3のポート1123に反射され、遅延ループダウンリードファイバ740および遅延ループ750を介してファラデー回転ミラー1106に伝播する。(減偏光子1110を含む理由をここで理解することができる。遅延ループダウンリードファイバ740に結合されるのは、共通ラング712からのX偏光された光のみであるため、減偏光子1110により、アレイ716から遅延ループダウンリードファイバ740に結合された光が、元々X偏光された光もいくらか含むことが確実になる。)ファラデー回転ミラー1106はY偏光された光として光を反射し、Y偏光された光は、遅延ループおよびダウンリードファイバを通って偏光ビームスプリッタ1104の第3のポート1123に伝播する。
偏光ビームスプリッタ1104の第3のポート1123に入射するY偏光された光は、第1のポート1121およびしたがって第2のアレイ入力/出力ファイバ720に伝送される。Y偏光された光はアレイ716を通って第1のアレイ入力/出力ファイバ714に
伝播し、次に、減偏光子1110を通って3×3カプラ710に達する。減偏光子1110は、Y偏光された光の約50%をX偏光された光に変換するように動作する。減偏光子1110からのX偏光された光は、共通ラング712からのX偏光された光と干渉する。結果的に生じた合成光は、3×3カプラ710の干渉光信号間の位相関係に従って、検出器704または検出器706によって検出される。
減偏光子1110から3×3カプラ710に入射するX偏光された光と共通ラング712からのX偏光された光と同じ経路長を進むことに留意されたい。たとえば、共通ラング712を通って伝播する光はまず、共通ラング712を通ってX偏光で伝播し、次にアレイ716を通ってY偏光で伝播する。一方、アレイ716を通って伝播する光はまず、アレイ716を通ってY偏光で伝播し、次に、共通ラングを通ってX偏光で伝播する。2つの“逆に伝播する”光信号は、干渉経路の対応する部分を通って伝播するときに同じ偏光にあるため、アレイ716がセンシングする入射ノイズの影響を除いて、伝播長は同じである。
理解すべきなのは、偏光ビームスプリッタ1104の第2のポート1122に結合される終端装置732を第2の遅延ループ(図示せず)および第2のファラデー回転ミラー(図示せず)と置換えて、Y偏光で干渉する光の第2の干渉経路を設けることが可能なことである。第2の遅延ループが与える遅延を調節することにより、第2の干渉経路からの戻り信号が第1の干渉経路からの戻り信号と重ならないようにすることができる。
図23Bの実施例は、減偏光子1110が共通ラング712中に位置決めされることを除き、図23Aの実施例と同様である。図23Bの減偏光子1110の効果は、(1)単一の偏光(たとえばX偏光)で偏光ビームスプリッタ1104から戻る共通ラング712中の光の一部を直交偏光に結合させることと、(2)3×3カプラ710から共通ラング712を通って偏光ビームスプリッタ1104に向かって進む非偏光の光にスクランブルをかけることとである。これにより、光が3×3カプラ710で再合成するときに確実に光が干渉するようになる(減偏光子1110を図23Aのファイバ714に加えたのと同じ理由)。
図23Cの実施例も、減偏光子1110が第2のアレイ入力/出力ファイバ720中に位置決めされることを除き、図23Aの実施例と同様である。図23Cの実施例は、図23Aの実施例と機能的に同等である。なぜなら、光がアレイ部分716を通って、次に減偏光子1110を通るかまたは、減偏光子1110を通って、次にアレイ部分716を通るかは重要でないからである。したがって、図23Cの実施例の機能は、上述のように、図23Aの実施例の機能と実質的に同じである。
図24はこの発明のさらなる代替的な実施例を図示し、ここで、折り畳みサニャックセンサアレイ1200は、図23Aのアレイ1100に示されるように接続された、偏光ビームスプリッタ(PBS)1104、ファラデー回転ミラー(FRM)1106および減偏光子1110を含む。図23Aの他の構成要素にも以前のように番号が与えられている。3×3カプラ710を有する図23Aのアレイ1100とは異なり、折り畳みサニャックセンサアレイ1200は、図22の2×2カプラ1006と同じ態様で接続される偏光維持(PM)2×2カプラ1220を有する。2×2カプラ1220の1つのポートは、第1の偏光子1224を介して光サーキュレータ1222の第1のポートに接続される。光サーキュレータ1222の第2のポートは第1の検出器1226に接続される。光サーキュレータ1222の第3のポートは、非偏光源1228(たとえば、強度変調ファイバ超蛍光源)に接続される。2×2カプラ1220の第2のポートは、第2の偏光子1232を介して第2の検出器1230に接続される。検出器1226および1230ならびに非偏光源1228は、(偏光維持ではない)標準的なファイバによってサーキュレータ1
222に接続される。偏光子1224および1232は、偏光子1224、1232が偏光維持2×2カプラ1220の同じ軸と整列されるように、偏光維持ファイバを介して偏光維持カプラ1220に結合される。これに代えて、非偏光源1228の代わりに偏光源を用いる場合、偏光源(図示せず)は偏光維持ファイバにより偏光維持サーキュレータ(図示せず)に接続されかつ、偏光維持サーキュレータは偏光維持ファイバにより偏光子1224に接続される。偏光維持構成要素は、ソースからの偏光された光が偏光子1224を通るように接続される。偏光維持サーキュレータから検出器1226および1230への接続は、(偏光維持ではない)標準的なファイバによってもたらされる。
折り畳みサニャックセンサアレイ1200は、非相反位相シフタ1250をさらに含む。位相シフタ1250は、第1の端1254および第2の端1256を有する第1の光ファイバ1252を介してならびに第1の端1260および第2の端1262を有する第2の光ファイバ1258を介して共通ラング712に結合される。第1の光ファイバ1252の第1の端1254は、第1のカプラ1264を介して、2×2カプラ1220に近接する共通ラング712に結合される。第2の光ファイバ1258の第1の端1260は、第2のカプラ1266を介して、偏光ビームスプリッタ1104に近接する共通ラング712に結合される。第1および第2の光ファイバ1252、1258のそれぞれの第2の端1256、1262は、図25および図26と関連して後述されるように、位相シフタ1250に結合される。
好ましくは、共通ラング712、第1のファイバ1252および第2のファイバ1258は偏光維持(PM)ファイバであり、第1のカプラ1264、第2のカプラ1266および2×2カプラ1220は偏光維持(PM)カプラである。また好ましくは、第1のカプラ1264および第2のカプラ1266は、いずれかの方向で共通ラング712に入る光の約50%を位相シフタ1250に結合しながら、光の約50%が共通ラング中に留まる50/50カプラである。したがって、非相反位相シフタ1250および関連のファイバは、共通ラング712と平行に第2のラング1268を形成する。
好ましくは、ラング712、1268のうち1つ(たとえば共通ラング712)は、ラングを通って伝播するパルスが重ならないようにするのに十分な時間遅延を1つのラングに導入する遅延要素(たとえば遅延ループ1269)を含む。したがって、センサアレイ716から2×2カプラ1220に戻る光は、互いから時間の間隔をあけられる、各センサごとに2つのパルスを含む。一方のパルスは、各々の方向に共通ラング712を通る合成光を含む。他方のパルスは、各々の方向に非相反位相シフタ1250を通る合成光を含む。理解すべきなのは、一方方向に位相シフタ1250を通る光パルスと他方方向に共通ラング712を通る光パルスとは実質的に異なる伝播時間を有し、カプラ1220において重ならないことである。したがって、それらは干渉しない。
一方方向に共通ラング712を通る光は、他方方向に共通ラングを通る光に対して、共通ラング712内で位相シフトを全く受けない。したがって、両方向に共通ラング712を通る合成光の相対的位相バイアスは0である。しかしながら、後述されるように、非相反位相シフタ1250は、他方方向の光に対して一方方向への光のシフトを導入する。特に、好ましい実施例では、位相シフタ1250は2方向の光の間にπ/2の相対的位相シフトを導入する。したがって、両方向に位相シフタ1250を通って伝播した、カプラ1220に入る光は、カプラ1220においてπ/2位相バイアスと合成する。
当業者には、図24に示される干渉構成中の50%カプラ1220は、2つの入力ポートでの戻り光がカプラで干渉しかつその相対的な位相差が0、2π、4πなどであるときは、元の入力ポートに対応する出力ポートに戻り光を結合し、光の相対的な位相差がπ、3π、5πなどであるときは他方の出力ポートに戻り光を結合することが認められるであ
ろう。πの倍数ではない相対的位相差を戻り光が有するとき、戻り光の一部は両方のポートから出力される。たとえば、相対的位相差がπ/2の奇数倍(たとえば、π/2、3π/2など)であるとき、戻り光の約50%が各出力ポートに結合される。独立した伝播経路を2つ設けることにより、各々の検出器1226、1230は、時間的に間隔をあけられる2つの信号を受け、したがってこれらを別個に検出可能である。1つの信号はゼロ位相バイアスを有し、1つの信号はπ/2位相バイアスを有するため、一方の信号がほとんど摂動を感知しない場合は、他方の信号が摂動に非常に敏感であり、またこの逆も当てはまる。理解すべきなのは、異なる位相バイアスをパルスに与えるため、共通ラング712と平行でありかつ異なる量の相対的位相シフトを有するさらなるラングを含むことが可能なことである。
図25は、図24の折り畳みサニャックセンサアレイ1200と実質的に同様の折り畳みサニャックセンサアレイ1200´の代替的な構成を図示する。図25の折り畳みサニャックセンサアレイ1200´では、減偏光子1110は、第1のアレイ入力/出力ファイバ714ではなく、第2のアレイ入力/出力ファイバ720に位置される。センサアレイ716の相反する構造のため、ファイバ720に減偏光子1110を再配置しても、折り畳みサニャックセンサアレイ1200の動作に対して折り畳みサニャックセンサアレイ1200´の全体的な動作は変化しない。したがって、折り畳みサニャックセンサアレイ1200´の動作はここでは詳細に説明しない。
図24および図25の実施例は、詳細に前述されたセンサアレイ716を含む。図24および図25の実施例のセンサアレイ716の代わりに増幅センサアレイの他の構成も使用可能であることを理解されたい。
図26は、図24および図25の非相反π/2位相シフタ1250の第1の好ましい実施例を図示する。図26に図示されるように、位相シフタ1250は、第1のコリメーティングレンズ1270、第1の45°ファラデー回転子1272、4分の1波長板1274、第2の45°ファラデー回転子1276および第2のコリメーティングレンズ1278を含む。図示された実施例では、第1のファラデー回転子1272、第2のファラデー回転子1276および4分の1波長板1274は市販の大きな光学装置を含むが、有利には、光ファイバまたは他の導波管装置を含んでもよい。コリメーティングレンズ1270、1278はPMファイバ1252、1258の第2の端1256、1262に近接して位置決めされて、ファイバ端1256、1262からの光をそれぞれファラデー回転子1272、1276に焦点合わせしかつ、ファラデー回転子1272、1276からの光をファイバ端1256、1262に焦点合わせする。ファラデー回転子1272、1276の各々は、特定の角度をなしてその偏光でファラデー回転子に入力される光の偏光が回転され、それにより偏光が元の角度に対して予め定められた量だけ回転されて新たな角度をなすように、周知の態様で動作する。たとえば、好ましい実施例では、各ファラデー回転子1272、1276は、反時計回り(ccw)の方向に45°だけ入射光の偏光を回転させる。したがって、図26に示されるように、偏光が水平方向に向いた、PMファイバ1252の端1256から発せられた光は、第1のファラデー回転子1272で反時計回りに45°だけ回転されるため、偏光は、第1のファラデー回転子1272から現われるときには、元の向きに対して時計回りの方向に45°の角度をなす向きになる。
2つのファラデー回転子1272、1276の間に4分の1波長板1274が位置決めされる。4分の1波長板1274は、第1の複屈折軸1280および直交する第2の複屈折軸1282を有する。一方の複屈折軸(たとえば第1の複屈折軸1280)に沿った向きにされた偏光で伝播する光は、他方の複屈折軸(たとえば第2の複屈折軸1282)に沿った向きにされた偏光で伝播する光よりも遅い伝播速度を有する。4分の1波長板1274は、たとえば第1の複屈折軸1280が垂直方向に対して時計回りの方向に45°を
なす向きにされ、したがって、第1のファラデー回転子1272から現われる光は第1の複屈折軸1280に沿った向きにされかつ、第2の複屈折軸1282に直交するような向きにされる。2つの軸に沿った伝播速度の差のために、4分の1波長板1274は、第2の複屈折軸1282に沿って偏光される光に対する、第1の複屈折軸1280に沿って偏光される光にπ/2または90°の位相シフトを導入する。したがって、この例に従うと、第1の複屈折軸1280と整列するように回転された水平偏光で元々伝播した光は、第2の複屈折軸1282に沿って伝播するいかなる光に対しても90°の相対的位相シフトを生じさせる。
4分の1波長板1274を通った後、光は第2のファラデー回転子1276を通り、反時計回りの方向に再び45°回転される。第2のファラデー回転子1276から現われる光は第2のコリメーティングレンズ1278を通り、第2のPM光ファイバ1258の第2の端1262に焦点合わせされる。以上の説明から理解すべきなのは、水平偏光で第1のPM光ファイバ1252から出力されるいかなる光も垂直偏光で第2のPM光ファイバ1258に入ることである。上述のように、垂直偏光で第2のPM光ファイバ1258に入る光は、4分の1波長板1274の遅い複屈折軸1280に沿って伝播したであろうし、速い複屈折軸1282に沿って伝播する光に対してπ/2の相対的位相差を生じさせるであろう。
説明によって示されるように、非相反位相シフタ1250は、ファラデー回転子1272、1276の動作のために非相反的な態様で動作する。上述のように、第1のPMファイバ1252から第2のPMファイバ1258へファラデー回転子1272、1276を通る光は、図25に示される光の伝播方向に対して、各回転子により反時計回りに45°回転される。ファラデー回転子が相反型であれば、ファラデー回転子1272、1276を通って反対方向に伝播する光も、光の伝播方向に対して反時計回りの方向に回転される。しかしながら、ファラデー回転子が非相反型であるため、光は反対方向(すなわち、光の伝播方向に対して時計回り)に回転される。第2のPMファイバ1258の第2の端1262から非相反位相シフタ1250を通り、第1のPMファイバ1252の第2の端1256に達する光について、図27に非相反効果が図示される。図27で見ると、ここでも回転は反時計回りの方向にあるように思われるが、このとき、光は見ている人に向かって伝播していることに留意されたい。したがって、垂直偏光で第2のPM光ファイバ1258の第2の端1262から発せられた光は、第2のコリメーティングレンズ1278および第2のファラデー回転子1276を通り、4分の1波長板1274の第2の(速い)複屈折軸1282と整列する向きに回転される。したがって、元々垂直偏光の光は、4分の1波長板1274を通って伝播する際に相対的遅延を経ない。4分の1波長板1274を通った後、光は第1のファラデー回転子1272を通り、それにより、水平偏光に対して光がさらに45°回転される。次に光は、第1のコリメーティングレンズ1270を通って第1のPM光ファイバ1252の第2の端1256上に焦点合わせされる。
以上から、第1のPMファイバ1252から第2のPMファイバ1258へ非相反位相シフタ1250を介して第1の方向に通る水平偏光された光が4分の1波長板1274の遅い複屈折軸1280を通って伝播しかつ、90°またはπ/2の相対的位相遅延を経ることがわかる。第1の方向に伝播する水平偏光された光は、光が第2のPMファイバ1258に入るときに垂直偏光の向きにされるように回転される。反対に、第2のPMファイバ1258から第1のPMファイバ1252へ非相反位相シフタ1250を介して第2の方向に通る垂直偏光された光は、4分の1波長板1274の速い複屈折軸1282を通って伝播し、相対的位相遅延を経ない。第2の方向に伝播する垂直偏光された光は、光が第1のPMファイバ1252に入るときに水平偏光の向きにされるように回転される。以下により詳細に説明されるように、第2の方向に伝播する垂直偏光された光に対する、第1の方向に伝播する水平偏光された光の間の相対的位相シフトは、π/2の位相バイアスを
与える。
図28および図29は非相反位相シフタ1250の代替的な実施例を図示し、第1のファラデー回転子1272は、4分の1波長板1274(ここで第1の4分の1波長板と称する)と第2の4分の1波長板1294との間に位置決めされる。図28で、第1のPMファイバ1252の第2の端1256からの光は、以前のように第1のコリメーティングレンズ1270によってコリメートされる。光は元は水平偏光にある。光が第1の4分の1波長板1274を通るとき、それは円偏光を有する光に変換される。円偏光された光は第1のファラデー回転子1272を通るため、円偏光された光はφの位相シフトを生じる。好ましい実施例では、π/4の位相シフトを引き起こすように第1のファラデー回転子1272が選択される。ファラデー回転子1272からの光は円偏光されたままであり、第2の4分の1波長板1294を通る。4分の1波長板は、円偏光された光を垂直偏光の向きの線形に偏光された光に変換する。垂直偏光になるだけでなく、光はφ(たとえばπ/4)の位相シフトを経た。
図29は、反対方向に伝播する光についての非相反位相シフタ1250の代替的な実施例の動作を図示する。図29で、第2のPMファイバ1260の第2の端1262からの垂直偏光された光は第2のコリメーティングレンズ1278によってコリメートされ、第2の4分の1波長板1294を通る。第2の4分の1波長板1294は、垂直偏光された光を、円偏光を有する光に変換する。円偏光された光は第1のファラデー回転子1272を通り、以前のように位相シフトを経る。光は第1のファラデー回転子1272を通って反対方向に伝播しているため、光は反対の位相シフト−φ(たとえば−π/4)を経る。次に、第1のファラデー回転子1272からの光は第1の4分の1波長板1274を通り、ここで、円偏光された光は、水平偏光を有する、線形に偏光された光に変換される。これにより、2方向に伝播する光は合計で2φ(たとえばπ/2)の相対的位相シフトを経る。これは、図26および図27に図示される非相反位相シフタ1250の第1の実施例と同じ効果を有する。
偏光の向きおよび位相遅延に対する非相反位相シフタ1250の効果は、上述され、図24と関連して再説明されたバイアス効果を与える。図24に示されるように、垂直偏光で第2のPMファイバ1258に入る光は、第2のPMカプラ1266で、第1のPMカプラ1264から第2のPMカプラ1266へ共通ラング712を通って伝播した光と合成される。以下の説明から明らかになる理由のために、共通ラング712から第2のPMカプラ1266に入る光は第2のPMファイバ1258から第2のPMカプラに入る光と同じ偏光を有することが望ましい。したがって、好ましい実施例では、第2のPMファイバ1258または共通ラング712のいずれかが90°回転されることにより、第2のPMファイバ1258の垂直偏光の光は、共通ラング712の水平偏光の光と同じ方向に向けられる。これは、第2のコリメーティングレンズ1278に近接する第2のPMファイバ1258の第2の端1262を回転させることにより、垂直偏光された光が、第2のPMファイバ1258の水平偏光軸に沿う向きにされた偏光状態で第2の端1262に入ることによって容易に達成される。したがって、垂直偏光状態で非相反位相シフタ1250を出る光は、カプラ1266の偏光軸に対する水平偏光状態の光としてカプラ1266に適用される。したがって、非相反位相シフタ1250からの光は、共通ラング712からの光と同じ偏光状態を有する。
