JP4182281B2 - Exhaust gas purification control device for internal combustion engine - Google Patents

Exhaust gas purification control device for internal combustion engine Download PDF

Info

Publication number
JP4182281B2
JP4182281B2 JP2002210086A JP2002210086A JP4182281B2 JP 4182281 B2 JP4182281 B2 JP 4182281B2 JP 2002210086 A JP2002210086 A JP 2002210086A JP 2002210086 A JP2002210086 A JP 2002210086A JP 4182281 B2 JP4182281 B2 JP 4182281B2
Authority
JP
Japan
Prior art keywords
temperature
poisoning
catalyst
cylinder group
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002210086A
Other languages
Japanese (ja)
Other versions
JP2004052641A (en
Inventor
亮和 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002210086A priority Critical patent/JP4182281B2/en
Publication of JP2004052641A publication Critical patent/JP2004052641A/en
Application granted granted Critical
Publication of JP4182281B2 publication Critical patent/JP4182281B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気浄化装置に関し、詳しくは、排気浄化触媒へ付着する被毒物質を解除する制御に関する。
【0002】
【従来の技術】
特開平11−303622号に開示されるものでは、排気浄化触媒に付着する被毒物質であるSOx(イオウ酸化物)を放出・還元(解除)するとき、空燃比をリッチ化すると同時に、排気温度を上昇させるために、点火時期をリタードしており、該SOxの解除を行う期間は時間で管理されている。
【0003】
【発明が解決しようとする課題】
上記従来技術では、排気系温度が気筒群毎に異なる場合、SOxの解除開始後、速やかにSOx解除可能温度まで上昇させることができない。すなわち、2つの気筒群の各排気通路にそれぞれ触媒を備えたシステム(2in2システム)の場合を考えると、排気系温度が高い方は速やかにSOx解除可能温度に達するのに対して、排気系温度が低い方はSOx解除可能温度に達するのが遅れ、解除量に気筒群差を生じる。
【0004】
SOx解除の期間を一律に時間で管理すると、一方の気筒群は被毒解除時間が実際の解除状態と乖離する。すなわち、温度が低い気筒群に解除時間をあわせると燃費が悪化し、温度が高い気筒群に解除時間をあわせると温度が低い側の気筒群のSOx解除が不十分となる。
また、2つの気筒群の各排気通路の合流部下流側の排気通路に1個の触媒を備えたシステム(2in1システム)の場合を考えると、排気系温度が低い方が足を引張って、速やかにSOx解除可能温度まで上昇させることができず、SOx解除期間が長くなって燃費が悪化する。また、各気筒群からの排気が十分に混合されないまま偏流して触媒に導入されることにより、触媒内部で領域毎に被毒解除性能に差を生じ、2in2システムの場合と同様に解除時間を長くすると燃費が悪化し、解除時間を短くするとSOx解除が不十分となって両立を図れない。
【0005】
本発明は、このような従来の課題に着目してなされたもので、被毒解除が開始されるときの気筒群間の温度差を無くすことにより、被毒解除性能を向上させることを目的とする。
【0006】
【課題を解決するための手段】
このため、本発明は、気筒群毎にそれぞれ排気浄化用の触媒を備えた内燃機関において、以下の制御を行う。
すなわち、各触媒に付着した被毒物質を解除する制御を行う際に、該被毒物質が解除される前に気筒群間の触媒温度の差が小さくなるように、触媒温度が低い方の気筒群の触媒温度を上昇させる制御を行う。
【0007】
このようにすれば、気筒群毎の触媒温度が同等となってから被毒物質の解除が開始されるので、気筒群間で解除性能格差が無くなり、全気筒群で短時間で確実に被毒解除を完了することができる。
また、別の発明は、気筒群毎の排気通路の合流部下流側に排気浄化用の触媒を備えた内燃機関において、以下の制御を行う。
【0008】
すなわち上記触媒に付着した被毒物質を解除する制御時を行う際に、該被毒物質の解除が開始される前に、各気筒群から前記触媒に導入される排気の温度差が小さくなるように、温度が低い方の気筒群の温度を上昇させる制御を行う。
このようにすれば、低温側の気筒群の排気温度を高温側の気筒群の排気温度と同等となるまで上昇させてから、被毒物質の解除が開始されるので、被毒解除完了期間を短縮でき、燃費も向上する。また、触媒内部での領域毎の性能格差も無くなり、より被毒解除性能が向上する。
【0009】
【発明の実施の形態】
以下に、本発明の実施形態を図に基づいて説明する。
図1に本発明の第1の実施形態におけるシステム図を示す。気筒群別に排気系を有する内燃機関1(図1ではその例としてV型6気筒機関を示す)において、一方の気筒群は、排気通路2に上流側のFr触媒3及び下流側のRr触媒4が直列に配置され、他方の気筒群は、同様に排気通路5に上流側のFr触媒6及び下流側のRr触媒7が直列に配置されている(2in2システム)。
【0010】
排気通路2にはEGRガスを搾取するためのEGR通路8が設けられ、EGRガスの流量は前記EGR通路8に介装されたEGRバルブ9で制御される。前記上流側の各Fr触媒3,6は、理論空燃比近傍で良好な浄化性能を発揮する三元触媒を用い、下流側の各Rr触媒4,7として、NOxトラップ触媒を用いる。該NOxトラップ触媒は、排気空燃比がリーンであるときに排気中のNOxをトラップし、排気空燃比が理論空燃比又はリッチであるときに前記トラップしたNOxを放出して三元触媒層で還元処理する触媒(NOxトラップ型三元触媒)である。
【0011】
上記システムにおいてEGRガスの導入はFr触媒3の上流側からでもよいし、その下流側排気通路からでもよいが、一方のバンクのNOxトラップ触媒で構成されるRr触媒4の上流側からEGRガスが搾取されることにより、該Rr触媒4の温度は、EGRガスが搾取されない他方のバンクのRr触媒7に比較して、触媒を流れる排気の流量がEGRガス分減少することにより低温となる。
【0012】
そこで、上記バンク間の触媒温度差の影響を解消しつつ触媒(主としてNOxトラップ触媒である下流側の各触媒4,7)に付着するSOx(被毒物質)を解除する制御を以下のように実行する。
上記システムにおける被毒解除制御を図2以下に示したフローチャートに従って説明する。
【0013】
図2は、各触媒のSOx付着量(以下被毒量という)を推定しつつ所定のタイミングで被毒解除制御を実行する一連の制御のメインフローを示す。
ステップ101では、各触媒の被毒量を推定して、被毒解除が必要か否かを判断してフラグSOXFULの値を設定し、ステップ102で該フラグSOXFULの値に基づいて、被毒解除の要否を判定する。
【0014】
ステップ102で被毒解除が必要と判定された場合は、ステップ103で被毒解除制御への移行可否の判断を行ってフラグFSOXLSの値を設定し、ステップ104でフラグFSOXLSの値に基づいて被毒解除制御への移行が可能な機関運転状態かを判定する。
ステップ104で被毒解除制御への移行が可能と判定された場合は、ステップ105で被毒解除制御を開始する。ここでは、排気温度の上昇、排気空燃比のリッチ化を行う。
【0015】
ステップ106では被毒量カウンタの減算可否を判断する。ここでは、NOxトラップ触媒の温度状態により被毒量カウンタの減算が可能か否かを判断してフラグFSOXCDの値を設定する。
ステップ107でフラグFSOXCDの値に基づいて被毒量カウンタの減算の可否を判定し、減算可能と判定された場合はステップ108で被毒解除終了を判断する。具体的には、単位時間あたりの被毒解除量を算出して被毒量の推定値を減算しつつ該被毒量の推定値が所定値以下となったときに、被毒解除制御を終了と判断してフラグSOXFULを1にセットする。
【0016】
ステップ108でフラグSOXFULの値に基づいて被毒解除制御終了を判定し、フラグSOXFUL=1となったときにこのフローを終了する。
図3は、前記図2のステップ101での被毒解除時期判定フローを示す。
ステップ201では、機関運転状態として車速(VSP)、機関回転速度(RPM)、負荷(T)を読み込む。
【0017】
ステップ202では、前記運転状態に基づいて触媒の単位時間当たりの被毒量△SOXを積算し、この積算値を現在の被毒量TSOXとして算出する。
ステップ203では、前記被毒量TSOXを被毒判定量SOXFULと比較し、TSOX≧SOXFULと判定されたときに、被毒量が被毒解除制御を要する量に達したと判断し、ステップ204へ進んで被毒解除要求フラグFSOXFUL=1とし被毒解除制御要求をセットする。
【0018】
また、前記ステップ203でTSOX<SOXFULと判定された場合は、被毒量が被毒解除制御を要する量に達していないと判断し、ステップ205へ進んでフラグFSOXFUL=0とし、被毒解除制御要求を拒否する。
図4は、前記図2のステップ103での被毒解除制御移行判断フローを示す。ステップ301では、機関運転状態として車速(VSP)、機関回転速度(RPM)、負荷(T)を読み込む。
【0019】
ステップ302、303、304では、順次車速、機関回転速度、負荷がそれぞれ被毒解除制御へ移行可能な領域内であるかを判定する。
各条件が全て肯定(領域内にあると判定)された場合は、ステップ305で被毒解除実行フラグFSOXRLSを1にセットし解除制御実行を許可する。
ステップ302、303、304にて各条件が否定された場合はステップ306で被毒解除実行フラグFSOXRLS=0として解除実行を拒否する。
【0020】
図5に、図2のステップ105で実行する本発明にかかる被毒解除制御フローを示す。
ステップ401では、機関運転状態として車速(VSP)、機関回転速度(RPM)、負荷(T)、吸入空気量(Q)を読み込む。
ステップ402では、EGR搾取側気筒群(以下、バンク1という)の点火時期をリタードする。この時の点火時期リタード量はNOxトラップの被毒解除可能温度となるようなリタード量とし、リタード量の算出はステップ401にて読込んだ機関運転状態により決定される。
【0021】
ステップ403ではEGR非導入気筒群(以下、バンク2という)の点火時期をリタードする。この点火時期リタード量もバンク1と同様に決定する。
点火時期リタードと同時に、ステップ404でEGRを停止し、ステップ405で排気空燃比をリッチ化する。
ステップ406では、バンク1のFr触媒3の温度TEMP1を算出する。このTEMP1の算出は、ステップ401で読込んだ機関運転状態を基に推定できるが、触媒上流または下流に設けた温度センサによる排気温度から推定してもよく、直接触媒の温度をセンサにて測定した値を用いてもよい。
【0022】
ステップ407では、バンク2のFr触媒6の触媒温度TEMP2を算出する。このTEMP2もTEMP1と同様に、機関運転状態、もしくは温度センサにより算出される。
ステップ408では、算出されたTEMP1及びTEMP2により、各バンクの温度比較を行う。具体的には、高温側バンクの温度TEMP2と低温側バンクの温度TEMP1との温度差(TEMP2−TEMP1)が所定値TEMPA以上のときは、温度差が大きく、所定値TEMPA未満となったときにほぼ同一温度になったと判断する。
【0023】
ステップ408で、被毒解除制御開始後、バンク間の触媒温度差が大きいと判定されている間は、ステップ409へ進み、低温側バンク1の点火時期リタード量を更に追加し、バンク1のみをより昇温させる点火時期制御を行い、ほぼ同一温度になったと判定されたときに、ステップ409をジャンプして低温側バンク1の点火時期リタード量の追加を停止し、ステップ402で設定されるリタード量に戻し、高温側バンクと同一のリタード量とする。
【0024】
図6は、図2のステップ106で実行する被毒量減算可否判断のフローを示す。
ステップ601では、機関運転状態として車速(VSP)、機関回転速度(RPM)、負荷(T)、吸入空気量(Q)を読み込む。
ステップ602では、ステップ601で読み込んだ機関運転状態を基に、NOxトラップ触媒であるRr触媒の触媒温度TEMPRの推定を行う。ここで、ステップ602で推定される触媒温度は、ステップ601で読込んだ機関運転状態を基に推定できるが、触媒上流または下流に設けた温度センサによる排気温度から推定してもよく、直接触媒の温度をセンサにて測定した値を用いてもよい。
【0025】
推定された触媒温度TEMPRはステップ603にて被毒量減算許可温度SOXTEMPとの大小比較が行われる。
ステップ603で、触媒温度TEMPRが被毒量減算許可温度SOXTEMP未満と判定された場合はカウンタ減算を不許可とするため、ステップ605で減算許可フラグFSOXCDを0にセットする。
【0026】
ステップ603で、触媒温度TEMPRが被毒量減算許可温度SOXTEMP以上と判定された場合は、ステップ604で減算許可フラグFSOXCDに1をセットし、被毒量カウンタの減算を許可する。
図7は、被毒解除制御の終了判定フローを示す。
ステップ701では、機関運転状態として車速(VSP)、機関回転速度(RPM)、負荷(T)、吸入空気量(Q)を読み込む。
【0027】
ステップ702では、前記機関運転状態に基づいて、単位時間当たりの被毒解除量MSOXを算出する。
ステップ703では、次式により被毒量TSOXを算出する。
TSOX=TSOXold+ΔSOX−MSOX
ここで、TSOXoldは被毒量TSOXの前回算出値である。被毒解除量MSOXは、被毒解除制御中の被毒量△SOXに対して非常に大きな値となるため、TSOXは減算されていく。
【0028】
ステップ704では、算出された被毒量TSOXが解除制御終了判定値SOXMIN以下となったかにより解除制御終了を判定する。
ステップ704で、TSOX>SOXMIN、つまり、まだ解除制御終了となっていないと判定されたときは、ステップ701へ戻って、被毒解除制御を継続する。
【0029】
ステップ704で、TSOX≦SOXMIN、つまり、まだ解除制御終了と判定されたときは、ステップ705〜707でフラグSOXFUL、FSOXRSL、FSOXCDを順次0にセットし、被毒解除制御を終了する。
図8は、本第1の実施形態における被毒解除制御時の様子を示す。被毒解除制御の要求と同時にEGRが停止され、かつ、空燃比のリッチ化制御を行って排気空燃比がリッチ化されると共に、点火時期がリタード制御されて被毒解除制御が開始されるが、該被毒解除制御と並行して、EGR搾取側の点火時期リタード量をEGR非搾取側のリタード量より大きくして排気温度を上昇させる。これにより、両バンク(気筒群)のNOxトラップ触媒であるRr触媒4とRr触媒7との温度差を速やかに縮めつつ温度差が無くなった後、被毒解除が可能な温度に到達し、被毒解除が両気筒群で同時に開始される。
【0030】
したがって、気筒群間で被毒解除性能が同等で、かつ、速やかに被毒解除を開始させて短時間で被毒解除制御を終了させることができ、もって、燃費を良好に維持しつつ排気浄化性能を十分に向上できる。
図9は、気筒群間の触媒温度差の影響を考慮することなく、被毒解除要求後、各気筒群に触媒温度差を無くす制御を行うことなく、同一の制御を行った場合の様子を比較例として示す。この場合は、EGR非搾取側気筒群のRr触媒の方が、EGR搾取側気筒群のRr触媒より先に、被毒解除可能温度に達し、空燃比リッチ制御及び点火時期リタード制御の被毒解除制御は既に開始されているので、このときから実際の被毒解除が開始される。これ対し、EGR搾取側気筒群のRr触媒は、まだ、被毒解除可能温度に達しないので、被毒解除が開始されず、気筒群間の性能に差を生じる。被毒量TSOXの算出も触媒温度を考慮しない場合は、被毒解除制御要求と同時に減算が開始されてしまうので実際値と相違し、正しく算出したとしても、該被毒量TSOXの算出値に基づいて両気筒群で被毒解除制御を同時に終了させるので、EGR搾取側気筒群のRr触媒の被毒解除制御時間が足りずに被毒解除量が不足するか、あるいは逆に、過剰に被毒解除制御が長引いて燃費や運転性能を悪化させたりする。
【0031】
また、上記実施形態では、温度が低い方の気筒群(バンク1)の点火時期を、所定期間、温度が高い方の気筒群(バンク2)よりもリタードする構成としたことにより、応答性良く排気温度を上昇させて低温側の触媒温度を速やかに高温側の触媒温度に近づけることができる。
また、特に、各気筒群の触媒温度がほぼ同じになるまで、温度が低い方の気筒群の点火時期を温度が高い方の気筒群よりもリタードする構成としたことにより、必要かつ十分なだけリタードに差を持たせた制御が行われ、運転性能も良好に満たせる。
【0032】
また、各気筒群(バンク1,2)それぞれに前記触媒(Rr触媒4,7)より上流側にフロント触媒(Fr触媒3,6)を更に備えており、これらフロント触媒の温度がほぼ同じになるまで、温度が低い方の気筒群の点火時期を温度が高い方の気筒詳よりもリタードする構成としたことにより、被毒解除を行う下流側の触媒(Rr触媒4,7)についても温度がほぼ同じになるまで、リタードに差を持たせた制御が行われる。
【0033】
また、気筒群間の触媒温度差が所定値(TEMPA)以上であることを条件に、温度が低い方の気筒群の点火時期を、所定期間、温度が高い方の気筒群よりもリタードする構成としたことにより、温度検出バラツキなどの影響を受けることなく、必要最小限の期間だけ、リタードに差を持たせた制御が行われる。
また、被毒物質を解除する制御として、点火時期のリタードと、空燃比のリッチ化を行う構成としたことにより、被毒解除に必要な昇温と還元剤供与の条件を満たして良好な性能を得られる。
【0034】
また、被毒物質を解除する制御要求がでると、被毒物質の解除が開始される前に、温度が高い方の気筒群の点火時期を被毒物質を解除する制御のリタード量に設定し、温度が低い方の気筒群の点火時期をこれよりもリタード側に設定する構成としたことにより、高温側、低温側の気筒群共に被毒物質の解除が開始される前から点火時期リタード制御を開始して排気温度を上昇させることにより、被毒解除開始時期を早めつつ、低温側のリタード量をより大きくすることで、低温側の触媒温度を速やかに高温側の触媒温度に近づけることができる。
【0035】
また、各気筒群の触媒温度がほぼ同じになった後、温度が低かった方の気筒群の点火時期を被毒物質を解除する制御の点火時期までリタード量を戻す構成としたことにより、低温側気筒群が高温側気筒群と同温状態となった後は、被毒解除に適切なリタード量に制御されて良好な解除性能が得られる。
また、各気筒群の触媒温度がほぼ同じになった後、各気筒群の点火時期のリタード量を同一にすることにより、各気筒群で同等の被毒解除性能が得られる。
【0036】
また、一方の気筒群から吸気系に排気を還流するEGR装置を備える構成の機関に適用したことにより、EGR搾取側気筒群がEGR非搾取気筒群に対して低温となることによる被毒解除性能の低下を効果的に防止できる。
また、被毒物質を解除する要求がでると、被毒物質の解除が開始される前に、EGRを停止すると共に、温度が高い方の気筒群の点火時期を被毒物質が解除されるときのリタード量に設定し、温度が高い方の気筒群の点火時期をこれよりもリタード側に設定する構成としたことにより、低温側気筒群を温度低下の要因となるEGRの停止と点火時期リタード量をより大きくすることで、速やかに高温側気筒群の温度に近づけることができる。
【0037】
また、被毒物質を解除する要求がでると、EGRを停止し、所定期間経過後、被毒物質の解除が開始されるようにすることにより、EGRの所定期間の停止によって各気筒群の温度差が縮められた後被毒解除が開始され、気筒群間の性能を均等化できる。
特に、被毒物質を解除する要求がでると、EGRを停止し、各気筒群の触媒温度がほぼ同じになった後、被毒物質の解除が開始されるようにする構成としたことにより、気筒群間の性能をより均等化できる。
【0038】
なお、上記実施形態では、被毒物質を解除する制御要求が出ると同時に、空燃比のリッチ化制御が開始されるが、図8に一点鎖線で示すように、各気筒群の触媒温度がほぼ同じになったとき、空燃比のリッチ化制御を開始し、排気空燃比をリッチ化してもよい。この場合、各気筒群の触媒温度がほぼ等しくなるまで、リッチ化を待つので、燃費の悪化を抑えることができる。
【0039】
次に、上記第1の実施形態とは異なる被毒解除制御を行う第2の実施形態について説明する。第1の実施形態では、被毒解除制御の開始と同時に気筒群間の触媒温度差を無くす制御として、EGRを停止すると共に低温側気筒群の点火時期リタード量をより大きくする制御を行い、被毒解除が開始される前に、両気筒群の温度差が無くなるようにしたが、第2の実施形態では被毒解除制御の要求発生時に、触媒温度差の発生要因であるEGRの停止のみを行い、該EGR停止によって所定時間経過後に触媒温度差がほぼ無くなったときから、被毒解除制御を開始するものである。
【0040】
図10に、本第2の実施形態にかかる被毒解除制御フローを示す(システム及び他のフローは第1の実施形態と同一である)。
被毒解除制御の要求により、ステップ501で、機関運転状態として車速(VSP)、機関回転速度(RPM)、負荷(T)、吸入空気量(Q)を読み込み、ステップ502でEGRを停止し、ステップ503で、バンク1のFr触媒3の温度TEMP1を算出し、ステップ504で、バンク2のFr触媒6の触媒温度TEMP2を算出することは、第1の実施形態と同様であるが、被毒解除制御はまだ開始せず、ステップ505で、算出されたTEMP1及びTEMP2の温度差(TEMP2−TEMP1)を所定値TEMPAと比較して被毒解除制御開始のタイミングを判断する。
【0041】
すなわち、ステップ505で、バンク間の触媒温度差が大きいと判定されている間は、ステップ502へ戻って、EGR搾取側気筒群のEGR停止による低温側バンク1の触媒温度上昇を待つ。
そして、両バンク間の温度差が所定値TEMPA未満となったときに、被毒解除制御を開始する。すなわち、ステップ506,507でバンク1,2の点火時期リタード制御(同一リタード量)、ステップ508で空燃比のリッチ制御(排気空燃比のリッチ化)を開始する。
【0042】
図11は、本第2の実施形態における被毒解除制御時の様子を示す。被毒解除制御の要求と同時にEGRが停止されるが、空燃比のリッチ化制御、点火時期リタード制御は開始しない。EGR停止により、EGR搾取側のバンク1のNOxトラップ触媒であるRr触媒4の温度が上昇して、EGR非搾取側のバンク2との温度差が縮められていく。そして、バンク1、2間の温度差が無くなった後、空燃比リッチ制御と点火時期リタード制御による被毒解除制御が開始され、両バンク1,2の触媒温度が同時に同温状態を保ちながら上昇し、被毒解除可能温度に達したときから被毒解除が開始される。
【0043】
したがって、本第2の実施形態でも気筒群間で被毒解除性能が同等となり、過不足のない被毒解除制御を行うことができ、燃費を良好に維持しつつ排気浄化性能を十分に向上できる。なお、第2の実施形態では、被毒解除可能温度に達して被毒解除が開始するタイミングは第1の実施形態より遅れるが、被毒解除制御開始時の触媒温度は第1の実施形態より高温になっているため、被毒解除制御を開始してから終了するまでの期間はより短縮し、燃費をより向上できる。
【0044】
次に、上記第1,第2の実施形態とは異なる形態のシステムに適用した実施形態を示す。
図12は、図1と同様V型6気筒機関であるが、各気筒群の排気通路2,5には、1個ずつの三元触媒で構成されるFr触媒3,6が配置され、各排気通路2,5の下流で合流する排気通路10にNOxトラップ触媒で構成される1個のRr触媒4が配置される。
【0045】
図13は、気筒群別に排気系を有する直列内燃機関20(図3ではその例として直列4気筒機関を示す)であるが上記同様、一方の気筒群(#1,4気筒)に接続される排気通路2と、他方の気筒群(#2,3気筒)に接続される排気通路5とに、1個ずつの三元触媒で構成されるFr触媒3,6が配置され、各排気通路2,5の下流で合流する排気通路10にNOxトラップ触媒で構成される1個のRr触媒4が配置される。
【0046】
これら2in1システムにおいて、EGRシステムについては図1と同様に排気通路2よりEGRガスを導入する。
これら2in1システムに対し、被毒解除制御を上記第1の実施形態と全く同様に行うことができる。図14は、かかる第3の実施形態における被毒解除制御時の様子を示す。
【0047】
本実施形態のような2in1システムでは、NOxトラップ触媒で構成されるRr触媒6は1個であるが、図15の比較例に示すように、該Rr触媒6に導入される両気筒群からの排気の温度差を考慮せず、被毒解除制御要求と同時に両気筒群に同一の被毒解除制御を開始すると、EGR搾取気筒群からRr触媒6に導入される排気の温度が低いため、EGR搾取気筒群からの排気と合流してRr触媒6に導入される排気の温度も低くなる。この結果、Rr触媒6が被毒解除可能温度に達して被毒解除が開始されるのが遅れてしまい、被毒解除制御期間が長引いて燃費が悪化する。
【0048】
これに対し、本実施形態では、EGR搾取気筒群の点火時期リタード量をEGR非搾取気筒群の点火時期リタード量より大きくして燃焼室からの排気温度をより大きく上昇させてEGR非搾取気筒群からの排気温度に近づけることにより、被毒解除可能温度に速やかに到達させ、必要最小限の被毒解除制御期間で被毒解除を完了させることができ、燃費を良好に維持できる。また、被毒解除可能温度に達するまでに両気筒群からの排気温度が同等になることにより、触媒内部での性能差が発生することもない。
【0049】
また、上記2in1システムに適用される第3の実施形態において、温度が低い方の気筒群(バンク1)の点火時期を、所定期間、温度が高い方の気筒群(バンク2)よりもリタードする構成としたことにより、応答性良く排気温度を上昇させて低温側の気筒群から触媒に導入される排気温度を、高温側の気筒群から触媒に導入される排気温度に近づけることができる。
【0050】
また、特に、各気筒群の温度がほぼ同じになるまで、温度が低い方の気筒群の点火時期を温度が高い方の気筒群よりもリタードする構成としたことにより、必要かつ十分なだけリタードに差を持たせた制御が行われ、運転性能も良好に満たせる。
また、各気筒群(バンク1,2)それぞれに前記触媒(Rr触媒4,7)より上流側にフロント触媒(Fr触媒3,6)を更に備えており、これらフロント触媒の温度がほぼ同じになるまで、温度が低い方の気筒群の点火時期を温度が高い方の気筒詳よりもリタードする構成としたことにより、各気筒群(バンク1,2)から被毒解除を行う下流側の触媒(Rr触媒4)に導入される排気温度がほぼ同じになるまで、リタードに差を持たせた制御が行われる。
【0051】
また、被毒物質を解除する制御要求がでると、被毒物質の解除が開始される前に、温度が高い方の気筒群の点火時期を被毒物質を解除する制御のリタード量に設定し、温度が低い方の気筒群の点火時期をこれよりもリタード側に設定する構成としたことにより、高温側、低温側の気筒群共に被毒物質の解除が開始される前から点火時期リタード制御を開始して排気温度を上昇させることにより、被毒解除開始時期を早めつつ、低温側のリタード量をより大きくすることで、低温側の触媒導入排気温度を速やかに高温側の触媒導入排気温度に近づけることができる。
【0052】
また、各気筒群からの触媒導入排気温度がほぼ同じになった後、温度が低かった方の気筒群の点火時期を被毒物質を解除する制御の点火時期までリタード量を戻す構成としたことにより、低温側気筒群が高温側気筒群と同温状態となった後は、被毒解除に適切なリタード量に制御されて良好な解除性能が得られる。
また、各気筒群の温度がほぼ同じになった後、各気筒群の点火時期のリタード量を同一にする構成としたことにより、その後も同等の温度状態を維持しつつ良好な被毒解除性能が得られる。
【0053】
また、2in1システムについても、一方の気筒群から吸気系に排気を還流するEGR装置を備える構成の機関に適用したことにより、EGR搾取側気筒群がEGR非搾取気筒群に対して低温となることによる被毒解除性能の低下を効果的に防止できる。
また、被毒物質を解除する要求がでると、被毒物質の解除が開始される前に、EGRを停止すると共に、温度が高い方の気筒群の点火時期を被毒物質が解除されるときのリタード量に設定し、温度が高い方の気筒群の点火時期をこれよりもリタード側に設定する構成としたことにより、低温側気筒群を温度低下の要因となるEGRの停止と点火時期リタード量をより大きくすることで、速やかに高温側気筒群の温度に近づけることができる。
【0054】
また、被毒物質を解除する要求がでると、EGRを停止し、所定期間経過後、被毒物質の解除が開始されるようにすることにより、EGRの所定期間の停止によって各気筒群からの触媒導入排気の温度差が縮められた後被毒解除が開始され、良好で効率良く被毒解除を行える。
特に、被毒物質を解除する要求がでると、EGRを停止し、各気筒群の触媒温度がほぼ同じになった後、被毒物質の解除が開始されるようにする構成としたことにより、良好で効率良く被毒解除を行える。
【0055】
また、上記図12,13で示した2in1システムに対し、被毒解除制御を上記第2の実施形態と全く同様に行うこともでき、図16は、かかる第4の実施形態における被毒解除制御時の様子を示す。本実施形態においては、被毒解除制御の要求と同時にEGRの停止のみを行ってEGR搾取気筒群側のNOxトラップ触媒であるRr触媒4の温度を上昇させて、EGR非搾取側のバンク2との温度差を縮めていき、温度差が無くなった後、空燃比リッチ制御と点火時期リタード制御による被毒解除制御を開始する。これにより、Rr触媒4に導入される両気筒群からの排気の温度が同時に同温状態を保ちながら上昇し、被毒解除可能温度に達したときから被毒解除が開始される。本実施形態においても、合流後の排気温度が同一となるまで十分高められた後、被毒解除制御を開始するので、その後速やかに被毒解除可能温度に達し、第2実施形態と同様、被毒解除制御期間を可及的に短縮して燃費をより向上できる。また、両気筒群からの排気温度が同等になってから被毒解除制御を開始するので、触媒内部での性能差が発生することもない。
【図面の簡単な説明】
【図1】本発明の第1,第2の実施形態に共通するV型内燃機関のシステム構成図。
【図2】本発明の各実施形態に共通する被毒解除制御のメインフローを示すフローチャート。
【図3】同じく被毒解除制御の開始条件となる被毒量を判定するためのフローチャート。
【図4】同じく被毒解除制御の移行を判定するためのフローチャート。
【図5】第1,第3の実施形態に共通する被毒解除制御のフローチャート。
【図6】本発明の各実施形態に共通する被毒量減算可否を判断するためのフローチャート。
【図7】本発明の各実施形態に共通する被毒解除制御終了判定を行うためのフローチャート。
【図8】第1の実施形態における被毒解除制御時の様子を示すタイムチャート。
【図9】第1の実施形態に対する比較例の被毒解除制御の様子を示すタイムチャート。
【図10】第2,第4の実施形態に共通する被毒解除制御のフローチャート。
【図11】第2の実施形態における被毒解除制御時の様子を示すタイムチャート。
【図12】本発明の第3,第4の実施形態に適用されるV型内燃機関のシステム構成図。
【図13】本発明の第3,第4の実施形態に適用される直列内燃機関のシステム構成図。
【図14】第3の実施形態における被毒解除制御時の様子を示すタイムチャート。
【図15】第3の実施形態に対する比較例の被毒解除制御の様子を示すタイムチャート。
【図16】第4の実施形態における被毒解除制御時の様子を示すタイムチャート。
【符号の説明】
1…V型内燃機関 2…一方の気筒群の排気通路 3…一方の気筒群のFr触媒(三元触媒) 4…Rr触媒(NOxトラップ触媒) 5…他方の気筒群の排気通路 6…他方の気筒群のFr触媒(三元触媒) 7…Rr触媒(NOxトラップ触媒) 20…直列内燃機関
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas purification apparatus for an internal combustion engine, and more particularly to control for releasing poisonous substances adhering to an exhaust gas purification catalyst.
[0002]
[Prior art]
In Japanese Patent Laid-Open No. 11-303622, when releasing and reducing (releasing) SOx (sulfur oxide), which is a poisonous substance adhering to the exhaust purification catalyst, the air-fuel ratio is made rich and at the same time the exhaust temperature The ignition timing is retarded in order to raise the value, and the period during which the SOx is released is managed by time.
[0003]
[Problems to be solved by the invention]
In the above-described prior art, when the exhaust system temperature differs for each cylinder group, it cannot be quickly raised to the SOx release possible temperature after the start of SOx release. That is, when considering a system (2-in-2 system) in which the exhaust passages of the two cylinder groups are each provided with a catalyst, the higher the exhaust system temperature quickly reaches the SOx release possible temperature, whereas the exhaust system temperature. The lower is the delay in reaching the SOx release possible temperature, causing a cylinder group difference in the release amount.
[0004]
If the SOx release period is uniformly managed by time, the poisoning release time of one cylinder group deviates from the actual release state. That is, if the release time is set to the cylinder group having a low temperature, the fuel consumption is deteriorated, and if the release time is set to a cylinder group having a high temperature, the SOx release of the lower temperature cylinder group becomes insufficient.
Considering the case of a system having a catalyst (2 in 1 system) in the exhaust passage downstream of the joining portion of the exhaust passages of the two cylinder groups (2 in 1 system), the lower the exhaust system temperature, the faster In addition, the temperature cannot be raised to the SOx release possible temperature, and the SOx release period becomes longer and the fuel consumption deteriorates. In addition, exhaust from each cylinder group drifts without being sufficiently mixed and is introduced into the catalyst, resulting in a difference in the poisoning release performance for each region within the catalyst, resulting in a release time as in the case of the 2-in-2 system. If longer, the fuel consumption deteriorates, and if the release time is shortened, SOx release is insufficient and both cannot be achieved.
[0005]
The present invention has been made paying attention to such a conventional problem, and aims to improve the poisoning release performance by eliminating the temperature difference between the cylinder groups when the poisoning release is started. To do.
[0006]
[Means for Solving the Problems]
Therefore, the present invention performs the following control in an internal combustion engine provided with an exhaust purification catalyst for each cylinder group.
That is, when performing the control to release the poisoning substance attached to each catalyst, the cylinder with the lower catalyst temperature is reduced so that the difference in the catalyst temperature between the cylinder groups is reduced before the poisoning substance is released. Control is performed to raise the catalyst temperature of the group.
[0007]
In this way, since the release of poisonous substances starts after the catalyst temperature of each cylinder group becomes equal, there is no difference in release performance between the cylinder groups, and all cylinder groups are reliably poisoned in a short time. Release can be completed.
Another invention performs the following control in an internal combustion engine including an exhaust purification catalyst on the downstream side of the merging portion of the exhaust passage for each cylinder group.
[0008]