共通ラング712を通る光と非相反位相シフタ1250を通る光とは次に、偏光ビームスプリッタ(PBS)1104のポート1124に入る。水平偏光の光はPBS1104のポート1123からファイバ740に出力される。ファイバ740は遅延ループ750を含み、ファラデー回転ミラー(FRM)1106で終端される。遅延ループ750およびFRM1106は上述のように動作し、反射されかつ遅延されたパルスは垂直偏光でP
BS1104のポート1123に戻される。パルスはPBS1104のポート1121からアレイ716へファイバ720を介して出力され、アレイ716のセンサ722(i)を通って時計回りの方向に伝播する。
パルスはアレイ716からファイバ714および減偏光子1110を介して2×2カプラ1220へ出力され、ここで、時計回りに伝播する光と反時計回りに伝播する光とが合成される。逆に伝播する光も水平偏光された光としてスタートする。光は減偏光され、センサアレイ716を通る。垂直偏光でセンサアレイ716から現われる光はPBS1123によって反射され、ポート1122および終端装置732を介して破棄される。水平偏光でセンサアレイ716から現われる光はPBS1123を通り、ループ750によって遅延され、FRM1106により垂直偏光に回転される。垂直偏光にある戻り光はPBS1123によりポート1124へ反射され、こうして、第2のPMカプラ1266に方向付けられる。光の一部は共通ラング712の遅延ループ1269を通り、光の一部は非相反位相シフタ1250を通る。上述のように、垂直偏光で非相反位相シフタ1250に入る光は4分の1波長板1274(図27)の速い複屈折軸1282を通って伝播し、相対的位相遅延を経ない。したがって、反時計回りの光の2つのパルスはカプラ1220に伝播し、ここでそれらは時計回りに伝播する光パルスと合成される。両方向に共通ラング712および遅延ループ1269を通った光信号は相対的位相シフトを経ず、上述のように合成する。両方向に非相反位相シフタ1250を通った光信号は時計回りに伝播する信号と反時計回りに伝播する信号との間にπ/2の相対的位相シフトを経るので、上述のようにπ/2の位相バイアスを有する。カプラ1220の両出力で、センサアレイ1200から戻る光の2つのパルスの一部が偏光子1224に方向付けられ、残余の部分が偏光子1232に方向付けられる。2つの偏光子1224および1232の役割は、ループに入る光がループを離れる光と同じ偏光を有し、これにより相反性が保証されるのを確実にすることである。前述のように、検出器1230に達する2つのパルスは直角位相にあり、このことが、信号フェージングを回避するために技術分野で周知の多数の信号処理技術を用いるのを可能にする。同じことは検出器1226に当てはまる。図24の実施例では、直角位相にある2つのパルスの生成が、非相反位相シフタ1250を含むラングを組入れる主な理由である。
図30から図36はこの発明のさらなる代替的な実施例を図示し、折り畳みサニャックセンサアレイは多数の検出器に対する偏光ベースバイアスを用い、各検出器は、他の検出器のバイアス点とは独立してセット可能なバイアス点を有する。図30から図36の実施例は、詳細に上述されたセンサアレイ716を含む。図30から図36の実施例のセンサアレイ716の代わりに増幅センサアレイの他の構成も使用可能であることを理解されたい。
図30に図示された折り畳みサニャックセンサアレイ1300では、偏光ファイバ超蛍光源(SFS)1310がファイバ1314を介して偏光コントローラ1312に結合される。ファイバ1314は、偏光コントローラ1312を2×2カプラ1316の第1のポートにさらに結合する。カプラ1316の第2のポートは出力ポートであり、これは後述される。カプラ1316の第3のポートはファイバ1318を介して無反射終端装置1320に結合される。カプラ1316の第4のポートは共通のアレイ入力/出力ファイバ1334を介して偏光ビームスプリッタ(PBS)1332の第1のポート1330に結合される。偏光ビームスプリッタ1332の第2のポート1336は第1の水平偏光子1338に結合される。第1の水平偏光子1338はアレイ716の第2のアレイ入力/出力ファイバ720に結合される。偏光ビームスプリッタ1332の第3のポート1340は、遅延ループ1344の中に形成されかつファラデー回転ミラー(FRM)1346で終端される共通の遅延ファイバ1342に接続される。偏光ビームスプリッタ1332の第4のポート1348は、第2の水平偏光子1350および次に減偏光子1352に結合
される。減偏光子1352は第1のアレイ入力/出力ファイバ714に結合される。
カプラ1316の第2のポートは、ファイバ1362を介して検出器サブシステム1360に結合される。図30の実施例では、検出器サブシステム1360は、カプラ1316の第2のポートから光を受ける単一の入力ポートを有する1×nカプラ1364を含む。1×nカプラ1364の第1の出力ポートは偏光コントローラ1366に結合される。偏光コントローラ1366は偏光子1368に結合され、これは次に第1の検出器1370に結合される。1×nカプラ1364の第2の出力ポートは偏光コントローラ1372に結合される。偏光コントローラ1372は偏光子1374に結合され、これは第2の検出器1376に結合される。さらなる偏光コントローラ、偏光子および検出器(図示せず)を1×nカプラ1364のさらなるポート(図示せず)に接続することができる。
図30の折り畳みサニャックセンサアレイ1300は以下の態様で動作する。偏光されたSFS1310は、ファイバ1314を介して偏光コントローラ1312を通る、偏光された出力信号を与える。偏光コントローラ1312は、偏光を所望の偏光状態に変えるように調節可能である。たとえば、図30で、偏光状態は、偏光ビームスプリッタ1332への入力で垂直および水平軸に対して45°に向けられる、線形に偏光された光を与えるように調節される。光はファイバ1314に留まり、カプラ1316への入力として与えられる。カプラ1316は、入来する光の約50%を第1の出力ファイバ1318に結合し、これにより、無反射終端装置1320で破棄される。カプラ1316は入来する光の約50%を共通のアレイ入力/出力ファイバ1334に結合する。
共通のアレイ入力/出力ファイバ1334は光を偏光ビームスプリッタ1330に導き、偏光ビームスプリッタは水平偏光された光を第2のポート1336へ反射しかつ、垂直偏光された光を第3のポート1340に通す。第2のポート1336からの反射され水平偏光された光は第1の水平偏光子1338を通って第2のアレイ入力/出力ファイバ720に達しかつ、アレイ716を通って時計回りの方向に伝播する。時計回りに伝播する光は減偏光子1352およびアレイ入力/出力ファイバ714を介してアレイ716を出る。上述のように、減偏光子1352は、アレイ716中のセンサを通った後、出ていく光が水平偏光モードと垂直偏光モードとで実質的に等しく分布されるのを保証する。次に、時計回りに伝播する光は第2の水平偏光子1350を通り、水平偏光子は垂直偏光の光の一部を排除する。次に、時計回りに伝播する水平偏光の光は偏光ビームスプリッタ1330の第4のポート1348に入り、第3のポート1340へ反射されて共通遅延ファイバ1342に伝播する。時計回りの戻り光は遅延ループ1344を通ってファラデー回転ミラー1346に達し、ここで、垂直偏光された光として反射される。垂直偏光された光は偏光ビームスプリッタ1332の第3のポート1340に戻り、第1のポート1330に通される。
上述のように、元々偏光ビームスプリッタ1332の第1のポート1330に入射した光は水平および垂直偏光に対して約45°をなす向きにされた。したがって、垂直偏光された光の成分に対応する光の約50%は偏光ビームスプリッタ1332を通り、第3のポート1340へおよびしたがって共通遅延ファイバ1342へ達した。垂直偏光された光は遅延ループ1344を通って伝播し、水平偏光された光としてファラデー回転ミラー1346によって反射される。反射され水平偏光された光は遅延ループ1344を通り、偏光ビームスプリッタ1332の第3のポート1340に戻る。光は水平偏光されるため、光は偏光ビームスプリッタ1332の第4のポート1348へ反射され、こうして、第1のアレイ入力/出力ファイバ714を介して第2の水平偏光子1350を通り、減偏光子1352を通ってアレイ716の中へ伝播し、その中で反時計回りの方向に伝播するようにされる。減偏光子1352は、反時計回りに伝播する光がアレイ716から現われるときに、光の少なくとも一部が水平偏光にあるように、反時計回りに伝播する光がすべての
偏光の成分を有するのを保証する。
反時計回りに伝播する光は第2のアレイ入力/出力ファイバ720を介してアレイ716から現われ、水平偏光された光の成分は第1の水平偏光子1338を通る。水平偏光子は他の偏光の向きの光を排除する。反時計回りに伝播する光の部分から生じる水平偏光された光は、偏光ビームスプリッタ1332の第2のポート1336に入り、偏光ビームスプリッタ1332の第1のポート1330へ反射され、ここでそれは、時計回りに伝播する光の部分から生じた垂直偏光された光と合成される。
合成された光はカプラ1316の第4のポートに伝播し、ここで、合成光の約50%が、ファイバ1362を介してカプラ1316の第2のポートにおよびしたがって検出器サブシステム1360に結合される。1×nカプラ1364は光をN個の部分に分ける。たとえば、図30で、Nは2と等しく、光の第1の部分は偏光コントローラ1366に結合されて、偏光子1368を通って第1の検出器1370に伝播しかつ、光の第2の部分は偏光コントローラ1372に結合されて偏光子1374を通って第2の検出器1376に伝播する。偏光コントローラ1366、1372および偏光子1368、1374の向きは、異なる位相で第1の検出器1370および第2の検出器1376に入射する光信号をバイアスするように調節可能である。たとえば、第2の検出器1376に適用される信号は、第1の検出器1370に適用される信号と直角位相にあるようにバイアス可能であるため、一方の信号が最小限の感度しか有しない場合は、他方の信号が最大の感度を有し、またこの逆も当てはまる。
上述のように、2つの信号部分の各々は、アレイ716、共通遅延ファイバ1342および遅延ループ1344を通って同じ距離を進む。したがって、アレイ716中のセンサに当たる音響信号またはその他のノイズが引き起こす摂動がない場合、2つの部分は同相にあり、強め合うように干渉して、45°の線形偏光を有する合成光信号を生成する。しかしながら、光は、元の偏光状態に直交する偏光状態を有する。したがって、元の偏光状態が+45°である場合、(ここでも位相摂動がなければ)、出力信号の偏光状態は−45°である。
音響信号が存在する場合、時計回りに伝播する光と反時計回りに伝播する光とは相対的位相シフトを経る。相対的位相シフトが増大すると、2つの干渉ビームの偏光状態は、−45°線形偏光から左円偏光へ、次に+45°偏光へ、次に右円偏光へと変化して、−45°偏光に戻る。これら4つの偏光状態にわたる推移はポアンカレ球上の円を規定する。偏光ビームスプリッタ1332の出力での偏光状態は、ポアンカレ球上のこの円に沿った点に対応し、円上のその場所は音響誘導非相反位相シフトの関数である。
偏光ビームスプリッタ1332の出力から共通のアレイ入力/出力ファイバ1334を通りカプラ1316を通って検出器サブシステム1360へ進んだ後、合成信号の偏光状態は、ファイバ1334の未知の複屈折によって任意に変更される。第1の検出器1370の前の偏光子1368に近接する偏光コントローラ1366と第2の検出器1376の前の偏光子1374に近接する偏光コントローラ1372とを用いて、各検出器1370、1376ごとに、それぞれ選択された偏光状態に再び偏光状態を向ける。偏光コントローラ1366、1372は、たとえば、アレイ716に音響信号が適用されず、したがって、逆に伝播する光信号に相対的位相シフトが全く導入されない場合にセットされる。
たとえば、第1の検出器1370にバイアス点±90°を与えるためには、偏光コントローラ1376は、偏光ビームスプリッタ1332の出力での合成光が左円偏光状態を有するときに、第1の検出器1370が光の最大強度または最小強度のいずれかを検出するようにセットされる。出力光の他の偏光状態については、第1の検出器1370は、最大
強度と最小強度との間の強度を有する光を検出する。
さらなる例として、第2の検出器1376は、たとえば0°および180°などの異なるバイアス点にセット可能であるのが有利である。このバイアス点については、偏光コントローラ1372は、偏光ビームスプリッタ1332の出力での光が−45°の偏光状態を有するときに、第2の検出器1376が光の最大強度または最小強度のいずれかを検出するようにセットされる。出力光の他の偏光状態については、第2の検出器1376は、最大強度と最小強度との間の強度を有する光を検出する。
偏光ビームスプリッタ1332の入力に適用される光は±45°以外の偏光状態を有し得ることを理解されたい。たとえば、入力光が元々左円偏光状態を有する場合、偏光コントローラ1366、1372は、第1の検出器1370および第2の検出器1376に適切なバイアス点を与えるようにこれに従ってセットされる。
図31は、図30の折り畳みサニャックセンサアレイ1300と実質的に同様の折り畳みサニャックセンサアレイ1300′の代替的な構成を図示する。図31の折り畳みサニャックセンサアレイ1300′では、減偏光子1352は、第1のアレイ入力/出力ファイバ714ではなく、第2のアレイ入力/出力ファイバ720中に位置する。センサアレイ716の相反する構造のために、ファイバ720に減偏光子1352を再配置しても、折り畳みサニャックセンサアレイ1300の動作に対して折り畳みサニャックセンサアレイ1300′の全体的な動作は変化しない。折り畳みサニャックセンサアレイ1300′の動作は、折り畳みサニャックセンサアレイ1300の動作と同様であり、ここで詳細に説明しない。
図32は、図30の折り畳みサニャックセンサアレイ1300と同様の折り畳みサニャック音響センサアレイ1400のさらなる代替的な実施例を図示し、同じ要素にはこれに従って番号が与えられる。折り畳みサニャックセンサアレイ1300とは異なり、折り畳みサニャックセンサアレイ1400は、2×2カプラ1316を偏光独立光サーキュレータ1410と置換える。光サーキュレータは2×2カプラ1316と同様の機能を果たすが、折り畳みサニャックセンサアレイ1300では、入力光をカプラ1316で分けるときに入力光の約50%が失われ、出力光をカプラ1316で分けるときに出力光の約50%が失われる。実施例1400では、実質的にすべての入力光が、偏光SFS1310からサーキュレータ1410を通って偏光ビームスプリッタ1332へ達し、実質的にすべての出力光が、偏光ビームスプリッタ1332からサーキュレータ1410を通って検出器サブシステム1360へ達する。
図33は、図32の折り畳みサニャックセンサアレイ1400と実質的に同様の折り畳みサニャックセンサアレイ1400′の代替的な構成を図示する。図33の折り畳みサニャックセンサアレイ1400′では、減偏光子1352は、第1のアレイ入力/出力ファイバ714ではなく、第2のアレイ入力/出力ファイバ720中に位置する。センサアレイ716の相反する構造のために、ファイバ720に減偏光子1352を再配置しても、折り畳みサニャックセンサアレイ1400の動作に対して実施例1400′の全体的な動作は変化しない。したがって、折り畳みサニャックセンサアレイ1400′の動作はここでは詳細に説明しない。
図34は、この発明に従う折り畳みサニャックセンサアレイ1600のさらなる代替的な実施例を図示し、これは、図30から図33と関連して上述されたのと同じ態様でアレイ716に結合される組合せ入力/出力サブシステム1610を含む。
図34で、偏光源1620は、偏光維持ファイバ1622の軸に沿って、線形に偏光さ
れた入力光を与える。偏光維持ファイバ1622は、偏光軸が入力/出力システム1610の垂直偏光軸に対して±45°に向けられるように回転される。ファイバ1622からの光は、第1のコリメーティングレンズ1630を介して入力/出力サブシステム1610に結合される。第1のコリメーティングレンズ1630は、第1の偏光ビームスプリッタ(PBS)1632の第1のポート1634に向けて光を方向付ける。なお、偏光ビームスプリッタは第2のポート1636、第3のポート1638および第4のポート1640も有する。第2のポート1636は、第1の45°ファラデー回転子(45°FR)1642に向けて入力光の一部を方向付ける。第3のポート1638は、第2の45°ファラデー回転子1644に向けて入力光の一部を方向付ける。後述されるように、第4のポート1640は、出力光の選択された部分を検出サブシステム1650に方向付ける。
第1のファラデー回転子1642を通る光は第2のコリメーティングレンズ1660によってコリメートされ、アレイ入力/出力ファイバ720の中に結合され、こうして、アレイ716のセンサ部分に伝播してその中を時計回り方向に伝播する。
第2のファラデー回転子1644を通る光は半波長(λ/2)板1662を通る。半波長板1662は第1および第2の複屈折軸(図示せず)を有する。複屈折軸の1つは、入来する光の垂直偏光軸に対して22.5°の角度におよび、ソースからそれに向かって進む光の45°の偏光に対して−22.5°に向けられる(すなわち、軸は光の垂直と偏光との間に存在する)。この向きの目的は後述される。半波長板1662を通る光は、第2の偏光ビームスプリッタ1670の第1のポート1672に入る。なお偏光ビームスプリッタは第2のポート1674、第3のポート1676および第4のポート1678も有する。後述されるように、第2のポート1674はさらなる要素には結合されない。第3のポート1676から出力される光は第3のコリメーティングレンズ1680に方向付けられる。第4のポート1678から出力される光は第4のコリメーティングレンズ1682に方向付けられる。
第4のコリメーティングレンズ1682を通る光は第1のアレイ入力/出力ファイバ714に結合され、減偏光子1352を通ってアレイ716のセンサ部分に達し、その中で反時計回りの方向に伝播する。
第3のコリメーティングレンズ1680を通る光は共通遅延ファイバ1342の端に焦点合わせされ、遅延ループ1344を通ってファラデー回転ミラー1346へ伝播し、遅延ループ1344を通ってコリメーティングレンズ1680に戻る。このように、反射された光は第2の偏光ビームスプリッタ1670の第3のポート1676に戻るように方向付けられる。
上述のように、第1の偏光ビームスプリッタ1632の第4のポート1640からの光は検出サブシステム1650に入る。検出サブシステム1650は、第1のビームスプリッタ1690、第2のビームスプリッタ1692、第1の複屈折要素1694、第2の複屈折要素1696、第1の検出器1698、第2の検出器1700、第1の偏光子1702および第2の偏光子1704を含む。第4のポート1640からの光の第1の割合は第1のビームスプリッタ1690によって反射され、第1の複屈折要素1694および第1の偏光子1702を通って第1の検出器1698に達する。第4のポート1640からの光の残余の部分は第1のビームスプリッタ1690を通り、第2のビームスプリッタ1692に入射する。ここで、光の第2の割合が第2のビームスプリッタ1692によって反射されて、第2の複屈折要素1696および第2の偏光子1704を通って第2の検出器1700に達する。光の残余の部分は第2のビームスプリッタ1692を通ってさらなる要素(図示せず)に達する。検出器が2つだけ設けられる場合、第1の結合の割合は有利には50%でありかつ第2の割合は有利には100%であるため、両者の検出器1698
、1700はほぼ同じ量の光を受ける。第3の検出器(図示せず)が含まれれば、第1の割合は有利には約33%でありかつ第2の割合は有利には約50%であるため、第2の検出器1700も元の光の約33%を受ける。次に第3の検出器は残余の33%を受ける。