That is, when performing the control to release the poisoning substance attached to the catalyst, the temperature difference of the exhaust gas introduced into the catalyst from each cylinder group is reduced before the release of the poisoning substance is started. In addition, control is performed to increase the temperature of the cylinder group having the lower temperature.
In this way, after the exhaust temperature of the low-temperature side cylinder group is raised until it becomes equal to the exhaust temperature of the high-temperature side cylinder group, the release of poisonous substances is started. It can be shortened and fuel economy is improved. Moreover, the performance disparity for each region inside the catalyst is eliminated, and the poisoning release performance is further improved.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a system diagram according to the first embodiment of the present invention. In an internal combustion engine 1 having an exhaust system for each cylinder group (FIG. 1 shows a V-type 6-cylinder engine as an example), one cylinder group includes an upstream Fr catalyst 3 and a downstream Rr catalyst 4 in an exhaust passage 2. Are arranged in series, and in the other cylinder group, similarly, an upstream Fr catalyst 6 and a downstream Rr catalyst 7 are arranged in series in the exhaust passage 5 (2-in-2 system).
[0010]
The exhaust passage 2 is provided with an EGR passage 8 for extracting EGR gas, and the flow rate of the EGR gas is controlled by an EGR valve 9 interposed in the EGR passage 8. The upstream Fr catalysts 3 and 6 use a three-way catalyst that exhibits good purification performance in the vicinity of the stoichiometric air-fuel ratio, and NOx trap catalysts are used as the downstream Rr catalysts 4 and 7. The NOx trap catalyst traps NOx in the exhaust when the exhaust air-fuel ratio is lean, and releases the trapped NOx when the exhaust air-fuel ratio is rich or is reduced by the three-way catalyst layer A catalyst to be treated (NOx trap type three-way catalyst).
[0011]
In the above system, the EGR gas may be introduced from the upstream side of the Fr catalyst 3 or from the downstream exhaust passage thereof, but the EGR gas is introduced from the upstream side of the Rr catalyst 4 constituted by the NOx trap catalyst of one bank. By being exploited, the temperature of the Rr catalyst 4 becomes lower as the flow rate of the exhaust gas flowing through the catalyst is reduced by the amount of EGR gas than the Rr catalyst 7 in the other bank where the EGR gas is not exploited.
[0012]
Therefore, the control for releasing SOx (poisonous substances) adhering to the catalyst (mainly the downstream side catalysts 4 and 7 which are NOx trap catalysts) while eliminating the influence of the catalyst temperature difference between the banks is as follows. Execute.
The poisoning release control in the above system will be described according to the flowchart shown in FIG.
[0013]
FIG. 2 shows a main flow of a series of controls for executing the poisoning release control at a predetermined timing while estimating the SOx adhesion amount (hereinafter referred to as poisoning amount) of each catalyst.
In step 101, the amount of poisoning of each catalyst is estimated, whether or not it is necessary to cancel the poisoning, the value of the flag SOXFUL is set, and in step 102, the poisoning cancellation is performed based on the value of the flag SOXFUL. Whether or not is necessary is determined.
[0014]
If it is determined in step 102 that it is necessary to cancel the poisoning, it is determined in step 103 whether or not it is possible to shift to the poisoning cancellation control, and the value of the flag FSOXLS is set. In step 104, the poisoning is determined based on the value of the flag FSOXLS. It is determined whether or not the engine is in an operating state that allows the transition to the poison release control.
If it is determined in step 104 that the shift to the poisoning cancellation control is possible, the poisoning cancellation control is started in step 105. Here, the exhaust temperature is raised and the exhaust air-fuel ratio is enriched.
[0015]
In step 106, it is determined whether or not the poisoning amount counter can be subtracted. Here, the value of the flag FSOXCD is set by determining whether or not the poisoning amount counter can be subtracted depending on the temperature state of the NOx trap catalyst.
In step 107, it is determined whether or not the poisoning amount counter can be subtracted based on the value of the flag FSOXCD. If it is determined that subtraction is possible, the end of poisoning cancellation is determined in step 108. Specifically, the poisoning release control is terminated when the poisoning release amount per unit time is calculated and the estimated value of the poisoning amount is subtracted and the estimated value of the poisoning amount falls below a predetermined value. And flag SOXFUL is set to 1.
[0016]
In step 108, the end of the poisoning release control is determined based on the value of the flag SOXFUL. When the flag SOXFUL = 1, this flow is ended.
FIG. 3 shows a poisoning release timing determination flow in step 101 of FIG.
In step 201, the vehicle speed (VSP), the engine rotation speed (RPM), and the load (T) are read as the engine operation state.
[0017]
In Step 202, the poisoning amount ΔSOX of the catalyst per unit time is integrated based on the operating state, and this integrated value is calculated as the current poisoning amount TSOX.
In step 203, the poisoning amount TSOX is compared with the poisoning determination amount SOXFUL, and when it is determined that TSOX ≧ SOXFUL, it is determined that the poisoning amount has reached an amount that requires the poisoning release control, and the process proceeds to step 204. Then, the poisoning release request flag FSOXFUL = 1 is set and a poisoning release control request is set.
[0018]
If it is determined in step 203 that TSOX <SOXFUL, it is determined that the poisoning amount has not reached the amount that requires the poisoning cancellation control, and the routine proceeds to step 205 where the flag FSOXFUL = 0 and the poisoning cancellation control is performed. Reject the request.
FIG. 4 shows a poisoning release control transition determination flow in step 103 of FIG. In step 301, the vehicle speed (VSP), the engine speed (RPM), and the load (T) are read as the engine operating state.
[0019]
In steps 302, 303, and 304, it is determined whether or not the vehicle speed, the engine speed, and the load are within the range where the control can be shifted to the poisoning release control.
If all the conditions are affirmed (determined to be in the area), the poisoning cancellation execution flag FSOXRLS is set to 1 in step 305 to permit the cancellation control execution.
If each condition is denied in steps 302, 303, and 304, the poisoning release execution flag FSOXRLS = 0 is set in step 306, and the release execution is rejected.
[0020]
FIG. 5 shows a poisoning release control flow according to the present invention executed in step 105 of FIG.
In step 401, the vehicle speed (VSP), the engine speed (RPM), the load (T), and the intake air amount (Q) are read as the engine operating state.
In step 402, the ignition timing of the EGR exploitation side cylinder group (hereinafter referred to as bank 1) is retarded. At this time, the ignition timing retard amount is set to a retard amount at which the NOx trap poisoning can be released. The calculation of the retard amount is determined by the engine operating state read in step 401.
[0021]
In step 403, the ignition timing of the EGR non-introduced cylinder group (hereinafter referred to as bank 2) is retarded. The ignition timing retard amount is also determined in the same manner as in bank 1.
Simultaneously with the ignition timing retard, EGR is stopped at step 404 and the exhaust air-fuel ratio is enriched at step 405.
In step 406, the temperature TEMP1 of the Fr catalyst 3 in the bank 1 is calculated. The calculation of TEMP1 can be estimated based on the engine operating state read in step 401, but it may be estimated from the exhaust temperature by a temperature sensor provided upstream or downstream of the catalyst, and the temperature of the catalyst is directly measured by the sensor. The value may be used.
[0022]
In step 407, the catalyst temperature TEMP2 of the Fr catalyst 6 in the bank 2 is calculated. Similarly to TEMP1, this TEMP2 is calculated by an engine operating state or a temperature sensor.
In step 408, the temperature of each bank is compared based on the calculated TEMP1 and TEMP2. Specifically, when the temperature difference (TEMP2−TEMP1) between the temperature TEMP2 of the high temperature side bank and the temperature TEMP1 of the low temperature side bank is equal to or greater than a predetermined value TEMPA, the temperature difference is large and is less than the predetermined value TEMPA. Judge that the temperature is almost the same.
[0023]