図34の折り畳みサニャックセンサアレイ1600は以下の態様で動作する。上述のように、第1のレンズ1630に入射する光は垂直および水平偏光軸に対して45°に向けられる。したがって、レンズ1630を通りかつ第1の偏光ビームスプリッタ1632の第1のポート1634に入る光は、水平偏光状態の成分と垂直偏光状態の成分とを有する。水平方向成分は偏光ビームスプリッタ1632によって第2のポート1636に反射され、垂直方向成分は偏光ビームスプリッタ1632を通って第3のポート1638へ達する。
第2のポート1636からの水平方向成分は第1のファラデー回転子1642を通り、偏光状態は、第1のファラデー回転子1642から現われかつ第2のレンズ1660に入射する光が45°の線形偏光状態を有するように、第1の方向(たとえば時計回り)に45°だけ回転される。光は第2のレンズ1660を通り、第2のアレイ入力/出力ファイバ720に入って、アレイ716を通って時計回りの方向に伝播する。光はアレイ716内で偏光の変化に遭遇し得る。したがって、上述のように、第1のアレイ入力/出力ファイバ714を介してアレイ716を出る光は減偏光子1352を通る。このことにより、光の少なくとも一部が水平および垂直偏光状態にあることが保証される。
第1のアレイ入力/出力ファイバ714からの時計回りに伝播する光は、第4のレンズ1682を介して入力/出力サブシステム1610に入り、第2の偏光ビームスプリッタ1670に入射する。光の垂直方向成分は第2の偏光ビームスプリッタ1670を通り、第2のポート1674から出力され、破棄される。水平偏光された光の成分は第2の偏光ビームスプリッタ1670の第3のポート1676へ反射され、第3のレンズ1680を通って共通遅延ファイバ1342に達して、光が遅延ループ1344を通って伝播し、ファラデー回転ミラー1346によって垂直偏光状態に反射されかつ、遅延ループ1344および共通遅延ファイバ1342を通って第3のレンズ1680に戻るようにする。反射された垂直偏光状態の光は第3のポート1676から第2の偏光ビームスプリッタ1670の第1のポート1672へ通り、半波長板1662を通って第2のファラデー回転子1644へ、第1の偏光ビームスプリッタ1632の第3のポート1638へ達する。半波長板1662は、その複屈折軸のうち1つが垂直偏光軸に対して22.5°をなすような向きにされるので、半波長板1662に入射する垂直光が複屈折軸付近で反射されるようになることにより、半波長板1662から現われる光の偏光状態は垂直および水平軸に対して45°に向けられる。第2のファラデー回転子1644は偏光状態をさらに45°回転させて、第2のファラデー回転子1644から現われかつ第1の偏光ビームスプリッタ1632の第3のポート1638に入射する光が水平偏光状態を有するようにする。したがって、第3のポート1638に入る光は第4のポート1640へ反射され、水平偏光状態で検出サブシステム1650に入る。
上述のように、第1の偏光ビームスプリッタ1632の第1のポート1634に入射する入力光の垂直方向成分は第3のポート1638に通る。光の偏光状態は第2のファラデー回転子1644によって45°だけ回転されて、垂直および水平偏光軸に対して45°偏光状態になる。このとき、光の偏光状態は、半波長板から現われる光の偏光状態がここでも垂直方向に向けられるように、半波長板1662の複屈折軸付近で反射される。当業者には、第2のファラデー回転子1644の非相反作用により、左から右へ第2のファラデー回転子1644を通り、次に半波長板1646を通る垂直偏光された光がまず45°偏光状態に回転され次に垂直偏光状態に戻るように反射されることが理解されるであろう。これに対し、右から左に通る垂直偏光された光は、まず半波長板1646によって45
°偏光状態に反射され、次に第2のファラデー回転子1644によって水平偏光状態に回転される。
半波長板1662からの垂直偏光された光は第2の偏光ビームスプリッタ1670の第1のポート1672に入り、第3のポート1676を通って第3のレンズ1680に達する。垂直偏光された光は共通遅延ファイバ1342を通り、遅延ループ1344を通ってファラデー回転ミラー1346に達し、水平偏光された光として遅延ループ1344および共通遅延ファイバ1342を通って戻るように反射される。水平偏光された光は、第3のレンズ1680を通って偏光ビームスプリッタ1670の第3のポート1676に達する。水平偏光された光は第4のポート1678へ反射されかつ、第4のレンズ1682を通って第1のアレイ入力/出力ファイバ714へおよび減偏光子1352を通って反時計回り方向にアレイ716を通って伝播する。
反時計回りに伝播する光はアレイ716から第2のアレイ入力/出力ファイバ720を介して現われ、第2のレンズ1660を通って第1のファラデー回転子1642に達する。第1のファラデー回転子1642は光の偏光状態を45°だけ回転させる。光は減偏光子1352によって効果的に減偏光されたため、第1のファラデー回転子1642を通って第1の偏光ビームスプリッタ1632の第2のポート1634に達する光は、水平および垂直方向に偏光された成分を有する光を含む。光の水平偏光された成分は第1のポート1634に反射され、第1のレンズ1630を通って入力ファイバ1622へ出力される。光を吸収するためにアイソレータ(図示せず)を含むことが有利である。
第1の偏光ビームスプリッタ1632の第2のポート1636に入る反時計回りに伝播する光の垂直偏光成分は第4のポート1640に通り、時計回りに伝播する光の水平偏光成分と合成される。図30と関連して上述されたように、逆に伝播する光が相対的位相シフトを経ない場合、光は45°の偏光状態の線形に偏光された光として合成される。さらに上述されたように、相対的位相シフトによって偏光状態が変化する。
2つの異なる偏光(たとえば、水平および垂直偏光、+45°および−45°偏光または左円および右円偏光)の光に相対的位相シフトを導入することによって検出器1698、1900に入射する光を選択的にバイアスするため、複屈折要素1694、1696を含む。複屈折要素は有利には、線形または円形波長板(たとえば、4分の1波長板、半波長板、ファラデー回転子など)を含んでもよい。
図35は、図34の折り畳みサニャック音響センサアレイ1600と同様の折り畳みサニャック音響センサアレイ1750の実施例を図示し、同じ要素は図34と同じ番号で識別される。図34の実施例とは異なり、折り畳みサニャック音響センサアレイ1750は、偏光光源1620の代わりに非偏光光源1720を含む。非偏光光源1720を用いるため、折り畳みサニャック音響センサアレイ1750は、第1のコリメーティングレンズ1630と第1の偏光ビームスプリッタ1632との間に45°偏光子1730を含む。45°偏光子1730により、第1の偏光ビームスプリッタ1632の第1のポート1634に入射する光が45°に向けられ、したがって、実質的に等しい水平および垂直偏光成分を有するようになる。こうして、図35の折り畳みサニャック音響センサアレイ1750は、図34の折り畳みサニャック音響センサアレイ1600と実質的に同じ態様で動作し、折り畳みサニャック音響センサアレイ1750の動作はここでは詳細に説明しない。
図36は、それぞれ図34および図35の折り畳みサニャック音響センサアレイ1600および1750と同様の折り畳みサニャック音響センサアレイ1800のさらなる実施例を図示し、同じ要素は図34および図35と同じ番号で識別される。図34および図3
5の実施例とは異なり、折り畳みサニャック音響センサアレイ1800では、偏光子1702および1704を通る光信号は検出器1698および1700に方向付けられない。むしろ、折り畳みサニャック音響センサアレイ1800は、偏光子1702に近接して位置決めされたコリメーティングレンズ1810と、偏光子1704に近接して位置決めされたコリメーティングレンズ1812とを含む。コリメーティングレンズ1810は、偏光子1702からの光をファイバ1820の第1の端1822に方向付ける。ファイバ1820は、コリメーティングレンズ1810からファイバ1820に入る光が第1の検出器1698に入射するように、第1の検出器1698に近接する第2の端1824を有する。同様に、コリメーティングレンズ1812は、偏光子1702からの光をファイバ1830の第1の端1832に方向付ける。ファイバ1830は、コリメーティングレンズ1812からファイバ1830に入る光が第2の検出器1700に入射するように、第2の検出器1700に近接する第2の端1834を有する。コリメーティングレンズ1810および1812とファイバ1820および1830とを含むことにより、ファイバは検出器1698および1700へある距離だけ光を搬送することができるので、検出エレクトロニクス(図示せず)に近接する遠隔の場所に検出器を設けてもよい。
図34、図35および図36では、折り畳みサニャック音響センサアレイ1600、折り畳みサニャック音響センサアレイ1750または折り畳みサニャックセンサアレイ1800の動作特徴に大きく影響を与えることなく、減偏光子1352を第1のアレイ入力/出力ファイバ714から第2のアレイ入力/出力ファイバ720へ再配置できることに留意されたい。
図17から図36の上記実施例では、増幅センサアレイ716は、信号を生成しかつ摂動を検出するそれぞれのフロントエンドシステムから逆に伝播する2つの信号を受けるとともに、摂動され逆に伝播する2つの信号をこれに戻す。以上の実施例では、センサアレイ716は、それぞれのラング718(i)中にセンサ722(i)を備えるはしご状構造として示される。複数のエルビウムドープトファイバ増幅器(EDFA)724ははしご状構造内に分布されて、センサ722(i)に分配されかつセンサから受ける信号を増幅する。
図37は、センサアレイ716の代わりに図30−36に記載のフロントエンドシステムと組合せて用いるための16センサアレイ2000の代替的な実施例を図示する。特に、センサアレイ2000は、第1の入力/出力ファイバ2002と第2の入力/出力ファイバ2004との間に介在する。第1の入力/出力ファイバ2002は、たとえば図30−36の第1の入力/出力ファイバ714に対応し、第2の入力/出力ファイバ2004は、図30−36の第2の入力/出力ファイバ720に対応する。これにより、第1の入力/出力ファイバ2002を介してセンサアレイ2000に入る光は、図37のセンサアレイ2000を通って右から左に伝播し、第2の入力/出力ファイバ2004を介して出て行く。第2の入力/出力ファイバ2004を介してセンサアレイ2000に入る光は、センサアレイ2000を通って左から右に伝播し、第1の入力/出力ファイバ2002を介して出て行く。このように、図37の右から左に伝播する光は、図30−36の反時計回りに伝播する光に対応し、図37の左から右に伝播する光は、図30−36の時計回りに伝播する光に対応する。
センサアレイ2000は、各々が利得g1を有する増幅器2012(1)、2012(2)の外側層2010を含むツリー構造として実現される。各々の外側層増幅器2012(i)の後ろにそれぞれのスプリッタ2014(1)、2012(2)が存在する。
センサアレイ2000は、各々が利得g2を有する、増幅器2022(1)、2022(2)、2022(3)、2022(4)、2022(5)、2022(6)、2022
(7)、2022(8)の内側層2020をさらに含む。各々の内側層増幅器2022(i)の後ろに、それぞれのスプリッタ2024(1)、2024(2)、2024(3)、2024(4)、2024(5)、2024(6)、2024(7)、2024(8)が存在する。
図示される好ましい実施例では、スプリッタ2014(i)、2024(i)の各々は、有利には、スプリッタの各端に1組のポートを有する、4つの入力/出力ポートを2組有する4×4スプリッタである。一方端の入力/出力ポートの1つを介してスプリッタに入る光は、実質的に等しい部分の他方端の4つの入力/出力ポートを出る。図37で、内側層2020の各スプリッタ2024(i)は、第1の端に4つのポートをおよび第2の端に1つのポートを有して図示される。第2の端の3つの未使用ポート(図示せず)は無反射で終端することを理解されたい。これにより、第2の端で単一使用ポートに入る光は、第1の端の4つのポート間で分割され、第1の端の4つのポートの各々に入る光の約4分の1が第2の端の単一使用ポートに結合される。第1の端のポートの各々からの光の残余の4分の3は3つの未使用ポートを介して失われる。これにより、4×4スプリッタ2024(i)の各々は、一方向に伝播する光の1−4スプリッタとして動作するとともに、反対方向に伝播する光の4−1コンバイナとして動作する。
図37に図示されるレイアウトにより、各々の層2010、2020は、それぞれの左側部分2010L、2020Lおよびそれぞれの右側部分2010R、2020Rを含む。
外側層2010の右側部分2010Rは、増幅器2012(1)と、その後ろのスプリッタ2014(1)とを含む。外側層2010の左側部分2010Lは、増幅器2012(2)と、その後ろのスプリッタ2014(2)とを含む。
内側層2020の右側部分2020Rは、増幅器2022(1)、2022(2)、2022(3)、2022(4)およびスプリッタ2024(1)、2024(2)、2024(3)、2024(4)を含む。内側層2020の左側部分2020Lは、増幅器2022(5)、2022(6)、2022(7)、2022(8)およびスプリッタ2024(5)、2024(6)、2024(7)、2024(8)を含む。
外側層2010と内側層2020とは、複数のセンサ2032(1)…2032(16)を含むセンサ層2030のまわりで対称である。センサ2032(1)…2032(16)は、4つのセンサグループ2040(1)…2040(4)として整理される。
第1のグループ2040(1)の中の4つのセンサ2032(1)…2032(4)の各々は、スプリッタ2024(1)の第1の端の4つの入力/出力ポートのそれぞれ1つとスプリッタ2024(5)の第1の端の4つの入力/出力ポートのそれぞれ1つとの間に接続される。
第2のグループ2040(2)の中の4つのセンサ2032(5)…2032(8)の各々は、スプリッタ2024(2)の第1の端の4つの入力/出力ポートのそれぞれ1つとスプリッタ2024(6)の第1の端の4つの入力/出力ポートのそれぞれ1つとの間に接続される。
第3のグループ2040(3)の中の4つのセンサ2032(9)…2032(12)の各々は、スプリッタ2024(3)の第1の端の4つの入力/出力ポートのそれぞれ1つとスプリッタ2024(7)の第1の端の4つの入力/出力ポートのそれぞれ1つとの間に接続される。
第4のグループ2040(4)の中の4つのセンサ2032(13)…2032(16)の各々は、スプリッタ2024(4)の第1の端の4つの入力/出力ポートのそれぞれ1つとスプリッタ2024(8)の第1の端の4つの入力/出力ポートのそれぞれ1つとの間に接続される。
センサ2032(i)の各グループ2040(i)内で、センサのうち3つは、グループに結合される2つのスプリッタ2024(i)の入力/出力ポート間の経路に介在する遅延ファイバ2042(i)を含む。遅延ファイバ2042(i)は、センサ2032(i)を通過する時分割多重化(TDM)パルスの適切なタイミングを与えるように選択された好適な長さを有する。
各グループ中の第1のセンサ(すなわち、センサ2032(1)、2032(5)、2032(9)、2032(13))は、それぞれの2つのスプリッタ間の経路の固有伝播遅延以外のさらなる遅延を有しない。
各グループ中の第2のセンサ(すなわち、センサ2032(2)、2032(6)、2032(10)、2032(14))は、各々がτ/2の遅延を有する第1および第2の遅延ファイバ2042(1)が与えるさらなるτの遅延を有する。
各グループ中の第3のセンサ(すなわち、センサ2032(3)、2032(7)、2032(11)、2032(15))は、各々がτの遅延を有する第3および第4の遅延ファイバ2042(2)が与えるさらなる2τの遅延を有する。
各グループ中の第4のセンサ(すなわち、センサ2032(4)、2032(8)、2032(12)、2032(16))は、各々が3τ/2の遅延を有する第5および第6の遅延ファイバ2042(3)が与えるさらなる3τの遅延を有する。
スプリッタ2024(1)…2024(8)の各々の第2の端の単一使用入力/出力ポートは、増幅器2022(1)…2022(8)のそれぞれ1つの第1の入力/出力端子に結合される。図示される実施例では、スプリッタ2024(1)は増幅器2022(1)に結合され、スプリッタ2024(2)は、増幅器2022(2)に結合され、以下同じである。
増幅器2022(1)…2022(4)の各々の第2の入力/出力ポートは、スプリッタ2014(1)の4つの入力/出力ポートのそれぞれ1つに結合される。増幅器2022(5)…2022(8)の各々の第2の入力/出力ポートは、スプリッタ2014(2)の4つの入力/出力ポートのそれぞれ1つに結合される。
増幅器2022(1)、2022(5)は、固有伝播遅延以外に、経路に介在するさらなる遅延を全く有することなくスプリッタ2014(1)、2014(2)に結合される。
増幅器2022(2)、2022(6)は、各々が2τのさらなる遅延を与えるそれぞれの遅延ファイバ2044(1)を介してスプリッタ2014(1)、2014(2)に結合される。これにより、第2のグループ2040(2)中のすべてのセンサに対するさらなる遅延の合計は4τになる。
増幅器2022(3)、2022(7)は、各々が4τのさらなる遅延を与えるそれぞれの遅延ファイバ2044(2)を介してスプリッタ2014(1)、2014(2)に
結合される。これにより、第3のグループ2040(3)中のすべてのセンサに対するさらなる遅延の合計は8τになる。
増幅器2022(4)、2022(8)は、各々が6τのさらなる遅延を与えるそれぞれの遅延ファイバ2044(3)を介してスプリッタ2014(1)、2014(2)に結合される。これにより、第4のグループ2040(4)中のすべてのセンサに対するさらなる遅延の合計は12τになる。
第1のセンサ2032(1)を通したスプリッタ2014(1)と2014(2)との間のさらなる遅延の合計は0τであることを容易に判断することができる。残余のセンサ2032(2)…2032(16)を通したスプリッタ2014(1)と2014(2)との間のさらなる遅延の合計は以下のとおりである。
2023(2) τ
2032(3) 2τ
2023(4) 3τ
2032(5) 4τ
2023(6) 5τ
2032(7) 6τ
2023(8) 7τ
2032(9) 8τ
2023(10) 9τ
2032(11) 10τ
2023(12) 11τ
2032(13) 12τ
2023(14) 13τ
2032(15) 14τ
2023(16) 15τ
上述のように、τの値は、各センサ2032(i)を通って伝播した後に時間の余裕をもってパルスを十分に分離するのに十分なように選択される。たとえば、1つの実施例では、τの値は、50ナノ秒のパルスが10ナノ秒の保護帯域だけ分離されるように、60ナノ秒であるのが有利である。
図37に示されるように、外側層4×4スプリッタ2014(1)および2014(2)は、センサ2032(i)に向けて方向付けられ、かつ上述のように接続される第1の端の上に4つの入力/出力ポートを備えて構成される。第2の端の入力/出力ポートのうち2つは無反射に終端され、図37には示されない。増幅器2012(1)の第1の入力/出力ポートは、スプリッタ2014(1)の第2の端の上の残余の入力/出力ポートのうちの1つに結合される。増幅器2012(2)の第1の入力/出力ポートは、スプリッタ2014(2)の第2の端の上の残余の入力/出力ポートのうち1つに結合される。スプリッタ2014(1)の第2の端の上の第2の残余の入力/出力ポートは第1のポンプソース2050(1)に結合される。スプリッタ2014(2)の第2の端の上の第2の残余の入力/出力ポートは第2のポンプソース2050(2)に結合される。
増幅器2012(1)の第2の入力/出力ポートは、第1の波長分割多重化(WDM)カプラ2060(1)の第1の端の第1の入力/出力ポートを介して第1の入力/出力ファイバ2002に結合される。第1のWDMカプラ2060(1)の第2の端の第2の入力/出力ポートは、第1の入力/出力ファイバ2002に結合される。同様に第1のWDMカプラ2060(1)の第2の端の第3の入力/出力ポートは、第3のポンプソース2062(1)からポンプ光を受けるように結合される。
第1のWDMカプラ2060(1)は、信号波長λs(たとえば1,560ナノメータ)で第1の入力/出力ポートに入るすべての光がカプラを通って第2の入力/出力ポートに達するように構成される。同様に、第2の入力/出力ポートに入る信号波長λsの光はカプラを通って第1の入力/出力ポートに達する。
信号波長λsでは実質的に結合は起こらないので、第1の入力/出力ファイバ2002を介してアレイ2000に入る実質的にすべての光は、図37の右から左へ第1のWDMカプラ2060(1)を通過し、増幅器2012(1)に入る。同様に、増幅器2012(1)を介して左から右にアレイ2000を出る実質的にすべての光は、第1のWDMカプラ2060(1)を通過して第1の入力/出力ファイバ2002に達する。
信号波長での光に対して、ポンプソース2062(1)からのポンプ波長λp(たとえば1,480ナノメータ)の実質的にすべてのポンプ光は、第1のWDMカプラ2060(1)の第3の入力/出力ポートに入り、カプラの第2の入力/出力ポートに結合されて、これにより増幅器2012(1)に伝播する。
同様に、増幅器2012(2)の第2の入力/出力ポートは、第2の波長分割多重化(WDM)カプラ2060(2)の第1の端の第1の入力/出力ポートを介して第2の入力/出力ファイバ2004に結合される。第2のWDMカプラ2060(2)の第2の端の第2の入力/出力ポートは、第2の入力/出力ファイバ2004に結合される。同様に第2のWDMカプラ2060(2)の第2の端の第3の入力/出力ポートは、第4のポンプソース2062(2)からポンプ光を受けるように結合される。
第1のWDMカプラ2060(1)について上述されたように、信号波長λsの実質的にすべての光は結合せずに第2のWDMカプラ2060(2)を通過し、ポンプソース2062(2)からの実質的にすべての光は、第2のWDMカプラ2060(2)の第2の入力/出力ポートに結合されて、増幅器2012(2)に伝播する。
2つのWDMカプラ2060(1)および2060(2)とは異なり、4×4スプリッタ2014(1)、2014(2)およびスプリッタ2024(1)…2024(8)は広帯域カプラである。すなわち、スプリッタは、1,480ナノメータから1,560ナノメータの波長範囲にわたって実質的に同じ結合係数を有する。これにより、信号波長λsの光とポンプ波長λpの光とは実質的に同じに結合される。さらに、スプリッタは好ましくは、結合係数が実質的に同様であり、アレイ2002に入るポンプ波長λpの光と信号波長λsの光とが各スプリッタの4つの出力の間で実質的に等しく分割され、かつ各センサからの信号波長の光が実質的に等しく合成されるように特徴付けられる。
動作において、ポンプソース2062(1)は、第1のWDMカプラ2060(1)にポンプ光を与える。ポンプ光は増幅器2012(1)に伝播し、その中で吸収されて、これにより、増幅器は信号波長で増幅器に入る光に利得を与える。増幅器2012(1)が吸収しないいかなる残余のポンプ光もスプリッタ2014(1)を通過し、4つの増幅器2022(1)…2022(4)の間で実質的に等しく分割される。さらに、ポンプソース2050(1)からの光はスプリッタ2014(1)に入り、実質的に等しく分割されて4つの増幅器2022(1)…2022(4)に伝播する。ポンプ光は、信号光に増幅を与える4つの増幅器で吸収される。
同様に、ポンプソース2062(2)からの光は第2のWDMカプラ2060(2)を介して増幅器2012(2)に結合され、いかなる残余のポンプ光もスプリッタ2014(2)を介して4つの増幅器2024(5)…2024(8)の間で分割される。さらに
、ポンプソース2050(2)からのポンプ光はスプリッタ2014(2)によって分割され、4つの増幅器2024(1)…2024(4)に与えられる。
約50ナノ秒の持続時間を有する信号光パルスは、第1の入力/出力ファイバ2002を介してアレイ2000に入り、まず増幅器2012(1)によって増幅される。次に、増幅された光パルスはスプリッタ2014(1)によって4つの実質的に等しい部分に分割される。第1の部分は増幅器2022(1)によって増幅され、次に、第1の部分を4つのサブ部分に分割するスプリッタ2024(1)を介して第1のセンサグループ2040(1)に入る。第1のサブ部分はセンサ2032(1)を通過する。第2のサブ部分はセンサ2032(2)を通過する。第3のサブ部分はセンサ2032(3)を通過する。第4のサブ部分はセンサ2032(4)を通過する。
第1のサブ部分はさらなる遅延に遭遇しない。第2のサブ部分は、2つのτ/2遅延ファイバ2042(1)によって遅延されて合計遅延がτになる。第3のサブ部分は2つのτ遅延ファイバ2042(2)によって遅延されて合計遅延が2τになる。第4のサブ部分は2つの3τ/2遅延ファイバ2042(3)によって遅延されて合計遅延が3τになる。
第1のセンサグループ2040(1)中の4つのサブ部分はスプリッタ2024(5)によって再合成される。しかしながら、センサおよび遅延を通してのそれぞれの伝播時間により、第1のサブ部分は、第2のサブ部分の約60ナノ秒前にスプリッタに到着する。第2のサブ部分は、第3のサブ部分の約60ナノ秒前に到着する。第3のサブ部分は、第4のサブ部分の約60ナノ秒前に到着する。このように、スプリッタ2024(5)の出力は60ナノ秒間隔で4つの50ナノ秒パルスを含む。
スプリッタ2024(5)から出力されるパルスは増幅器2022(5)によって増幅され、次にスプリッタ2014(2)に伝播する。パルスは、ここで第2のセンサグループ2040(2)、第3のセンサグループ2040(3)、および第4のセンサグループ2040(4)を通過したパルスと合成される。
第2、第3および第4のセンサグループ内で、信号パルスは4つのサブ部分に分割され、4つのサブ部分は選択的に遅延され、次に第1のセンサグループについて上述されたように再合成される。さらに、第2のセンサグループ2040(2)に入る光の部分は、増幅器2022(2)が増幅する前に第1の2τ遅延2044(1)によってまず遅延され、スプリッタ2024(2)によって分割される。第2のセンサグループ2040(2)が出力した信号パルスはスプリッタ2046(6)によって再合成され、増幅器2022(6)によって増幅され、次にスプリッタ2014(2)に到着する前に第2の2τ遅延2044(1)によって遅延される。2つの2τ遅延2044(1)が与える余分の4τ遅延により、第2のセンサグループからスプリッタ2014(2)に到着する第1の信号パルスは、第1のセンサグループからの第4の信号パルスの60ナノ秒後に到着する。
同様に、第3のセンサグループから出力される信号パルスは2つの遅延2044(2)によってさらに8τ分遅延され、これにより、第3のセンサグループからの第1の信号パルスは、第2のセンサグループからの第4の信号パルスの60ナノ秒後に到着する。
同様に、第4のセンサグループから出力される信号パルスは2つの遅延2044(3)によってさらに12τ分遅延され、これにより、第4のセンサグループからの第1の信号パルスは、第3のセンサグループからの第4の信号パルスの60ナノ秒後に到着する。
4つのセンサグループからの信号パルスはスプリッタ2014(2)で合成される。次
に、信号パルスは増幅器2012(2)によって増幅され、第2の入力/出力ファイバ2004を介してアレイから出力される。
同様に、第2の入力/出力ファイバ2004を介してセンサアレイ2000に入り、アレイを左から右に進む50ナノ秒光パルスは、まず増幅器2012(2)によって増幅され、スプリッタ2014(2)によって4つのパルスに分割される。4つのパルスは選択的に遅延され、右から左に伝播する信号について上述されたようにさらに分割され、これにより、60ナノ秒間隔の16個の50ナノ秒パルスがスプリッタ2014(1)に到着する。16個のパルスはスプリッタ2014(1)によって合成され、増幅器2012(1)によって増幅され、その後第1の入力/出力ファイバ2002を介してアレイを出る。
パルス幅および遅延時間を変更し得ることを理解されたい。さらに、さらなるスプリッタ、増幅器および遅延を設けてアレイ2000中のセンサ数を増加させ得る。
各スプリッタ2014(i)、2024(i)の前にある増幅器2012(i)、2022(i)は、それぞれのカプラにおける分割損失を補償する。図37のツリー構造遠隔測定は、先の増幅器から後の増幅器へ未使用のポンプパワーを方向付けるという利点を有する。ポンプ光がたとえば1,480ナノメータのポンプ波長λpを有し、かつ信号がたとえば1,550ナノメータの信号波長λsを有する例示的なシステムでは、分割カプラは、ポンプおよび信号波長にわたって同じ結合比を有するように2帯域または広帯域のいずれかのものでなければならない。そのようなカプラは、たとえば、メリーランド州ミラーズビル、ベンフィールドブルバード1121(1121 Benfield Boulevard, Millersville, Maryland)のグールドファイバーオプティクス社(Gould Fiber Optics)から市販されている。図37の実施例は、後段の増幅器に電力供給するのにさらなるポンプパワーが必要な場合に、4×4スプリッタ2012のうち1つの未使用ポートの1つにさらなるポンプパワーを加えることができるというさらなる利点を有する。これにより、さらなるWDMカプラを必要とするのは、第1段の増幅器(すなわち外側層2010の増幅器2012)のみである。
上述のように、センサ遠隔測定は、センサ経路の間に増大していく差分遅延を与えてパルスが重なるのを防止するように構成される必要がある。時分割多重化(TDM)方式は、各遅延が時間間隔τの分数または倍数である、図37に示されるような遅延ファイバ2042(i)、2044(i)を置くことによって達成される。時間間隔τはセンサ呼び掛け窓である。各パルスの持続時間(すなわちパルス幅)は、重なりを避けるため、τ未満となるように選択される。所定の遅延は、最も近い構成要素を接続するファイバと遅延コイルとの効果を含む。たとえば、8τの最長遅延は第1の分割カプラ2014(1)から分割カプラ2024(4)までのものである。各センサを通しての合計進行時間は、TDMの要件に従い、これらの遅延によってτだけ増分することが容易にわかる。
前述の遠隔測定(すなわちアレイ構造)とは異なり、上述のツリー構造EDFA遠隔測定は、(少数の大電力ポンプレーザの代わりに)多数の小電力ポンプレーザによってポンピングされ得るので有利である。特に、1箇所または2箇所でなくツリー構造中のさまざまなレベルにポンプ光を導入可能である。
図38Aおよび図38Bを含む図38は、たとえば図30−36と関連して上述されたシステムと同様の偏光ベースフロントエンド2120を用いた増幅ツリー構造遠隔測定中に16個のセンサ2110(i)を含む代替的センサアレイ2100を図示する。
図38Aは、図34に示されたフロントエンドと同様のフロントエンド2120を図示
し、同じ要素はそれに応じて番号を振られる。図34に示されるフロントエンドとは異なり、図38Aのフロントエンド2120は、偏光超蛍光源1620の出力とコリメータ1630との間に位置決めされた、1,550ナノメータにセンタリングされたほぼ10ナノメータ幅のバンドパス干渉フィルタ2130を含む。フィルタ2130はソース1620からの光を狭め、ファラデー回転子1642、1644の波長依存のいかなる有害な影響も低減する。第1の偏光ビームスプリッタ1632、ビームスプリッタ1634の第4のポート1640と第1のビームスプリッタ1690との間の出力経路にさらなる対のバンドパス干渉フィルタ2132、2134が位置決めされる。
図38Bの増幅アレイ2100は、図37に示される増幅ツリー構造設計と同様である。ここでも、タイミングは、パルス間の10ナノ秒の保護帯域とともに50ナノ秒のパルスを収容した60ナノ秒の窓に基づいている。アレイタイミングは、センサの全体的なタイミングが正しいだけでなく、センサ遠隔測定において各センサ2110(i)が対称に置かれ、それにより各センサでの位相感度が確実に同じになるのが確実になるようにアレイ2100の構築の間に測定される。
第1の入力/出力ファイバ2002、第2の入力/出力ファイバ2004、第3のポンプソース2062(1)、第4のポンプソース2062(2)、第1のWDMカプラ2060(1)、第2のWDMカプラ2060(2)、利得g1を有する第1の増幅器2012(1)、および利得g1を有する第2の増幅器2012(2)は、図37と関連して上述されたように動作し、これに応じて標識付けられる。
図37のアレイ2000とは異なり、図38Bのアレイ2100は、2つのレベルの4×4広帯域スプリッタ2014(i)、2024(i)の代わりに、4つのレベルの2×2広帯域カプラ2140(i)を利用する。ここでもアレイ2100は2つのレベルの増幅を用いる。
第1の入力/出力ファイバ2002を介してアレイ2100に入射する反時計回りに伝播する信号光および増幅器2012(i)からのいかなる残余のポンプ光も第1の2×2カプラ2140(1)を通過する。このカプラは、光を実質的に等しい2つの部分、すなわち第1の部分(図38Bの上方)と第2の部分(図38Bの下方)とに分割する。
次に、第1の部分は第2の2×2カプラ2140(2)の第1の入力/出力ポートに入り、これは光の第1の部分を実質的に等しい2つの部分、すなわち第3の入力/出力ポートの第3の(上)部分と第4の入力/出力ポートの第4の(下)部分とに分割する。同様に、第2の部分は第3の2×2カプラ2140(3)の第1の入力/出力ポートに入り、これは光の第2の部分を実質的に等しい2つの部分、すなわち第3の入力/出力ポートの第5の(上)部分と第4の入力/出力ポートの第6の(下)部分とに分割する。
第3、第4、第5および第6の部分はそれぞれの増幅器2150(1)、2150(2)、2150(3)、2150(4)に入り、これらは、ポンプ光を実質的に等しい2つの部分に分割する2×2カプラ2160(1)を介して第1のポンプソース2050(1)からのポンプ光によってポンピングされる。ポンプ光の第1の部分は第2のカプラ2140(2)の第2の入力/出力ポートに与えられ、ポンプ光の第2の部分は第3のカプラ2140(3)の第2の入力/出力ポートに与えられる。これにより、ポンプ光はカプラ2140(2)、2140(3)によってさらに分割され、もとのポンプ光の約4分の1が増幅器2150(1)、2150(2)、2150(3)、2150(4)の各々に与えられる。
増幅器2150(1)からの増幅信号光は、第4の2×2カプラ2140(4)への入
力として与えられる。増幅器2150(2)からの増幅信号光は第5の2×2カプラ2140(5)への入力として与えられる。増幅器2150(3)からの増幅信号光は、第6の2×2カプラ2140(6)への入力として与えられる。増幅器2150(4)からの増幅信号光は、第7の2×2カプラ2140(7)への入力として与えられる。
各カプラ2140(4)、2140(5)、2140(6)、2140(7)に入射する光は2つの部分に実質的に等しく分割される。
第4のカプラ2140(4)からの光の第1の部分は、光の第1の部分を実質的に等しい2つの部分に分割する第8の2×2カプラ2140(8)を介して第1のセンサ2110(1)および第2のセンサ2110(2)への入力として与えられる。第4のカプラ2140(4)から光の第2の部分は、光の第2の部分を実質的に等しい2つの部分に分割する第9の2×2カプラ2140(9)を介して第3のセンサ2110(3)および第4のセンサ2110(4)への入力として与えられる。これにより、センサ2110(1)、2110(2)、2110(3)、2110(4)の各々は、第1のカプラ2140(1)に入射するもとの信号光の約16分の1を受ける。
同様に、第5のセンサ2110(5)および第6のセンサ2110(6)は各々、第10の2×2カプラ2140(1)を介して第5のカプラ2140(5)からもとの信号光の約16分の1を受ける。第7のセンサ2110(7)および第8のセンサ2110(8)は各々、第11の2×2カプラ2140(11)を介して第5のカプラ2140(5)からもとの信号光の約16分の1を受ける。
第9のセンサ2110(9)および第10のセンサ2110(10)は各々、第12の2×2カプラ2140(12)を介して第6のカプラ2140(6)からもとの信号光の約16分の1を受ける。第11のセンサ2110(11)および第12のセンサ2110(12)は各々、第13の2×2カプラ2140(13)を介して第6のカプラ2140(6)からもとの信号光の約16分の1を受ける。
第13のセンサ2110(13)および第14のセンサ2110(14)は各々、第14の2×2カプラ2140(14)を介して第7のカプラ2140(7)からもとの信号光の約16分の1を受ける。第15のセンサ2110(15)および第16のセンサ2110(16)は各々、第15の2×2カプラ2140(15)を介して第7のカプラ2140(7)からもとの信号光の約16分の1を受ける。
分割および増幅の各レベルにおいて、カプラおよび増幅器は、数字の小さいカプラおよび増幅器が数字の小さいセンサに反時計回りに伝播する信号光を伝播するように、図面の真中から図面の下に向けて番号を振られていることに注目されたい。
第2の入力/出力ファイバ2004を介してアレイ2100に入射する光は、複数のカプラ2140(16)…2140(30)によって、反対方向(すなわち時計回り方向)のセンサ2110(1)…2110(16)に与えられる実質的に等しい16個の部分に同様に分割される。第2のポンプソース2050(2)からのポンプ光は、カプラ2160(2)によって実質的に等しく分割され、カプラ2140(16)および2140(17)によってさらに分割され、これにより、ポンプ光のほぼ等しい4つの部分が、時計回りの方向に伝播する信号光を増幅するように動作する4つの増幅器2150(5)、2150(6)、2150(7)、2150(8)への入力として与えられる。カプラおよび増幅器は、時計回りに伝播する信号光について、数字の小さいカプラおよび増幅器が数字の小さいセンサに信号光を与えるように、図38Bの真中から上に向けて番号を振られることに注目されたい。
図37と関連して上述された時分割多重化特徴を与えるため、図38Bの実施例は、アレイ2100中に複数の遅延ファイバを含む。たとえば、第1の遅延ファイバ2180(1)は、カプラ2140(8)と第2のセンサ2110(2)との間に位置決めされ、第2の遅延ファイバ2180(1)は、カプラ2140(23)と第2のセンサ2110(2)との間に位置決めされる。同様の遅延ファイバ2180(1)は、センサ2110(2)、2110(4)、2110(6)、2110(8)、2110(10)、2110(12)、2110(14)、2110(16)とそれぞれのカプラとの間に位置決めされる。各遅延ファイバ2180(1)の長さは約6メートルで30ナノ秒の遅延を与えるので、各センサ対の第2のセンサを通って伝播する光は、そのセンサ対の第1のセンサを通って伝播する光から約60ナノ秒だけ分離される。
第1のセンサ2110(1)および第2のセンサ2110(2)を通過する信号の対は、カプラ2140(4)からカプラ2140(9)への経路の第1の遅延ファイバ2180(2)およびカプラ2140(19)からカプラ2140(24)への経路の第2の遅延ファイバ2180(2)が与えるさらなる120ナノ秒の遅延だけ、第3のセンサ2110(3)および第4のセンサ2110(4)を通過する信号の対から分離される。遅延ファイバ2180(2)の各々は、長さが約12メートルであるファイバが与える約60ナノ秒の遅延を有する。
同様に、カプラ2140(5)とカプラ2140(10)との間の経路に第1の120ナノ秒遅延ファイバ2180(3)が介在し、カプラ2140(20)とカプラ2140(25)との間の経路に第2の120ナノ秒遅延ファイバ2180(3)が介在する。カプラ2140(5)とカプラ2140(11)との間の経路に第1の180ナノ秒遅延ファイバ2180(4)が介在し、カプラ2140(20)とカプラ2140(26)との間の経路に第2の180ナノ秒遅延ファイバ2180(4)が介在する。
残余の8個のセンサについては、カプラ2140(1)とカプラ2140(3)との間に第1の225ナノ秒遅延ファイバ2180(5)が介在し、カプラ2150(16)とカプラ2140(18)との間に第2の225ナノ秒遅延ファイバ2180(5)が介在する。