If it is determined in step 408 that the catalyst temperature difference between the banks is large after the start of the poisoning release control, the routine proceeds to step 409, where the ignition timing retard amount of the low temperature side bank 1 is further added, and only the bank 1 is changed. When the ignition timing control is performed to raise the temperature further, and it is determined that the temperatures are almost the same, step 409 is jumped to stop adding the ignition timing retard amount of the low temperature side bank 1, and the retard set in step 402 Return the amount to the same retard amount as the high temperature bank.
[0024]
FIG. 6 shows a flow of determining whether or not the poisoning amount can be subtracted, which is executed in step 106 of FIG.
In step 601, the vehicle speed (VSP), the engine speed (RPM), the load (T), and the intake air amount (Q) are read as engine operating states.
In step 602, the catalyst temperature TEMPR of the Rr catalyst that is the NOx trap catalyst is estimated based on the engine operating state read in step 601. Here, the catalyst temperature estimated in step 602 can be estimated based on the engine operating state read in step 601, but may be estimated from the exhaust temperature by a temperature sensor provided upstream or downstream of the catalyst, or directly You may use the value which measured temperature of this with the sensor.
[0025]
In step 603, the estimated catalyst temperature TEMPR is compared with the poisoning amount subtraction permission temperature SOXTEMP.
If it is determined in step 603 that the catalyst temperature TEMPR is lower than the poisoning amount subtraction permission temperature SOXTEMP, the subtraction permission flag FSOXCD is set to 0 in step 605 to disable the counter subtraction.
[0026]
If it is determined in step 603 that the catalyst temperature TEMPR is equal to or higher than the poisoning amount subtraction permission temperature SOXTEMP, the subtraction permission flag FSOXCD is set to 1 in step 604, and the subtraction of the poisoning amount counter is permitted.
FIG. 7 shows an end determination flow of the poisoning release control.
In step 701, the vehicle speed (VSP), the engine speed (RPM), the load (T), and the intake air amount (Q) are read as engine operating states.
[0027]
In step 702, a poisoning release amount MSOX per unit time is calculated based on the engine operating state.
In step 703, the poisoning amount TSOX is calculated by the following equation.
TSOX = TSOXold + ΔSOX−MSOX
Here, TSOXold is the previous calculated value of the poisoning amount TSOX. Since the poisoning release amount MSOX is a very large value with respect to the poisoning amount ΔSOX during the poisoning release control, TSOX is subtracted.
[0028]
In step 704, the end of the release control is determined based on whether the calculated poisoning amount TSOX is equal to or less than the release control end determination value SOXMIN.
If it is determined in step 704 that TSOX> SOXMIN, that is, the release control has not been completed yet, the process returns to step 701 to continue the poisoning release control.
[0029]
If it is determined in step 704 that TSOX ≦ SOXMIN, that is, the release control is still finished, the flags SOXFUL, FSOXRSL, and FSOXCD are sequentially set to 0 in steps 705 to 707, and the poisoning release control is finished.
FIG. 8 shows a state during poisoning release control in the first embodiment. The EGR is stopped simultaneously with the request for the poisoning cancellation control, and the exhaust air-fuel ratio is enriched by performing the air-fuel ratio enrichment control, and the ignition timing is retarded to start the poisoning cancellation control. In parallel with the poisoning release control, the ignition timing retard amount on the EGR exploitation side is made larger than the retard amount on the non-EGR exploitation side to raise the exhaust gas temperature. As a result, the temperature difference between the Rr catalyst 4 and the Rr catalyst 7 which are NOx trap catalysts in both banks (cylinder group) is quickly reduced while the temperature difference disappears, and then reaches a temperature at which poisoning can be released. Poison release is started simultaneously in both cylinder groups.
[0030]
Therefore, the poisoning release performance is equal among the cylinder groups, and the poisoning release control can be started quickly and the poisoning release control can be completed in a short time, and thus exhaust purification while maintaining good fuel efficiency. The performance can be improved sufficiently.
FIG. 9 shows a state in which the same control is performed without performing the control for eliminating the catalyst temperature difference in each cylinder group after requesting the poisoning cancellation without considering the influence of the catalyst temperature difference between the cylinder groups. It shows as a comparative example. In this case, the Rr catalyst of the EGR non-exploitation side cylinder group reaches the poisoning releaseable temperature earlier than the Rr catalyst of the EGR extraction side cylinder group, and the poisoning cancellation of the air-fuel ratio rich control and the ignition timing retard control is performed. Since the control has already started, the actual poisoning release starts from this time. On the other hand, since the Rr catalyst of the EGR extraction side cylinder group has not yet reached the poisoning releaseable temperature, the poisoning release is not started, and the performance between the cylinder groups is different. If the catalyst temperature is not taken into account in calculating the poisoning amount TSOX, the subtraction starts at the same time as the poisoning release control request, so that it differs from the actual value. Even if it is calculated correctly, the calculated value of the poisoning amount TSOX is not changed. Based on this, the poisoning release control is terminated simultaneously in both cylinder groups, so that the Rr catalyst poisoning release control time of the EGR exploitation side cylinder group is insufficient, or the poisoning release amount is insufficient, or conversely, Poison release control is prolonged and fuel consumption and driving performance are deteriorated.
[0031]
Further, in the above embodiment, the ignition timing of the cylinder group with the lower temperature (bank 1) is retarded than the cylinder group with the higher temperature (bank 2) for a predetermined period, so that the responsiveness is high. By increasing the exhaust temperature, the catalyst temperature on the low temperature side can be quickly brought close to the catalyst temperature on the high temperature side.
In particular, until the catalyst temperature of each cylinder group becomes substantially the same, the ignition timing of the cylinder group with the lower temperature is retarded than the cylinder group with the higher temperature, so that it is necessary and sufficient. Control with a difference in retard is performed, and the driving performance can be satisfactorily satisfied.
[0032]
Each cylinder group (bank 1, 2) further includes a front catalyst (Fr catalysts 3, 6) upstream of the catalyst (Rr catalysts 4, 7), and the temperatures of these front catalysts are substantially the same. Until now, by setting the ignition timing of the cylinder group having the lower temperature to be retarded than the details of the cylinder having the higher temperature, the temperature of the downstream side catalyst (Rr catalysts 4 and 7) for releasing the poisoning is also increased. Until the two become substantially the same, the control with a difference in the retard is performed.
[0033]
Further, on the condition that the catalyst temperature difference between the cylinder groups is equal to or greater than a predetermined value (TEMPA), the ignition timing of the lower temperature cylinder group is retarded than the higher temperature cylinder group for a predetermined period. As a result, control with a difference in retard is performed only for the minimum necessary period without being affected by variations in temperature detection.
In addition, as a control to release poisonous substances, the ignition timing retard and the air-fuel ratio enrichment are adopted, so that the conditions for temperature rise and reducing agent supply necessary for the poisoning cancellation are satisfied and good performance is achieved. Can be obtained.
[0034]
If a control request to release the poisonous substance is issued, the ignition timing of the higher temperature cylinder group is set to the retard amount for the control to release the poisonous substance before the release of the poisonous substance is started. By setting the ignition timing of the cylinder group with the lower temperature to the retard side than this, the ignition timing retard control is performed before the release of poisonous substances is started in both the high temperature side and low temperature side cylinder groups. By increasing the exhaust gas temperature and increasing the exhaust temperature, the low temperature side catalyst temperature can be quickly brought close to the high temperature side catalyst temperature by increasing the retard amount on the low temperature side while accelerating the start of detoxication. it can.
[0035]
In addition, after the catalyst temperature of each cylinder group becomes substantially the same, the retard amount is returned to the ignition timing of the control of the cylinder group whose temperature is lower until the control timing of releasing the poisonous substance, thereby reducing the temperature. After the side cylinder group is in the same temperature state as the high temperature side cylinder group, the retard amount appropriate for releasing poisoning is controlled to obtain good releasing performance.
Moreover, after the catalyst temperature of each cylinder group becomes substantially the same, the same poisoning release performance can be obtained in each cylinder group by making the retard amount of the ignition timing of each cylinder group the same.
[0036]
Further, by applying to an engine having an EGR device that recirculates exhaust gas from one cylinder group to the intake system, the poisoning release performance due to the EGR exploitation side cylinder group becoming lower temperature than the EGR nonexploit cylinder group Can be effectively prevented.
In addition, when a request to release the poisonous substance is issued, EGR is stopped before the release of the poisonous substance is started, and the ignition timing of the cylinder group having the higher temperature is released. Is set to the retard amount, and the ignition timing of the higher temperature cylinder group is set to the retard side than this, so that the EGR stop and ignition timing retard causing the low temperature side cylinder group to decrease in temperature. By increasing the amount, the temperature of the high temperature side cylinder group can be quickly brought close to.
[0037]
Further, when a request to release the poisoning substance is made, the EGR is stopped, and after the predetermined period has elapsed, the release of the poisoning substance is started. After the difference is reduced, the poisoning release is started, and the performance among the cylinder groups can be equalized.
In particular, when a request to release the poisonous substance is made, the EGR is stopped, and after the catalyst temperature of each cylinder group becomes substantially the same, the release of the poisonous substance is started. The performance among the cylinder groups can be more equalized.
[0038]
In the above-described embodiment, the air-fuel ratio enrichment control is started at the same time as the control request for releasing the poisonous substance is issued. However, as shown by the one-dot chain line in FIG. When they become the same, the air-fuel ratio enrichment control may be started to enrich the exhaust air-fuel ratio. In this case, since enrichment is waited until the catalyst temperature of each cylinder group becomes substantially equal, deterioration of fuel consumption can be suppressed.
[0039]
Next, a second embodiment that performs poisoning release control different from that of the first embodiment will be described. In the first embodiment, as the control for eliminating the catalyst temperature difference between the cylinder groups simultaneously with the start of the poisoning release control, the control for stopping the EGR and increasing the ignition timing retard amount of the low temperature side cylinder group is performed. The temperature difference between the two cylinder groups is eliminated before the poison release is started. However, in the second embodiment, when the request for the poisoning release control is generated, only the EGR that is the cause of the catalyst temperature difference is stopped. The poisoning release control is started when the catalyst temperature difference is almost eliminated after the elapse of a predetermined time due to the EGR stop.
[0040]
FIG. 10 shows a poisoning release control flow according to the second embodiment (the system and other flows are the same as those of the first embodiment).
In response to the request for the poisoning release control, the vehicle speed (VSP), the engine rotational speed (RPM), the load (T), and the intake air amount (Q) are read as the engine operating state in Step 501, and the EGR is stopped in Step 502, In step 503, the temperature TEMP1 of the Fr catalyst 3 in the bank 1 is calculated, and in step 504, the catalyst temperature TEMP2 of the Fr catalyst 6 in the bank 2 is calculated as in the first embodiment. The release control is not yet started, and in step 505, the calculated temperature difference between TEMP1 and TEMP2 (TEMP2-TEMP1) is compared with a predetermined value TEMPA to determine the timing for starting the poisoning release control.
[0041]
That is, while it is determined in step 505 that the catalyst temperature difference between the banks is large, the process returns to step 502 to wait for the catalyst temperature increase in the low temperature side bank 1 due to the EGR stop of the EGR extraction side cylinder group.
Then, when the temperature difference between both banks becomes less than the predetermined value TEMPA, the poisoning release control is started. That is, the ignition timing retard control (same retard amount) of the banks 1 and 2 is started in steps 506 and 507, and the rich control of the air-fuel ratio (riching of the exhaust air-fuel ratio) is started in step 508.
[0042]
FIG. 11 shows a state during poisoning release control in the second embodiment. The EGR is stopped simultaneously with the request for the poisoning release control, but the air-fuel ratio enrichment control and the ignition timing retard control are not started. Due to the EGR stop, the temperature of the Rr catalyst 4 which is the NOx trap catalyst of the bank 1 on the EGR exploitation side rises, and the temperature difference from the bank 2 on the non-EGR exploitation side is reduced. After the temperature difference between banks 1 and 2 disappears, poisoning release control by air-fuel ratio rich control and ignition timing retard control is started, and the catalyst temperatures of both banks 1 and 2 rise while maintaining the same temperature state simultaneously. The poisoning release starts when the poisoning release possible temperature is reached.
[0043]
Therefore, even in the second embodiment, the poisoning release performance is equal between the cylinder groups, and it is possible to perform the poisoning release control without excess or deficiency, and to sufficiently improve the exhaust purification performance while maintaining good fuel efficiency. . In the second embodiment, the timing at which the poisoning release temperature is reached and the poisoning release starts is delayed from that in the first embodiment, but the catalyst temperature at the start of the poisoning release control is lower than that in the first embodiment. Since the temperature is high, the period from the start to the end of the poisoning release control is shortened, and the fuel consumption can be further improved.
[0044]
Next, an embodiment applied to a system having a form different from the first and second embodiments will be described.
FIG. 12 shows a V-type 6-cylinder engine as in FIG. 1, but Fr catalysts 3 and 6 composed of one three-way catalyst are arranged in the exhaust passages 2 and 5 of each cylinder group. One Rr catalyst 4 composed of a NOx trap catalyst is disposed in an exhaust passage 10 that merges downstream of the exhaust passages 2 and 5.
[0045]
FIG. 13 shows an in-line internal combustion engine 20 having an exhaust system for each cylinder group (FIG. 3 shows an in-line four-cylinder engine as an example), but is connected to one cylinder group (# 1, 4 cylinders) as described above. The exhaust passage 2 and the exhaust passage 5 connected to the other cylinder group (# 2, 3 cylinder) are provided with Fr catalysts 3, 6 each composed of a three-way catalyst. , 5, one Rr catalyst 4 composed of a NOx trap catalyst is disposed in the exhaust passage 10 that merges downstream of the exhaust passage 10.
[0046]
In these 2-in-1 systems, EGR gas is introduced from the exhaust passage 2 in the same manner as in FIG.
For these 2-in-1 systems, poisoning release control can be performed in exactly the same manner as in the first embodiment. FIG. 14 shows a state during poisoning release control in the third embodiment.
[0047]
In the 2-in-1 system as in the present embodiment, there is one Rr catalyst 6 composed of a NOx trap catalyst. However, as shown in the comparative example of FIG. If the same poisoning release control is started for both cylinder groups at the same time as the poisoning release control request without considering the exhaust gas temperature difference, the temperature of the exhaust gas introduced into the Rr catalyst 6 from the EGR exploitation cylinder group is low. The temperature of the exhaust gas that joins the exhaust gas from the exploitation cylinder group and is introduced into the Rr catalyst 6 is also lowered. As a result, the Rr catalyst 6 reaches the poisoning decomposable temperature and delays the start of the poisoning release, and the poisoning release control period is prolonged and the fuel consumption is deteriorated.
[0048]