カプラ2140(6)とカプラ2140(12)との間に第1の15ナノ秒遅延ファイバ2140(6)が介在し、カプラ2140(21)とカプラ2140(27)との間に第2の15ナノ秒遅延ファイバ2140(6)が介在する。これにより、センサ2110(9)および2110(10)に対するさらなる遅延の合計は480ナノ秒となる。遅延ファイバ2180(5)の遅延を240ナノ秒に増加させ、15ナノ秒遅延ファイバ2140(6)を含まないことによって同等の遅延を与え得ることを理解されたい。
カプラ2140(6)とカプラ2140(13)との間の経路に第1の75ナノ秒遅延ファイバ2180(7)が介在し、カプラ2140(21)とカプラ2140(28)との間の経路に第2の75ナノ秒遅延ファイバ2180(7)が介在する。カプラ2140(7)とカプラ2140(14)との間の経路に第1の135ナノ秒遅延ファイバ2180(8)が介在し、カプラ2140(22)とカプラ2140(29)との間の経路に第2の135ナノ秒遅延ファイバ2180(7)が介在する。カプラ2140(7)とカプラ2140(15)との間の経路に第1の195ナノ秒遅延ファイバ2180(9)が介在し、カプラ2140(22)とカプラ2140(30)との間の経路に第2の195ナノ秒遅延ファイバ2180(9)が介在する。
2×2カプラの各々は、有利には、各センサ経路の伝送ができるだけ等しくなるように
カプラがアレイ内に配置され得るように、構築前に特徴付けられる。図38Bの10個の増幅器2012(1)、2012(2)、2150(1)…2150(8)は、好ましくはエルビウムドープトファイバ増幅器(EDFA)である。図38Bにおいて、増幅器2012(1)、2012(2)の利得g1および増幅器2150(1)…2150(8)の利得g2は実質的に同じである。好ましい実施例では、各増幅器中のファイバの長さは、約8.2dBの利得を与える約1.45メートルである。
第1の入力/出力ファイバ2002から第2の入力/出力ファイバ2004への各方向の所与のセンサ経路によって見られる合計利得は、32.8dB(8.2dB×増幅器4個)である。これは、合計分割損(カプラ当たり3.1dB×8個のカプラ)と、WDMカプラの挿入損失ならびにスプライスおよびファイバ折り曲げによる過剰な損失をほぼ補償する。図38Bに従って構築された例示的なセンサアレイを通しての伝送は、1よりも大きい数dBと測定された。増幅器2012(1)、2012(2)、2150(1)…2150(8)は、有利には4つのローパワー(たとえば60mW)1,480nmレーザを含むポンプソース2050(1)、2050(2)、2062(1)、2062(2)によってポンピングされる。上述のように、ポンプソース2062(1)、2062(2)からのポンプ光は、WDMカプラ2060(1)、2060(2)を通してアレイ2100に結合されて、第1段の増幅器2012(1)、2012(2)をポンピングする。第2段の増幅器2150(1)…2150(8)は、ポンプソース2050(1)、2050(2)が加える電力とともに第1段の増幅器からの未使用電力によってポンピングされる。ポンプパワーは十分に大きい(かつ信号電力は十分に低い)ので、増幅器2012(1)、2012(2)、2150(1)…2150(8)のすべてをポンピングで飽和させる。好ましくは、ポンプソース2050(1)、2050(2)、2062(1)、2062(2)は一方向アイソレータ2190を介してアレイ2100に結合されるので、アレイ2100から戻るいかなる光もポンプソースに伝播せず、ソースを摂動しない。
センサ2110(i)をテストするため、ファイバを巻き付けられたさらなるPZTトランスデューサを各センサ2110(i)と直列に置き、これにより、1つ以上のPZTトランスデューサを選択的に活性化することによって各センサごとに音響信号の影響をシミュレーションすることができる。(PZTトランスデューサはテスト目的のみのためのものであり、好ましい実施例の一部ではない。したがって、PZTトランスデューサは図面に示さない。)図39Aおよび図39Bは、50ナノ秒のパルス幅ならびにそれぞれ0.942MHz(1.06マイクロ秒間隔)および1.042MHz(0.96マイクロ秒間隔)の繰返し周波数について、検出器1698、1700(図38A)のうち1つで測定される戻りパルストレインを図示する。アレイに印加される各信号パルスは、60ナノ秒間隔で戻る16個の出力パルスのトレインを生じる。したがって、より低い繰返し周波数(図39A)では、センサアレイから戻る16個のパルスのトレイン間に隙間が存在する。すべてのセンサからの電力は1.7dB未満の変化を有して戻る。これらの電力変化は、さまざまなカプラおよびスプライスの挿入損失差から生じるものである。
図39Bは、パルストレインが連続的に繰返す(すなわち、1つのパルストレインの16番目のパルスが次のパルストレインの最初のパルスの約60ナノ秒前に発生する)最適な動作条件を図示する。パルスタイミングは、すべてのセンサ経路について1ナノ秒(20センチメートル)内と正しいことが検証された。
実際には、デマルチプレクスは、デジタル処理により検出後に達成される。実験的な実施例では、ニオブ酸リチウム振幅変調器2192が入力/出力ファイバのうち1つ(たとえば図38Aの第2の入力/出力ファイバ2004)に接続され、これを用いて、デマルチプレクスすべき信号に対応する信号パルスを通過させる。ニオブ酸リチウム変調器21
92はクリーンスイッチング(clean switching)を行ない、フォトダイオードの後に用いられる電子スイッチと関連の大きなノイズを排除する。
アレイの偏光感度を測定するため、第5のセンサ用のそれぞれの直列接続PZTトランスデューサを活性化することにより、第5のセンサ2110(5)に大きな位相変調を誘導した。第5のセンサからの信号はデマルチプレクスされ、その検出された電力がデジタルスコープ上で監視された。πよりも大きいピーク・トゥ・ピーク位相変調が信号に誘導され、デジタルスコープ上で得られた最大および最小電圧を記録することによってセンサの視感度(visibility)を測定することができる。そのようなトレースが図40Aに図示され、測定視感度0.9を生じる。上述のように、偏光ベースフロントエンド設計の重要な利点は、偏光誘導信号フェージングが受動的に排除されることであり、視感度は理想的には、ループ複屈折とは独立して、各センサ上で1である。
この予測をテストするため、入力/出力ファイバのうち1つ(たとえば図38Aの第1の入力/出力ファイバ2002)に位置決めされる共通偏光コントローラ2194の8つのランダムな設定について第5のセンサの視感度を測定した。測定結果は図40Bに示され、これは予期される偏光独立を示している。視感度は、主に検出器における分散増幅器ASEパワーの存在のために、1に満たない。
広帯域ASE源を用いるサニャックベースアレイにおけるノイズ減算の影響および重要性を図示するため、ファイバを巻き付けられたそれぞれのPZTを用いて4kHzの位相変調をセンサの1つに置いて音響信号をシミュレーションし、図38Aのソース1620からコリメータ1630への信号経路のニオブ酸リチウム(LiNbO3)変調器2196を用いてソース1620からの光信号上に3.6kHzの振幅変調を置いた。検出された応答は、唯一の検出器を用いる単一検出構成と、検出器からのDC電流を減算してソース振幅ノイズを除去するように2つの検出器1698、1700の出力が接続される平衡検出構成とにおいて測定された。図41は測定結果を図示する。単一検出構成については、3.6kHzの振幅変調がはっきりと見られる一方、4kHzでの位相変調は、広帯域ソース振幅ノイズ(ASE−ASEビートノイズ)下では見られない。平衡検出(balanced-detection)構成では、振幅変調は50dBよりも多く減算される。位相変調トーンは、低減された広帯域ノイズ(ASE−ASEビートノイズ減算)および増大した位相変調信号により容易に見ることができる。図示されるように、平衡検出構成は大きなノイズ減算を達成する。
分散光増幅器を備えるサニャックベースアレイの光学的ノイズフロアは受信器での光強度(optical power)の関数である。
Figure 0004184265
式中、Bは検出帯域幅であり;s、acw、accwは、ソース、時計回り分散増幅器、逆時計回り分散増幅器のASEフォトン束(♯/s)であり;ここでa=acw+accwである。式19において、Δνaは、分散増幅器の自発的放出によって生じる、検出器に到着する分散増幅器フォトンの帯域幅であり、以下のように定義される。
Figure 0004184265
式中、P(νa)dνaは、周波数帯域νaからνa+dνaの光強度である。
さらに式19において、Δνsaは以下のように定義される。
Figure 0004184265
式中、Δνsは検出器に到着するソースフォトンの帯域幅であり、Δνs+aは、νaにνaおよびνs+aを代入することによって式20に従って定義される、受信器に到着する、合成したソースおよび分散増幅器のフォトンである。
式19のノイズ式は、単位帯域幅当たりの光子計量変動として与えられる。式19は、検出器電流ノイズ<ΔI2>について以下のように書換えることができる。
Figure 0004184265
式中、Bは検出帯域幅である。
式22は、16センサアレイ2100の光学的ノイズを測定することによって実験的に確認される。まず、検出されたノイズ対ショットノイズ限界の比として過剰雑音指数(excess noise factor)Fが定義され、これが以下に与えられる。
Figure 0004184265
検出器電流Is、IacwおよびIaccwをそれらの光学スペクトルとともに測定(してΔνsaおよびΔνaを得る)することにより、予期される過剰雑音指数を計算し、測定されたノイズと比較することができる。分散増幅器電流およびスペクトル(Iacw、IaccwおよびΔνa)を測定するため、ソースがオフにされ、出力が単に測定される。分散増幅器のパワーをスイッチオフすることはできないので、出力電流/スペクトル合計を測定し、分散増幅器の電流/スペクトルを減算することにより、ソース電流/スペクトルを求める。
これが行なえる理由は、分散増幅器がポンピングで飽和され、かつそれらのASE出力が(実験的に検証された)アレイ中の小さなソースパワーの存在の影響を受けないからである。
測定されたこれらの出力電流およびスペクトルを用いて、式23によって予測過剰雑音指数を計算することができる。雑音指数を測定するため、出力ノイズはDC受信器電流とともに直接に測定される。次にショットノイズレベルをDC電流から計算し、測定されたノイズとショットノイズとの比をとることによって過剰雑音指数を求める。次に、予測過剰雑音指数と測定過剰雑音指数とを比較することができる。
実験のセットアップにおいて、受信器での一連のDC源電流について測定が行なわれる。これらの電流は、LiNbO3変調器2196のDCバイアスを用いてソースパワーを調節することによって制御される。各DC源電流ごとに、4、8、12および16のセンサ計数ごとに測定をとる。センサ計数は、サブアレイに向けられたファイバに大きな折り曲げ損失を誘導することにより、1つ、2つまたは3つの4センササブアレイを暗くすることによって制御された。センサ計数が変更されるので、パルス繰返し周波数は、出力においてパルスの連続トレインを保つように調節される。これにより、検出器での平均ソースパワーは、所与の測定値の組の中で各センサ計数ごとに同じであり、唯一の変更は分散増幅器ASEの量である。したがって、センサ計数の関数として測定を行なうことにより、ASEパワーの関数としてノイズの傾向を見出し、式23の予測と比較することができる。
以上の測定結果が3つのDC源受信器電流について図42A、図42B、図42Cに示される。最も低いDC源電流(1.4μA)について図42Aに示されるように、予測ノイズと測定ノイズとの間の一致は良好である。より大きなソースパワーおよびしたがってより大きなDC源受信器電流(図42Bの4.05μAおよび図42Cの9.89μA)については、測定ノイズはソース電流が増加するにつれ、予測ノイズよりも高く上昇する。これは、少なくとも一部には、アレイ中の音響室内雑音のピックアップ、すなわちサニャック音響センサ設計のテストにつきものの問題によるものである。ソースパワーが増大するとアレイの感度がよくなり、センサアレイおよびタイミングコイルを構成するファイバでピックアップされる室内雑音が無視できなくなる。このノイズにより実験室内では光学的ノイズフロアの測定が困難になるが、現実の適用例では、この音響ピックアップが測定が意図される信号であるので、実際にはこれは厄介なノイズ源ではない。
マッハ−ツェンダーベースのアレイにおいては、センサ応答は、ハイドロホンのまわりに巻付けられるファイバの長さおよび正規化されたハイドロホン応答性によって決まる。これらの両者とも、一旦センサが構築されると変更することができない。上述のサニャックセンサアレイにおいては、応答は、これらの同じパラメータによって部分的に決まり、すべてのセンサ間で共有される遅延ループの長さによっても部分的に決まる。この遅延ループはそれがアクセス可能な場合はセンサから離れて遠隔に位置され得るので、遅延ループの長さを変更することは可能である。単一のパラメータ、すなわち遅延ループ長を変更することによってすべてのセンサの応答に影響を及ぼし得ることが、アレイのダイナミックレンジ性能に大きな利益となり得ると、サニャックベースアレイの開発の早期の段階で理解されていた。たとえば、図7、図19および図21は、異なる長さの2つの遅延ループを有してセンサアレイのダイナミックレンジを拡大させる実施例を図示する。
遅延ループ長を変更することによってどのように応答を調整し得るかを図示するため、50マイクロ秒の有効遅延コイル時間(たとえば、折畳まない構成で約10キロメートルの遅延ループ長または折畳んだ構成で約5キロメートルの遅延ループ長)と、−135dB rad/μPaのハイドロホン応答性Rと、1μrad/√Hzの平らな光学的ノイ
ズフロアとを備えるサニャックアレイを考察する。検出可能最小音響信号amin(f)は以下のように表わすことができる。
Figure 0004184265
式中、φは単位帯域幅当たりの位相ノイズであり、Tは積分時間であり、Rはハイドロホン応答性(rad/μPa)であり、fは周波数であり、かつTdは遅延コイル時間である。以上の数値を用いて、1秒の積分時間の検出可能最小音響信号を図43Aにプロットする。図43Aには、1rad/√Hzの位相信号を発生するものとして定義される検出可能最大信号もプロットされる。(これは上限の近似にすぎないが、これは2つの構成の相対的性能を比較する方法として役立つ。)
図43Bでは、遅延ループを通しての遅延時間が50マイクロ秒から0.5マイクロ秒に短縮されたことを除いて同じパラメータを有するアレイについて、同じ曲線をプロットする。遅延時間がより短くなると検出範囲が上に移動し、検出範囲は、ノイズの多い環境により好適になる。これに対し、より長い遅延時間は、より静かな環境により好適である。
図43Aおよび図43Bの合成ダイナミックレンジを得るためには、アレイは、短い遅延ループと長い遅延ループとの両者を備えて構築される必要がある。すべてのセンサおよび遅延コイルから戻るパルスが(時間または波長において)分離され得るように設計される2つの遅延コイルを含むアレイを、図7、図19および図21に図示されるように容易に構築し得る。図示される構成では、各センサは2つの信号を戻すが、その各々は、図43Aおよび図43Bのものと対応する検出範囲を有する。静かな環境では、より長い遅延ループからの信号を用いる。より長い遅延ループからの応答を飽和させる大きな音響信号が存在する場合、より短い遅延ループからの出力を用いる。このような遅延コイル切換により、アレイは、音響信号の大きさが経時的に劇的に変化する環境において機能できるようになる。しかしながら、サニャックベースアレイ中の複数の遅延ループの最も有用な実現例は、それらを切換えるのではなく各遅延ループからの信号を合成する。信号を合成して、各遅延ループからの信号の検出範囲の合体によって与えられる真の検出範囲を有する単一の出力信号を発生することにより、アレイは、別の周波数領域(regime)の(より長い遅延ループを飽和する)極めて大きな音響信号を扱いながら、1つの周波数領域においてより長い遅延ループを用いてノイズフロアまでを同時に検出することができる。このため、各遅延ループから所与のセンサからのそれぞれの出力信号を入力として受け、かつ短い遅延ループからの出力信号および長い遅延ループからの出力信号の検出範囲の合体を含む検出範囲を有する信号を戻すアルゴリズムを用いる。
より短い遅延ループからの信号が、スケールファクタ(scale factor)が低減されていてもより長い遅延ループからの信号と同じであれば、そのようなアルゴリズムは直接的(straightforward)である。しかしながら、2つの信号は異なる周波数応答を有し、かつ異なる時間に音響信号をサンプリングするので、2つの信号は明確な相関をほとんど有しない。これを図示するため、図44Aに示される時間を用いて、ハイドロホン位相変化を発生させる音響信号を考察する。図44Bおよび図44Cは、より長い遅延ループ(図44B)およびより短い遅延ループ(図44C)を通って進む信号についての、図44Aの位相信号による誘導位相差のプロットである。相関は明確ではなく、これらの2つの信号をどのように合成して単一の信号を発生させるのかは明らかでない。
図45Aおよび図45Bは、2つの遅延ループからの信号を合成して、単一の遅延ループで可能であるよりも劇的に増大したダイナミックレンジを備える位相信号を再構築する線形外挿アルゴリズムによって動作する音響センサアレイ2200を図示する。図45Aおよび図45Bは図38Aおよび図38Bに対応するが、図45Aでは、システムのフロントエンド部は、第1の波長λ1の光信号パルスの第1のシーケンスを出力する第1の信号源2210を含み、かつ第2の波長λ2の光信号パルスの第2のシーケンスを出力する第2の信号源2212を含む。たとえば、第1の波長λ1は有利には約1,520ナノメータであり、第2の波長λ2は有利には約1,550ナノメータである。2つの信号源2210,2212の出力は波長分割多重化(WDM)カプラ2214を介して合成され、これにより、信号パルスの2つのシーケンスを含む単一の信号ストリームがコリメータ1630に与えられる。
図45Aおよび図45Bのシステムは、第1の検出サブシステム2220と第2の検出サブシステム2222とをさらに含んで、図38Aの単一検出サブシステム1650を置き換える。たとえば、2つの検出サブシステム2220、2222は、有利には、第1の波長λ1および第2の波長λ2の光信号をそれぞれ第1の光ファイバ2232および第2の光ファイバ2234に結合するWDMカプラ2230、光ファイバ2226およびコリメータ2224を介してビームスプリッタ1632の出力に結合される。第1の光ファイバ2232は、第1の波長λ1の光をコリメータ2236を介して第1の検出サブシステム2220に伝播する。第2の光ファイバ2234は、第2の波長λ2の光をコリメータ2238を介して第2の検出サブシステム2222に伝播する。
図45Aおよび図45Bのシステムは、このシステムが、図38Aの単一遅延ループ1344の代わりに、コリメータ1680からファラデー回転ミラー(FRM)1346への遅延経路に2つの遅延ループ2240および2242を含む点でさらに異なっている。特に、第1の遅延ループ2240は、約100マイクロ秒の遅延を与えるより長い遅延ループであり、第2の遅延ループ2242は、約100ナノ秒の遅延を与えるより短い遅延ループである。図示されるように、2つの遅延ループ2240、2242は並列であり、第1のWDMカプラ2244および第2のWDMカプラ2246を介して共通の遅延ファイバ1342に結合される。これにより、偏光ビームスプリッタ1670の第3のポート1676からの光はコリメータ1680を通過し、第1のWDMカプラ2244に入る。第1のWDMカプラ2244は、第1の波長λ1の第1のソース2210からの光を第1の遅延ループ2240に方向付け、第2の波長λ2の第2のソース2212からの光を第2の遅延ループ2242に方向付ける。2つの部分は第2のWDMカプラ2246で再合成され、合成された部分はファラデー回転ミラー1346上に入射する。反射された信号部分は再び第2のWDMカプラ2246で分割され、これにより、波長λ1の部分は第1の(より長い)遅延ループ2240を再び通過し、波長λ2の部分は第2の(より短い)遅延ループ2242を通過する。このように、偏光ビームスプリッタ1670の第3のポート1676に入射する光は、第2の波長λ2の第2のパルスよりも長い遅延だけ遅延された第1の波長λ1の第1のパルスを有する。2つのWDMカプラ2244、2246はかなり広い通過帯域を有し、2つの別個の遅延コイル2240、2242に光を方向付ける。したがって、たとえば、第1の波長λ1を含む1,525ナノメータから1,535ナノメータの光は、有利には、より長い遅延ループ2240に方向付けられる一方、第2の波長λ2を含む1,545ナノメータから1,555ナノメータの光は、有利には、より短い遅延ループ2242に方向付けられる。
以上の説明から、第1の検出回路サブシステム2220が受信する信号は、第1の(より長い)遅延ループ2240を通した遅延によって決まる第1の音響ダイナミックレンジを与え、第2の検出サブシステム2222が受信する信号は、第2の(より短い)遅延ループ2242を通した遅延によって決まる第2の音響ダイナミックレンジを与えることが
わかる。図45Aおよび図45Bのシステムのすべての他の構成要素は、用いられるすべての波長にわたって十分に同じように働くように広帯域であると仮定される。
所与のセンサ中のハイドロホンの位相変調φ(t)は、音響信号振幅に正比例する。サニャックベースTDMアレイにおいて、各センサは繰返し期間τでサンプリングされ、戻り信号は位相差φ(t)−φ(t−Td)である。ここでTdはコイル遅延である。したがって、単一遅延コイルセンサについては、前述のように、所与のセンサの離散的標本化は、以下によって与えられるサンプルSiを与える。
Figure 0004184265
これらから、
φ(iτ)−φ(iτ−Td)=Si+2πni (26)
によって位相差が回復される。式中、Siはアレイによって測定され、niは、現在のおよび以前のサンプルを入力として取るフリンジカウントアルゴリズムFによって計算されるフリンジカウントである。
i=F(Si,Si-1,…) (27)
単一の遅延コイルを備えるマッハ−ツェンダーアレイおよびサニャックアレイについての標準的フリンジカウントアルゴリズムFは以下によって与えられ、
Figure 0004184265
これはサンプル間の位相差を最小化することに基づいている。これは、センサのダイナミックレンジを、フリンジ計数を用いないセンサのダイナミックレンジよりも大幅に拡大する。図45Aおよび図45Bの実施例により、サニャックベースTDMアレイにおけるさらなるより短い遅延ループ2242からの情報を用いて式28の標準的フリンジカウントアルゴリズムの能力を超えてダイナミックレンジを拡大する、改良されたアルゴリズムを使用できるようになる。
上述のように、図45Aおよび図45Bのサニャックベースアレイは、複数の遅延コイル2240、2242を組入れる。広帯域WDMカプラ2244、2246は、かなり広い通過帯域を別個の遅延ループ2240、2242に方向付ける。したがって、開示される実施例では、たとえば1,525ナノメータから1,535ナノメータの範囲の光は、有利には、より長い遅延ループ2240に方向付けられる一方、1,545ナノメータから1,555ナノメータの範囲の光は、有利には、より短い遅延ループ2242に方向付けられる。
Figure 0004184265
Figure 0004184265
式中、δは波長λ1およびλ2からの入力(およびしたがって戻り)信号間の相対的位相を示す。δ=0の場合、2つの波長の入力パルスは入力ファイバで一致する。λ2の入力パルスはλ1の入力パルスに対して遅延されるので、δが増加する。遅延δは、有利には、アルゴリズムの必要性に基づいて任意の値に設定され得る。
Figure 0004184265
なお、式中、pは、より長い遅延ループ時間がτの整数倍であるような整数である。この制約の目的を以下に述べる。
以上の情報に基づき、新たなフリンジ計数アルゴリズムF′が展開されて、複数の遅延ループからの情報を用いて、式28が定義する古い単一遅延コイルアルゴリズムFの能力を超えてダイナミックレンジを増大させる。アルゴリズムは、長い遅延ループ2240から所与のセンサからの信号をプロットすることによって展開される。
Figure 0004184265
図46Aは標準的フリンジ計数アルゴリズムFを示す。アレイは、サンプルS1およびS2を測定し、S1−S2>πであるので、サンプルS2に2πを加え、式28のアルゴリズムに従ってβ(2τ)を回復する。図46Aのプロットは、β(t)の傾きがわかっている場合はβ(2τ)のフリンジカウントをより高い精度をもって計算できることを示す。たとえば、周波数1/τでβ(t)の傾きβ′(t)が測定される場合である。t=τ、t=2τなどでβ′(t)を与えるようにこれらの測定を段階的に行なう(phased)場合、β(2τ)のフリンジカウントを線形外挿形式β(τ)を用いて予測することができる。
Figure 0004184265
測定値S2=β(2τ) mod 2πは、β(2τ)の2π以下部分のより正確な値を与えるが、式32の線形外挿はより正確なので、新たなアルゴリズムF′について、式35に以下に示されるようにフリンジカウントを定める。
終点(t=τ,2τ)の代わりに中点(t=1.5τ)で傾きを用いることも合理的である。実際に、これを行なうことにより、わずかにより高い低周波数ダイナミックレンジおよびわずかにより低い高周波数ダイナミックレンジを有する、実質的に同様の結果を生じる。アルゴリズムはほとんどそれ以上必要ない程度まで低周波数ダイナミックレンジを劇的に増大させたので、わずかにより大きな高周波数ダイナミックレンジを与える終点アルゴリズムを用いることを選択した。
アルゴリズムを完了するため、β′を測定する。これは、第2のより小さな遅延ループ2242の使用によって達成される。β′の測定のプロセスはβ′(iτ)についての以下の式によって開始する。
Figure 0004184265
Figure 0004184265
次に、より短い遅延ループ2240からβ′を測定し、この情報により、式32を用いて、より長い遅延ループ2242からの各サンプルのフリンジカウントを測定する。
Figure 0004184265
ここで、Int(x)はx以下の最大の整数を戻す。
式28の標準的フリンジ計数アルゴリズムFと、式35の新たな2遅延ループ線形外挿アルゴリズムF′との限界を以下に比較する。干渉計センサアレイのダイナミックレンジの正確な分析はかなり複雑かつ困難であるため、単一の性能指数(figure of merit)にならない。簡略化のため、以下の比較は、フリンジカウントエラーが起こらないように周波数の関数としてハイドロホンの最大トーン(tonal)位相振幅を比較する。この分析は、2つのセンサタイプ(マッハ−ツェンダーおよびサニャック)および2つのアルゴリズムの相対的性能を図示する。
標準的フリンジ計数アルゴリズムFから始めて、2つのサンプル間の差の大きさがπを超える場合にフリンジカウントエラーが発生することが示され得る。
|β(t)−β(t−τ)|≧π (36)
ここでは、以前のように、サニャックセンサについてはβ(t)=φ(t)−φ(t−Td)であり、マッハ−ツェンダーセンサについてはβ(t)=φ(t)である。
Figure 0004184265
新たな線形外挿アルゴリズムF′の分析はより複雑である。アルゴリズムがフリンジカウントを正しく計算するためには2つの条件を満たさなければならない。
1.より短い遅延ループ2240ではフリンジカウントエラーがない。より短い遅延ループは標準的フリンジ計数アルゴリズムFを用いて、システム中により長い遅延ループが
存在しないかのようにそのフリンジカウントを計算する。遅延ループ2240の長さが短いため、標準的フリンジ計数アルゴリズムFは、より長い遅延ループにおいてよりも実質的によりよく機能する。
2.線形外挿はフリンジカウントを正確に予測する。線形外挿アルゴリズムF′は、長い遅延ループ2242が測定する位相差が線形に変化すると仮定する。十分に大きな位相差の曲率のためにこの条件は満たされず、アルゴリズムは失敗する。
Figure 0004184265
Figure 0004184265
線形外挿アルゴリズムが機能するためには、式39および式41を満足しなければならない。
Figure 0004184265
図47では、2遅延ループ線形外挿法のために、式39の限界および式41の限界の両者ともを満足しなければならないことに注目されたい。したがって、シミュレーションは2つの曲線の最小に従う。より低い周波数では、シミュレーションは式39の曲線に従い
、より高い周波数では、シミュレーションは式41の曲線に従う。
図47は、線形外挿アルゴリズムが予測されたとおりに振る舞い、かつマッハ−ツェンダーアレイまたは単一遅延ループサニャックアレイで可能であるよりもダイナミックレンジを劇的に増大させる(たとえば、DCから400Hzへの3桁分および1kHzまでの2桁分)ことを示す。
以上は、サニャックベースアレイにおいて2つの遅延ループ2240、2242および2つの波長λ1、λ2を用いて、マッハ−ツェンダーアレイにおいて可能であるよりも既にはるかに大きい、単一遅延コイルで可能であるよりも実質的に高くにセンサのダイナミックレンジを増大させるためのアルゴリズムを記載する。検出可能な最大トーン振幅の改良はかなり大きく、1つの特定の例では、1kHzまでの2桁分以上であると計算される。このアルゴリズムは実現が直接的であり、受信器側で必要なさらなる計算はほとんどない。したがって、これが可能にするダイナミックレンジが必要とされる場合にその実現に対する障壁は非常に少ない。
以上の実施例は超蛍光光源に関連して説明されたことにさらに留意されたい。当業者は、有利には他の光源(たとえばレーザ光源)も用い得ることを認めるであろう。
この発明に従うアレイの以上の説明は水中音響センシングを扱ったが、ファイバ中に非相反位相変調を発生するためになされ得るいかなる測定量も感知するように、この発明を使用可能であることを理解されたい。たとえば、ハイドロホンを異なる測定量に応答する代替的センシング装置で置換えると、アレイは、音響波を検出するのと同じ態様でその測定量を検出するであろう。この発明のアレイは有利には、振動、侵入、衝撃、化学物質、温度、液面および歪みを感知するのに使用可能である。この発明のアレイはまた、(たとえば、船体またはビル外殻に沿うさまざまな点でのさまざまな欠陥の検出のために)同じ場所または異なる場所に設けられる多数の異なるセンサを組合わせるのにも用い得る。他の例示的な用途は、トラフィックのモニタおよび制御のため、高速道路上の走行中の自動車または滑走路上の飛行機の検出および追跡を含む。
この発明の特定の実施例と関連して上述されたが、実施例の説明はこの発明を図示するものであり、制限することを意図しないことを理解されたい。添付の請求項に規定されるように、この発明の真の精神および範囲から逸脱することなく、当業者にはさまざまな変更例および適用例が考えられるであろう。
単一センシングループを有する例示のサニャック干渉計の図である。 センサアレイの各ラングがさらなるサニャック干渉計を形成するこの発明に従うサニャックセンサアレイの図である。 結合損および散逸損に失われた信号出力を再生するためにエルビウムドープトファイバ増幅器を含むサニャックセンサアレイの図である。 3つの主な大洋底ノイズと比べたこの発明に従うサニャック干渉計の周波数の応答のグラフ図である。 広範囲の周波数にわたってサニャック干渉計の比較的一定なダイナミックレンジを示す、マッハ・ツェンダー干渉計によって検出可能な最大および最小音響信号とこの発明に従うサニャック干渉計によって検出可能な最大および最小音響信号とのグラフ図である。 ハイドロホンおよび遅延ループにおいて異なったファイバ長さを有する3つのサニャック干渉計構成についての最小検出可能音響信号対周波数のグラフ図である。 干渉計のダイナミックレンジを増大させるためにさらなる遅延ループを含むこの発明に従うサニャック干渉計の図である。 図7の干渉計によって与えられるダイナミックレンジのグラフ図である。 センサアレイシステムの乾燥した端に干渉計の遅延ループを位置決めする図である。 センサアレイシステムの濡れた端に干渉計の遅延ループを位置決めする図である。 位相変調の効果の計算に用いられる長さを示す注釈付きの図9Bのサニャック干渉計の図である。 遅延ループに対する音波の影響を低減するために遅延ループを巻くための技術の図である。 センサによって生成される信号から減じられ得る分散ピックアップノイズを検出する空ラングを含むこの発明に従うサニャック干渉計の図である。 偏光誘導フェージングの効果を低減するために減偏光子を含むこの発明に従うサニャック干渉計の図である。 周波数分割多重伝送方式を利用するサニャック干渉計の図である。 図14の干渉計における遅延変調信号と戻りセンサ信号との間のビート信号の生成を示すグラフ図である。 コード分割多重伝送方式を利用するサニャック干渉計の図である。 折畳みサニャック音響ファイバセンサアレイの構成図である。 信号パルスおよびノイズパルスの時間の分離を示す、時間間隔当りの戻りパルスの数のグラフ図である。 拡大されたダイナミックレンジを与えるために第2の遅延ループを有する折畳みサニャック音響ファイバセンサアレイの図である。 図17のリフレクタの代わりに位相変調器およびヌル化回路を有する折畳みサニャック音響ファイバセンサアレイの図である。 2つの遅延ループがカプラの異なったポートに接続されている図19のさらなる代替の実施例の図である。 ファラデー回転ミラーを用いる光ファイバ音響センサアレイシステムの代替的実施例の図である。 減偏光子、偏光ビームスプリッタおよびファラデー回転ミラーと組合せて非偏光源を利用する光ファイバ音響センサアレイのさらなる代替の実施例の図である。 減偏光子、偏光ビームスプリッタおよびファラデー回転ミラーと組合せて非偏光源を利用する光ファイバ音響センサアレイのさらなる代替の実施例の図である。 減偏光子、偏光ビームスプリッタおよびファラデー回転ミラーと組合せて非偏光源を利用する光ファイバ音響センサアレイのさらなる代替の実施例の図である。 光サーキュレータ、2×2カプラ、および非相反位相シフタと組合せて非偏光源を利用する折畳み光ファイバ音響センサアレイの代替の実施例の図である。 減偏光子が第2のアレイ入力/出力ファイバに置かれている、図24と同様の折畳み光ファイバ音響センサアレイの代替の実施例の図である。 第1の方向に位相シフタを通って伝播する光の偏光に対する効果を示す、図24および図25の非相反π/2位相シフタの第1の好ましい実施例の図である。 図26の位相シフタを通って第2の(反対の)方向に伝播する光の偏光に対する効果の図である。 第1の方向に位相シフタを通って伝播する光の偏光に対する効果を示す、図24および図25の非相反π/2位相シフタの代替の好ましい実施例の図である。 図28の位相シフタを通って第2の(反対の)方向に伝播する光の偏光に対する効果の図である。 各検出器が他の検出器のバイアス点と独立して設定可能であるバイアス点を有する、複数の検出器に対して偏光ベースのバイアスを利用する折畳み光ファイバ音響センサアレイのさらなる代替の実施例の図である。 減偏光子が第2のアレイ入力/出力ファイバに置かれている、図30と同様の折畳み光ファイバ音響センサアレイの代替の実施例の図である。 光サーキュレータが2×2カプラと置き換わっている、図30と同様の折畳み光ファイバ音響センサアレイの代替の実施例の図である。 減偏光子が第2のアレイ入力/出力ファイバに置かれている、図32と同様の折畳み光ファイバ音響センサアレイの代替の実施例の図である。 組合された入力/出力サブシステムを含む折畳みサニャックセンサアレイのさらなる代替の実施例の図である。 減偏光子が第2のアレイ入力/出力ファイバに置かれている、図34と同様の折畳み光ファイバ音響センサアレイの代替の実施例の図である。 検出器が光ファイバによって入力/出力サブシステムに結合され検出器が遠隔に置かれることを可能にしている、図34および図35と同様の折畳み光ファイバ音響センサアレイのさらなる代替の実施例の図である。 図30−36に記載のフロントエンドシステムと組合せて用いるための16センサアレイの代替的実施例を示す図である。 図30−36に記載のフロントエンドシステムと組合せて用いるための16センサアレイの代替的実施例を示す図である。 図30−36に記載のフロントエンドシステムと組合せて用いるための16センサアレイの代替的実施例を示す図である。 図30−36と関連して上述されたシステムと同様の偏光ベースフロントエンドを用いる増幅ツリー構造遠隔測定中に16個のセンサを含む代替的センサアレイを示す図である。 図30−36と関連して上述されたシステムと同様の偏光ベースのフロントエンドを用いる増幅ツリー構造遠隔測定中に16個のセンサを含む代替的センサアレイを示す図である。 50ナノ秒のパルス幅および0.942MHzの繰返し周波数(1.06マイクロ秒間隔)について、図38Aの検出器のうち1つで測定された戻りパルストレインを示す図である。 50ナノ秒のパルス幅および1.042MHzの繰返し周波数(0.96マイクロ秒間隔)について、図38Aの検出器のうち1つで測定された戻りパルストレインを示す図である。 πよりも大きいピーク・トゥ・ピーク位相変調がセンサと直列のPZTトランスデューサに誘導される場合に、図38Bのセンサのうち1つから検出される測定電力を表わすオシロスコープトレースを示す図である。 図38Bのアレイの入力/出力ファイバのうち1つに位置決めされる共通偏光コントローラの8つのランダムな設定について、図40Aに従うセンサの視感度を測定した結果を示す図である。 ファイバを巻きつけられたPZTを用いて音響信号をシミュレートし、図38Aのソースからコリメータへの信号経路中の、ニオブ酸リチウム変調器を用いるソースからの光信号上に3.6kHzの振幅変調が置かれた場合の、単一検出器構成からの検出された応答の測定結果を示す図である。 1.4μAのDC源電流について、センサ計数の関数として検出器(受信器)で測定されたノイズに対するソースパワーの影響を示す図である。 4.05μAのDC源電流についてセンサ計数の関数として検出器(受信器)での測定されたノイズに対するソースパワーの影響を図示する図である。 9.89μAのDC源電流についてのセンサ計数の関数として検出器(受信器)での測定されたノイズに対するソースパワーの影響を示す図である。 1秒の積分時間での検出可能最小音響信号のプロットを図示し、かつ50マイクロ秒の遅延ループを通した遅延時間について1rad/√Hz位相信号を発生するものとして定義される検出可能最大信号のプロットも図示する図である。 1秒の積分時間での検出可能最小音響信号のプロットを図示し、かつ図43Aと同じパラメータについて、しかし500ナノ秒の遅延ループを通した遅延時間について1rad/√Hz位相信号を発生するものとして定義される検出可能最大信号のプロットも図示する図である。 図38Bのセンサのうち1つに適用される音響信号が引起す、センサの位相変化を示す図である。 より長い遅延ループを通って進む信号についての、図44Aの位相信号による誘導位相差のプロットの図である。 より短い遅延ループを通って進む信号についての、図44Aの位相信号による誘導位相差のプロットの図である。 図45Aのフロントエンドが第1の波長λ1の光信号パルスの第1のシーケンスを出力する第1の信号源と、第2の波長λ2の光信号パルスの第2のシーケンスを出力する第2の信号源とを含み、かつ第1の波長の光信号パルスのための第1の遅延ループと、第2の波長の光信号パルスのための第2の遅延ループとを含むことを除いて図38Aのフロントエンドと同様の、音響センサアレイのフロントエンドを示す図である。 図45Aのフロントエンドに接続される音響センサアレイを示す図である。 図45Aのより長い遅延ループを通過する、所与のセンサからの信号のプロットの図である。 線形外挿を用いて図46Aのプロットからのβ(2τ)のフリンジカウントを予測する図である。
Figure 0004184265