On the other hand, in this embodiment, the ignition timing retard amount of the EGR exploitation cylinder group is made larger than the ignition timing retard amount of the EGR non exploitation cylinder group, and the exhaust gas temperature from the combustion chamber is further increased to increase the EGR exploitation cylinder group. By approaching the exhaust gas temperature from the exhaust gas, it is possible to quickly reach the poisoning release possible temperature, complete the poisoning release in the minimum necessary poisoning release control period, and maintain good fuel efficiency. Further, since the exhaust temperatures from both cylinder groups become equal before reaching the poisonable release temperature, there is no difference in performance within the catalyst.
[0049]
Further, in the third embodiment applied to the 2-in-1 system, the ignition timing of the lower temperature cylinder group (bank 1) is retarded than the higher temperature cylinder group (bank 2) for a predetermined period. With this configuration, it is possible to raise the exhaust temperature with high responsiveness and bring the exhaust temperature introduced from the low temperature side cylinder group into the catalyst closer to the exhaust temperature introduced into the catalyst from the high temperature side cylinder group.
[0050]
In particular, the ignition timing of the cylinder group with the lower temperature is retarded than the cylinder group with the higher temperature until the temperature of each cylinder group becomes substantially the same, so that the necessary and sufficient retardance is achieved. The control with a difference is performed, and the driving performance can be satisfactorily satisfied.
Each cylinder group (bank 1, 2) further includes a front catalyst (Fr catalysts 3, 6) upstream of the catalyst (Rr catalysts 4, 7), and the temperatures of these front catalysts are substantially the same. Until downstream, the downstream side catalyst that releases the poison from each cylinder group (banks 1 and 2) by retarding the ignition timing of the cylinder group having the lower temperature than the details of the cylinder having the higher temperature. Control is performed with a difference in retard until the exhaust gas temperature introduced into the (Rr catalyst 4) becomes substantially the same.
[0051]
If a control request to release the poisonous substance is issued, the ignition timing of the higher temperature cylinder group is set to the retard amount for the control to release the poisonous substance before the release of the poisonous substance is started. By setting the ignition timing of the cylinder group with the lower temperature to the retard side than this, the ignition timing retard control is performed before the release of poisonous substances is started in both the high temperature side and low temperature side cylinder groups. By increasing the exhaust temperature by increasing the exhaust temperature by increasing the retard amount on the low temperature side while increasing the exhaust temperature, the low temperature side catalyst introduction exhaust temperature can be quickly increased. Can be approached.
[0052]
In addition, after the catalyst introduction exhaust temperature from each cylinder group becomes substantially the same, the ignition amount of the cylinder group having the lower temperature is returned to the ignition timing of the control for releasing the poisonous substance. Thus, after the low temperature side cylinder group becomes the same temperature state as the high temperature side cylinder group, the retard amount is controlled to be appropriate for the poisoning release, and a good release performance is obtained.
In addition, after the temperature of each cylinder group becomes almost the same, the retard amount of the ignition timing of each cylinder group is made the same, so that good detoxification performance is maintained while maintaining the same temperature state thereafter. Is obtained.
[0053]
Also, the 2-in-1 system is applied to an engine having an EGR device that recirculates exhaust gas from one cylinder group to the intake system, so that the EGR exploitation-side cylinder group becomes lower in temperature than the EGR non-exploit cylinder group. It is possible to effectively prevent deterioration of the poisoning release performance due to.
In addition, when a request to release the poisonous substance is issued, EGR is stopped before the release of the poisonous substance is started, and the ignition timing of the cylinder group having the higher temperature is released. Is set to the retard amount, and the ignition timing of the higher temperature cylinder group is set to the retard side than this, so that the EGR stop and ignition timing retard causing the low temperature side cylinder group to decrease in temperature. By increasing the amount, the temperature of the high temperature side cylinder group can be quickly brought close to.
[0054]
In addition, when a request to release the poisonous substance is made, the EGR is stopped, and after the predetermined period has elapsed, the release of the poisonous substance is started. After the temperature difference of the catalyst introduction exhaust gas is reduced, the poisoning release is started, and the poisoning release can be performed efficiently and efficiently.
In particular, when a request to release the poisonous substance is made, the EGR is stopped, and after the catalyst temperature of each cylinder group becomes substantially the same, the release of the poisonous substance is started. Good and efficient removal of poisoning.
[0055]
Further, the poisoning release control can be performed on the 2-in-1 system shown in FIGS. 12 and 13 in the same manner as in the second embodiment. FIG. 16 shows the poisoning release control in the fourth embodiment. Shows the state of time. In this embodiment, the EGR is stopped only at the same time as the request for the poisoning release control to increase the temperature of the Rr catalyst 4 that is the NOx trap catalyst on the EGR exploitation cylinder group side, and the bank 2 on the non-EGR exploitation side After the temperature difference is reduced and the temperature difference disappears, poisoning release control by air-fuel ratio rich control and ignition timing retard control is started. Thereby, the temperature of the exhaust gas from both cylinder groups introduced into the Rr catalyst 4 rises while maintaining the same temperature state at the same time, and the poisoning release is started when the poisoning release possible temperature is reached. Also in this embodiment, the poisoning release control is started after the exhaust temperature after joining is sufficiently increased until it becomes the same. The poison release control period can be shortened as much as possible to further improve fuel efficiency. Further, since the poisoning release control is started after the exhaust temperatures from the two cylinder groups become equal, there is no performance difference within the catalyst.
[Brief description of the drawings]
FIG. 1 is a system configuration diagram of a V-type internal combustion engine common to first and second embodiments of the present invention.
FIG. 2 is a flowchart showing a main flow of poisoning release control common to the embodiments of the present invention.
FIG. 3 is a flowchart for determining a poisoning amount that is also a condition for starting poisoning release control.
FIG. 4 is a flowchart for determining the shift of the poisoning release control.
FIG. 5 is a flowchart of poisoning release control common to the first and third embodiments.
FIG. 6 is a flowchart for determining whether or not the poisoning amount subtraction is common to each embodiment of the present invention.
FIG. 7 is a flowchart for performing poisoning release control end determination common to the embodiments of the present invention.
FIG. 8 is a time chart showing a state during poisoning release control in the first embodiment.
FIG. 9 is a time chart showing a state of poisoning release control of a comparative example with respect to the first embodiment.
FIG. 10 is a flowchart of poisoning release control common to the second and fourth embodiments.
FIG. 11 is a time chart showing a state during poisoning release control in the second embodiment.
FIG. 12 is a system configuration diagram of a V-type internal combustion engine applied to the third and fourth embodiments of the present invention.
FIG. 13 is a system configuration diagram of a series internal combustion engine applied to the third and fourth embodiments of the present invention.
FIG. 14 is a time chart showing a state during poisoning release control in the third embodiment.
FIG. 15 is a time chart showing a state of poisoning release control of a comparative example with respect to the third embodiment.
FIG. 16 is a time chart showing a state during poisoning release control in the fourth embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... V-type internal combustion engine 2 ... Exhaust passage of one cylinder group 3 ... Fr catalyst (three-way catalyst) of one cylinder group 4 ... Rr catalyst (NOx trap catalyst) 5 ... Exhaust passage of other cylinder group 6 ... Other Fr catalyst (three-way catalyst) 7 ... Rr catalyst (NOx trap catalyst) 20 ... In-line internal combustion engine