Claims (4)

  1. 第1および第2のダイナミックレンジにわたって摂動を感知するセンサシステムであって、
    第1の波長の入力光パルス源と、
    第2の波長の入力光パルス源と、
    センサのアレイと、
    第1の波長の第1の光遅延経路と、
    第2の波長の第2の光遅延経路と、
    第1の波長の光に応答する第1の検出システムと、
    第2の波長の光に応答する第2の検出システムと、
    第1の波長および第2の波長の入力光パルスを受ける入力/出力システムとを含み、該入力/出力システムは、第1の偏光を有する第1の波長の各光パルスの第1の部分を方向付けて、第1の方向のセンサのアレイを通り、次に第1の光遅延経路を通り、次に第1の検出システムに達するようにし、該入力/出力システムは、第1の偏光と直交する第2の偏光の第1の波長の各光パルスの第2の部分を方向付けて、第1の光遅延経路を通り、次に第2の方向のセンサのアレイを通り、次に第1の検出システムに達するようにし、該第1の検出システムは、第1のダイナミックレンジにわたって変化する摂動が引起こす受光の変化を検出し、該入力/出力システムは、第1の偏光を有する第2の波長の各光パルスの第1の部分を方向付けて、第1の方向のセンサのアレイを通り、次に第2の光遅延経路を通り、次に第2の検出システムに達するようにし、該入力/出力システムは、第1の偏光と直交する第2の偏光の第2の波長の各光パルスの第2の部分を方向付けて、第2の光遅延経路を通り、次に第2の方向のセンサのアレイを通り、次に第2の検出システムに達するようにし、該第2の検出システムは、第2のダイナミックレンジにわたって変化する摂動が引起こす受光の変化を検出する、センサシステム。
  2. 第1および第2のダイナミックレンジにわたって音響信号を感知する音響センサシステムであって、
    第1の波長の入力光パルス源と、
    第2の波長の入力光パルス源と、
    音響センサのアレイと、
    第1の波長の第1の光遅延経路と、
    第2の波長の第2の光遅延経路と、
    第1の波長の光に応答する第1の検出システムと、
    第2の波長の光に応答する第2の検出システムと、
    第1の波長および第2の波長の入力光パルスを受ける入力/出力システムとを含み、該入力/出力システムは、第1の偏光を有する第1の波長の各光パルスの第1の部分を方向付けて、第1の方向の音響センサのアレイを通り、次に第1の光遅延経路を通り、次に第1の検出システムに達するようにし、該入力/出力システムは、第1の偏光と直交する第2の偏光の第1の波長の各光パルスの第2の部分を方向付けて、第1の光遅延経路を通り、次に第2の方向の音響センサのアレイを通り、次に第1の検出システムに達するようにし、該第1の検出システムは、第1のダイナミックレンジにわたって変化する音響信号が引起こす受光の変化を検出し、該入力/出力システムは、第1の偏光を有する第2の波長の各光パルスの第1の部分を方向付けて、第1の方向の音響センサのアレイを通り、次に第2の光遅延経路を通り、次に第2の検出システムに達するようにし、該入力/出力システムは、第1の偏光と直交する第2の偏光の第2の波長の各光パルスの第2の部分を方向付けて、第2の光遅延経路を通り、次に第2の方向の音響センサのアレイを通り、次に第2の検出システムに達するようにし、該第2の検出システムは、第2のダイナミックレンジにわたって変化する音響信号が引起こす受光の変化を検出する、音響センサシステム。
  3. 摂動を感知する方法であって、
    第1の波長の光パルスをセンサのアレイに入力するステップを含み、該センサのアレイは第1の波長の第1の光遅延経路を含み、さらに
    第2の波長の光パルスをセンサのアレイに入力するステップを含み、該センサのアレイは第2の波長の第2の光遅延経路を含み、第2の光遅延経路は第1の光遅延経路とは異なる光路長を有し、さらに
    第1の方向のセンサのアレイを通り、次に第1の光遅延経路を通るように、第1の偏光を有する第1の波長の各光パルスの第1の部分を方向付けるステップと、
    第1の光遅延経路を通り、次に第2の方向のセンサのアレイを通るように、第1の偏光と直交する第2の偏光の第1の波長の各光パルスの第2の部分を方向付けるステップと、
    第1のダイナミックレンジにわたって変化する摂動が引起こす、第1の波長の各光パルスの第1および第2の部分の変化を検出するステップと、
    第1の方向のセンサのアレイを通り、次に第2の光遅延経路を通るように、第1の偏光を有する第2の波長の各光パルスの第1の部分を方向付けるステップと、
    第2の光遅延経路を通り、次に第2の方向のセンサのアレイを通るように、第1の偏光と直交する第2の偏光の第2の波長の各光パルスの第2の部分を方向付けるステップと、
    第2のダイナミックレンジにわたって変化する摂動が引起こす、第2の波長の各光パルスの第1および第2の部分の変化を検出するステップとを含む、方法。
  4. 摂動は音響信号である、請求項3に記載の方法。
JP2003519358A 2001-08-10 2002-08-07 2つの遅延コイルからの光信号を処理してサニャックベース光ファイバセンサアレイのダイナミックレンジを増大させる装置および方法 Expired - Fee Related JP4184265B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US31175701P 2001-08-10 2001-08-10
US31187401P 2001-08-13 2001-08-13
US35565702P 2002-02-07 2002-02-07
PCT/US2002/025246 WO2003014674A2 (en) 2001-08-10 2002-08-07 Two delay coil sagnac-based sensor array