Claims (6)

内燃機関の気筒群毎にそれぞれ排気浄化用の触媒を備え、各触媒に付着した被毒物質を同時に解除する内燃機関の排気浄化装置において、
前記一方の気筒群の吸気系に排気を還流するEGR装置を備え、
被毒物質を解除する要求が出ると、被毒物質の解除が開始される前に、前記EGRを停止し、各気筒群の触媒温度がほぼ同じになった後に、各気筒群の排気温度を被毒物質を解除する触媒温度まで上昇させる被毒解除制御を行うことを特徴とする内燃機関の排気浄化制御装置。
In the exhaust gas purification apparatus for an internal combustion engine that includes an exhaust purification catalyst for each cylinder group of the internal combustion engine and simultaneously releases poisonous substances adhering to each catalyst ,
An EGR device for recirculating exhaust gas to an intake system of the one cylinder group;
When a request to release the poisonous substance is issued, the EGR is stopped before the release of the poisonous substance is started, and after the catalyst temperature of each cylinder group becomes substantially the same, the exhaust temperature of each cylinder group is changed. An exhaust purification control apparatus for an internal combustion engine, which performs poisoning release control for raising the poisoning substance to a catalyst temperature for releasing the poisoning substance .
被毒物質を解除する要求が出ると、EGRを停止すると共に、排気温度が高い方の気筒群よりも排気温度が低い方の気筒群の点火時期をリタード側に設定することを特徴とする請求項1に記載の内燃機関の排気浄化制御装置。 When a request to release the poisoning substance is issued, the EGR is stopped, and the ignition timing of the cylinder group having a lower exhaust temperature than that of the cylinder group having a higher exhaust temperature is set to the retard side. Item 2. An exhaust gas purification control apparatus for an internal combustion engine according to Item 1 . 被毒物質を解除する制御は、少なくとも、点火時期のリタードと、空燃比のリッチ化を含むことを特徴とする請求項1または2に記載の内燃機関の排気浄化制御装置。 3. The exhaust gas purification control apparatus for an internal combustion engine according to claim 1, wherein the control for releasing the poisoning substance includes at least ignition timing retard and air-fuel ratio enrichment . 内燃機関の気筒群毎の排気通路の合流部下流側に排気浄化用の触媒を備え、触媒に付着した被毒物質の解除を排気温度を上昇させて行う内燃機関の排気浄化装置において、
前記一方の気筒群の吸気系に排気を還流するEGR装置を備え、
被毒物質を解除する要求が出ると、被毒物質の解除が開始される前に、前記EGRを停止し、各気筒群の排気温度がほぼ同じになった後に、各気筒群の排気温度を被毒物質を解除する触媒温度まで上昇させる被毒解除制御を行うことを特徴とする内燃機関の排気浄化制御装置。
In the exhaust gas purification apparatus for an internal combustion engine, which includes an exhaust purification catalyst downstream of the merging portion of the exhaust passage for each cylinder group of the internal combustion engine and releases the poisonous substances attached to the catalyst by increasing the exhaust temperature,
An EGR device for recirculating exhaust gas to an intake system of the one cylinder group;
When a request to release the poisonous substance is issued, the EGR is stopped before the release of the poisonous substance is started, and after the exhaust temperature of each cylinder group becomes substantially the same, the exhaust temperature of each cylinder group is changed. An exhaust purification control apparatus for an internal combustion engine, which performs poisoning release control for raising the poisoning substance to a catalyst temperature for releasing the poisoning substance .
被毒物質を解除する要求が出ると、EGRを停止すると共に、排気温度が高い方の気筒群よりも排気温度が低い方の気筒群の点火時期をリタード側に設定することを特徴とする請求項4に記載の内燃機関の排気浄化制御装置。 When a request to release the poisoning substance is issued, the EGR is stopped, and the ignition timing of the cylinder group having a lower exhaust temperature than that of the cylinder group having a higher exhaust temperature is set to the retard side. Item 5. An exhaust gas purification control apparatus for an internal combustion engine according to Item 4 . 被毒物質を解除する制御は、少なくとも、点火時期のリタードと、空燃比のリッチ化を含むことを特徴とする請求項5に記載の内燃機関の排気浄化制御装置。 6. The exhaust gas purification control apparatus for an internal combustion engine according to claim 5, wherein the control for releasing the poisonous substance includes at least ignition timing retard and air-fuel ratio enrichment .
JP2002210086A 2002-07-18 2002-07-18 Exhaust gas purification control device for internal combustion engine Expired - Lifetime JP4182281B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002210086A JP4182281B2 (en) 2002-07-18 2002-07-18 Exhaust gas purification control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002210086A JP4182281B2 (en) 2002-07-18 2002-07-18 Exhaust gas purification control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004052641A JP2004052641A (en) 2004-02-19
JP4182281B2 true JP4182281B2 (en) 2008-11-19

Family

ID=31933736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002210086A Expired - Lifetime JP4182281B2 (en) 2002-07-18 2002-07-18 Exhaust gas purification control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4182281B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4415881B2 (en) 2005-03-09 2010-02-17 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4635853B2 (en) * 2005-12-09 2011-02-23 トヨタ自動車株式会社 Control device for internal combustion engine
JP4862623B2 (en) * 2006-11-17 2012-01-25 トヨタ自動車株式会社 Control device for internal combustion engine
JP2012087673A (en) * 2010-10-19 2012-05-10 Toyota Motor Corp Control device of internal combustion engine
JP7163779B2 (en) * 2019-01-10 2022-11-01 トヨタ自動車株式会社 Hybrid vehicle control device

Also Published As

Publication number Publication date
JP2004052641A (en) 2004-02-19

Similar Documents

Publication Publication Date Title
CN105840275B (en) Method and system for maintaining DFSO
US6962045B2 (en) Exhaust gas apparatus and method for purifying exhaust gas in internal combustion engine
US6233925B1 (en) Exhaust discharge control device for internal combustion engine
US20080120966A1 (en) Exhaust Gas Purification System for Internal Combustion Engine
JP2000265885A (en) Engine exhaust emission control device
US20090229256A1 (en) Control unit for exhaust gas purifying apparatus
JP5187458B2 (en) Control device for internal combustion engine
JP3618598B2 (en) Exhaust gas purification device for internal combustion engine
JP2002364349A (en) Exhaust emission control system for internal combustion engine
JP4182281B2 (en) Exhaust gas purification control device for internal combustion engine
US7036304B2 (en) Exhaust gas purifying apparatus and method for internal combustion engine
JP4061999B2 (en) Exhaust gas purification device for internal combustion engine
JP2004044457A (en) Exhaust emission control device of internal combustion engine
JP2001159363A (en) Exhaust emission control device for internal combustion engine
JP5023915B2 (en) Exhaust purification catalyst regeneration control device for exhaust purification system of internal combustion engine and catalyst regeneration method thereof
JP2002332830A (en) Exhaust emission control device of internal combustion engine
JP6270247B1 (en) Engine exhaust purification system
JP2000087736A (en) Internal combustion engine
JP3757668B2 (en) Engine exhaust purification system
JP6230006B1 (en) Engine exhaust purification system
JP3840911B2 (en) Engine control device
JP4331972B2 (en) Exhaust gas purification device for internal combustion engine
JP4161429B2 (en) Lean combustion internal combustion engine
JP6230008B1 (en) Engine exhaust purification system
JP4255224B2 (en) Internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080331

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080526

TRDD Decision of grant or rejection written
A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20080722

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110912

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4182281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120912

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130912

Year of fee payment: 5

EXPY Cancellation because of completion of term