Publications (2)

Publication Number Publication Date
JP2004537734A JP2004537734A (ja) 2004-12-16
JP4184265B2 true JP4184265B2 (ja) 2008-11-19

Family

ID=27405529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003519358A Expired - Fee Related JP4184265B2 (ja) 2001-08-10 2002-08-07 2つの遅延コイルからの光信号を処理してサニャックベース光ファイバセンサアレイのダイナミックレンジを増大させる装置および方法

Country Status (6)

Country Link
EP (1) EP1423986B1 (ja)
JP (1) JP4184265B2 (ja)
KR (1) KR100850401B1 (ja)
CA (1) CA2457531C (ja)
NO (1) NO338813B1 (ja)
WO (1) WO2003014674A2 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7667849B2 (en) 2003-09-30 2010-02-23 British Telecommunications Public Limited Company Optical sensor with interferometer for sensing external physical disturbance of optical communications link
GB0322859D0 (en) 2003-09-30 2003-10-29 British Telecomm Communication
EP1794904A1 (en) 2004-09-30 2007-06-13 British Telecommunications Public Limited Company Identifying or locating waveguides
GB0421747D0 (en) 2004-09-30 2004-11-03 British Telecomm Distributed backscattering
CA2589792A1 (en) 2004-12-17 2006-06-22 British Telecommunications Public Limited Company Assessing a network
GB0427733D0 (en) * 2004-12-17 2005-01-19 British Telecomm Optical system
GB0504579D0 (en) 2005-03-04 2005-04-13 British Telecomm Communications system
ATE434774T1 (de) 2005-03-04 2009-07-15 British Telecomm Akustooptische modulatoranordnung
EP1708388A1 (en) 2005-03-31 2006-10-04 British Telecommunications Public Limited Company Communicating information
EP1713301A1 (en) 2005-04-14 2006-10-18 BRITISH TELECOMMUNICATIONS public limited company Method and apparatus for communicating sound over an optical link
EP1729096A1 (en) 2005-06-02 2006-12-06 BRITISH TELECOMMUNICATIONS public limited company Method and apparatus for determining the position of a disturbance in an optical fibre
CA2643344A1 (en) 2006-02-24 2007-08-30 British Telecommunications Public Limited Company Sensing a disturbance
CA2643345A1 (en) 2006-02-24 2007-08-30 British Telecommunications Public Limited Company Sensing a disturbance
EP1826924A1 (en) 2006-02-24 2007-08-29 BRITISH TELECOMMUNICATIONS public limited company Sensing a disturbance
US8670662B2 (en) 2006-04-03 2014-03-11 British Telecommunications Public Limited Company Evaluating the position of an optical fiber disturbance
CN100470191C (zh) * 2007-02-13 2009-03-18 中国科学院上海光学精密机械研究所 全光纤斐索干涉共焦测量装置
GB0810977D0 (en) 2008-06-16 2008-07-23 Qinetiq Ltd Phase based sensing
KR101981707B1 (ko) * 2016-11-07 2019-05-24 서강대학교산학협력단 편광 빛살가르게를 이용한 자유공간 사냑 간섭계
CN110995357A (zh) * 2019-12-02 2020-04-10 大连理工大学 一种新型高鲁棒水下光通信系统
CN111157102B (zh) * 2020-01-02 2022-03-08 河海大学常州校区 一种分布式光纤传感系统中消除频率干扰的定位方法
RU2752686C1 (ru) * 2020-12-29 2021-07-29 Андрей Андреевич Жирнов Основанный на интерферометре саньяка распределённый датчик регистрации вибрационных воздействий с повышенной точностью определения координаты воздействия

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278657B1 (en) * 1998-04-03 2001-08-21 The Board Of Trustees Of The Leland Stanford Junior University Folded sagnac sensor array
US6034924A (en) 1998-04-03 2000-03-07 The Board Of Trustees Of The Leland Stanford Junior Univerisity Folded sagnac sensor array
US6269198B1 (en) * 1999-10-29 2001-07-31 Litton Systems, Inc. Acoustic sensing system for downhole seismic applications utilizing an array of fiber optic sensors

Also Published As

Publication number Publication date
EP1423986B1 (en) 2017-10-04
KR100850401B1 (ko) 2008-08-04
CA2457531A1 (en) 2003-02-20
NO20040586L (no) 2004-03-31
CA2457531C (en) 2009-12-08
EP1423986A4 (en) 2006-07-26
JP2004537734A (ja) 2004-12-16
EP1423986A2 (en) 2004-06-02
WO2003014674A2 (en) 2003-02-20
KR20040047788A (ko) 2004-06-05
NO338813B1 (no) 2016-10-24
WO2003014674A3 (en) 2003-08-28

Similar Documents

Publication Publication Date Title
JP4944268B2 (ja) 音響センサ、音響信号を検出する方法およびセンサ
US6667935B2 (en) Apparatus and method for processing optical signals from two delay coils to increase the dynamic range of a sagnac-based fiber optic sensor array
JP4184265B2 (ja) 2つの遅延コイルからの光信号を処理してサニャックベース光ファイバセンサアレイのダイナミックレンジを増大させる装置および方法
JP4181748B2 (ja) 折返しサニャックセンサアレイ
JP4181747B2 (ja) サニャック干渉計に基づく光ファイバ音響センサアレイ
US6678211B2 (en) Amplified tree structure technology for fiber optic sensor arrays
AU2001252893A1 (en) Folded sagnac sensor array
EP1496723B1 (en) Fiber optic sensor array based on sagnac interferometer
JP4184266B2 (ja) 光ファイバセンサアレイのための増幅ツリー構造技術
AU2002326577B2 (en) Amplified tree structure technology for fiber optic sensor arrays
AU2002324652B2 (en) Two delay coil Sagnac-based sensor array
AU2002326577A1 (en) Amplified tree structure technology for fiber optic sensor arrays
AU2002324652A1 (en) Two delay coil Sagnac-based sensor array

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080903

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees